xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_sb.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 int
129 xfs_reflink_find_shared(
130 	struct xfs_mount	*mp,
131 	struct xfs_trans	*tp,
132 	xfs_agnumber_t		agno,
133 	xfs_agblock_t		agbno,
134 	xfs_extlen_t		aglen,
135 	xfs_agblock_t		*fbno,
136 	xfs_extlen_t		*flen,
137 	bool			find_end_of_shared)
138 {
139 	struct xfs_buf		*agbp;
140 	struct xfs_btree_cur	*cur;
141 	int			error;
142 
143 	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 	if (error)
145 		return error;
146 
147 	cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
148 
149 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
150 			find_end_of_shared);
151 
152 	xfs_btree_del_cursor(cur, error);
153 
154 	xfs_trans_brelse(tp, agbp);
155 	return error;
156 }
157 
158 /*
159  * Trim the mapping to the next block where there's a change in the
160  * shared/unshared status.  More specifically, this means that we
161  * find the lowest-numbered extent of shared blocks that coincides with
162  * the given block mapping.  If the shared extent overlaps the start of
163  * the mapping, trim the mapping to the end of the shared extent.  If
164  * the shared region intersects the mapping, trim the mapping to the
165  * start of the shared extent.  If there are no shared regions that
166  * overlap, just return the original extent.
167  */
168 int
169 xfs_reflink_trim_around_shared(
170 	struct xfs_inode	*ip,
171 	struct xfs_bmbt_irec	*irec,
172 	bool			*shared)
173 {
174 	xfs_agnumber_t		agno;
175 	xfs_agblock_t		agbno;
176 	xfs_extlen_t		aglen;
177 	xfs_agblock_t		fbno;
178 	xfs_extlen_t		flen;
179 	int			error = 0;
180 
181 	/* Holes, unwritten, and delalloc extents cannot be shared */
182 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
183 		*shared = false;
184 		return 0;
185 	}
186 
187 	trace_xfs_reflink_trim_around_shared(ip, irec);
188 
189 	agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
190 	agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
191 	aglen = irec->br_blockcount;
192 
193 	error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
194 			aglen, &fbno, &flen, true);
195 	if (error)
196 		return error;
197 
198 	*shared = false;
199 	if (fbno == NULLAGBLOCK) {
200 		/* No shared blocks at all. */
201 		return 0;
202 	} else if (fbno == agbno) {
203 		/*
204 		 * The start of this extent is shared.  Truncate the
205 		 * mapping at the end of the shared region so that a
206 		 * subsequent iteration starts at the start of the
207 		 * unshared region.
208 		 */
209 		irec->br_blockcount = flen;
210 		*shared = true;
211 		return 0;
212 	} else {
213 		/*
214 		 * There's a shared extent midway through this extent.
215 		 * Truncate the mapping at the start of the shared
216 		 * extent so that a subsequent iteration starts at the
217 		 * start of the shared region.
218 		 */
219 		irec->br_blockcount = fbno - agbno;
220 		return 0;
221 	}
222 }
223 
224 int
225 xfs_bmap_trim_cow(
226 	struct xfs_inode	*ip,
227 	struct xfs_bmbt_irec	*imap,
228 	bool			*shared)
229 {
230 	/* We can't update any real extents in always COW mode. */
231 	if (xfs_is_always_cow_inode(ip) &&
232 	    !isnullstartblock(imap->br_startblock)) {
233 		*shared = true;
234 		return 0;
235 	}
236 
237 	/* Trim the mapping to the nearest shared extent boundary. */
238 	return xfs_reflink_trim_around_shared(ip, imap, shared);
239 }
240 
241 static int
242 xfs_reflink_convert_cow_locked(
243 	struct xfs_inode	*ip,
244 	xfs_fileoff_t		offset_fsb,
245 	xfs_filblks_t		count_fsb)
246 {
247 	struct xfs_iext_cursor	icur;
248 	struct xfs_bmbt_irec	got;
249 	struct xfs_btree_cur	*dummy_cur = NULL;
250 	int			dummy_logflags;
251 	int			error = 0;
252 
253 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
254 		return 0;
255 
256 	do {
257 		if (got.br_startoff >= offset_fsb + count_fsb)
258 			break;
259 		if (got.br_state == XFS_EXT_NORM)
260 			continue;
261 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
262 			return -EIO;
263 
264 		xfs_trim_extent(&got, offset_fsb, count_fsb);
265 		if (!got.br_blockcount)
266 			continue;
267 
268 		got.br_state = XFS_EXT_NORM;
269 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
270 				XFS_COW_FORK, &icur, &dummy_cur, &got,
271 				&dummy_logflags);
272 		if (error)
273 			return error;
274 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
275 
276 	return error;
277 }
278 
279 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
280 int
281 xfs_reflink_convert_cow(
282 	struct xfs_inode	*ip,
283 	xfs_off_t		offset,
284 	xfs_off_t		count)
285 {
286 	struct xfs_mount	*mp = ip->i_mount;
287 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
288 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
289 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
290 	int			error;
291 
292 	ASSERT(count != 0);
293 
294 	xfs_ilock(ip, XFS_ILOCK_EXCL);
295 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
296 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
297 	return error;
298 }
299 
300 /*
301  * Find the extent that maps the given range in the COW fork. Even if the extent
302  * is not shared we might have a preallocation for it in the COW fork. If so we
303  * use it that rather than trigger a new allocation.
