xref: /openbmc/linux/fs/xfs/xfs_refcount_item.c (revision ac191bcb)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_ag.h"
24 
25 struct kmem_cache	*xfs_cui_cache;
26 struct kmem_cache	*xfs_cud_cache;
27 
28 static const struct xfs_item_ops xfs_cui_item_ops;
29 
30 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
31 {
32 	return container_of(lip, struct xfs_cui_log_item, cui_item);
33 }
34 
35 STATIC void
36 xfs_cui_item_free(
37 	struct xfs_cui_log_item	*cuip)
38 {
39 	kmem_free(cuip->cui_item.li_lv_shadow);
40 	if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
41 		kmem_free(cuip);
42 	else
43 		kmem_cache_free(xfs_cui_cache, cuip);
44 }
45 
46 /*
47  * Freeing the CUI requires that we remove it from the AIL if it has already
48  * been placed there. However, the CUI may not yet have been placed in the AIL
49  * when called by xfs_cui_release() from CUD processing due to the ordering of
50  * committed vs unpin operations in bulk insert operations. Hence the reference
51  * count to ensure only the last caller frees the CUI.
52  */
53 STATIC void
54 xfs_cui_release(
55 	struct xfs_cui_log_item	*cuip)
56 {
57 	ASSERT(atomic_read(&cuip->cui_refcount) > 0);
58 	if (!atomic_dec_and_test(&cuip->cui_refcount))
59 		return;
60 
61 	xfs_trans_ail_delete(&cuip->cui_item, 0);
62 	xfs_cui_item_free(cuip);
63 }
64 
65 
66 STATIC void
67 xfs_cui_item_size(
68 	struct xfs_log_item	*lip,
69 	int			*nvecs,
70 	int			*nbytes)
71 {
72 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
73 
74 	*nvecs += 1;
75 	*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
76 }
77 
78 /*
79  * This is called to fill in the vector of log iovecs for the
80  * given cui log item. We use only 1 iovec, and we point that
81  * at the cui_log_format structure embedded in the cui item.
82  * It is at this point that we assert that all of the extent
83  * slots in the cui item have been filled.
84  */
85 STATIC void
86 xfs_cui_item_format(
87 	struct xfs_log_item	*lip,
88 	struct xfs_log_vec	*lv)
89 {
90 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
91 	struct xfs_log_iovec	*vecp = NULL;
92 
93 	ASSERT(atomic_read(&cuip->cui_next_extent) ==
94 			cuip->cui_format.cui_nextents);
95 
96 	cuip->cui_format.cui_type = XFS_LI_CUI;
97 	cuip->cui_format.cui_size = 1;
98 
99 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
100 			xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
101 }
102 
103 /*
104  * The unpin operation is the last place an CUI is manipulated in the log. It is
105  * either inserted in the AIL or aborted in the event of a log I/O error. In
106  * either case, the CUI transaction has been successfully committed to make it
107  * this far. Therefore, we expect whoever committed the CUI to either construct
108  * and commit the CUD or drop the CUD's reference in the event of error. Simply
109  * drop the log's CUI reference now that the log is done with it.
110  */
111 STATIC void
112 xfs_cui_item_unpin(
113 	struct xfs_log_item	*lip,
114 	int			remove)
115 {
116 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
117 
118 	xfs_cui_release(cuip);
119 }
120 
121 /*
122  * The CUI has been either committed or aborted if the transaction has been
123  * cancelled. If the transaction was cancelled, an CUD isn't going to be
124  * constructed and thus we free the CUI here directly.
125  */
126 STATIC void
127 xfs_cui_item_release(
128 	struct xfs_log_item	*lip)
129 {
130 	xfs_cui_release(CUI_ITEM(lip));
131 }
132 
133 /*
134  * Allocate and initialize an cui item with the given number of extents.
