1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_refcount_item.h" 18 #include "xfs_log.h" 19 #include "xfs_refcount.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 #include "xfs_ag.h" 24 25 struct kmem_cache *xfs_cui_cache; 26 struct kmem_cache *xfs_cud_cache; 27 28 static const struct xfs_item_ops xfs_cui_item_ops; 29 30 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) 31 { 32 return container_of(lip, struct xfs_cui_log_item, cui_item); 33 } 34 35 STATIC void 36 xfs_cui_item_free( 37 struct xfs_cui_log_item *cuip) 38 { 39 kmem_free(cuip->cui_item.li_lv_shadow); 40 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) 41 kmem_free(cuip); 42 else 43 kmem_cache_free(xfs_cui_cache, cuip); 44 } 45 46 /* 47 * Freeing the CUI requires that we remove it from the AIL if it has already 48 * been placed there. However, the CUI may not yet have been placed in the AIL 49 * when called by xfs_cui_release() from CUD processing due to the ordering of 50 * committed vs unpin operations in bulk insert operations. Hence the reference 51 * count to ensure only the last caller frees the CUI. 52 */ 53 STATIC void 54 xfs_cui_release( 55 struct xfs_cui_log_item *cuip) 56 { 57 ASSERT(atomic_read(&cuip->cui_refcount) > 0); 58 if (!atomic_dec_and_test(&cuip->cui_refcount)) 59 return; 60 61 xfs_trans_ail_delete(&cuip->cui_item, 0); 62 xfs_cui_item_free(cuip); 63 } 64 65 66 STATIC void 67 xfs_cui_item_size( 68 struct xfs_log_item *lip, 69 int *nvecs, 70 int *nbytes) 71 { 72 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 73 74 *nvecs += 1; 75 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); 76 } 77 78 /* 79 * This is called to fill in the vector of log iovecs for the 80 * given cui log item. We use only 1 iovec, and we point that 81 * at the cui_log_format structure embedded in the cui item. 82 * It is at this point that we assert that all of the extent 83 * slots in the cui item have been filled. 84 */ 85 STATIC void 86 xfs_cui_item_format( 87 struct xfs_log_item *lip, 88 struct xfs_log_vec *lv) 89 { 90 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 91 struct xfs_log_iovec *vecp = NULL; 92 93 ASSERT(atomic_read(&cuip->cui_next_extent) == 94 cuip->cui_format.cui_nextents); 95 96 cuip->cui_format.cui_type = XFS_LI_CUI; 97 cuip->cui_format.cui_size = 1; 98 99 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, 100 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); 101 } 102 103 /* 104 * The unpin operation is the last place an CUI is manipulated in the log. It is 105 * either inserted in the AIL or aborted in the event of a log I/O error. In 106 * either case, the CUI transaction has been successfully committed to make it 107 * this far. Therefore, we expect whoever committed the CUI to either construct 108 * and commit the CUD or drop the CUD's reference in the event of error. Simply 109 * drop the log's CUI reference now that the log is done with it. 110 */ 111 STATIC void 112 xfs_cui_item_unpin( 113 struct xfs_log_item *lip, 114 int remove) 115 { 116 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 117 118 xfs_cui_release(cuip); 119 } 120 121 /* 122 * The CUI has been either committed or aborted if the transaction has been 123 * cancelled. If the transaction was cancelled, an CUD isn't going to be 124 * constructed and thus we free the CUI here directly. 125 */ 126 STATIC void 127 xfs_cui_item_release( 128 struct xfs_log_item *lip) 129 { 130 xfs_cui_release(CUI_ITEM(lip)); 131 } 132 133 /* 134 * Allocate and initialize an cui item with the given number of extents. 