304  */
305 static int
306 xfs_find_trim_cow_extent(
307 	struct xfs_inode	*ip,
308 	struct xfs_bmbt_irec	*imap,
309 	struct xfs_bmbt_irec	*cmap,
310 	bool			*shared,
311 	bool			*found)
312 {
313 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
314 	xfs_filblks_t		count_fsb = imap->br_blockcount;
315 	struct xfs_iext_cursor	icur;
316 
317 	*found = false;
318 
319 	/*
320 	 * If we don't find an overlapping extent, trim the range we need to
321 	 * allocate to fit the hole we found.
322 	 */
323 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
324 		cmap->br_startoff = offset_fsb + count_fsb;
325 	if (cmap->br_startoff > offset_fsb) {
326 		xfs_trim_extent(imap, imap->br_startoff,
327 				cmap->br_startoff - imap->br_startoff);
328 		return xfs_bmap_trim_cow(ip, imap, shared);
329 	}
330 
331 	*shared = true;
332 	if (isnullstartblock(cmap->br_startblock)) {
333 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
334 		return 0;
335 	}
336 
337 	/* real extent found - no need to allocate */
338 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
339 	*found = true;
340 	return 0;
341 }
342 
343 /* Allocate all CoW reservations covering a range of blocks in a file. */
344 int
345 xfs_reflink_allocate_cow(
346 	struct xfs_inode	*ip,
347 	struct xfs_bmbt_irec	*imap,
348 	struct xfs_bmbt_irec	*cmap,
349 	bool			*shared,
350 	uint			*lockmode,
351 	bool			convert_now)
352 {
353 	struct xfs_mount	*mp = ip->i_mount;
354 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
355 	xfs_filblks_t		count_fsb = imap->br_blockcount;
356 	struct xfs_trans	*tp;
357 	int			nimaps, error = 0;
358 	bool			found;
359 	xfs_filblks_t		resaligned;
360 	xfs_extlen_t		resblks = 0;
361 
362 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
363 	if (!ip->i_cowfp) {
364 		ASSERT(!xfs_is_reflink_inode(ip));
365 		xfs_ifork_init_cow(ip);
366 	}
367 
368 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
369 	if (error || !*shared)
370 		return error;
371 	if (found)
372 		goto convert;
373 
374 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
375 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
376 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
377 
378 	xfs_iunlock(ip, *lockmode);
379 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
380 	*lockmode = XFS_ILOCK_EXCL;
381 	xfs_ilock(ip, *lockmode);
382 
383 	if (error)
384 		return error;
385 
386 	error = xfs_qm_dqattach_locked(ip, false);
387 	if (error)
388 		goto out_trans_cancel;
389 
390 	/*
391 	 * Check for an overlapping extent again now that we dropped the ilock.
392 	 */
393 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
394 	if (error || !*shared)
395 		goto out_trans_cancel;
396 	if (found) {
397 		xfs_trans_cancel(tp);
398 		goto convert;
399 	}
400 
401 	error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
402 			XFS_QMOPT_RES_REGBLKS);
403 	if (error)
404 		goto out_trans_cancel;
405 
406 	xfs_trans_ijoin(tp, ip, 0);
407 
408 	/* Allocate the entire reservation as unwritten blocks. */
409 	nimaps = 1;
410 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
411 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
412 			&nimaps);
413 	if (error)
414 		goto out_unreserve;
415 
416 	xfs_inode_set_cowblocks_tag(ip);
417 	error = xfs_trans_commit(tp);
418 	if (error)
419 		return error;
420 
421 	/*
422 	 * Allocation succeeded but the requested range was not even partially
423 	 * satisfied?  Bail out!
424 	 */
425 	if (nimaps == 0)
426 		return -ENOSPC;
427 convert:
428 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
429 	/*
430 	 * COW fork extents are supposed to remain unwritten until we're ready
431 	 * to initiate a disk write.  For direct I/O we are going to write the
432 	 * data and need the conversion, but for buffered writes we're done.
433 	 */
434 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
435 		return 0;
436 	trace_xfs_reflink_convert_cow(ip, cmap);
437 	return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
438 
439 out_unreserve:
440 	xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
441 			XFS_QMOPT_RES_REGBLKS);
442 out_trans_cancel:
443 	xfs_trans_cancel(tp);
444 	return error;
445 }
446 
447 /*
448  * Cancel CoW reservations for some block range of an inode.
449  *
450  * If cancel_real is true this function cancels all COW fork extents for the
451  * inode; if cancel_real is false, real extents are not cleared.
452  *
453  * Caller must have already joined the inode to the current transaction. The
454  * inode will be joined to the transaction returned to the caller.