135  */
136 STATIC struct xfs_cui_log_item *
137 xfs_cui_init(
138 	struct xfs_mount		*mp,
139 	uint				nextents)
140 
141 {
142 	struct xfs_cui_log_item		*cuip;
143 
144 	ASSERT(nextents > 0);
145 	if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
146 		cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
147 				0);
148 	else
149 		cuip = kmem_cache_zalloc(xfs_cui_cache,
150 					 GFP_KERNEL | __GFP_NOFAIL);
151 
152 	xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
153 	cuip->cui_format.cui_nextents = nextents;
154 	cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
155 	atomic_set(&cuip->cui_next_extent, 0);
156 	atomic_set(&cuip->cui_refcount, 2);
157 
158 	return cuip;
159 }
160 
161 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
162 {
163 	return container_of(lip, struct xfs_cud_log_item, cud_item);
164 }
165 
166 STATIC void
167 xfs_cud_item_size(
168 	struct xfs_log_item	*lip,
169 	int			*nvecs,
170 	int			*nbytes)
171 {
172 	*nvecs += 1;
173 	*nbytes += sizeof(struct xfs_cud_log_format);
174 }
175 
176 /*
177  * This is called to fill in the vector of log iovecs for the
178  * given cud log item. We use only 1 iovec, and we point that
179  * at the cud_log_format structure embedded in the cud item.
180  * It is at this point that we assert that all of the extent
181  * slots in the cud item have been filled.
182  */
183 STATIC void
184 xfs_cud_item_format(
185 	struct xfs_log_item	*lip,
186 	struct xfs_log_vec	*lv)
187 {
188 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
189 	struct xfs_log_iovec	*vecp = NULL;
190 
191 	cudp->cud_format.cud_type = XFS_LI_CUD;
192 	cudp->cud_format.cud_size = 1;
193 
194 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
195 			sizeof(struct xfs_cud_log_format));
196 }
197 
198 /*
199  * The CUD is either committed or aborted if the transaction is cancelled. If
200  * the transaction is cancelled, drop our reference to the CUI and free the
201  * CUD.
202  */
203 STATIC void
204 xfs_cud_item_release(
205 	struct xfs_log_item	*lip)
206 {
207 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
208 
209 	xfs_cui_release(cudp->cud_cuip);
210 	kmem_free(cudp->cud_item.li_lv_shadow);
211 	kmem_cache_free(xfs_cud_cache, cudp);
212 }
213 
214 static struct xfs_log_item *
215 xfs_cud_item_intent(
216 	struct xfs_log_item	*lip)
217 {
218 	return &CUD_ITEM(lip)->cud_cuip->cui_item;
219 }
220 
221 static const struct xfs_item_ops xfs_cud_item_ops = {
222 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
223 			  XFS_ITEM_INTENT_DONE,
224 	.iop_size	= xfs_cud_item_size,
225 	.iop_format	= xfs_cud_item_format,
226 	.iop_release	= xfs_cud_item_release,
227 	.iop_intent	= xfs_cud_item_intent,
228 };
229 
230 static struct xfs_cud_log_item *
231 xfs_trans_get_cud(
232 	struct xfs_trans		*tp,
233 	struct xfs_cui_log_item		*cuip)
234 {
235 	struct xfs_cud_log_item		*cudp;
236 
237 	cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL);
238 	xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
239 			  &xfs_cud_item_ops);
240 	cudp->cud_cuip = cuip;
241 	cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
242 
243 	xfs_trans_add_item(tp, &cudp->cud_item);
244 	return cudp;
245 }
246 
247 /*
248  * Finish an refcount update and log it to the CUD. Note that the
249  * transaction is marked dirty regardless of whether the refcount
250  * update succeeds or fails to support the CUI/CUD lifecycle rules.