135 */ 136 STATIC struct xfs_cui_log_item * 137 xfs_cui_init( 138 struct xfs_mount *mp, 139 uint nextents) 140 141 { 142 struct xfs_cui_log_item *cuip; 143 144 ASSERT(nextents > 0); 145 if (nextents > XFS_CUI_MAX_FAST_EXTENTS) 146 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 147 0); 148 else 149 cuip = kmem_cache_zalloc(xfs_cui_cache, 150 GFP_KERNEL | __GFP_NOFAIL); 151 152 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); 153 cuip->cui_format.cui_nextents = nextents; 154 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; 155 atomic_set(&cuip->cui_next_extent, 0); 156 atomic_set(&cuip->cui_refcount, 2); 157 158 return cuip; 159 } 160 161 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) 162 { 163 return container_of(lip, struct xfs_cud_log_item, cud_item); 164 } 165 166 STATIC void 167 xfs_cud_item_size( 168 struct xfs_log_item *lip, 169 int *nvecs, 170 int *nbytes) 171 { 172 *nvecs += 1; 173 *nbytes += sizeof(struct xfs_cud_log_format); 174 } 175 176 /* 177 * This is called to fill in the vector of log iovecs for the 178 * given cud log item. We use only 1 iovec, and we point that 179 * at the cud_log_format structure embedded in the cud item. 180 * It is at this point that we assert that all of the extent 181 * slots in the cud item have been filled. 182 */ 183 STATIC void 184 xfs_cud_item_format( 185 struct xfs_log_item *lip, 186 struct xfs_log_vec *lv) 187 { 188 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 189 struct xfs_log_iovec *vecp = NULL; 190 191 cudp->cud_format.cud_type = XFS_LI_CUD; 192 cudp->cud_format.cud_size = 1; 193 194 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, 195 sizeof(struct xfs_cud_log_format)); 196 } 197 198 /* 199 * The CUD is either committed or aborted if the transaction is cancelled. If 200 * the transaction is cancelled, drop our reference to the CUI and free the 201 * CUD. 202 */ 203 STATIC void 204 xfs_cud_item_release( 205 struct xfs_log_item *lip) 206 { 207 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 208 209 xfs_cui_release(cudp->cud_cuip); 210 kmem_free(cudp->cud_item.li_lv_shadow); 211 kmem_cache_free(xfs_cud_cache, cudp); 212 } 213 214 static struct xfs_log_item * 215 xfs_cud_item_intent( 216 struct xfs_log_item *lip) 217 { 218 return &CUD_ITEM(lip)->cud_cuip->cui_item; 219 } 220 221 static const struct xfs_item_ops xfs_cud_item_ops = { 222 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 223 XFS_ITEM_INTENT_DONE, 224 .iop_size = xfs_cud_item_size, 225 .iop_format = xfs_cud_item_format, 226 .iop_release = xfs_cud_item_release, 227 .iop_intent = xfs_cud_item_intent, 228 }; 229 230 static struct xfs_cud_log_item * 231 xfs_trans_get_cud( 232 struct xfs_trans *tp, 233 struct xfs_cui_log_item *cuip) 234 { 235 struct xfs_cud_log_item *cudp; 236 237 cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL); 238 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD, 239 &xfs_cud_item_ops); 240 cudp->cud_cuip = cuip; 241 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; 242 243 xfs_trans_add_item(tp, &cudp->cud_item); 244 return cudp; 245 } 246 247 /* 248 * Finish an refcount update and log it to the CUD. Note that the 249 * transaction is marked dirty regardless of whether the refcount 250 * update succeeds or fails to support the CUI/CUD lifecycle rules. 