455  */
456 int
457 xfs_reflink_cancel_cow_blocks(
458 	struct xfs_inode		*ip,
459 	struct xfs_trans		**tpp,
460 	xfs_fileoff_t			offset_fsb,
461 	xfs_fileoff_t			end_fsb,
462 	bool				cancel_real)
463 {
464 	struct xfs_ifork		*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
465 	struct xfs_bmbt_irec		got, del;
466 	struct xfs_iext_cursor		icur;
467 	int				error = 0;
468 
469 	if (!xfs_inode_has_cow_data(ip))
470 		return 0;
471 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
472 		return 0;
473 
474 	/* Walk backwards until we're out of the I/O range... */
475 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
476 		del = got;
477 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
478 
479 		/* Extent delete may have bumped ext forward */
480 		if (!del.br_blockcount) {
481 			xfs_iext_prev(ifp, &icur);
482 			goto next_extent;
483 		}
484 
485 		trace_xfs_reflink_cancel_cow(ip, &del);
486 
487 		if (isnullstartblock(del.br_startblock)) {
488 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
489 					&icur, &got, &del);
490 			if (error)
491 				break;
492 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
493 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
494 
495 			/* Free the CoW orphan record. */
496 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
497 					del.br_blockcount);
498 
499 			xfs_bmap_add_free(*tpp, del.br_startblock,
500 					  del.br_blockcount, NULL);
501 
502 			/* Roll the transaction */
503 			error = xfs_defer_finish(tpp);
504 			if (error)
505 				break;
506 
507 			/* Remove the mapping from the CoW fork. */
508 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
509 
510 			/* Remove the quota reservation */
511 			error = xfs_trans_reserve_quota_nblks(NULL, ip,
512 					-(long)del.br_blockcount, 0,
513 					XFS_QMOPT_RES_REGBLKS);
514 			if (error)
515 				break;
516 		} else {
517 			/* Didn't do anything, push cursor back. */
518 			xfs_iext_prev(ifp, &icur);
519 		}
520 next_extent:
521 		if (!xfs_iext_get_extent(ifp, &icur, &got))
522 			break;
523 	}
524 
525 	/* clear tag if cow fork is emptied */
526 	if (!ifp->if_bytes)
527 		xfs_inode_clear_cowblocks_tag(ip);
528 	return error;
529 }
530 
531 /*
532  * Cancel CoW reservations for some byte range of an inode.
533  *
534  * If cancel_real is true this function cancels all COW fork extents for the
535  * inode; if cancel_real is false, real extents are not cleared.
536  */
537 int
538 xfs_reflink_cancel_cow_range(
539 	struct xfs_inode	*ip,
540 	xfs_off_t		offset,
541 	xfs_off_t		count,
542 	bool			cancel_real)
543 {
544 	struct xfs_trans	*tp;
545 	xfs_fileoff_t		offset_fsb;
546 	xfs_fileoff_t		end_fsb;
547 	int			error;
548 
549 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
550 	ASSERT(ip->i_cowfp);
551 
552 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
553 	if (count == NULLFILEOFF)
554 		end_fsb = NULLFILEOFF;
555 	else
556 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
557 
558 	/* Start a rolling transaction to remove the mappings */
559 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
560 			0, 0, 0, &tp);
561 	if (error)
562 		goto out;
563 
564 	xfs_ilock(ip, XFS_ILOCK_EXCL);
565 	xfs_trans_ijoin(tp, ip, 0);
566 
567 	/* Scrape out the old CoW reservations */
568 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
569 			cancel_real);
570 	if (error)
571 		goto out_cancel;
572 
573 	error = xfs_trans_commit(tp);
574 
575 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
576 	return error;
577 
578 out_cancel:
579 	xfs_trans_cancel(tp);
580 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
581 out:
582 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
583 	return error;
584 }
585 
586 /*
587  * Remap part of the CoW fork into the data fork.
588  *
589  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
590  * into the data fork; this function will remap what it can (at the end of the
591  * range) and update @end_fsb appropriately.  Each remap gets its own
592  * transaction because we can end up merging and splitting bmbt blocks for
593  * every remap operation and we'd like to keep the block reservation
594  * requirements as low as possible.
595  */
596 STATIC int
597 xfs_reflink_end_cow_extent(
598 	struct xfs_inode	*ip,
599 	xfs_fileoff_t		offset_fsb,
600 	xfs_fileoff_t		*end_fsb)
601 {
602 	struct xfs_bmbt_irec	got, del;
603 	struct xfs_iext_cursor	icur;
604 	struct xfs_mount	*mp = ip->i_mount;
605 	struct xfs_trans	*tp;
606 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
607 	xfs_filblks_t		rlen;
608 	unsigned int		resblks;
609 	int			error;
610 
611 	/* No COW extents?  That's easy! */
612 	if (ifp->if_bytes == 0) {
613 		*end_fsb = offset_fsb;
614 		return 0;
615 	}
616 
617 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
618 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
619 			XFS_TRANS_RESERVE, &tp);
620 	if (error)
621 		return error;
622 
623 	/*
624 	 * Lock the inode.  We have to ijoin without automatic unlock because
625 	 * the lead transaction is the refcountbt record deletion; the data
626 	 * fork update follows as a deferred log item.
627 	 */
628 	xfs_ilock(ip, XFS_ILOCK_EXCL);
629 	xfs_trans_ijoin(tp, ip, 0);
630 
631 	/*
632 	 * In case of racing, overlapping AIO writes no COW extents might be
633 	 * left by the time I/O completes for the loser of the race.  In that
634 	 * case we are done.
635 	 */
636 	if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
637 	    got.br_startoff + got.br_blockcount <= offset_fsb) {
638 		*end_fsb = offset_fsb;
639 		goto out_cancel;
640 	}
641 
642 	/*
643 	 * Structure copy @got into @del, then trim @del to the range that we
644 	 * were asked to remap.  We preserve @got for the eventual CoW fork
645 	 * deletion; from now on @del represents the mapping that we're
646 	 * actually remapping.
647 	 */
648 	del = got;
649 	xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
650 
651 	ASSERT(del.br_blockcount > 0);
652 
653 	/*
654 	 * Only remap real extents that contain data.  With AIO, speculative
655 	 * preallocations can leak into the range we are called upon, and we
656 	 * need to skip them.