251  */
252 static int
253 xfs_trans_log_finish_refcount_update(
254 	struct xfs_trans		*tp,
255 	struct xfs_cud_log_item		*cudp,
256 	struct xfs_refcount_intent	*ri,
257 	struct xfs_btree_cur		**pcur)
258 {
259 	int				error;
260 
261 	error = xfs_refcount_finish_one(tp, ri, pcur);
262 
263 	/*
264 	 * Mark the transaction dirty, even on error. This ensures the
265 	 * transaction is aborted, which:
266 	 *
267 	 * 1.) releases the CUI and frees the CUD
268 	 * 2.) shuts down the filesystem
269 	 */
270 	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
271 	set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
272 
273 	return error;
274 }
275 
276 /* Sort refcount intents by AG. */
277 static int
278 xfs_refcount_update_diff_items(
279 	void				*priv,
280 	const struct list_head		*a,
281 	const struct list_head		*b)
282 {
283 	struct xfs_refcount_intent	*ra;
284 	struct xfs_refcount_intent	*rb;
285 
286 	ra = container_of(a, struct xfs_refcount_intent, ri_list);
287 	rb = container_of(b, struct xfs_refcount_intent, ri_list);
288 
289 	return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
290 }
291 
292 /* Set the phys extent flags for this reverse mapping. */
293 static void
294 xfs_trans_set_refcount_flags(
295 	struct xfs_phys_extent		*pmap,
296 	enum xfs_refcount_intent_type	type)
297 {
298 	pmap->pe_flags = 0;
299 	switch (type) {
300 	case XFS_REFCOUNT_INCREASE:
301 	case XFS_REFCOUNT_DECREASE:
302 	case XFS_REFCOUNT_ALLOC_COW:
303 	case XFS_REFCOUNT_FREE_COW:
304 		pmap->pe_flags |= type;
305 		break;
306 	default:
307 		ASSERT(0);
308 	}
309 }
310 
311 /* Log refcount updates in the intent item. */
312 STATIC void
313 xfs_refcount_update_log_item(
314 	struct xfs_trans		*tp,
315 	struct xfs_cui_log_item		*cuip,
316 	struct xfs_refcount_intent	*ri)
317 {
318 	uint				next_extent;
319 	struct xfs_phys_extent		*pmap;
320 
321 	tp->t_flags |= XFS_TRANS_DIRTY;
322 	set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
323 
324 	/*
325 	 * atomic_inc_return gives us the value after the increment;
326 	 * we want to use it as an array index so we need to subtract 1 from
327 	 * it.
328 	 */
329 	next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
330 	ASSERT(next_extent < cuip->cui_format.cui_nextents);
331 	pmap = &cuip->cui_format.cui_extents[next_extent];
332 	pmap->pe_startblock = ri->ri_startblock;
333 	pmap->pe_len = ri->ri_blockcount;
334 	xfs_trans_set_refcount_flags(pmap, ri->ri_type);
335 }
336 
337 static struct xfs_log_item *
338 xfs_refcount_update_create_intent(
339 	struct xfs_trans		*tp,
340 	struct list_head		*items,
341 	unsigned int			count,
342 	bool				sort)
343 {
344 	struct xfs_mount		*mp = tp->t_mountp;
345 	struct xfs_cui_log_item		*cuip = xfs_cui_init(mp, count);
346 	struct xfs_refcount_intent	*ri;
347 
348 	ASSERT(count > 0);
349 
350 	xfs_trans_add_item(tp, &cuip->cui_item);
351 	if (sort)
352 		list_sort(mp, items, xfs_refcount_update_diff_items);
353 	list_for_each_entry(ri, items, ri_list)
354 		xfs_refcount_update_log_item(tp, cuip, ri);
355 	return &cuip->cui_item;
356 }
357 
358 /* Get an CUD so we can process all the deferred refcount updates. */
359 static struct xfs_log_item *
360 xfs_refcount_update_create_done(
361 	struct xfs_trans		*tp,
362 	struct xfs_log_item		*intent,
363 	unsigned int			count)
364 {
365 	return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item;
366 }
367 
368 /* Take a passive ref to the AG containing the space we're refcounting. */
369 void
370 xfs_refcount_update_get_group(
371 	struct xfs_mount		*mp,
372 	struct xfs_refcount_intent	*ri)
373 {
