1 /* 2 * Copyright (C) 2016 Oracle. All Rights Reserved. 3 * 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it would be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. 19 */ 20 #include "xfs.h" 21 #include "xfs_fs.h" 22 #include "xfs_format.h" 23 #include "xfs_log_format.h" 24 #include "xfs_trans_resv.h" 25 #include "xfs_bit.h" 26 #include "xfs_shared.h" 27 #include "xfs_mount.h" 28 #include "xfs_defer.h" 29 #include "xfs_trans.h" 30 #include "xfs_trans_priv.h" 31 #include "xfs_buf_item.h" 32 #include "xfs_refcount_item.h" 33 #include "xfs_log.h" 34 #include "xfs_refcount.h" 35 36 37 kmem_zone_t *xfs_cui_zone; 38 kmem_zone_t *xfs_cud_zone; 39 40 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) 41 { 42 return container_of(lip, struct xfs_cui_log_item, cui_item); 43 } 44 45 void 46 xfs_cui_item_free( 47 struct xfs_cui_log_item *cuip) 48 { 49 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) 50 kmem_free(cuip); 51 else 52 kmem_zone_free(xfs_cui_zone, cuip); 53 } 54 55 /* 56 * Freeing the CUI requires that we remove it from the AIL if it has already 57 * been placed there. However, the CUI may not yet have been placed in the AIL 58 * when called by xfs_cui_release() from CUD processing due to the ordering of 59 * committed vs unpin operations in bulk insert operations. Hence the reference 60 * count to ensure only the last caller frees the CUI. 61 */ 62 void 63 xfs_cui_release( 64 struct xfs_cui_log_item *cuip) 65 { 66 ASSERT(atomic_read(&cuip->cui_refcount) > 0); 67 if (atomic_dec_and_test(&cuip->cui_refcount)) { 68 xfs_trans_ail_remove(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR); 69 xfs_cui_item_free(cuip); 70 } 71 } 72 73 74 STATIC void 75 xfs_cui_item_size( 76 struct xfs_log_item *lip, 77 int *nvecs, 78 int *nbytes) 79 { 80 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 81 82 *nvecs += 1; 83 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); 84 } 85 86 /* 87 * This is called to fill in the vector of log iovecs for the 88 * given cui log item. We use only 1 iovec, and we point that 89 * at the cui_log_format structure embedded in the cui item. 90 * It is at this point that we assert that all of the extent 91 * slots in the cui item have been filled. 92 */ 93 STATIC void 94 xfs_cui_item_format( 95 struct xfs_log_item *lip, 96 struct xfs_log_vec *lv) 97 { 98 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 99 struct xfs_log_iovec *vecp = NULL; 100 101 ASSERT(atomic_read(&cuip->cui_next_extent) == 102 cuip->cui_format.cui_nextents); 103 104 cuip->cui_format.cui_type = XFS_LI_CUI; 105 cuip->cui_format.cui_size = 1; 106 107 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, 108 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); 109 } 110 111 /* 112 * Pinning has no meaning for an cui item, so just return. 113 */ 114 STATIC void 115 xfs_cui_item_pin( 116 struct xfs_log_item *lip) 117 { 118 } 119 120 /* 121 * The unpin operation is the last place an CUI is manipulated in the log. It is 122 * either inserted in the AIL or aborted in the event of a log I/O error. In 123 * either case, the CUI transaction has been successfully committed to make it 124 * this far. Therefore, we expect whoever committed the CUI to either construct 125 * and commit the CUD or drop the CUD's reference in the event of error. Simply 126 * drop the log's CUI reference now that the log is done with it. 127 */ 128 STATIC void 129 xfs_cui_item_unpin( 130 struct xfs_log_item *lip, 131 int remove) 132 { 133 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 134 135 xfs_cui_release(cuip); 136 } 137 138 /* 139 * CUI items have no locking or pushing. However, since CUIs are pulled from 140 * the AIL when their corresponding CUDs are committed to disk, their situation 141 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller 142 * will eventually flush the log. This should help in getting the CUI out of 143 * the AIL. 144 */ 145 STATIC uint 146 xfs_cui_item_push( 147 struct xfs_log_item *lip, 148 struct list_head *buffer_list) 149 { 150 return XFS_ITEM_PINNED; 151 } 152 153 /* 154 * The CUI has been either committed or aborted if the transaction has been 155 * cancelled. If the transaction was cancelled, an CUD isn't going to be 156 * constructed and thus we free the CUI here directly. 