xref: /openbmc/linux/fs/xfs/xfs_reflink.c (revision 12cecbf9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_defer.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_trace.h"
19 #include "xfs_icache.h"
20 #include "xfs_btree.h"
21 #include "xfs_refcount_btree.h"
22 #include "xfs_refcount.h"
23 #include "xfs_bmap_btree.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_bit.h"
26 #include "xfs_alloc.h"
27 #include "xfs_quota.h"
28 #include "xfs_reflink.h"
29 #include "xfs_iomap.h"
30 #include "xfs_ag.h"
31 #include "xfs_ag_resv.h"
32 
33 /*
34  * Copy on Write of Shared Blocks
35  *
36  * XFS must preserve "the usual" file semantics even when two files share
37  * the same physical blocks.  This means that a write to one file must not
38  * alter the blocks in a different file; the way that we'll do that is
39  * through the use of a copy-on-write mechanism.  At a high level, that
40  * means that when we want to write to a shared block, we allocate a new
41  * block, write the data to the new block, and if that succeeds we map the
42  * new block into the file.
43  *
44  * XFS provides a "delayed allocation" mechanism that defers the allocation
45  * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46  * possible.  This reduces fragmentation by enabling the filesystem to ask
47  * for bigger chunks less often, which is exactly what we want for CoW.
48  *
49  * The delalloc mechanism begins when the kernel wants to make a block
50  * writable (write_begin or page_mkwrite).  If the offset is not mapped, we
51  * create a delalloc mapping, which is a regular in-core extent, but without
52  * a real startblock.  (For delalloc mappings, the startblock encodes both
53  * a flag that this is a delalloc mapping, and a worst-case estimate of how
54  * many blocks might be required to put the mapping into the BMBT.)  delalloc
55  * mappings are a reservation against the free space in the filesystem;
56  * adjacent mappings can also be combined into fewer larger mappings.
57  *
58  * As an optimization, the CoW extent size hint (cowextsz) creates
59  * outsized aligned delalloc reservations in the hope of landing out of
60  * order nearby CoW writes in a single extent on disk, thereby reducing
61  * fragmentation and improving future performance.
62  *
63  * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64  * C: ------DDDDDDD--------- (CoW fork)
65  *
66  * When dirty pages are being written out (typically in writepage), the
67  * delalloc reservations are converted into unwritten mappings by
68  * allocating blocks and replacing the delalloc mapping with real ones.
69  * A delalloc mapping can be replaced by several unwritten ones if the
70  * free space is fragmented.
71  *
72  * D: --RRRRRRSSSRRRRRRRR---
73  * C: ------UUUUUUU---------
74  *
75  * We want to adapt the delalloc mechanism for copy-on-write, since the
76  * write paths are similar.  The first two steps (creating the reservation
77  * and allocating the blocks) are exactly the same as delalloc except that
78  * the mappings must be stored in a separate CoW fork because we do not want
79  * to disturb the mapping in the data fork until we're sure that the write
80  * succeeded.  IO completion in this case is the process of removing the old
81  * mapping from the data fork and moving the new mapping from the CoW fork to
82  * the data fork.  This will be discussed shortly.
83  *
84  * For now, unaligned directio writes will be bounced back to the page cache.
85  * Block-aligned directio writes will use the same mechanism as buffered
86  * writes.
87  *
88  * Just prior to submitting the actual disk write requests, we convert
89  * the extents representing the range of the file actually being written
90  * (as opposed to extra pieces created for the cowextsize hint) to real
91  * extents.  This will become important in the next step:
92  *
93  * D: --RRRRRRSSSRRRRRRRR---
94  * C: ------UUrrUUU---------
95  *
96  * CoW remapping must be done after the data block write completes,
97  * because we don't want to destroy the old data fork map until we're sure
98  * the new block has been written.  Since the new mappings are kept in a
99  * separate fork, we can simply iterate these mappings to find the ones
100  * that cover the file blocks that we just CoW'd.  For each extent, simply
101  * unmap the corresponding range in the data fork, map the new range into
102  * the data fork, and remove the extent from the CoW fork.  Because of
103  * the presence of the cowextsize hint, however, we must be careful
104  * only to remap the blocks that we've actually written out --  we must
105  * never remap delalloc reservations nor CoW staging blocks that have
106  * yet to be written.  This corresponds exactly to the real extents in
107  * the CoW fork:
108  *
109  * D: --RRRRRRrrSRRRRRRRR---
110  * C: ------UU--UUU---------
111  *
112  * Since the remapping operation can be applied to an arbitrary file
113  * range, we record the need for the remap step as a flag in the ioend
114  * instead of declaring a new IO type.  This is required for direct io
115  * because we only have ioend for the whole dio, and we have to be able to
116  * remember the presence of unwritten blocks and CoW blocks with a single
117  * ioend structure.  Better yet, the more ground we can cover with one
118  * ioend, the better.
119  */
120 
121 /*
122  * Given an AG extent, find the lowest-numbered run of shared blocks
123  * within that range and return the range in fbno/flen.  If
124  * find_end_of_shared is true, return the longest contiguous extent of
125  * shared blocks.  If there are no shared extents, fbno and flen will
126  * be set to NULLAGBLOCK and 0, respectively.
127  */
128 static int
129 xfs_reflink_find_shared(
130 	struct xfs_perag	*pag,
131 	struct xfs_trans	*tp,
132 	xfs_agblock_t		agbno,
133 	xfs_extlen_t		aglen,
134 	xfs_agblock_t		*fbno,
135 	xfs_extlen_t		*flen,
136 	bool			find_end_of_shared)
137 {
138 	struct xfs_buf		*agbp;
139 	struct xfs_btree_cur	*cur;
140 	int			error;
141 
142 	error = xfs_alloc_read_agf(pag, tp, 0, &agbp);
143 	if (error)
144 		return error;
145 
146 	cur = xfs_refcountbt_init_cursor(pag->pag_mount, tp, agbp, pag);
147 
148 	error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
149 			find_end_of_shared);
150 
151 	xfs_btree_del_cursor(cur, error);
152 
153 	xfs_trans_brelse(tp, agbp);
154 	return error;
155 }
156 
157 /*
158  * Trim the mapping to the next block where there's a change in the
159  * shared/unshared status.  More specifically, this means that we
160  * find the lowest-numbered extent of shared blocks that coincides with
161  * the given block mapping.  If the shared extent overlaps the start of
162  * the mapping, trim the mapping to the end of the shared extent.  If
163  * the shared region intersects the mapping, trim the mapping to the
164  * start of the shared extent.  If there are no shared regions that
165  * overlap, just return the original extent.
166  */
167 int
168 xfs_reflink_trim_around_shared(
169 	struct xfs_inode	*ip,
170 	struct xfs_bmbt_irec	*irec,
171 	bool			*shared)
172 {
173 	struct xfs_mount	*mp = ip->i_mount;
174 	struct xfs_perag	*pag;
175 	xfs_agblock_t		agbno;
176 	xfs_extlen_t		aglen;
177 	xfs_agblock_t		fbno;
178 	xfs_extlen_t		flen;
179 	int			error = 0;
180 
181 	/* Holes, unwritten, and delalloc extents cannot be shared */
182 	if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_written_extent(irec)) {
183 		*shared = false;
184 		return 0;
185 	}
186 
187 	trace_xfs_reflink_trim_around_shared(ip, irec);
188 
189 	pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, irec->br_startblock));
190 	agbno = XFS_FSB_TO_AGBNO(mp, irec->br_startblock);
191 	aglen = irec->br_blockcount;
192 
193 	error = xfs_reflink_find_shared(pag, NULL, agbno, aglen, &fbno, &flen,
194 			true);
195 	xfs_perag_put(pag);
196 	if (error)
197 		return error;
198 
199 	*shared = false;
200 	if (fbno == NULLAGBLOCK) {
201 		/* No shared blocks at all. */
202 		return 0;
203 	} else if (fbno == agbno) {
204 		/*
205 		 * The start of this extent is shared.  Truncate the
206 		 * mapping at the end of the shared region so that a
207 		 * subsequent iteration starts at the start of the
208 		 * unshared region.