657 	 */
658 	if (!xfs_bmap_is_real_extent(&got)) {
659 		*end_fsb = del.br_startoff;
660 		goto out_cancel;
661 	}
662 
663 	/* Unmap the old blocks in the data fork. */
664 	rlen = del.br_blockcount;
665 	error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
666 	if (error)
667 		goto out_cancel;
668 
669 	/* Trim the extent to whatever got unmapped. */
670 	xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
671 	trace_xfs_reflink_cow_remap(ip, &del);
672 
673 	/* Free the CoW orphan record. */
674 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
675 
676 	/* Map the new blocks into the data fork. */
677 	xfs_bmap_map_extent(tp, ip, &del);
678 
679 	/* Charge this new data fork mapping to the on-disk quota. */
680 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
681 			(long)del.br_blockcount);
682 
683 	/* Remove the mapping from the CoW fork. */
684 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
685 
686 	error = xfs_trans_commit(tp);
687 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
688 	if (error)
689 		return error;
690 
691 	/* Update the caller about how much progress we made. */
692 	*end_fsb = del.br_startoff;
693 	return 0;
694 
695 out_cancel:
696 	xfs_trans_cancel(tp);
697 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
698 	return error;
699 }
700 
701 /*
702  * Remap parts of a file's data fork after a successful CoW.
703  */
704 int
705 xfs_reflink_end_cow(
706 	struct xfs_inode		*ip,
707 	xfs_off_t			offset,
708 	xfs_off_t			count)
709 {
710 	xfs_fileoff_t			offset_fsb;
711 	xfs_fileoff_t			end_fsb;
712 	int				error = 0;
713 
714 	trace_xfs_reflink_end_cow(ip, offset, count);
715 
716 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
717 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
718 
719 	/*
720 	 * Walk backwards until we're out of the I/O range.  The loop function
721 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
722 	 * extent.
723 	 *
724 	 * If we're being called by writeback then the the pages will still
725 	 * have PageWriteback set, which prevents races with reflink remapping
726 	 * and truncate.  Reflink remapping prevents races with writeback by
727 	 * taking the iolock and mmaplock before flushing the pages and
728 	 * remapping, which means there won't be any further writeback or page
729 	 * cache dirtying until the reflink completes.
730 	 *
731 	 * We should never have two threads issuing writeback for the same file
732 	 * region.  There are also have post-eof checks in the writeback
733 	 * preparation code so that we don't bother writing out pages that are
734 	 * about to be truncated.
735 	 *
736 	 * If we're being called as part of directio write completion, the dio
737 	 * count is still elevated, which reflink and truncate will wait for.
738 	 * Reflink remapping takes the iolock and mmaplock and waits for
739 	 * pending dio to finish, which should prevent any directio until the
740 	 * remap completes.  Multiple concurrent directio writes to the same
741 	 * region are handled by end_cow processing only occurring for the
742 	 * threads which succeed; the outcome of multiple overlapping direct
743 	 * writes is not well defined anyway.
744 	 *
745 	 * It's possible that a buffered write and a direct write could collide
746 	 * here (the buffered write stumbles in after the dio flushes and
747 	 * invalidates the page cache and immediately queues writeback), but we
748 	 * have never supported this 100%.  If either disk write succeeds the
749 	 * blocks will be remapped.
750 	 */
751 	while (end_fsb > offset_fsb && !error)
752 		error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
753 
754 	if (error)
755 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
756 	return error;
757 }
758 
759 /*
760  * Free leftover CoW reservations that didn't get cleaned out.
761  */
762 int
763 xfs_reflink_recover_cow(
764 	struct xfs_mount	*mp)
765 {
766 	xfs_agnumber_t		agno;
767 	int			error = 0;
768 
769 	if (!xfs_sb_version_hasreflink(&mp->m_sb))
770 		return 0;
771 
772 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
773 		error = xfs_refcount_recover_cow_leftovers(mp, agno);
774 		if (error)
775 			break;
776 	}
777 
778 	return error;
779 }
780 
781 /*
782  * Reflinking (Block) Ranges of Two Files Together
783  *
784  * First, ensure that the reflink flag is set on both inodes.  The flag is an
785  * optimization to avoid unnecessary refcount btree lookups in the write path.
786  *
787  * Now we can iteratively remap the range of extents (and holes) in src to the
788  * corresponding ranges in dest.  Let drange and srange denote the ranges of
789  * logical blocks in dest and src touched by the reflink operation.
790  *
791  * While the length of drange is greater than zero,
792  *    - Read src's bmbt at the start of srange ("imap")
793  *    - If imap doesn't exist, make imap appear to start at the end of srange
794  *      with zero length.
795  *    - If imap starts before srange, advance imap to start at srange.
796  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
797  *    - Punch (imap start - srange start + imap len) blocks from dest at
798  *      offset (drange start).
799  *    - If imap points to a real range of pblks,
800  *         > Increase the refcount of the imap's pblks
801  *         > Map imap's pblks into dest at the offset
802  *           (drange start + imap start - srange start)
803  *    - Advance drange and srange by (imap start - srange start + imap len)
804  *
805  * Finally, if the reflink made dest longer, update both the in-core and
806  * on-disk file sizes.
807  *
808  * ASCII Art Demonstration:
809  *
810  * Let's say we want to reflink this source file:
811  *
812  * ----SSSSSSS-SSSSS----SSSSSS (src file)
813  *   <-------------------->
814  *
815  * into this destination file:
816  *
817  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
818  *        <-------------------->
819  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
820  * Observe that the range has different logical offsets in either file.
821  *
822  * Consider that the first extent in the source file doesn't line up with our
823  * reflink range.  Unmapping  and remapping are separate operations, so we can
824  * unmap more blocks from the destination file than we remap.
825  *
826  * ----SSSSSSS-SSSSS----SSSSSS
827  *   <------->
828  * --DDDDD---------DDDDD--DDD
829  *        <------->
830  *
831  * Now remap the source extent into the destination file:
832  *
833  * ----SSSSSSS-SSSSS----SSSSSS
834  *   <------->
835  * --DDDDD--SSSSSSSDDDDD--DDD
836  *        <------->
837  *
838  * Do likewise with the second hole and extent in our range.  Holes in the
839  * unmap range don't affect our operation.