157 */ 158 STATIC void 159 xfs_cui_item_unlock( 160 struct xfs_log_item *lip) 161 { 162 if (lip->li_flags & XFS_LI_ABORTED) 163 xfs_cui_release(CUI_ITEM(lip)); 164 } 165 166 /* 167 * The CUI is logged only once and cannot be moved in the log, so simply return 168 * the lsn at which it's been logged. 169 */ 170 STATIC xfs_lsn_t 171 xfs_cui_item_committed( 172 struct xfs_log_item *lip, 173 xfs_lsn_t lsn) 174 { 175 return lsn; 176 } 177 178 /* 179 * The CUI dependency tracking op doesn't do squat. It can't because 180 * it doesn't know where the free extent is coming from. The dependency 181 * tracking has to be handled by the "enclosing" metadata object. For 182 * example, for inodes, the inode is locked throughout the extent freeing 183 * so the dependency should be recorded there. 184 */ 185 STATIC void 186 xfs_cui_item_committing( 187 struct xfs_log_item *lip, 188 xfs_lsn_t lsn) 189 { 190 } 191 192 /* 193 * This is the ops vector shared by all cui log items. 194 */ 195 static const struct xfs_item_ops xfs_cui_item_ops = { 196 .iop_size = xfs_cui_item_size, 197 .iop_format = xfs_cui_item_format, 198 .iop_pin = xfs_cui_item_pin, 199 .iop_unpin = xfs_cui_item_unpin, 200 .iop_unlock = xfs_cui_item_unlock, 201 .iop_committed = xfs_cui_item_committed, 202 .iop_push = xfs_cui_item_push, 203 .iop_committing = xfs_cui_item_committing, 204 }; 205 206 /* 207 * Allocate and initialize an cui item with the given number of extents. 208 */ 209 struct xfs_cui_log_item * 210 xfs_cui_init( 211 struct xfs_mount *mp, 212 uint nextents) 213 214 { 215 struct xfs_cui_log_item *cuip; 216 217 ASSERT(nextents > 0); 218 if (nextents > XFS_CUI_MAX_FAST_EXTENTS) 219 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 220 KM_SLEEP); 221 else 222 cuip = kmem_zone_zalloc(xfs_cui_zone, KM_SLEEP); 223 224 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); 225 cuip->cui_format.cui_nextents = nextents; 226 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; 227 atomic_set(&cuip->cui_next_extent, 0); 228 atomic_set(&cuip->cui_refcount, 2); 229 230 return cuip; 231 } 232 233 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) 234 { 235 return container_of(lip, struct xfs_cud_log_item, cud_item); 236 } 237 238 STATIC void 239 xfs_cud_item_size( 240 struct xfs_log_item *lip, 241 int *nvecs, 242 int *nbytes) 243 { 244 *nvecs += 1; 245 *nbytes += sizeof(struct xfs_cud_log_format); 246 } 247 248 /* 249 * This is called to fill in the vector of log iovecs for the 250 * given cud log item. We use only 1 iovec, and we point that 251 * at the cud_log_format structure embedded in the cud item. 252 * It is at this point that we assert that all of the extent 253 * slots in the cud item have been filled. 254 */ 255 STATIC void 256 xfs_cud_item_format( 257 struct xfs_log_item *lip, 258 struct xfs_log_vec *lv) 259 { 260 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 261 struct xfs_log_iovec *vecp = NULL; 262 263 cudp->cud_format.cud_type = XFS_LI_CUD; 264 cudp->cud_format.cud_size = 1; 265 266 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, 267 sizeof(struct xfs_cud_log_format)); 268 } 269 270 /* 271 * Pinning has no meaning for an cud item, so just return. 272 */ 273 STATIC void 274 xfs_cud_item_pin( 275 struct xfs_log_item *lip) 276 { 277 } 278 279 /* 280 * Since pinning has no meaning for an cud item, unpinning does 281 * not either. 