209 		 */
210 		irec->br_blockcount = flen;
211 		*shared = true;
212 		return 0;
213 	} else {
214 		/*
215 		 * There's a shared extent midway through this extent.
216 		 * Truncate the mapping at the start of the shared
217 		 * extent so that a subsequent iteration starts at the
218 		 * start of the shared region.
219 		 */
220 		irec->br_blockcount = fbno - agbno;
221 		return 0;
222 	}
223 }
224 
225 int
226 xfs_bmap_trim_cow(
227 	struct xfs_inode	*ip,
228 	struct xfs_bmbt_irec	*imap,
229 	bool			*shared)
230 {
231 	/* We can't update any real extents in always COW mode. */
232 	if (xfs_is_always_cow_inode(ip) &&
233 	    !isnullstartblock(imap->br_startblock)) {
234 		*shared = true;
235 		return 0;
236 	}
237 
238 	/* Trim the mapping to the nearest shared extent boundary. */
239 	return xfs_reflink_trim_around_shared(ip, imap, shared);
240 }
241 
242 static int
243 xfs_reflink_convert_cow_locked(
244 	struct xfs_inode	*ip,
245 	xfs_fileoff_t		offset_fsb,
246 	xfs_filblks_t		count_fsb)
247 {
248 	struct xfs_iext_cursor	icur;
249 	struct xfs_bmbt_irec	got;
250 	struct xfs_btree_cur	*dummy_cur = NULL;
251 	int			dummy_logflags;
252 	int			error = 0;
253 
254 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
255 		return 0;
256 
257 	do {
258 		if (got.br_startoff >= offset_fsb + count_fsb)
259 			break;
260 		if (got.br_state == XFS_EXT_NORM)
261 			continue;
262 		if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
263 			return -EIO;
264 
265 		xfs_trim_extent(&got, offset_fsb, count_fsb);
266 		if (!got.br_blockcount)
267 			continue;
268 
269 		got.br_state = XFS_EXT_NORM;
270 		error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
271 				XFS_COW_FORK, &icur, &dummy_cur, &got,
272 				&dummy_logflags);
273 		if (error)
274 			return error;
275 	} while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
276 
277 	return error;
278 }
279 
280 /* Convert all of the unwritten CoW extents in a file's range to real ones. */
281 int
282 xfs_reflink_convert_cow(
283 	struct xfs_inode	*ip,
284 	xfs_off_t		offset,
285 	xfs_off_t		count)
286 {
287 	struct xfs_mount	*mp = ip->i_mount;
288 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
289 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
290 	xfs_filblks_t		count_fsb = end_fsb - offset_fsb;
291 	int			error;
292 
293 	ASSERT(count != 0);
294 
295 	xfs_ilock(ip, XFS_ILOCK_EXCL);
296 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
297 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
298 	return error;
299 }
300 
301 /*
302  * Find the extent that maps the given range in the COW fork. Even if the extent
303  * is not shared we might have a preallocation for it in the COW fork. If so we
304  * use it that rather than trigger a new allocation.
305  */
306 static int
307 xfs_find_trim_cow_extent(
308 	struct xfs_inode	*ip,
309 	struct xfs_bmbt_irec	*imap,
310 	struct xfs_bmbt_irec	*cmap,
311 	bool			*shared,
312 	bool			*found)
313 {
314 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
315 	xfs_filblks_t		count_fsb = imap->br_blockcount;
316 	struct xfs_iext_cursor	icur;
317 
318 	*found = false;
319 
320 	/*
321 	 * If we don't find an overlapping extent, trim the range we need to
322 	 * allocate to fit the hole we found.
323 	 */
324 	if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, cmap))
325 		cmap->br_startoff = offset_fsb + count_fsb;
326 	if (cmap->br_startoff > offset_fsb) {
327 		xfs_trim_extent(imap, imap->br_startoff,
328 				cmap->br_startoff - imap->br_startoff);
329 		return xfs_bmap_trim_cow(ip, imap, shared);
330 	}
331 
332 	*shared = true;
333 	if (isnullstartblock(cmap->br_startblock)) {
334 		xfs_trim_extent(imap, cmap->br_startoff, cmap->br_blockcount);
335 		return 0;
336 	}
337 
338 	/* real extent found - no need to allocate */
339 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
340 	*found = true;
341 	return 0;
342 }
343 
344 static int
345 xfs_reflink_convert_unwritten(
346 	struct xfs_inode	*ip,
347 	struct xfs_bmbt_irec	*imap,
348 	struct xfs_bmbt_irec	*cmap,
349 	bool			convert_now)
350 {
351 	xfs_fileoff_t		offset_fsb = imap->br_startoff;
352 	xfs_filblks_t		count_fsb = imap->br_blockcount;
353 	int			error;
354 
355 	/*
356 	 * cmap might larger than imap due to cowextsize hint.
357 	 */
358 	xfs_trim_extent(cmap, offset_fsb, count_fsb);
359 
360 	/*
361 	 * COW fork extents are supposed to remain unwritten until we're ready
362 	 * to initiate a disk write.  For direct I/O we are going to write the
363 	 * data and need the conversion, but for buffered writes we're done.
364 	 */
365 	if (!convert_now || cmap->br_state == XFS_EXT_NORM)
366 		return 0;
367 
368 	trace_xfs_reflink_convert_cow(ip, cmap);
369 
370 	error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
371 	if (!error)
372 		cmap->br_state = XFS_EXT_NORM;
373 
374 	return error;
375 }
376 
377 static int
378 xfs_reflink_fill_cow_hole(
379 	struct xfs_inode	*ip,
380 	struct xfs_bmbt_irec	*imap,
381 	struct xfs_bmbt_irec	*cmap,
382 	bool			*shared,
383 	uint			*lockmode,
384 	bool			convert_now)
385 {
386 	struct xfs_mount	*mp = ip->i_mount;
387 	struct xfs_trans	*tp;
388 	xfs_filblks_t		resaligned;
389 	xfs_extlen_t		resblks;
390 	int			nimaps;
391 	int			error;
392 	bool			found;
393 
394 	resaligned = xfs_aligned_fsb_count(imap->br_startoff,
395 		imap->br_blockcount, xfs_get_cowextsz_hint(ip));
396 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
397 
398 	xfs_iunlock(ip, *lockmode);
399 	*lockmode = 0;
400 
401 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks, 0,
402 			false, &tp);
403 	if (error)
404 		return error;
405 
406 	*lockmode = XFS_ILOCK_EXCL;
407 
408 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
409 	if (error || !*shared)
410 		goto out_trans_cancel;
411 
412 	if (found) {
413 		xfs_trans_cancel(tp);
414 		goto convert;
415 	}
416 
417 	ASSERT(cmap->br_startoff > imap->br_startoff);
418 
419 	/* Allocate the entire reservation as unwritten blocks. */
420 	nimaps = 1;
421 	error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
422 			XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0, cmap,
423 			&nimaps);
424 	if (error)
425 		goto out_trans_cancel;
426 
427 	xfs_inode_set_cowblocks_tag(ip);
428 	error = xfs_trans_commit(tp);
429 	if (error)
430 		return error;
431 
432 	/*
433 	 * Allocation succeeded but the requested range was not even partially
434 	 * satisfied?  Bail out!