251 */ 252 static int 253 xfs_trans_log_finish_refcount_update( 254 struct xfs_trans *tp, 255 struct xfs_cud_log_item *cudp, 256 struct xfs_refcount_intent *ri, 257 struct xfs_btree_cur **pcur) 258 { 259 int error; 260 261 error = xfs_refcount_finish_one(tp, ri, pcur); 262 263 /* 264 * Mark the transaction dirty, even on error. This ensures the 265 * transaction is aborted, which: 266 * 267 * 1.) releases the CUI and frees the CUD 268 * 2.) shuts down the filesystem 269 */ 270 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE; 271 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); 272 273 return error; 274 } 275 276 /* Sort refcount intents by AG. */ 277 static int 278 xfs_refcount_update_diff_items( 279 void *priv, 280 const struct list_head *a, 281 const struct list_head *b) 282 { 283 struct xfs_refcount_intent *ra; 284 struct xfs_refcount_intent *rb; 285 286 ra = container_of(a, struct xfs_refcount_intent, ri_list); 287 rb = container_of(b, struct xfs_refcount_intent, ri_list); 288 289 return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno; 290 } 291 292 /* Set the phys extent flags for this reverse mapping. */ 293 static void 294 xfs_trans_set_refcount_flags( 295 struct xfs_phys_extent *pmap, 296 enum xfs_refcount_intent_type type) 297 { 298 pmap->pe_flags = 0; 299 switch (type) { 300 case XFS_REFCOUNT_INCREASE: 301 case XFS_REFCOUNT_DECREASE: 302 case XFS_REFCOUNT_ALLOC_COW: 303 case XFS_REFCOUNT_FREE_COW: 304 pmap->pe_flags |= type; 305 break; 306 default: 307 ASSERT(0); 308 } 309 } 310 311 /* Log refcount updates in the intent item. */ 312 STATIC void 313 xfs_refcount_update_log_item( 314 struct xfs_trans *tp, 315 struct xfs_cui_log_item *cuip, 316 struct xfs_refcount_intent *ri) 317 { 318 uint next_extent; 319 struct xfs_phys_extent *pmap; 320 321 tp->t_flags |= XFS_TRANS_DIRTY; 322 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); 323 324 /* 325 * atomic_inc_return gives us the value after the increment; 326 * we want to use it as an array index so we need to subtract 1 from 327 * it. 328 */ 329 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; 330 ASSERT(next_extent < cuip->cui_format.cui_nextents); 331 pmap = &cuip->cui_format.cui_extents[next_extent]; 332 pmap->pe_startblock = ri->ri_startblock; 333 pmap->pe_len = ri->ri_blockcount; 334 xfs_trans_set_refcount_flags(pmap, ri->ri_type); 335 } 336 337 static struct xfs_log_item * 338 xfs_refcount_update_create_intent( 339 struct xfs_trans *tp, 340 struct list_head *items, 341 unsigned int count, 342 bool sort) 343 { 344 struct xfs_mount *mp = tp->t_mountp; 345 struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count); 346 struct xfs_refcount_intent *ri; 347 348 ASSERT(count > 0); 349 350 xfs_trans_add_item(tp, &cuip->cui_item); 351 if (sort) 352 list_sort(mp, items, xfs_refcount_update_diff_items); 353 list_for_each_entry(ri, items, ri_list) 354 xfs_refcount_update_log_item(tp, cuip, ri); 355 return &cuip->cui_item; 356 } 357 358 /* Get an CUD so we can process all the deferred refcount updates. */ 359 static struct xfs_log_item * 360 xfs_refcount_update_create_done( 361 struct xfs_trans *tp, 362 struct xfs_log_item *intent, 363 unsigned int count) 364 { 365 return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item; 366 } 367 368 /* Take a passive ref to the AG containing the space we're refcounting. */ 369 void 370 xfs_refcount_update_get_group( 371 struct xfs_mount *mp, 372 struct xfs_refcount_intent *ri) 373 { 374 xfs_agnumber_t agno; 375 376 agno = XFS_FSB_TO_AGNO(mp, ri->ri_startblock); 377 ri->ri_pag = xfs_perag_intent_get(mp, agno); 378 } 379 380 /* Release a passive AG ref after finishing refcounting work. */ 381 static inline void 382 xfs_refcount_update_put_group( 383 struct xfs_refcount_intent *ri) 384 { 385 xfs_perag_intent_put(ri->ri_pag); 386 } 387 388 /* Process a deferred refcount update. */ 389 STATIC int 390 xfs_refcount_update_finish_item( 391 struct xfs_trans *tp, 392 struct