282 */ 283 STATIC void 284 xfs_cud_item_unpin( 285 struct xfs_log_item *lip, 286 int remove) 287 { 288 } 289 290 /* 291 * There isn't much you can do to push on an cud item. It is simply stuck 292 * waiting for the log to be flushed to disk. 293 */ 294 STATIC uint 295 xfs_cud_item_push( 296 struct xfs_log_item *lip, 297 struct list_head *buffer_list) 298 { 299 return XFS_ITEM_PINNED; 300 } 301 302 /* 303 * The CUD is either committed or aborted if the transaction is cancelled. If 304 * the transaction is cancelled, drop our reference to the CUI and free the 305 * CUD. 306 */ 307 STATIC void 308 xfs_cud_item_unlock( 309 struct xfs_log_item *lip) 310 { 311 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 312 313 if (lip->li_flags & XFS_LI_ABORTED) { 314 xfs_cui_release(cudp->cud_cuip); 315 kmem_zone_free(xfs_cud_zone, cudp); 316 } 317 } 318 319 /* 320 * When the cud item is committed to disk, all we need to do is delete our 321 * reference to our partner cui item and then free ourselves. Since we're 322 * freeing ourselves we must return -1 to keep the transaction code from 323 * further referencing this item. 324 */ 325 STATIC xfs_lsn_t 326 xfs_cud_item_committed( 327 struct xfs_log_item *lip, 328 xfs_lsn_t lsn) 329 { 330 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 331 332 /* 333 * Drop the CUI reference regardless of whether the CUD has been 334 * aborted. Once the CUD transaction is constructed, it is the sole 335 * responsibility of the CUD to release the CUI (even if the CUI is 336 * aborted due to log I/O error). 337 */ 338 xfs_cui_release(cudp->cud_cuip); 339 kmem_zone_free(xfs_cud_zone, cudp); 340 341 return (xfs_lsn_t)-1; 342 } 343 344 /* 345 * The CUD dependency tracking op doesn't do squat. It can't because 346 * it doesn't know where the free extent is coming from. The dependency 347 * tracking has to be handled by the "enclosing" metadata object. For 348 * example, for inodes, the inode is locked throughout the extent freeing 349 * so the dependency should be recorded there. 350 */ 351 STATIC void 352 xfs_cud_item_committing( 353 struct xfs_log_item *lip, 354 xfs_lsn_t lsn) 355 { 356 } 357 358 /* 359 * This is the ops vector shared by all cud log items. 360 */ 361 static const struct xfs_item_ops xfs_cud_item_ops = { 362 .iop_size = xfs_cud_item_size, 363 .iop_format = xfs_cud_item_format, 364 .iop_pin = xfs_cud_item_pin, 365 .iop_unpin = xfs_cud_item_unpin, 366 .iop_unlock = xfs_cud_item_unlock, 367 .iop_committed = xfs_cud_item_committed, 368 .iop_push = xfs_cud_item_push, 369 .iop_committing = xfs_cud_item_committing, 370 }; 371 372 /* 373 * Allocate and initialize an cud item with the given number of extents. 374 */ 375 struct xfs_cud_log_item * 376 xfs_cud_init( 377 struct xfs_mount *mp, 378 struct xfs_cui_log_item *cuip) 379 380 { 381 struct xfs_cud_log_item *cudp; 382 383 cudp = kmem_zone_zalloc(xfs_cud_zone, KM_SLEEP); 384 xfs_log_item_init(mp, &cudp->cud_item, XFS_LI_CUD, &xfs_cud_item_ops); 385 cudp->cud_cuip = cuip; 386 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; 387 388 return cudp; 389 } 390 391 /* 392 * Process a refcount update intent item that was recovered from the log. 393 * We need to update the refcountbt. 