435 	 */
436 	if (nimaps == 0)
437 		return -ENOSPC;
438 
439 convert:
440 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
441 
442 out_trans_cancel:
443 	xfs_trans_cancel(tp);
444 	return error;
445 }
446 
447 static int
448 xfs_reflink_fill_delalloc(
449 	struct xfs_inode	*ip,
450 	struct xfs_bmbt_irec	*imap,
451 	struct xfs_bmbt_irec	*cmap,
452 	bool			*shared,
453 	uint			*lockmode,
454 	bool			convert_now)
455 {
456 	struct xfs_mount	*mp = ip->i_mount;
457 	struct xfs_trans	*tp;
458 	int			nimaps;
459 	int			error;
460 	bool			found;
461 
462 	do {
463 		xfs_iunlock(ip, *lockmode);
464 		*lockmode = 0;
465 
466 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, 0, 0,
467 				false, &tp);
468 		if (error)
469 			return error;
470 
471 		*lockmode = XFS_ILOCK_EXCL;
472 
473 		error = xfs_find_trim_cow_extent(ip, imap, cmap, shared,
474 				&found);
475 		if (error || !*shared)
476 			goto out_trans_cancel;
477 
478 		if (found) {
479 			xfs_trans_cancel(tp);
480 			break;
481 		}
482 
483 		ASSERT(isnullstartblock(cmap->br_startblock) ||
484 		       cmap->br_startblock == DELAYSTARTBLOCK);
485 
486 		/*
487 		 * Replace delalloc reservation with an unwritten extent.
488 		 */
489 		nimaps = 1;
490 		error = xfs_bmapi_write(tp, ip, cmap->br_startoff,
491 				cmap->br_blockcount,
492 				XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, 0,
493 				cmap, &nimaps);
494 		if (error)
495 			goto out_trans_cancel;
496 
497 		xfs_inode_set_cowblocks_tag(ip);
498 		error = xfs_trans_commit(tp);
499 		if (error)
500 			return error;
501 
502 		/*
503 		 * Allocation succeeded but the requested range was not even
504 		 * partially satisfied?  Bail out!
505 		 */
506 		if (nimaps == 0)
507 			return -ENOSPC;
508 	} while (cmap->br_startoff + cmap->br_blockcount <= imap->br_startoff);
509 
510 	return xfs_reflink_convert_unwritten(ip, imap, cmap, convert_now);
511 
512 out_trans_cancel:
513 	xfs_trans_cancel(tp);
514 	return error;
515 }
516 
517 /* Allocate all CoW reservations covering a range of blocks in a file. */
518 int
519 xfs_reflink_allocate_cow(
520 	struct xfs_inode	*ip,
521 	struct xfs_bmbt_irec	*imap,
522 	struct xfs_bmbt_irec	*cmap,
523 	bool			*shared,
524 	uint			*lockmode,
525 	bool			convert_now)
526 {
527 	int			error;
528 	bool			found;
529 
530 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
531 	if (!ip->i_cowfp) {
532 		ASSERT(!xfs_is_reflink_inode(ip));
533 		xfs_ifork_init_cow(ip);
534 	}
535 
536 	error = xfs_find_trim_cow_extent(ip, imap, cmap, shared, &found);
537 	if (error || !*shared)
538 		return error;
539 
540 	/* CoW fork has a real extent */
541 	if (found)
542 		return xfs_reflink_convert_unwritten(ip, imap, cmap,
543 				convert_now);
544 
545 	/*
546 	 * CoW fork does not have an extent and data extent is shared.
547 	 * Allocate a real extent in the CoW fork.
548 	 */
549 	if (cmap->br_startoff > imap->br_startoff)
550 		return xfs_reflink_fill_cow_hole(ip, imap, cmap, shared,
551 				lockmode, convert_now);
552 
553 	/*
554 	 * CoW fork has a delalloc reservation. Replace it with a real extent.
555 	 * There may or may not be a data fork mapping.
556 	 */
557 	if (isnullstartblock(cmap->br_startblock) ||
558 	    cmap->br_startblock == DELAYSTARTBLOCK)
559 		return xfs_reflink_fill_delalloc(ip, imap, cmap, shared,
560 				lockmode, convert_now);
561 
562 	/* Shouldn't get here. */
563 	ASSERT(0);
564 	return -EFSCORRUPTED;
565 }
566 
567 /*
568  * Cancel CoW reservations for some block range of an inode.
569  *
570  * If cancel_real is true this function cancels all COW fork extents for the
571  * inode; if cancel_real is false, real extents are not cleared.
572  *
573  * Caller must have already joined the inode to the current transaction. The
574  * inode will be joined to the transaction returned to the caller.
575  */
576 int
577 xfs_reflink_cancel_cow_blocks(
578 	struct xfs_inode		*ip,
579 	struct xfs_trans		**tpp,
580 	xfs_fileoff_t			offset_fsb,
581 	xfs_fileoff_t			end_fsb,
582 	bool				cancel_real)
583 {
584 	struct xfs_ifork		*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
585 	struct xfs_bmbt_irec		got, del;
586 	struct xfs_iext_cursor		icur;
587 	int				error = 0;
588 
589 	if (!xfs_inode_has_cow_data(ip))
590 		return 0;
591 	if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
592 		return 0;
593 
594 	/* Walk backwards until we're out of the I/O range... */
595 	while (got.br_startoff + got.br_blockcount > offset_fsb) {
596 		del = got;
597 		xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
598 
599 		/* Extent delete may have bumped ext forward */
600 		if (!del.br_blockcount) {
601 			xfs_iext_prev(ifp, &icur);
602 			goto next_extent;
603 		}
604 
605 		trace_xfs_reflink_cancel_cow(ip, &del);
606 
607 		if (isnullstartblock(del.br_startblock)) {
608 			error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
609 					&icur, &got, &del);
610 			if (error)
611 				break;
612 		} else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
613 			ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
614 
615 			/* Free the CoW orphan record. */
616 			xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
617 					del.br_blockcount);
618 
619 			xfs_free_extent_later(*tpp, del.br_startblock,
620 					  del.br_blockcount, NULL);
621 
622 			/* Roll the transaction */
623 			error = xfs_defer_finish(tpp);
624 			if (error)
625 				break;
626 
627 			/* Remove the mapping from the CoW fork. */
628 			xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
629 
630 			/* Remove the quota reservation */
631 			error = xfs_quota_unreserve_blkres(ip,
632 					del.br_blockcount);
633 			if (error)
634 				break;
635 		} else {
636 			/* Didn't do anything, push cursor back. */
637 			xfs_iext_prev(ifp, &icur);
638 		}
639 next_extent:
640 		if (!xfs_iext_get_extent(ifp, &icur, &got))
641 			break;
642 	}
643 
644 	/* clear tag if cow fork is emptied */
645 	if (!ifp->if_bytes)
646 		xfs_inode_clear_cowblocks_tag(ip);
647 	return error;
648 }
649 
650 /*
651  * Cancel CoW reservations for some byte range of an inode.
652  *
653  * If cancel_real is true this function cancels all COW fork extents for the
654  * inode; if cancel_real is false, real extents are not cleared.