374 	xfs_agnumber_t			agno;
375 
376 	agno = XFS_FSB_TO_AGNO(mp, ri->ri_startblock);
377 	ri->ri_pag = xfs_perag_intent_get(mp, agno);
378 }
379 
380 /* Release a passive AG ref after finishing refcounting work. */
381 static inline void
382 xfs_refcount_update_put_group(
383 	struct xfs_refcount_intent	*ri)
384 {
385 	xfs_perag_intent_put(ri->ri_pag);
386 }
387 
388 /* Process a deferred refcount update. */
389 STATIC int
390 xfs_refcount_update_finish_item(
391 	struct xfs_trans		*tp,
392 	struct xfs_log_item		*done,
393 	struct list_head		*item,
394 	struct xfs_btree_cur		**state)
395 {
396 	struct xfs_refcount_intent	*ri;
397 	int				error;
398 
399 	ri = container_of(item, struct xfs_refcount_intent, ri_list);
400 	error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), ri,
401 			state);
402 
403 	/* Did we run out of reservation?  Requeue what we didn't finish. */
404 	if (!error && ri->ri_blockcount > 0) {
405 		ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE ||
406 		       ri->ri_type == XFS_REFCOUNT_DECREASE);
407 		return -EAGAIN;
408 	}
409 
410 	xfs_refcount_update_put_group(ri);
411 	kmem_cache_free(xfs_refcount_intent_cache, ri);
412 	return error;
413 }
414 
415 /* Abort all pending CUIs. */
416 STATIC void
417 xfs_refcount_update_abort_intent(
418 	struct xfs_log_item		*intent)
419 {
420 	xfs_cui_release(CUI_ITEM(intent));
421 }
422 
423 /* Cancel a deferred refcount update. */
424 STATIC void
425 xfs_refcount_update_cancel_item(
426 	struct list_head		*item)
427 {
428 	struct xfs_refcount_intent	*ri;
429 
430 	ri = container_of(item, struct xfs_refcount_intent, ri_list);
431 
432 	xfs_refcount_update_put_group(ri);
433 	kmem_cache_free(xfs_refcount_intent_cache, ri);
434 }
435 
436 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
437 	.max_items	= XFS_CUI_MAX_FAST_EXTENTS,
438 	.create_intent	= xfs_refcount_update_create_intent,
439 	.abort_intent	= xfs_refcount_update_abort_intent,
440 	.create_done	= xfs_refcount_update_create_done,
441 	.finish_item	= xfs_refcount_update_finish_item,
442 	.finish_cleanup = xfs_refcount_finish_one_cleanup,
443 	.cancel_item	= xfs_refcount_update_cancel_item,
444 };
445 
446 /* Is this recovered CUI ok? */
447 static inline bool
448 xfs_cui_validate_phys(
449 	struct xfs_mount		*mp,
450 	struct xfs_phys_extent		*pmap)
451 {
452 	if (!xfs_has_reflink(mp))
453 		return false;
454 
455 	if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)
456 		return false;
457 
458 	switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
459 	case XFS_REFCOUNT_INCREASE:
460 	case XFS_REFCOUNT_DECREASE:
461 	case XFS_REFCOUNT_ALLOC_COW:
462 	case XFS_REFCOUNT_FREE_COW:
463 		break;
464 	default:
465 		return false;
466 	}
467 
468 	return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len);
469 }
470 
471 /*
472  * Process a refcount update intent item that was recovered from the log.
473  * We need to update the refcountbt.
474  */
475 STATIC int
476 xfs_cui_item_recover(
477 	struct xfs_defer_pending	*dfp,
478 	struct list_head		*capture_list)
479 {
480 	struct xfs_trans_res		resv;
481 	struct xfs_log_item		*lip = dfp->dfp_intent;
482 	struct xfs_cui_log_item		*cuip = CUI_ITEM(lip);
483 	struct xfs_cud_log_item		*cudp;
484 	struct xfs_trans		*tp;
485 	struct xfs_btree_cur		*rcur = NULL;
486 	struct xfs_mount		*mp = lip->li_log->l_mp;
487 	unsigned int			refc_type;
488 	bool				requeue_only = false;
489 	int				i;
490 	int				error = 0;
491 
492 	/*
493 	 * First check the validity of the extents described by the
494 	 * CUI.  If any are bad, then assume that all are bad and
495 	 * just toss the CUI.