xfs_log_item *done, 393 struct list_head *item, 394 struct xfs_btree_cur **state) 395 { 396 struct xfs_refcount_intent *ri; 397 int error; 398 399 ri = container_of(item, struct xfs_refcount_intent, ri_list); 400 error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), ri, 401 state); 402 403 /* Did we run out of reservation? Requeue what we didn't finish. */ 404 if (!error && ri->ri_blockcount > 0) { 405 ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE || 406 ri->ri_type == XFS_REFCOUNT_DECREASE); 407 return -EAGAIN; 408 } 409 410 xfs_refcount_update_put_group(ri); 411 kmem_cache_free(xfs_refcount_intent_cache, ri); 412 return error; 413 } 414 415 /* Abort all pending CUIs. */ 416 STATIC void 417 xfs_refcount_update_abort_intent( 418 struct xfs_log_item *intent) 419 { 420 xfs_cui_release(CUI_ITEM(intent)); 421 } 422 423 /* Cancel a deferred refcount update. */ 424 STATIC void 425 xfs_refcount_update_cancel_item( 426 struct list_head *item) 427 { 428 struct xfs_refcount_intent *ri; 429 430 ri = container_of(item, struct xfs_refcount_intent, ri_list); 431 432 xfs_refcount_update_put_group(ri); 433 kmem_cache_free(xfs_refcount_intent_cache, ri); 434 } 435 436 const struct xfs_defer_op_type xfs_refcount_update_defer_type = { 437 .max_items = XFS_CUI_MAX_FAST_EXTENTS, 438 .create_intent = xfs_refcount_update_create_intent, 439 .abort_intent = xfs_refcount_update_abort_intent, 440 .create_done = xfs_refcount_update_create_done, 441 .finish_item = xfs_refcount_update_finish_item, 442 .finish_cleanup = xfs_refcount_finish_one_cleanup, 443 .cancel_item = xfs_refcount_update_cancel_item, 444 }; 445 446 /* Is this recovered CUI ok? */ 447 static inline bool 448 xfs_cui_validate_phys( 449 struct xfs_mount *mp, 450 struct xfs_phys_extent *pmap) 451 { 452 if (!xfs_has_reflink(mp)) 453 return false; 454 455 if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS) 456 return false; 457 458 switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { 459 case XFS_REFCOUNT_INCREASE: 460 case XFS_REFCOUNT_DECREASE: 461 case XFS_REFCOUNT_ALLOC_COW: 462 case XFS_REFCOUNT_FREE_COW: 463 break; 464 default: 465 return false; 466 } 467 468 return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len); 469 } 470 471 /* 472 * Process a refcount update intent item that was recovered from the log. 473 * We need to update the refcountbt. 474 */ 475 STATIC int 476 xfs_cui_item_recover( 477 struct xfs_log_item *lip, 478 struct list_head *capture_list) 479 { 480 struct xfs_trans_res resv; 481 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 482 struct xfs_cud_log_item *cudp; 483 struct xfs_trans *tp; 484 struct xfs_btree_cur *rcur = NULL; 485 struct xfs_mount *mp = lip->li_log->l_mp; 486 unsigned int refc_type; 487 bool requeue_only = false; 488 int i; 489 int error = 0; 490 491 /* 492 * First check the validity of the extents described by the 493 * CUI. If any are bad, then assume that all are bad and 494 * just toss the CUI. 495 */ 496 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 497 if (!xfs_cui_validate_phys(mp, 498 &cuip->cui_format.cui_extents[i])) { 499 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 500 &cuip->cui_format, 501 sizeof(cuip->cui_format)); 502 return -EFSCORRUPTED; 503 } 504 } 505 506 /* 507 * Under normal operation, refcount updates are deferred, so we 508 * wouldn't be adding them directly to a transaction. All 509 * refcount updates manage reservation usage internally and 510 * dynamically by deferring work that won't fit in the 511 * transaction. Normally, any work that needs to be deferred 512 * gets attached to the same defer_ops that scheduled the 513 * refcount update. However, we're in log recovery here, so we 514 * use the passed in defer_ops and to finish up any work that 515 * doesn't fit. We need to reserve enough blocks to handle a 516 * full btree split on either end of the refcount range. 