655  */
656 int
657 xfs_reflink_cancel_cow_range(
658 	struct xfs_inode	*ip,
659 	xfs_off_t		offset,
660 	xfs_off_t		count,
661 	bool			cancel_real)
662 {
663 	struct xfs_trans	*tp;
664 	xfs_fileoff_t		offset_fsb;
665 	xfs_fileoff_t		end_fsb;
666 	int			error;
667 
668 	trace_xfs_reflink_cancel_cow_range(ip, offset, count);
669 	ASSERT(ip->i_cowfp);
670 
671 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
672 	if (count == NULLFILEOFF)
673 		end_fsb = NULLFILEOFF;
674 	else
675 		end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
676 
677 	/* Start a rolling transaction to remove the mappings */
678 	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
679 			0, 0, 0, &tp);
680 	if (error)
681 		goto out;
682 
683 	xfs_ilock(ip, XFS_ILOCK_EXCL);
684 	xfs_trans_ijoin(tp, ip, 0);
685 
686 	/* Scrape out the old CoW reservations */
687 	error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
688 			cancel_real);
689 	if (error)
690 		goto out_cancel;
691 
692 	error = xfs_trans_commit(tp);
693 
694 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
695 	return error;
696 
697 out_cancel:
698 	xfs_trans_cancel(tp);
699 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
700 out:
701 	trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
702 	return error;
703 }
704 
705 /*
706  * Remap part of the CoW fork into the data fork.
707  *
708  * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
709  * into the data fork; this function will remap what it can (at the end of the
710  * range) and update @end_fsb appropriately.  Each remap gets its own
711  * transaction because we can end up merging and splitting bmbt blocks for
712  * every remap operation and we'd like to keep the block reservation
713  * requirements as low as possible.
714  */
715 STATIC int
716 xfs_reflink_end_cow_extent(
717 	struct xfs_inode	*ip,
718 	xfs_fileoff_t		*offset_fsb,
719 	xfs_fileoff_t		end_fsb)
720 {
721 	struct xfs_iext_cursor	icur;
722 	struct xfs_bmbt_irec	got, del, data;
723 	struct xfs_mount	*mp = ip->i_mount;
724 	struct xfs_trans	*tp;
725 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
726 	unsigned int		resblks;
727 	int			nmaps;
728 	int			error;
729 
730 	/* No COW extents?  That's easy! */
731 	if (ifp->if_bytes == 0) {
732 		*offset_fsb = end_fsb;
733 		return 0;
734 	}
735 
736 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
737 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
738 			XFS_TRANS_RESERVE, &tp);
739 	if (error)
740 		return error;
741 
742 	/*
743 	 * Lock the inode.  We have to ijoin without automatic unlock because
744 	 * the lead transaction is the refcountbt record deletion; the data
745 	 * fork update follows as a deferred log item.
746 	 */
747 	xfs_ilock(ip, XFS_ILOCK_EXCL);
748 	xfs_trans_ijoin(tp, ip, 0);
749 
750 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
751 			XFS_IEXT_REFLINK_END_COW_CNT);
752 	if (error == -EFBIG)
753 		error = xfs_iext_count_upgrade(tp, ip,
754 				XFS_IEXT_REFLINK_END_COW_CNT);
755 	if (error)
756 		goto out_cancel;
757 
758 	/*
759 	 * In case of racing, overlapping AIO writes no COW extents might be
760 	 * left by the time I/O completes for the loser of the race.  In that
761 	 * case we are done.
762 	 */
763 	if (!xfs_iext_lookup_extent(ip, ifp, *offset_fsb, &icur, &got) ||
764 	    got.br_startoff >= end_fsb) {
765 		*offset_fsb = end_fsb;
766 		goto out_cancel;
767 	}
768 
769 	/*
770 	 * Only remap real extents that contain data.  With AIO, speculative
771 	 * preallocations can leak into the range we are called upon, and we
772 	 * need to skip them.  Preserve @got for the eventual CoW fork
773 	 * deletion; from now on @del represents the mapping that we're
774 	 * actually remapping.
775 	 */
776 	while (!xfs_bmap_is_written_extent(&got)) {
777 		if (!xfs_iext_next_extent(ifp, &icur, &got) ||
778 		    got.br_startoff >= end_fsb) {
779 			*offset_fsb = end_fsb;
780 			goto out_cancel;
781 		}
782 	}
783 	del = got;
784 
785 	/* Grab the corresponding mapping in the data fork. */
786 	nmaps = 1;
787 	error = xfs_bmapi_read(ip, del.br_startoff, del.br_blockcount, &data,
788 			&nmaps, 0);
789 	if (error)
790 		goto out_cancel;
791 
792 	/* We can only remap the smaller of the two extent sizes. */
793 	data.br_blockcount = min(data.br_blockcount, del.br_blockcount);
794 	del.br_blockcount = data.br_blockcount;
795 
796 	trace_xfs_reflink_cow_remap_from(ip, &del);
797 	trace_xfs_reflink_cow_remap_to(ip, &data);
798 
799 	if (xfs_bmap_is_real_extent(&data)) {
800 		/*
801 		 * If the extent we're remapping is backed by storage (written
802 		 * or not), unmap the extent and drop its refcount.
803 		 */
804 		xfs_bmap_unmap_extent(tp, ip, &data);
805 		xfs_refcount_decrease_extent(tp, &data);
806 		xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
807 				-data.br_blockcount);
808 	} else if (data.br_startblock == DELAYSTARTBLOCK) {
809 		int		done;
810 
811 		/*
812 		 * If the extent we're remapping is a delalloc reservation,
813 		 * we can use the regular bunmapi function to release the
814 		 * incore state.  Dropping the delalloc reservation takes care
815 		 * of the quota reservation for us.
816 		 */
817 		error = xfs_bunmapi(NULL, ip, data.br_startoff,
818 				data.br_blockcount, 0, 1, &done);
819 		if (error)
820 			goto out_cancel;
821 		ASSERT(done);
822 	}
823 
824 	/* Free the CoW orphan record. */
825 	xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
826 
827 	/* Map the new blocks into the data fork. */
828 	xfs_bmap_map_extent(tp, ip, &del);
829 
830 	/* Charge this new data fork mapping to the on-disk quota. */
831 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
832 			(long)del.br_blockcount);
833 
834 	/* Remove the mapping from the CoW fork. */
835 	xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
836 
837 	error = xfs_trans_commit(tp);
838 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
839 	if (error)
840 		return error;
841 
842 	/* Update the caller about how much progress we made. */
843 	*offset_fsb = del.br_startoff + del.br_blockcount;
844 	return 0;
845 
846 out_cancel:
847 	xfs_trans_cancel(tp);
848 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
849 	return error;
850 }
851 
852 /*
853  * Remap parts of a file's data fork after a successful CoW.
854  */
855 int
856 xfs_reflink_end_cow(
857 	struct xfs_inode		*ip,
858 	xfs_off_t			offset,
859 	xfs_off_t			count)
860 {
861 	xfs_fileoff_t			offset_fsb;
862 	xfs_fileoff_t			end_fsb;
863 	int				error = 0;
864 
865 	trace_xfs_reflink_end_cow(ip, offset, count);
866 
867 	offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
868 	end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
869 
870 	/*
871 	 * Walk forwards until we've remapped the I/O range.  The loop function
872 	 * repeatedly cycles the ILOCK to allocate one transaction per remapped
873 	 * extent.
874 	 *
875 	 * If we're being called by writeback then the pages will still
876 	 * have PageWriteback set, which prevents races with reflink remapping
877 	 * and truncate.  Reflink remapping prevents races with writeback by
878 	 * taking the iolock and mmaplock before flushing the pages and
879 	 * remapping, which means there won't be any further writeback or page
880 	 * cache dirtying until the reflink completes.
881 	 *
882 	 * We should never have two threads issuing writeback for the same file
883 	 * region.  There are also have post-eof checks in the writeback
884 	 * preparation code so that we don't bother writing out pages that are
885 	 * about to be truncated.
886 	 *
887 	 * If we're being called as part of directio write completion, the dio
888 	 * count is still elevated, which reflink and truncate will wait for.