496 	 */
497 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
498 		if (!xfs_cui_validate_phys(mp,
499 					&cuip->cui_format.cui_extents[i])) {
500 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
501 					&cuip->cui_format,
502 					sizeof(cuip->cui_format));
503 			return -EFSCORRUPTED;
504 		}
505 	}
506 
507 	/*
508 	 * Under normal operation, refcount updates are deferred, so we
509 	 * wouldn't be adding them directly to a transaction.  All
510 	 * refcount updates manage reservation usage internally and
511 	 * dynamically by deferring work that won't fit in the
512 	 * transaction.  Normally, any work that needs to be deferred
513 	 * gets attached to the same defer_ops that scheduled the
514 	 * refcount update.  However, we're in log recovery here, so we
515 	 * use the passed in defer_ops and to finish up any work that
516 	 * doesn't fit.  We need to reserve enough blocks to handle a
517 	 * full btree split on either end of the refcount range.
518 	 */
519 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
520 	error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0,
521 			XFS_TRANS_RESERVE, &tp);
522 	if (error)
523 		return error;
524 
525 	cudp = xfs_trans_get_cud(tp, cuip);
526 	xlog_recover_transfer_intent(tp, dfp);
527 
528 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
529 		struct xfs_refcount_intent	fake = { };
530 		struct xfs_phys_extent		*pmap;
531 
532 		pmap = &cuip->cui_format.cui_extents[i];
533 		refc_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
534 		switch (refc_type) {
535 		case XFS_REFCOUNT_INCREASE:
536 		case XFS_REFCOUNT_DECREASE:
537 		case XFS_REFCOUNT_ALLOC_COW:
538 		case XFS_REFCOUNT_FREE_COW:
539 			fake.ri_type = refc_type;
540 			break;
541 		default:
542 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
543 					&cuip->cui_format,
544 					sizeof(cuip->cui_format));
545 			error = -EFSCORRUPTED;
546 			goto abort_error;
547 		}
548 
549 		fake.ri_startblock = pmap->pe_startblock;
550 		fake.ri_blockcount = pmap->pe_len;
551 
552 		if (!requeue_only) {
553 			xfs_refcount_update_get_group(mp, &fake);
554 			error = xfs_trans_log_finish_refcount_update(tp, cudp,
555 					&fake, &rcur);
556 			xfs_refcount_update_put_group(&fake);
557 		}
558 		if (error == -EFSCORRUPTED)
559 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
560 					&cuip->cui_format,
561 					sizeof(cuip->cui_format));
562 		if (error)
563 			goto abort_error;
564 
565 		/* Requeue what we didn't finish. */
566 		if (fake.ri_blockcount > 0) {
567 			struct xfs_bmbt_irec	irec = {
568 				.br_startblock	= fake.ri_startblock,
569 				.br_blockcount	= fake.ri_blockcount,
570 			};
571 
572 			switch (fake.ri_type) {
573 			case XFS_REFCOUNT_INCREASE:
574 				xfs_refcount_increase_extent(tp, &irec);
575 				break;
576 			case XFS_REFCOUNT_DECREASE:
577 				xfs_refcount_decrease_extent(tp, &irec);
578 				break;
579 			case XFS_REFCOUNT_ALLOC_COW:
580 				xfs_refcount_alloc_cow_extent(tp,
581 						irec.br_startblock,
582 						irec.br_blockcount);
583 				break;
584 			case XFS_REFCOUNT_FREE_COW:
585 				xfs_refcount_free_cow_extent(tp,
586 						irec.br_startblock,
587 						irec.br_blockcount);
588 				break;
589 			default:
590 				ASSERT(0);
591 			}
592 			requeue_only = true;
593 		}
594 	}
595 
596 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
597 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
598 
599 abort_error:
600 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
601 	xfs_trans_cancel(tp);
602 	return error;
603 }
604 
605 STATIC bool
606 xfs_cui_item_match(
607 	struct xfs_log_item	*lip,
608 	uint64_t		intent_id)
609 {
610 	return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
611 }
612 
613 /* Relog an intent item to push the log tail forward. */
614 static struct xfs_log_item *
615 xfs_cui_item_relog(
616 	struct xfs_log_item		*intent,
617 	struct xfs_trans		*tp)
618 {
619 	struct xfs_cud_log_item		*cudp;
620 	struct xfs_cui_log_item		*cuip;
621 	struct xfs_phys_extent		*pmap;
622 	unsigned int			count;
623 