840  *
841  * ----SSSSSSS-SSSSS----SSSSSS
842  *            <---->
843  * --DDDDD--SSSSSSS-SSSSS-DDD
844  *                 <---->
845  *
846  * Finally, unmap and remap part of the third extent.  This will increase the
847  * size of the destination file.
848  *
849  * ----SSSSSSS-SSSSS----SSSSSS
850  *                  <----->
851  * --DDDDD--SSSSSSS-SSSSS----SSS
852  *                       <----->
853  *
854  * Once we update the destination file's i_size, we're done.
855  */
856 
857 /*
858  * Ensure the reflink bit is set in both inodes.
859  */
860 STATIC int
861 xfs_reflink_set_inode_flag(
862 	struct xfs_inode	*src,
863 	struct xfs_inode	*dest)
864 {
865 	struct xfs_mount	*mp = src->i_mount;
866 	int			error;
867 	struct xfs_trans	*tp;
868 
869 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
870 		return 0;
871 
872 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
873 	if (error)
874 		goto out_error;
875 
876 	/* Lock both files against IO */
877 	if (src->i_ino == dest->i_ino)
878 		xfs_ilock(src, XFS_ILOCK_EXCL);
879 	else
880 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
881 
882 	if (!xfs_is_reflink_inode(src)) {
883 		trace_xfs_reflink_set_inode_flag(src);
884 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
885 		src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
886 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
887 		xfs_ifork_init_cow(src);
888 	} else
889 		xfs_iunlock(src, XFS_ILOCK_EXCL);
890 
891 	if (src->i_ino == dest->i_ino)
892 		goto commit_flags;
893 
894 	if (!xfs_is_reflink_inode(dest)) {
895 		trace_xfs_reflink_set_inode_flag(dest);
896 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
897 		dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
898 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
899 		xfs_ifork_init_cow(dest);
900 	} else
901 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
902 
903 commit_flags:
904 	error = xfs_trans_commit(tp);
905 	if (error)
906 		goto out_error;
907 	return error;
908 
909 out_error:
910 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
911 	return error;
912 }
913 
914 /*
915  * Update destination inode size & cowextsize hint, if necessary.
916  */
917 int
918 xfs_reflink_update_dest(
919 	struct xfs_inode	*dest,
920 	xfs_off_t		newlen,
921 	xfs_extlen_t		cowextsize,
922 	unsigned int		remap_flags)
923 {
924 	struct xfs_mount	*mp = dest->i_mount;
925 	struct xfs_trans	*tp;
926 	int			error;
927 
928 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
929 		return 0;
930 
931 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
932 	if (error)
933 		goto out_error;
934 
935 	xfs_ilock(dest, XFS_ILOCK_EXCL);
936 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
937 
938 	if (newlen > i_size_read(VFS_I(dest))) {
939 		trace_xfs_reflink_update_inode_size(dest, newlen);
940 		i_size_write(VFS_I(dest), newlen);
941 		dest->i_d.di_size = newlen;
942 	}
943 
944 	if (cowextsize) {
945 		dest->i_d.di_cowextsize = cowextsize;
946 		dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
947 	}
948 
949 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
950 
951 	error = xfs_trans_commit(tp);
952 	if (error)
953 		goto out_error;
954 	return error;
955 
956 out_error:
957 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
958 	return error;
959 }
960 
961 /*
962  * Do we have enough reserve in this AG to handle a reflink?  The refcount
963  * btree already reserved all the space it needs, but the rmap btree can grow
964  * infinitely, so we won't allow more reflinks when the AG is down to the
965  * btree reserves.
966  */
967 static int
968 xfs_reflink_ag_has_free_space(
969 	struct xfs_mount	*mp,
970 	xfs_agnumber_t		agno)
971 {
972 	struct xfs_perag	*pag;
973 	int			error = 0;
974 
975 	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
976 		return 0;
977 
978 	pag = xfs_perag_get(mp, agno);
979 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
980 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
981 		error = -ENOSPC;
982 	xfs_perag_put(pag);
983 	return error;
984 }
985 
986 /*
987  * Unmap a range of blocks from a file, then map other blocks into the hole.
988  * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
989  * The extent irec is mapped into dest at irec->br_startoff.
990  */
991 STATIC int
992 xfs_reflink_remap_extent(
993 	struct xfs_inode	*ip,
994 	struct xfs_bmbt_irec	*irec,
995 	xfs_fileoff_t		destoff,
996 	xfs_off_t		new_isize)
997 {
998 	struct xfs_mount	*mp = ip->i_mount;
999 	bool			real_extent = xfs_bmap_is_real_extent(irec);
1000 	struct xfs_trans	*tp;
1001 	unsigned int		resblks;
1002 	struct xfs_bmbt_irec	uirec;
1003 	xfs_filblks_t		rlen;
1004 	xfs_filblks_t		unmap_len;
1005 	xfs_off_t		newlen;
1006 	int			error;
1007 
1008 	unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1009 	trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1010 
1011 	/* No reflinking if we're low on space */
1012 	if (real_extent) {
1013 		error = xfs_reflink_ag_has_free_space(mp,
1014 				XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1015 		if (error)
1016 			goto out;
1017 	}
1018 
1019 	/* Start a rolling transaction to switch the mappings */
1020 	resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1021 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1022 	if (error)
1023 		goto out;
1024 
1025 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1026 	xfs_trans_ijoin(tp, ip, 0);
1027 
1028 	/* If we're not just clearing space, then do we have enough quota? */
1029 	if (real_extent) {
1030 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1031 				irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1032 		if (error)
1033 			goto out_cancel;
1034 	}
1035 
1036 	trace_xfs_reflink_remap(ip, irec->br_startoff,
1037 				irec->br_blockcount, irec->br_startblock);
1038 
1039 	/* Unmap the old blocks in the data fork. */
1040 	rlen = unmap_len;
1041 	while (rlen) {
1042 		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1043 		error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1044 		if (error)
1045 			goto out_cancel;
1046 
1047 		/*
1048 		 * Trim the extent to whatever got unmapped.