889 	 * Reflink remapping takes the iolock and mmaplock and waits for
890 	 * pending dio to finish, which should prevent any directio until the
891 	 * remap completes.  Multiple concurrent directio writes to the same
892 	 * region are handled by end_cow processing only occurring for the
893 	 * threads which succeed; the outcome of multiple overlapping direct
894 	 * writes is not well defined anyway.
895 	 *
896 	 * It's possible that a buffered write and a direct write could collide
897 	 * here (the buffered write stumbles in after the dio flushes and
898 	 * invalidates the page cache and immediately queues writeback), but we
899 	 * have never supported this 100%.  If either disk write succeeds the
900 	 * blocks will be remapped.
901 	 */
902 	while (end_fsb > offset_fsb && !error)
903 		error = xfs_reflink_end_cow_extent(ip, &offset_fsb, end_fsb);
904 
905 	if (error)
906 		trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
907 	return error;
908 }
909 
910 /*
911  * Free all CoW staging blocks that are still referenced by the ondisk refcount
912  * metadata.  The ondisk metadata does not track which inode created the
913  * staging extent, so callers must ensure that there are no cached inodes with
914  * live CoW staging extents.
915  */
916 int
917 xfs_reflink_recover_cow(
918 	struct xfs_mount	*mp)
919 {
920 	struct xfs_perag	*pag;
921 	xfs_agnumber_t		agno;
922 	int			error = 0;
923 
924 	if (!xfs_has_reflink(mp))
925 		return 0;
926 
927 	for_each_perag(mp, agno, pag) {
928 		error = xfs_refcount_recover_cow_leftovers(mp, pag);
929 		if (error) {
930 			xfs_perag_put(pag);
931 			break;
932 		}
933 	}
934 
935 	return error;
936 }
937 
938 /*
939  * Reflinking (Block) Ranges of Two Files Together
940  *
941  * First, ensure that the reflink flag is set on both inodes.  The flag is an
942  * optimization to avoid unnecessary refcount btree lookups in the write path.
943  *
944  * Now we can iteratively remap the range of extents (and holes) in src to the
945  * corresponding ranges in dest.  Let drange and srange denote the ranges of
946  * logical blocks in dest and src touched by the reflink operation.
947  *
948  * While the length of drange is greater than zero,
949  *    - Read src's bmbt at the start of srange ("imap")
950  *    - If imap doesn't exist, make imap appear to start at the end of srange
951  *      with zero length.
952  *    - If imap starts before srange, advance imap to start at srange.
953  *    - If imap goes beyond srange, truncate imap to end at the end of srange.
954  *    - Punch (imap start - srange start + imap len) blocks from dest at
955  *      offset (drange start).
956  *    - If imap points to a real range of pblks,
957  *         > Increase the refcount of the imap's pblks
958  *         > Map imap's pblks into dest at the offset
959  *           (drange start + imap start - srange start)
960  *    - Advance drange and srange by (imap start - srange start + imap len)
961  *
962  * Finally, if the reflink made dest longer, update both the in-core and
963  * on-disk file sizes.
964  *
965  * ASCII Art Demonstration:
966  *
967  * Let's say we want to reflink this source file:
968  *
969  * ----SSSSSSS-SSSSS----SSSSSS (src file)
970  *   <-------------------->
971  *
972  * into this destination file:
973  *
974  * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
975  *        <-------------------->
976  * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
977  * Observe that the range has different logical offsets in either file.
978  *
979  * Consider that the first extent in the source file doesn't line up with our
980  * reflink range.  Unmapping  and remapping are separate operations, so we can
981  * unmap more blocks from the destination file than we remap.
982  *
983  * ----SSSSSSS-SSSSS----SSSSSS
984  *   <------->
985  * --DDDDD---------DDDDD--DDD
986  *        <------->
987  *
988  * Now remap the source extent into the destination file:
989  *
990  * ----SSSSSSS-SSSSS----SSSSSS
991  *   <------->
992  * --DDDDD--SSSSSSSDDDDD--DDD
993  *        <------->
994  *
995  * Do likewise with the second hole and extent in our range.  Holes in the
996  * unmap range don't affect our operation.
997  *
998  * ----SSSSSSS-SSSSS----SSSSSS
999  *            <---->
1000  * --DDDDD--SSSSSSS-SSSSS-DDD
1001  *                 <---->
1002  *
1003  * Finally, unmap and remap part of the third extent.  This will increase the
1004  * size of the destination file.
1005  *
1006  * ----SSSSSSS-SSSSS----SSSSSS
1007  *                  <----->
1008  * --DDDDD--SSSSSSS-SSSSS----SSS
1009  *                       <----->
1010  *
1011  * Once we update the destination file's i_size, we're done.
1012  */
1013 
1014 /*
1015  * Ensure the reflink bit is set in both inodes.
1016  */
1017 STATIC int
1018 xfs_reflink_set_inode_flag(
1019 	struct xfs_inode	*src,
1020 	struct xfs_inode	*dest)
1021 {
1022 	struct xfs_mount	*mp = src->i_mount;
1023 	int			error;
1024 	struct xfs_trans	*tp;
1025 
1026 	if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
1027 		return 0;
1028 
1029 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1030 	if (error)
1031 		goto out_error;
1032 
1033 	/* Lock both files against IO */
1034 	if (src->i_ino == dest->i_ino)
1035 		xfs_ilock(src, XFS_ILOCK_EXCL);
1036 	else
1037 		xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
1038 
1039 	if (!xfs_is_reflink_inode(src)) {
1040 		trace_xfs_reflink_set_inode_flag(src);
1041 		xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
1042 		src->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1043 		xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
1044 		xfs_ifork_init_cow(src);
1045 	} else
1046 		xfs_iunlock(src, XFS_ILOCK_EXCL);
1047 
1048 	if (src->i_ino == dest->i_ino)
1049 		goto commit_flags;
1050 
1051 	if (!xfs_is_reflink_inode(dest)) {
1052 		trace_xfs_reflink_set_inode_flag(dest);
1053 		xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1054 		dest->i_diflags2 |= XFS_DIFLAG2_REFLINK;
1055 		xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1056 		xfs_ifork_init_cow(dest);
1057 	} else
1058 		xfs_iunlock(dest, XFS_ILOCK_EXCL);
1059 
1060 commit_flags:
1061 	error = xfs_trans_commit(tp);
1062 	if (error)
1063 		goto out_error;
1064 	return error;
1065 
1066 out_error:
1067 	trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
1068 	return error;
1069 }
1070 
1071 /*
1072  * Update destination inode size & cowextsize hint, if necessary.
1073  */
1074 int
1075 xfs_reflink_update_dest(
1076 	struct xfs_inode	*dest,
1077 	xfs_off_t		newlen,
1078 	xfs_extlen_t		cowextsize,
1079 	unsigned int		remap_flags)
1080 {
1081 	struct xfs_mount	*mp = dest->i_mount;
1082 	struct xfs_trans	*tp;
1083 	int			error;
1084 
1085 	if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
1086 		return 0;
1087 
1088 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1089 	if (error)
1090 		goto out_error;
1091 
1092 	xfs_ilock(dest, XFS_ILOCK_EXCL);
1093 	xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
1094 
1095 	if (newlen > i_size_read(VFS_I(dest))) {
1096 		trace_xfs_reflink_update_inode_size(dest, newlen);
1097 		i_size_write(VFS_I(dest), newlen);
1098 		dest->i_disk_size = newlen;
1099 	}
1100 
1101 	if (cowextsize) {
1102 		dest->i_cowextsize = cowextsize;
1103 		dest->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
1104 	}
1105 
1106 	xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1107 
1108 	error = xfs_trans_commit(tp);
1109 	if (error)
1110 		goto out_error;
1111 	return error;
1112 
1113 out_error:
1114 	trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1115 	return error;
1116 }
1117 
1118 /*
1119  * Do we have enough reserve in this AG to handle a reflink?  The refcount
1120  * btree already reserved all the space it needs, but the rmap btree can grow
1121  * infinitely, so we won't allow more reflinks when the AG is down to the
1122  * btree reserves.