517 */ 518 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); 519 error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0, 520 XFS_TRANS_RESERVE, &tp); 521 if (error) 522 return error; 523 524 cudp = xfs_trans_get_cud(tp, cuip); 525 526 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 527 struct xfs_refcount_intent fake = { }; 528 struct xfs_phys_extent *pmap; 529 530 pmap = &cuip->cui_format.cui_extents[i]; 531 refc_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; 532 switch (refc_type) { 533 case XFS_REFCOUNT_INCREASE: 534 case XFS_REFCOUNT_DECREASE: 535 case XFS_REFCOUNT_ALLOC_COW: 536 case XFS_REFCOUNT_FREE_COW: 537 fake.ri_type = refc_type; 538 break; 539 default: 540 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 541 &cuip->cui_format, 542 sizeof(cuip->cui_format)); 543 error = -EFSCORRUPTED; 544 goto abort_error; 545 } 546 547 fake.ri_startblock = pmap->pe_startblock; 548 fake.ri_blockcount = pmap->pe_len; 549 550 if (!requeue_only) { 551 xfs_refcount_update_get_group(mp, &fake); 552 error = xfs_trans_log_finish_refcount_update(tp, cudp, 553 &fake, &rcur); 554 xfs_refcount_update_put_group(&fake); 555 } 556 if (error == -EFSCORRUPTED) 557 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 558 &cuip->cui_format, 559 sizeof(cuip->cui_format)); 560 if (error) 561 goto abort_error; 562 563 /* Requeue what we didn't finish. */ 564 if (fake.ri_blockcount > 0) { 565 struct xfs_bmbt_irec irec = { 566 .br_startblock = fake.ri_startblock, 567 .br_blockcount = fake.ri_blockcount, 568 }; 569 570 switch (fake.ri_type) { 571 case XFS_REFCOUNT_INCREASE: 572 xfs_refcount_increase_extent(tp, &irec); 573 break; 574 case XFS_REFCOUNT_DECREASE: 575 xfs_refcount_decrease_extent(tp, &irec); 576 break; 577 case XFS_REFCOUNT_ALLOC_COW: 578 xfs_refcount_alloc_cow_extent(tp, 579 irec.br_startblock, 580 irec.br_blockcount); 581 break; 582 case XFS_REFCOUNT_FREE_COW: 583 xfs_refcount_free_cow_extent(tp, 584 irec.br_startblock, 585 irec.br_blockcount); 586 break; 587 default: 588 ASSERT(0); 589 } 590 requeue_only = true; 591 } 592 } 593 594 xfs_refcount_finish_one_cleanup(tp, rcur, error); 595 return xfs_defer_ops_capture_and_commit(tp, capture_list); 596 597 abort_error: 598 xfs_refcount_finish_one_cleanup(tp, rcur, error); 599 xfs_trans_cancel(tp); 600 return error; 601 } 602 603 STATIC bool 604 xfs_cui_item_match( 605 struct xfs_log_item *lip, 606 uint64_t intent_id) 607 { 608 return CUI_ITEM(lip)->cui_format.cui_id == intent_id; 609 } 610 611 /* Relog an intent item to push the log tail forward. */ 612 static struct xfs_log_item * 613 xfs_cui_item_relog( 614 struct xfs_log_item *intent, 615 struct xfs_trans *tp) 616 { 617 struct xfs_cud_log_item *cudp; 618 struct xfs_cui_log_item *cuip; 619 struct xfs_phys_extent *pmap; 620 unsigned int count; 621 622 count = CUI_ITEM(intent)->cui_format.cui_nextents; 623 pmap = CUI_ITEM(intent)->cui_format.cui_extents; 624 625 tp->t_flags |= XFS_TRANS_DIRTY; 626 cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent)); 627 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); 628 629 cuip = xfs_cui_init(tp->t_mountp, count); 630 memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap)); 631 atomic_set(&cuip->cui_next_extent, count); 632 xfs_trans_add_item(tp, &cuip->cui_item); 633 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); 