624 	count = CUI_ITEM(intent)->cui_format.cui_nextents;
625 	pmap = CUI_ITEM(intent)->cui_format.cui_extents;
626 
627 	tp->t_flags |= XFS_TRANS_DIRTY;
628 	cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent));
629 	set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
630 
631 	cuip = xfs_cui_init(tp->t_mountp, count);
632 	memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap));
633 	atomic_set(&cuip->cui_next_extent, count);
634 	xfs_trans_add_item(tp, &cuip->cui_item);
635 	set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
636 	return &cuip->cui_item;
637 }
638 
639 static const struct xfs_item_ops xfs_cui_item_ops = {
640 	.flags		= XFS_ITEM_INTENT,
641 	.iop_size	= xfs_cui_item_size,
642 	.iop_format	= xfs_cui_item_format,
643 	.iop_unpin	= xfs_cui_item_unpin,
644 	.iop_release	= xfs_cui_item_release,
645 	.iop_recover	= xfs_cui_item_recover,
646 	.iop_match	= xfs_cui_item_match,
647 	.iop_relog	= xfs_cui_item_relog,
648 };
649 
650 static inline void
651 xfs_cui_copy_format(
652 	struct xfs_cui_log_format	*dst,
653 	const struct xfs_cui_log_format	*src)
654 {
655 	unsigned int			i;
656 
657 	memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents));
658 
659 	for (i = 0; i < src->cui_nextents; i++)
660 		memcpy(&dst->cui_extents[i], &src->cui_extents[i],
661 				sizeof(struct xfs_phys_extent));
662 }
663 
664 /*
665  * This routine is called to create an in-core extent refcount update
666  * item from the cui format structure which was logged on disk.
667  * It allocates an in-core cui, copies the extents from the format
668  * structure into it, and adds the cui to the AIL with the given
669  * LSN.
670  */
671 STATIC int
672 xlog_recover_cui_commit_pass2(
673 	struct xlog			*log,
674 	struct list_head		*buffer_list,
675 	struct xlog_recover_item	*item,
676 	xfs_lsn_t			lsn)
677 {
678 	struct xfs_mount		*mp = log->l_mp;
679 	struct xfs_cui_log_item		*cuip;
680 	struct xfs_cui_log_format	*cui_formatp;
681 	size_t				len;
682 
683 	cui_formatp = item->ri_buf[0].i_addr;
684 
685 	if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) {
686 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
687 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
688 		return -EFSCORRUPTED;
689 	}
690 
691 	len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents);
692 	if (item->ri_buf[0].i_len != len) {
693 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
694 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
695 		return -EFSCORRUPTED;
696 	}
697 
698 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
699 	xfs_cui_copy_format(&cuip->cui_format, cui_formatp);
700 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
701 
702 	xlog_recover_intent_item(log, &cuip->cui_item, lsn,
703 			XFS_DEFER_OPS_TYPE_REFCOUNT);
704 	return 0;
705 }
706 
707 const struct xlog_recover_item_ops xlog_cui_item_ops = {
708 	.item_type		= XFS_LI_CUI,
709 	.commit_pass2		= xlog_recover_cui_commit_pass2,
710 };
711 
712 /*
713  * This routine is called when an CUD format structure is found in a committed
714  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
715  * was still in the log. To do this it searches the AIL for the CUI with an id
716  * equal to that in the CUD format structure. If we find it we drop the CUD
717  * reference, which removes the CUI from the AIL and frees it.
718  */
719 STATIC int
720 xlog_recover_cud_commit_pass2(
721 	struct xlog			*log,
722 	struct list_head		*buffer_list,
723 	struct xlog_recover_item	*item,
724 	xfs_lsn_t			lsn)
725 {
726 	struct xfs_cud_log_format	*cud_formatp;
727 
728 	cud_formatp = item->ri_buf[0].i_addr;
729 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
730 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
731 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
732 		return -EFSCORRUPTED;
733 	}
734 
735 	xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
736 	return 0;
737 }
738 
739 const struct xlog_recover_item_ops xlog_cud_item_ops = {
740 	.item_type		= XFS_LI_CUD,
741 	.commit_pass2		= xlog_recover_cud_commit_pass2,
742 };
743