1123  */
1124 static int
1125 xfs_reflink_ag_has_free_space(
1126 	struct xfs_mount	*mp,
1127 	xfs_agnumber_t		agno)
1128 {
1129 	struct xfs_perag	*pag;
1130 	int			error = 0;
1131 
1132 	if (!xfs_has_rmapbt(mp))
1133 		return 0;
1134 
1135 	pag = xfs_perag_get(mp, agno);
1136 	if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
1137 	    xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1138 		error = -ENOSPC;
1139 	xfs_perag_put(pag);
1140 	return error;
1141 }
1142 
1143 /*
1144  * Remap the given extent into the file.  The dmap blockcount will be set to
1145  * the number of blocks that were actually remapped.
1146  */
1147 STATIC int
1148 xfs_reflink_remap_extent(
1149 	struct xfs_inode	*ip,
1150 	struct xfs_bmbt_irec	*dmap,
1151 	xfs_off_t		new_isize)
1152 {
1153 	struct xfs_bmbt_irec	smap;
1154 	struct xfs_mount	*mp = ip->i_mount;
1155 	struct xfs_trans	*tp;
1156 	xfs_off_t		newlen;
1157 	int64_t			qdelta = 0;
1158 	unsigned int		resblks;
1159 	bool			quota_reserved = true;
1160 	bool			smap_real;
1161 	bool			dmap_written = xfs_bmap_is_written_extent(dmap);
1162 	int			iext_delta = 0;
1163 	int			nimaps;
1164 	int			error;
1165 
1166 	/*
1167 	 * Start a rolling transaction to switch the mappings.
1168 	 *
1169 	 * Adding a written extent to the extent map can cause a bmbt split,
1170 	 * and removing a mapped extent from the extent can cause a bmbt split.
1171 	 * The two operations cannot both cause a split since they operate on
1172 	 * the same index in the bmap btree, so we only need a reservation for
1173 	 * one bmbt split if either thing is happening.  However, we haven't
1174 	 * locked the inode yet, so we reserve assuming this is the case.
1175 	 *
1176 	 * The first allocation call tries to reserve enough space to handle
1177 	 * mapping dmap into a sparse part of the file plus the bmbt split.  We
1178 	 * haven't locked the inode or read the existing mapping yet, so we do
1179 	 * not know for sure that we need the space.  This should succeed most
1180 	 * of the time.
1181 	 *
1182 	 * If the first attempt fails, try again but reserving only enough
1183 	 * space to handle a bmbt split.  This is the hard minimum requirement,
1184 	 * and we revisit quota reservations later when we know more about what
1185 	 * we're remapping.
1186 	 */
1187 	resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
1188 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1189 			resblks + dmap->br_blockcount, 0, false, &tp);
1190 	if (error == -EDQUOT || error == -ENOSPC) {
1191 		quota_reserved = false;
1192 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write,
1193 				resblks, 0, false, &tp);
1194 	}
1195 	if (error)
1196 		goto out;
1197 
1198 	/*
1199 	 * Read what's currently mapped in the destination file into smap.
1200 	 * If smap isn't a hole, we will have to remove it before we can add
1201 	 * dmap to the destination file.
1202 	 */
1203 	nimaps = 1;
1204 	error = xfs_bmapi_read(ip, dmap->br_startoff, dmap->br_blockcount,
1205 			&smap, &nimaps, 0);
1206 	if (error)
1207 		goto out_cancel;
1208 	ASSERT(nimaps == 1 && smap.br_startoff == dmap->br_startoff);
1209 	smap_real = xfs_bmap_is_real_extent(&smap);
1210 
1211 	/*
1212 	 * We can only remap as many blocks as the smaller of the two extent
1213 	 * maps, because we can only remap one extent at a time.
1214 	 */
1215 	dmap->br_blockcount = min(dmap->br_blockcount, smap.br_blockcount);
1216 	ASSERT(dmap->br_blockcount == smap.br_blockcount);
1217 
1218 	trace_xfs_reflink_remap_extent_dest(ip, &smap);
1219 
1220 	/*
1221 	 * Two extents mapped to the same physical block must not have
1222 	 * different states; that's filesystem corruption.  Move on to the next
1223 	 * extent if they're both holes or both the same physical extent.
1224 	 */
1225 	if (dmap->br_startblock == smap.br_startblock) {
1226 		if (dmap->br_state != smap.br_state)
1227 			error = -EFSCORRUPTED;
1228 		goto out_cancel;
1229 	}
1230 
1231 	/* If both extents are unwritten, leave them alone. */
1232 	if (dmap->br_state == XFS_EXT_UNWRITTEN &&
1233 	    smap.br_state == XFS_EXT_UNWRITTEN)
1234 		goto out_cancel;
1235 
1236 	/* No reflinking if the AG of the dest mapping is low on space. */
1237 	if (dmap_written) {
1238 		error = xfs_reflink_ag_has_free_space(mp,
1239 				XFS_FSB_TO_AGNO(mp, dmap->br_startblock));
1240 		if (error)
1241 			goto out_cancel;
1242 	}
1243 
1244 	/*
1245 	 * Increase quota reservation if we think the quota block counter for
1246 	 * this file could increase.
1247 	 *
1248 	 * If we are mapping a written extent into the file, we need to have
1249 	 * enough quota block count reservation to handle the blocks in that
1250 	 * extent.  We log only the delta to the quota block counts, so if the
1251 	 * extent we're unmapping also has blocks allocated to it, we don't
1252 	 * need a quota reservation for the extent itself.
1253 	 *
1254 	 * Note that if we're replacing a delalloc reservation with a written
1255 	 * extent, we have to take the full quota reservation because removing
1256 	 * the delalloc reservation gives the block count back to the quota
1257 	 * count.  This is suboptimal, but the VFS flushed the dest range
1258 	 * before we started.  That should have removed all the delalloc
1259 	 * reservations, but we code defensively.
1260 	 *
1261 	 * xfs_trans_alloc_inode above already tried to grab an even larger
1262 	 * quota reservation, and kicked off a blockgc scan if it couldn't.
1263 	 * If we can't get a potentially smaller quota reservation now, we're
1264 	 * done.
1265 	 */
1266 	if (!quota_reserved && !smap_real && dmap_written) {
1267 		error = xfs_trans_reserve_quota_nblks(tp, ip,
1268 				dmap->br_blockcount, 0, false);
1269 		if (error)
1270 			goto out_cancel;
1271 	}
1272 
1273 	if (smap_real)
1274 		++iext_delta;
1275 
1276 	if (dmap_written)
1277 		++iext_delta;
1278 
1279 	error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, iext_delta);
1280 	if (error == -EFBIG)
1281 		error = xfs_iext_count_upgrade(tp, ip, iext_delta);
1282 	if (error)
1283 		goto out_cancel;
1284 
1285 	if (smap_real) {
1286 		/*
1287 		 * If the extent we're unmapping is backed by storage (written
1288 		 * or not), unmap the extent and drop its refcount.