634 return &cuip->cui_item; 635 } 636 637 static const struct xfs_item_ops xfs_cui_item_ops = { 638 .flags = XFS_ITEM_INTENT, 639 .iop_size = xfs_cui_item_size, 640 .iop_format = xfs_cui_item_format, 641 .iop_unpin = xfs_cui_item_unpin, 642 .iop_release = xfs_cui_item_release, 643 .iop_recover = xfs_cui_item_recover, 644 .iop_match = xfs_cui_item_match, 645 .iop_relog = xfs_cui_item_relog, 646 }; 647 648 static inline void 649 xfs_cui_copy_format( 650 struct xfs_cui_log_format *dst, 651 const struct xfs_cui_log_format *src) 652 { 653 unsigned int i; 654 655 memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents)); 656 657 for (i = 0; i < src->cui_nextents; i++) 658 memcpy(&dst->cui_extents[i], &src->cui_extents[i], 659 sizeof(struct xfs_phys_extent)); 660 } 661 662 /* 663 * This routine is called to create an in-core extent refcount update 664 * item from the cui format structure which was logged on disk. 665 * It allocates an in-core cui, copies the extents from the format 666 * structure into it, and adds the cui to the AIL with the given 667 * LSN. 668 */ 669 STATIC int 670 xlog_recover_cui_commit_pass2( 671 struct xlog *log, 672 struct list_head *buffer_list, 673 struct xlog_recover_item *item, 674 xfs_lsn_t lsn) 675 { 676 struct xfs_mount *mp = log->l_mp; 677 struct xfs_cui_log_item *cuip; 678 struct xfs_cui_log_format *cui_formatp; 679 size_t len; 680 681 cui_formatp = item->ri_buf[0].i_addr; 682 683 if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) { 684 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 685 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 686 return -EFSCORRUPTED; 687 } 688 689 len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents); 690 if (item->ri_buf[0].i_len != len) { 691 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 692 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 693 return -EFSCORRUPTED; 694 } 695 696 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 697 xfs_cui_copy_format(&cuip->cui_format, cui_formatp); 698 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 699 /* 700 * Insert the intent into the AIL directly and drop one reference so 701 * that finishing or canceling the work will drop the other. 702 */ 703 xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn); 704 xfs_cui_release(cuip); 705 return 0; 706 } 707 708 const struct xlog_recover_item_ops xlog_cui_item_ops = { 709 .item_type = XFS_LI_CUI, 710 .commit_pass2 = xlog_recover_cui_commit_pass2, 711 }; 712 713 /* 714 * This routine is called when an CUD format structure is found in a committed 715 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 716 * was still in the log. To do this it searches the AIL for the CUI with an id 717 * equal to that in the CUD format structure. If we find it we drop the CUD 718 * reference, which removes the CUI from the AIL and frees it. 719 */ 720 STATIC int 721 xlog_recover_cud_commit_pass2( 722 struct xlog *log, 723 struct list_head *buffer_list, 724 struct xlog_recover_item *item, 725 xfs_lsn_t lsn) 726 { 727 struct xfs_cud_log_format *cud_formatp; 728 729 cud_formatp = item->ri_buf[0].i_addr; 730 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { 731 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 732 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 733 return -EFSCORRUPTED; 734 } 735 736 xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id); 737 return 0; 738 } 739 740 const struct xlog_recover_item_ops xlog_cud_item_ops = { 741 .item_type = XFS_LI_CUD, 742 .commit_pass2 = xlog_recover_cud_commit_pass2, 743 }; 744