394 */ 395 int 396 xfs_cui_recover( 397 struct xfs_mount *mp, 398 struct xfs_cui_log_item *cuip, 399 struct xfs_defer_ops *dfops) 400 { 401 int i; 402 int error = 0; 403 unsigned int refc_type; 404 struct xfs_phys_extent *refc; 405 xfs_fsblock_t startblock_fsb; 406 bool op_ok; 407 struct xfs_cud_log_item *cudp; 408 struct xfs_trans *tp; 409 struct xfs_btree_cur *rcur = NULL; 410 enum xfs_refcount_intent_type type; 411 xfs_fsblock_t new_fsb; 412 xfs_extlen_t new_len; 413 struct xfs_bmbt_irec irec; 414 bool requeue_only = false; 415 416 ASSERT(!test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags)); 417 418 /* 419 * First check the validity of the extents described by the 420 * CUI. If any are bad, then assume that all are bad and 421 * just toss the CUI. 422 */ 423 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 424 refc = &cuip->cui_format.cui_extents[i]; 425 startblock_fsb = XFS_BB_TO_FSB(mp, 426 XFS_FSB_TO_DADDR(mp, refc->pe_startblock)); 427 switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { 428 case XFS_REFCOUNT_INCREASE: 429 case XFS_REFCOUNT_DECREASE: 430 case XFS_REFCOUNT_ALLOC_COW: 431 case XFS_REFCOUNT_FREE_COW: 432 op_ok = true; 433 break; 434 default: 435 op_ok = false; 436 break; 437 } 438 if (!op_ok || startblock_fsb == 0 || 439 refc->pe_len == 0 || 440 startblock_fsb >= mp->m_sb.sb_dblocks || 441 refc->pe_len >= mp->m_sb.sb_agblocks || 442 (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) { 443 /* 444 * This will pull the CUI from the AIL and 445 * free the memory associated with it. 446 */ 447 set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); 448 xfs_cui_release(cuip); 449 return -EIO; 450 } 451 } 452 453 /* 454 * Under normal operation, refcount updates are deferred, so we 455 * wouldn't be adding them directly to a transaction. All 456 * refcount updates manage reservation usage internally and 457 * dynamically by deferring work that won't fit in the 458 * transaction. Normally, any work that needs to be deferred 459 * gets attached to the same defer_ops that scheduled the 460 * refcount update. However, we're in log recovery here, so we 461 * we use the passed in defer_ops and to finish up any work that 462 * doesn't fit. We need to reserve enough blocks to handle a 463 * full btree split on either end of the refcount range. 464 */ 465 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 466 mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); 467 if (error) 468 return error; 469 cudp = xfs_trans_get_cud(tp, cuip); 470 471 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 472 refc = &cuip->cui_format.cui_extents[i]; 473 refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; 474 switch (refc_type) { 475 case XFS_REFCOUNT_INCREASE: 476 case XFS_REFCOUNT_DECREASE: 477 case XFS_REFCOUNT_ALLOC_COW: 478 case XFS_REFCOUNT_FREE_COW: 479 type = refc_type; 480 break; 481 default: 482 error = -EFSCORRUPTED; 483 goto abort_error; 484 } 485 if (requeue_only) { 486 new_fsb = refc->pe_startblock; 487 new_len = refc->pe_len; 488 } else 489 error = xfs_trans_log_finish_refcount_update(tp, cudp, 490 dfops, type, refc->pe_startblock, refc->pe_len, 491 &new_fsb, &new_len, &rcur); 492 if (error) 493 goto abort_error; 494 495 /* Requeue what we didn't finish. */ 496 if (new_len > 0) { 497 irec.br_startblock = new_fsb; 498 irec.br_blockcount = new_len; 499 switch (type) { 500 case XFS_REFCOUNT_INCREASE: 501 error = xfs_refcount_increase_extent( 502 tp->t_mountp, dfops, &irec); 503 break; 504 case XFS_REFCOUNT_DECREASE: 505 error = xfs_refcount_decrease_extent( 506 tp->t_mountp, dfops, &irec); 507 break; 508 case XFS_REFCOUNT_ALLOC_COW: 509 error = xfs_refcount_alloc_cow_extent( 510 tp->t_mountp, dfops, 511 irec.br_startblock, 512 irec.br_blockcount); 513 break; 514 case XFS_REFCOUNT_FREE_COW: 515 error = xfs_refcount_free_cow_extent( 516 tp->t_mountp, dfops, 517 irec.br_startblock, 518 irec.br_blockcount); 519 break; 520 default: 521 ASSERT(0); 522 } 523 if (error) 524 goto abort_error; 525 requeue_only = true; 526 } 527 } 528 529 xfs_refcount_finish_one_cleanup(tp, rcur, error); 530 set_bit(XFS_CUI_RECOVERED, &cuip->cui_flags); 531 error = xfs_trans_commit(tp); 532 return error; 533 534 abort_error: 535 xfs_refcount_finish_one_cleanup(tp, rcur, error); 536 xfs_trans_cancel(tp); 537 return error; 538 } 539