1289 		 */
1290 		xfs_bmap_unmap_extent(tp, ip, &smap);
1291 		xfs_refcount_decrease_extent(tp, &smap);
1292 		qdelta -= smap.br_blockcount;
1293 	} else if (smap.br_startblock == DELAYSTARTBLOCK) {
1294 		int		done;
1295 
1296 		/*
1297 		 * If the extent we're unmapping is a delalloc reservation,
1298 		 * we can use the regular bunmapi function to release the
1299 		 * incore state.  Dropping the delalloc reservation takes care
1300 		 * of the quota reservation for us.
1301 		 */
1302 		error = xfs_bunmapi(NULL, ip, smap.br_startoff,
1303 				smap.br_blockcount, 0, 1, &done);
1304 		if (error)
1305 			goto out_cancel;
1306 		ASSERT(done);
1307 	}
1308 
1309 	/*
1310 	 * If the extent we're sharing is backed by written storage, increase
1311 	 * its refcount and map it into the file.
1312 	 */
1313 	if (dmap_written) {
1314 		xfs_refcount_increase_extent(tp, dmap);
1315 		xfs_bmap_map_extent(tp, ip, dmap);
1316 		qdelta += dmap->br_blockcount;
1317 	}
1318 
1319 	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, qdelta);
1320 
1321 	/* Update dest isize if needed. */
1322 	newlen = XFS_FSB_TO_B(mp, dmap->br_startoff + dmap->br_blockcount);
1323 	newlen = min_t(xfs_off_t, newlen, new_isize);
1324 	if (newlen > i_size_read(VFS_I(ip))) {
1325 		trace_xfs_reflink_update_inode_size(ip, newlen);
1326 		i_size_write(VFS_I(ip), newlen);
1327 		ip->i_disk_size = newlen;
1328 		xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1329 	}
1330 
1331 	/* Commit everything and unlock. */
1332 	error = xfs_trans_commit(tp);
1333 	goto out_unlock;
1334 
1335 out_cancel:
1336 	xfs_trans_cancel(tp);
1337 out_unlock:
1338 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1339 out:
1340 	if (error)
1341 		trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1342 	return error;
1343 }
1344 
1345 /* Remap a range of one file to the other. */
1346 int
1347 xfs_reflink_remap_blocks(
1348 	struct xfs_inode	*src,
1349 	loff_t			pos_in,
1350 	struct xfs_inode	*dest,
1351 	loff_t			pos_out,
1352 	loff_t			remap_len,
1353 	loff_t			*remapped)
1354 {
1355 	struct xfs_bmbt_irec	imap;
1356 	struct xfs_mount	*mp = src->i_mount;
1357 	xfs_fileoff_t		srcoff = XFS_B_TO_FSBT(mp, pos_in);
1358 	xfs_fileoff_t		destoff = XFS_B_TO_FSBT(mp, pos_out);
1359 	xfs_filblks_t		len;
1360 	xfs_filblks_t		remapped_len = 0;
1361 	xfs_off_t		new_isize = pos_out + remap_len;
1362 	int			nimaps;
1363 	int			error = 0;
1364 
1365 	len = min_t(xfs_filblks_t, XFS_B_TO_FSB(mp, remap_len),
1366 			XFS_MAX_FILEOFF);
1367 
1368 	trace_xfs_reflink_remap_blocks(src, srcoff, len, dest, destoff);
1369 
1370 	while (len > 0) {
1371 		unsigned int	lock_mode;
1372 
1373 		/* Read extent from the source file */
1374 		nimaps = 1;
1375 		lock_mode = xfs_ilock_data_map_shared(src);
1376 		error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1377 		xfs_iunlock(src, lock_mode);
1378 		if (error)
1379 			break;
1380 		/*
1381 		 * The caller supposedly flushed all dirty pages in the source
1382 		 * file range, which means that writeback should have allocated
1383 		 * or deleted all delalloc reservations in that range.  If we
1384 		 * find one, that's a good sign that something is seriously
1385 		 * wrong here.
1386 		 */
1387 		ASSERT(nimaps == 1 && imap.br_startoff == srcoff);
1388 		if (imap.br_startblock == DELAYSTARTBLOCK) {
1389 			ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1390 			error = -EFSCORRUPTED;
1391 			break;
1392 		}
1393 
1394 		trace_xfs_reflink_remap_extent_src(src, &imap);
1395 
1396 		/* Remap into the destination file at the given offset. */
1397 		imap.br_startoff = destoff;
1398 		error = xfs_reflink_remap_extent(dest, &imap, new_isize);
1399 		if (error)
1400 			break;
1401 
1402 		if (fatal_signal_pending(current)) {
1403 			error = -EINTR;
1404 			break;
1405 		}
1406 
1407 		/* Advance drange/srange */
1408 		srcoff += imap.br_blockcount;
1409 		destoff += imap.br_blockcount;
1410 		len -= imap.br_blockcount;
1411 		remapped_len += imap.br_blockcount;
1412 	}
1413 
1414 	if (error)
1415 		trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1416 	*remapped = min_t(loff_t, remap_len,
1417 			  XFS_FSB_TO_B(src->i_mount, remapped_len));
1418 	return error;
1419 }
1420 
1421 /*
1422  * If we're reflinking to a point past the destination file's EOF, we must
1423  * zero any speculative post-EOF preallocations that sit between the old EOF
1424  * and the destination file offset.
1425  */
1426 static int
1427 xfs_reflink_zero_posteof(
1428 	struct xfs_inode	*ip,
1429 	loff_t			pos)
1430 {
1431 	loff_t			isize = i_size_read(VFS_I(ip));
1432 
1433 	if (pos <= isize)
1434 		return 0;
1435 
1436 	trace_xfs_zero_eof(ip, isize, pos - isize);
1437 	return xfs_zero_range(ip, isize, pos - isize, NULL);
1438 }
1439 
1440 /*
1441  * Prepare two files for range cloning.  Upon a successful return both inodes
1442  * will have the iolock and mmaplock held, the page cache of the out file will
1443  * be truncated, and any leases on the out file will have been broken.  This
1444  * function borrows heavily from xfs_file_aio_write_checks.
1445  *
1446  * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1447  * checked that the bytes beyond EOF physically match. Hence we cannot use the
1448  * EOF block in the source dedupe range because it's not a complete block match,
1449  * hence can introduce a corruption into the file that has it's block replaced.
1450  *
1451  * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1452  * "block aligned" for the purposes of cloning entire files.  However, if the
1453  * source file range includes the EOF block and it lands within the existing EOF
1454  * of the destination file, then we can expose stale data from beyond the source
1455  * file EOF in the destination file.
1456  *
1457  * XFS doesn't support partial block sharing, so in both cases we have check
1458  * these cases ourselves. For dedupe, we can simply round the length to dedupe
1459  * down to the previous whole block and ignore the partial EOF block. While this
1460  * means we can't dedupe the last block of a file, this is an acceptible
1461  * tradeoff for simplicity on implementation.
1462  *
1463  * For cloning, we want to share the partial EOF block if it is also the new EOF
1464  * block of the destination file. If the partial EOF block lies inside the
1465  * existing destination EOF, then we have to abort the clone to avoid exposing
1466  * stale data in the destination file. Hence we reject these clone attempts with
1467  * -EINVAL in this case.