1049 		 * Remember, bunmapi works backwards.
1050 		 */
1051 		uirec.br_startblock = irec->br_startblock + rlen;
1052 		uirec.br_startoff = irec->br_startoff + rlen;
1053 		uirec.br_blockcount = unmap_len - rlen;
1054 		unmap_len = rlen;
1055 
1056 		/* If this isn't a real mapping, we're done. */
1057 		if (!real_extent || uirec.br_blockcount == 0)
1058 			goto next_extent;
1059 
1060 		trace_xfs_reflink_remap(ip, uirec.br_startoff,
1061 				uirec.br_blockcount, uirec.br_startblock);
1062 
1063 		/* Update the refcount tree */
1064 		xfs_refcount_increase_extent(tp, &uirec);
1065 
1066 		/* Map the new blocks into the data fork. */
1067 		xfs_bmap_map_extent(tp, ip, &uirec);
1068 
1069 		/* Update quota accounting. */
1070 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1071 				uirec.br_blockcount);
1072 
1073 		/* Update dest isize if needed. */
1074 		newlen = XFS_FSB_TO_B(mp,
1075 				uirec.br_startoff + uirec.br_blockcount);
1076 		newlen = min_t(xfs_off_t, newlen, new_isize);
1077 		if (newlen > i_size_read(VFS_I(ip))) {
1078 			trace_xfs_reflink_update_inode_size(ip, newlen);
1079 			i_size_write(VFS_I(ip), newlen);
1080 			ip->i_d.di_size = newlen;
1081 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1082 		}
1083 
1084 next_extent:
1085 		/* Process all the deferred stuff. */
1086 		error = xfs_defer_finish(&tp);
1087 		if (error)
1088 			goto out_cancel;
1089 	}
1090 
1091 	error = xfs_trans_commit(tp);
1092 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1093 	if (error)
1094 		goto out;
1095 	return 0;
1096 
1097 out_cancel:
1098 	xfs_trans_cancel(tp);
1099 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1100 out:
1101 	trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1102 	return error;
1103 }
1104 
1105 /*
1106  * Iteratively remap one file's extents (and holes) to another's.
1107  */
1108 int
1109 xfs_reflink_remap_blocks(
1110 	struct xfs_inode	*src,
1111 	loff_t			pos_in,
1112 	struct xfs_inode	*dest,
1113 	loff_t			pos_out,
1114 	loff_t			remap_len,
1115 	loff_t			*remapped)
1116 {
1117 	struct xfs_bmbt_irec	imap;
1118 	xfs_fileoff_t		srcoff;
1119 	xfs_fileoff_t		destoff;
1120 	xfs_filblks_t		len;
1121 	xfs_filblks_t		range_len;
1122 	xfs_filblks_t		remapped_len = 0;
1123 	xfs_off_t		new_isize = pos_out + remap_len;
1124 	int			nimaps;
1125 	int			error = 0;
1126 
1127 	destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1128 	srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1129 	len = XFS_B_TO_FSB(src->i_mount, remap_len);
1130 
1131 	/* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1132 	while (len) {
1133 		uint		lock_mode;
1134 
1135 		trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1136 				dest, destoff);
1137 
1138 		/* Read extent from the source file */
1139 		nimaps = 1;
1140 		lock_mode = xfs_ilock_data_map_shared(src);
1141 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1142 		xfs_iunlock(src, lock_mode);
1143 		if (error)
1144 			break;
1145 		ASSERT(nimaps == 1);
1146 
1147 		trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1148 				&imap);
1149 
1150 		/* Translate imap into the destination file. */
1151 		range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1152 		imap.br_startoff += destoff - srcoff;
1153 
1154 		/* Clear dest from destoff to the end of imap and map it in. */
1155 		error = xfs_reflink_remap_extent(dest, &imap, destoff,
1156 				new_isize);
1157 		if (error)
1158 			break;
1159 
1160 		if (fatal_signal_pending(current)) {
1161 			error = -EINTR;
1162 			break;
1163 		}
1164 
1165 		/* Advance drange/srange */
1166 		srcoff += range_len;
1167 		destoff += range_len;
1168 		len -= range_len;
1169 		remapped_len += range_len;
1170 	}
1171 
1172 	if (error)
1173 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1174 	*remapped = min_t(loff_t, remap_len,
1175 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1176 	return error;
1177 }
1178 
1179 /*
1180  * Grab the exclusive iolock for a data copy from src to dest, making sure to
1181  * abide vfs locking order (lowest pointer value goes first) and breaking the
1182  * layout leases before proceeding.  The loop is needed because we cannot call
1183  * the blocking break_layout() with the iolocks held, and therefore have to
1184  * back out both locks.