1468  */
1469 int
1470 xfs_reflink_remap_prep(
1471 	struct file		*file_in,
1472 	loff_t			pos_in,
1473 	struct file		*file_out,
1474 	loff_t			pos_out,
1475 	loff_t			*len,
1476 	unsigned int		remap_flags)
1477 {
1478 	struct inode		*inode_in = file_inode(file_in);
1479 	struct xfs_inode	*src = XFS_I(inode_in);
1480 	struct inode		*inode_out = file_inode(file_out);
1481 	struct xfs_inode	*dest = XFS_I(inode_out);
1482 	int			ret;
1483 
1484 	/* Lock both files against IO */
1485 	ret = xfs_ilock2_io_mmap(src, dest);
1486 	if (ret)
1487 		return ret;
1488 
1489 	/* Check file eligibility and prepare for block sharing. */
1490 	ret = -EINVAL;
1491 	/* Don't reflink realtime inodes */
1492 	if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1493 		goto out_unlock;
1494 
1495 	/* Don't share DAX file data with non-DAX file. */
1496 	if (IS_DAX(inode_in) != IS_DAX(inode_out))
1497 		goto out_unlock;
1498 
1499 	if (!IS_DAX(inode_in))
1500 		ret = generic_remap_file_range_prep(file_in, pos_in, file_out,
1501 				pos_out, len, remap_flags);
1502 	else
1503 		ret = dax_remap_file_range_prep(file_in, pos_in, file_out,
1504 				pos_out, len, remap_flags, &xfs_read_iomap_ops);
1505 	if (ret || *len == 0)
1506 		goto out_unlock;
1507 
1508 	/* Attach dquots to dest inode before changing block map */
1509 	ret = xfs_qm_dqattach(dest);
1510 	if (ret)
1511 		goto out_unlock;
1512 
1513 	/*
1514 	 * Zero existing post-eof speculative preallocations in the destination
1515 	 * file.
1516 	 */
1517 	ret = xfs_reflink_zero_posteof(dest, pos_out);
1518 	if (ret)
1519 		goto out_unlock;
1520 
1521 	/* Set flags and remap blocks. */
1522 	ret = xfs_reflink_set_inode_flag(src, dest);
1523 	if (ret)
1524 		goto out_unlock;
1525 
1526 	/*
1527 	 * If pos_out > EOF, we may have dirtied blocks between EOF and
1528 	 * pos_out. In that case, we need to extend the flush and unmap to cover
1529 	 * from EOF to the end of the copy length.
1530 	 */
1531 	if (pos_out > XFS_ISIZE(dest)) {
1532 		loff_t	flen = *len + (pos_out - XFS_ISIZE(dest));
1533 		ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1534 	} else {
1535 		ret = xfs_flush_unmap_range(dest, pos_out, *len);
1536 	}
1537 	if (ret)
1538 		goto out_unlock;
1539 
1540 	return 0;
1541 out_unlock:
1542 	xfs_iunlock2_io_mmap(src, dest);
1543 	return ret;
1544 }
1545 
1546 /* Does this inode need the reflink flag? */
1547 int
1548 xfs_reflink_inode_has_shared_extents(
1549 	struct xfs_trans		*tp,
1550 	struct xfs_inode		*ip,
1551 	bool				*has_shared)
1552 {
1553 	struct xfs_bmbt_irec		got;
1554 	struct xfs_mount		*mp = ip->i_mount;
1555 	struct xfs_ifork		*ifp;
1556 	struct xfs_iext_cursor		icur;
1557 	bool				found;
1558 	int				error;
1559 
1560 	ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1561 	error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1562 	if (error)
1563 		return error;
1564 
1565 	*has_shared = false;
1566 	found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1567 	while (found) {
1568 		struct xfs_perag	*pag;
1569 		xfs_agblock_t		agbno;
1570 		xfs_extlen_t		aglen;
1571 		xfs_agblock_t		rbno;
1572 		xfs_extlen_t		rlen;
1573 
1574 		if (isnullstartblock(got.br_startblock) ||
1575 		    got.br_state != XFS_EXT_NORM)
1576 			goto next;
1577 
1578 		pag = xfs_perag_get(mp, XFS_FSB_TO_AGNO(mp, got.br_startblock));
1579 		agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1580 		aglen = got.br_blockcount;
1581 		error = xfs_reflink_find_shared(pag, tp, agbno, aglen,
1582 				&rbno, &rlen, false);
1583 		xfs_perag_put(pag);
1584 		if (error)
1585 			return error;
1586 
1587 		/* Is there still a shared block here? */
1588 		if (rbno != NULLAGBLOCK) {
1589 			*has_shared = true;
1590 			return 0;
1591 		}
1592 next:
1593 		found = xfs_iext_next_extent(ifp, &icur, &got);
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Clear the inode reflink flag if there are no shared extents.
1601  *
1602  * The caller is responsible for joining the inode to the transaction passed in.
1603  * The inode will be joined to the transaction that is returned to the caller.
1604  */
1605 int
1606 xfs_reflink_clear_inode_flag(
1607 	struct xfs_inode	*ip,
1608 	struct xfs_trans	**tpp)
1609 {
1610 	bool			needs_flag;
1611 	int			error = 0;
1612 
1613 	ASSERT(xfs_is_reflink_inode(ip));
1614 
1615 	error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1616 	if (error || needs_flag)
1617 		return error;
1618 
1619 	/*
1620 	 * We didn't find any shared blocks so turn off the reflink flag.
1621 	 * First, get rid of any leftover CoW mappings.
1622 	 */
1623 	error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, XFS_MAX_FILEOFF,
1624 			true);
1625 	if (error)
1626 		return error;
1627 
1628 	/* Clear the inode flag. */
1629 	trace_xfs_reflink_unset_inode_flag(ip);
1630 	ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1631 	xfs_inode_clear_cowblocks_tag(ip);
1632 	xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1633 
1634 	return error;
1635 }
1636 
1637 /*
1638  * Clear the inode reflink flag if there are no shared extents and the size
1639  * hasn't changed.
1640  */
1641 STATIC int
1642 xfs_reflink_try_clear_inode_flag(
1643 	struct xfs_inode	*ip)
1644 {
1645 	struct xfs_mount	*mp = ip->i_mount;
1646 	struct xfs_trans	*tp;
1647 	int			error = 0;
1648 
1649 	/* Start a rolling transaction to remove the mappings */
1650 	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1651 	if (error)
1652 		return error;
1653 
1654 	xfs_ilock(ip, XFS_ILOCK_EXCL);
1655 	xfs_trans_ijoin(tp, ip, 0);
1656 
1657 	error = xfs_reflink_clear_inode_flag(ip, &tp);
1658 	if (error)
1659 		goto cancel;
1660 
1661 	error = xfs_trans_commit(tp);
1662 	if (error)
1663 		goto out;
1664 
1665 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1666 	return 0;
1667 cancel:
1668 	xfs_trans_cancel(tp);
1669 out:
1670 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1671 	return error;
1672 }
1673 
1674 /*
1675  * Pre-COW all shared blocks within a given byte range of a file and turn off
1676  * the reflink flag if we unshare all of the file's blocks.
1677  */
1678 int
1679 xfs_reflink_unshare(
1680 	struct xfs_inode	*ip,
1681 	xfs_off_t		offset,
1682 	xfs_off_t		len)
1683 {
1684 	struct inode		*inode = VFS_I(ip);
1685 	int			error;
1686 
1687 	if (!xfs_is_reflink_inode(ip))
1688 		return 0;
1689 
1690 	trace_xfs_reflink_unshare(ip, offset, len);
1691 
1692 	inode_dio_wait(inode);
1693 
1694 	error = iomap_file_unshare(inode, offset, len,
1695 			&xfs_buffered_write_iomap_ops);
1696 	if (error)
1697 		goto out;
1698 
1699 	error = filemap_write_and_wait_range(inode->i_mapping, offset,
1700 			offset + len - 1);
1701 	if (error)
1702 		goto out;
1703 
1704 	/* Turn off the reflink flag if possible. */
1705 	error = xfs_reflink_try_clear_inode_flag(ip);
1706 	if (error)
1707 		goto out;
1708 	return 0;
1709 
1710 out:
1711 	trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1712 	return error;
1713 }
1714