1185  */
1186 static int
1187 xfs_iolock_two_inodes_and_break_layout(
1188 	struct inode		*src,
1189 	struct inode		*dest)
1190 {
1191 	int			error;
1192 
1193 	if (src > dest)
1194 		swap(src, dest);
1195 
1196 retry:
1197 	/* Wait to break both inodes' layouts before we start locking. */
1198 	error = break_layout(src, true);
1199 	if (error)
1200 		return error;
1201 	if (src != dest) {
1202 		error = break_layout(dest, true);
1203 		if (error)
1204 			return error;
1205 	}
1206 
1207 	/* Lock one inode and make sure nobody got in and leased it. */
1208 	inode_lock(src);
1209 	error = break_layout(src, false);
1210 	if (error) {
1211 		inode_unlock(src);
1212 		if (error == -EWOULDBLOCK)
1213 			goto retry;
1214 		return error;
1215 	}
1216 
1217 	if (src == dest)
1218 		return 0;
1219 
1220 	/* Lock the other inode and make sure nobody got in and leased it. */
1221 	inode_lock_nested(dest, I_MUTEX_NONDIR2);
1222 	error = break_layout(dest, false);
1223 	if (error) {
1224 		inode_unlock(src);
1225 		inode_unlock(dest);
1226 		if (error == -EWOULDBLOCK)
1227 			goto retry;
1228 		return error;
1229 	}
1230 
1231 	return 0;
1232 }
1233 
1234 /* Unlock both inodes after they've been prepped for a range clone. */
1235 void
1236 xfs_reflink_remap_unlock(
1237 	struct file		*file_in,
1238 	struct file		*file_out)
1239 {
1240 	struct inode		*inode_in = file_inode(file_in);
1241 	struct xfs_inode	*src = XFS_I(inode_in);
1242 	struct inode		*inode_out = file_inode(file_out);
1243 	struct xfs_inode	*dest = XFS_I(inode_out);
1244 	bool			same_inode = (inode_in == inode_out);
1245 
1246 	xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1247 	if (!same_inode)
1248 		xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1249 	inode_unlock(inode_out);
1250 	if (!same_inode)
1251 		inode_unlock(inode_in);
1252 }
1253 
1254 /*
1255  * If we're reflinking to a point past the destination file's EOF, we must
1256  * zero any speculative post-EOF preallocations that sit between the old EOF
1257  * and the destination file offset.
1258  */
1259 static int
1260 xfs_reflink_zero_posteof(
1261 	struct xfs_inode	*ip,
1262 	loff_t			pos)
1263 {
1264 	loff_t			isize = i_size_read(VFS_I(ip));
1265 
1266 	if (pos <= isize)
1267 		return 0;
1268 
1269 	trace_xfs_zero_eof(ip, isize, pos - isize);
1270 	return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1271 			&xfs_buffered_write_iomap_ops);
1272 }
1273 
1274 /*
1275  * Prepare two files for range cloning.  Upon a successful return both inodes
1276  * will have the iolock and mmaplock held, the page cache of the out file will
1277  * be truncated, and any leases on the out file will have been broken.  This
1278  * function borrows heavily from xfs_file_aio_write_checks.
1279  *
1280  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1281  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1282  * EOF block in the source dedupe range because it's not a complete block match,
1283  * hence can introduce a corruption into the file that has it's block replaced.
1284  *
1285  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1286  * "block aligned" for the purposes of cloning entire files.  However, if the
1287  * source file range includes the EOF block and it lands within the existing EOF
1288  * of the destination file, then we can expose stale data from beyond the source
1289  * file EOF in the destination file.
1290  *
1291  * XFS doesn't support partial block sharing, so in both cases we have check
1292  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1293  * down to the previous whole block and ignore the partial EOF block. While this
1294  * means we can't dedupe the last block of a file, this is an acceptible
1295  * tradeoff for simplicity on implementation.
1296  *
1297  * For cloning, we want to share the partial EOF block if it is also the new EOF
1298  * block of the destination file. If the partial EOF block lies inside the
1299  * existing destination EOF, then we have to abort the clone to avoid exposing
1300  * stale data in the destination file. Hence we reject these clone attempts with
1301  * -EINVAL in this case.
1302  */
1303 int
1304 xfs_reflink_remap_prep(
1305 	struct file		*file_in,
1306 	loff_t			pos_in,
1307 	struct file		*file_out,
1308 	loff_t			pos_out,
1309 	loff_t			*len,
1310 	unsigned int		remap_flags)
1311 {
1312 	struct inode		*inode_in = file_inode(file_in);
1313 	struct xfs_inode	*src = XFS_I(inode_in);
1314 	struct inode		*inode_out = file_inode(file_out);
1315 	struct xfs_inode	*dest = XFS_I(inode_out);
1316 	bool			same_inode = (inode_in == inode_out);
1317 	ssize_t			ret;
1318 
1319 	/* Lock both files against IO */
1320 	ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1321 	if (ret)
1322 		return ret;
1323 	if (same_inode)
1324 		xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1325 	else
1326 		xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
1327 				XFS_MMAPLOCK_EXCL);
1328 
1329 	/* Check file eligibility and prepare for block sharing. */
1330 	ret = -EINVAL;
1331 	/* Don't reflink realtime inodes */
1332 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1333 		goto out_unlock;
1334 
1335 	/* Don't share DAX file data for now. */
1336 	if (IS_DAX(inode_in) || IS_DAX(inode_out))
1337 		goto out_unlock;
1338 
1339 	ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1340 			len, remap_flags);
1341 	if (ret < 0 || *len == 0)
1342 		goto out_unlock;
1343 
1344 	/* Attach dquots to dest inode before changing block map */
1345 	ret = xfs_qm_dqattach(dest);
1346 	if (ret)
1347 		goto out_unlock;
1348 
1349 	/*
1350 	 * Zero existing post-eof speculative preallocations in the destination
1351 	 * file.
1352 	 */
1353 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1354 	if (ret)
1355 		goto out_unlock;
1356 
1357 	/* Set flags and remap blocks. */
1358 	ret = xfs_reflink_set_inode_flag(src, dest);
1359 	if (ret)
1360 		goto out_unlock;
1361 
1362 	/*
1363 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1364 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1365 	 * from EOF to the end of the copy length.
1366 	 */
1367 	if (pos_out > XFS_ISIZE(dest)) {
1368 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1369 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1370 	} else {
1371 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1372 	}
1373 	if (ret)
1374 		goto out_unlock;
1375 
1376 	return 1;
1377 out_unlock:
1378 	xfs_reflink_remap_unlock(file_in, file_out);
1379 	return ret;
1380 }
1381 
1382 /* Does this inode need the reflink flag? */
1383 int
1384 xfs_reflink_inode_has_shared_extents(
1385 	struct xfs_trans		*tp,
1386 	struct xfs_inode		*ip,
1387 	bool				*has_shared)
1388 {
1389 	struct xfs_bmbt_irec		got;
1390 	struct xfs_mount		*mp = ip->i_mount;
1391 	struct xfs_ifork		*ifp;
1392 	xfs_agnumber_t			agno;
1393 	xfs_agblock_t			agbno;
1394 	xfs_extlen_t			aglen;
1395 	xfs_agblock_t			rbno;
1396 	xfs_extlen_t			rlen;
1397 	struct xfs_iext_cursor		icur;
1398 	bool				found;
1399 	int				error;
1400 
1401 	ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1402 	if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1403 		error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1404 		if (error)
1405 			return error;
1406 	}
1407 
1408 	*has_shared = false;
1409 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1410 	while (found) {
1411 		if (isnullstartblock(got.br_startblock) ||
1412 		    got.br_state != XFS_EXT_NORM)
1413 			goto next;
1414 		agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1415 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1416 		aglen = got.br_blockcount;
1417 
1418 		error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1419 				&rbno, &rlen, false);
1420 		if (error)
1421 			return error;
1422 		/* Is there still a shared block here? */
1423 		if (rbno != NULLAGBLOCK) {
1424 			*has_shared = true;
1425 			return 0;
1426 		}
1427 next:
1428 		found = xfs_iext_next_extent(ifp, &icur, &got);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 /*
1435  * Clear the inode reflink flag if there are no shared extents.
1436  *
1437  * The caller is responsible for joining the inode to the transaction passed in.
1438  * The inode will be joined to the transaction that is returned to the caller.
1439  */
1440 int
1441 xfs_reflink_clear_inode_flag(
1442 	struct xfs_inode	*ip,
1443 	struct xfs_trans	**tpp)
1444 {
1445 	bool			needs_flag;
1446 	int			error = 0;
1447 
1448 	ASSERT(xfs_is_reflink_inode(ip));
1449 
1450 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1451 	if (error || needs_flag)
1452 		return error;
1453 
1454 	/*
1455 	 * We didn't find any shared blocks so turn off the reflink flag.
1456 	 * First, get rid of any leftover CoW mappings.
1457 	 */
1458 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1459 			true);
1460 	if (error)
1461 		return error;
1462 
1463 	/* Clear the inode flag. */
1464 	trace_xfs_reflink_unset_inode_flag(ip);
1465 	ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1466 	xfs_inode_clear_cowblocks_tag(ip);
1467 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1468 
1469 	return error;
1470 }
1471 
1472 /*
1473  * Clear the inode reflink flag if there are no shared extents and the size
1474  * hasn't changed.
1475  */
1476 STATIC int
1477 xfs_reflink_try_clear_inode_flag(
1478 	struct xfs_inode	*ip)
1479 {
1480 	struct xfs_mount	*mp = ip->i_mount;
1481 	struct xfs_trans	*tp;
1482 	int			error = 0;
1483 
1484 	/* Start a rolling transaction to remove the mappings */
1485 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1486 	if (error)
1487 		return error;
1488 
1489 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1490 	xfs_trans_ijoin(tp, ip, 0);
1491 
1492 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1493 	if (error)
1494 		goto cancel;
1495 
1496 	error = xfs_trans_commit(tp);
1497 	if (error)
1498 		goto out;
1499 
1500 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1501 	return 0;
1502 cancel:
1503 	xfs_trans_cancel(tp);
1504 out:
1505 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1506 	return error;
1507 }
1508 
1509 /*
1510  * Pre-COW all shared blocks within a given byte range of a file and turn off
1511  * the reflink flag if we unshare all of the file's blocks.
1512  */
1513 int
1514 xfs_reflink_unshare(
1515 	struct xfs_inode	*ip,
1516 	xfs_off_t		offset,
1517 	xfs_off_t		len)
1518 {
1519 	struct inode		*inode = VFS_I(ip);
1520 	int			error;
1521 
1522 	if (!xfs_is_reflink_inode(ip))
1523 		return 0;
1524 
1525 	trace_xfs_reflink_unshare(ip, offset, len);
1526 
1527 	inode_dio_wait(inode);
1528 
1529 	error = iomap_file_unshare(inode, offset, len,
1530 			&xfs_buffered_write_iomap_ops);
1531 	if (error)
1532 		goto out;
1533 	error = filemap_write_and_wait(inode->i_mapping);
1534 	if (error)
1535 		goto out;
1536 
1537 	/* Turn off the reflink flag if possible. */
1538 	error = xfs_reflink_try_clear_inode_flag(ip);
1539 	if (error)
1540 		goto out;
1541 	return 0;
1542 
1543 out:
1544 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1545 	return error;
1546 }
1547