1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2016 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_defer.h" 15 #include "xfs_trans.h" 16 #include "xfs_trans_priv.h" 17 #include "xfs_refcount_item.h" 18 #include "xfs_log.h" 19 #include "xfs_refcount.h" 20 #include "xfs_error.h" 21 #include "xfs_log_priv.h" 22 #include "xfs_log_recover.h" 23 24 kmem_zone_t *xfs_cui_zone; 25 kmem_zone_t *xfs_cud_zone; 26 27 static const struct xfs_item_ops xfs_cui_item_ops; 28 29 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip) 30 { 31 return container_of(lip, struct xfs_cui_log_item, cui_item); 32 } 33 34 STATIC void 35 xfs_cui_item_free( 36 struct xfs_cui_log_item *cuip) 37 { 38 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS) 39 kmem_free(cuip); 40 else 41 kmem_cache_free(xfs_cui_zone, cuip); 42 } 43 44 /* 45 * Freeing the CUI requires that we remove it from the AIL if it has already 46 * been placed there. However, the CUI may not yet have been placed in the AIL 47 * when called by xfs_cui_release() from CUD processing due to the ordering of 48 * committed vs unpin operations in bulk insert operations. Hence the reference 49 * count to ensure only the last caller frees the CUI. 50 */ 51 STATIC void 52 xfs_cui_release( 53 struct xfs_cui_log_item *cuip) 54 { 55 ASSERT(atomic_read(&cuip->cui_refcount) > 0); 56 if (atomic_dec_and_test(&cuip->cui_refcount)) { 57 xfs_trans_ail_delete(&cuip->cui_item, SHUTDOWN_LOG_IO_ERROR); 58 xfs_cui_item_free(cuip); 59 } 60 } 61 62 63 STATIC void 64 xfs_cui_item_size( 65 struct xfs_log_item *lip, 66 int *nvecs, 67 int *nbytes) 68 { 69 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 70 71 *nvecs += 1; 72 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents); 73 } 74 75 /* 76 * This is called to fill in the vector of log iovecs for the 77 * given cui log item. We use only 1 iovec, and we point that 78 * at the cui_log_format structure embedded in the cui item. 79 * It is at this point that we assert that all of the extent 80 * slots in the cui item have been filled. 81 */ 82 STATIC void 83 xfs_cui_item_format( 84 struct xfs_log_item *lip, 85 struct xfs_log_vec *lv) 86 { 87 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 88 struct xfs_log_iovec *vecp = NULL; 89 90 ASSERT(atomic_read(&cuip->cui_next_extent) == 91 cuip->cui_format.cui_nextents); 92 93 cuip->cui_format.cui_type = XFS_LI_CUI; 94 cuip->cui_format.cui_size = 1; 95 96 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format, 97 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents)); 98 } 99 100 /* 101 * The unpin operation is the last place an CUI is manipulated in the log. It is 102 * either inserted in the AIL or aborted in the event of a log I/O error. In 103 * either case, the CUI transaction has been successfully committed to make it 104 * this far. Therefore, we expect whoever committed the CUI to either construct 105 * and commit the CUD or drop the CUD's reference in the event of error. Simply 106 * drop the log's CUI reference now that the log is done with it. 107 */ 108 STATIC void 109 xfs_cui_item_unpin( 110 struct xfs_log_item *lip, 111 int remove) 112 { 113 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 114 115 xfs_cui_release(cuip); 116 } 117 118 /* 119 * The CUI has been either committed or aborted if the transaction has been 120 * cancelled. If the transaction was cancelled, an CUD isn't going to be 121 * constructed and thus we free the CUI here directly. 122 */ 123 STATIC void 124 xfs_cui_item_release( 125 struct xfs_log_item *lip) 126 { 127 xfs_cui_release(CUI_ITEM(lip)); 128 } 129 130 /* 131 * Allocate and initialize an cui item with the given number of extents. 132 */ 133 STATIC struct xfs_cui_log_item * 134 xfs_cui_init( 135 struct xfs_mount *mp, 136 uint nextents) 137 138 { 139 struct xfs_cui_log_item *cuip; 140 141 ASSERT(nextents > 0); 142 if (nextents > XFS_CUI_MAX_FAST_EXTENTS) 143 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents), 144 0); 145 else 146 cuip = kmem_cache_zalloc(xfs_cui_zone, 147 GFP_KERNEL | __GFP_NOFAIL); 148 149 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops); 150 cuip->cui_format.cui_nextents = nextents; 151 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip; 152 atomic_set(&cuip->cui_next_extent, 0); 153 atomic_set(&cuip->cui_refcount, 2); 154 155 return cuip; 156 } 157 158 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip) 159 { 160 return container_of(lip, struct xfs_cud_log_item, cud_item); 161 } 162 163 STATIC void 164 xfs_cud_item_size( 165 struct xfs_log_item *lip, 166 int *nvecs, 167 int *nbytes) 168 { 169 *nvecs += 1; 170 *nbytes += sizeof(struct xfs_cud_log_format); 171 } 172 173 /* 174 * This is called to fill in the vector of log iovecs for the 175 * given cud log item. We use only 1 iovec, and we point that 176 * at the cud_log_format structure embedded in the cud item. 177 * It is at this point that we assert that all of the extent 178 * slots in the cud item have been filled. 179 */ 180 STATIC void 181 xfs_cud_item_format( 182 struct xfs_log_item *lip, 183 struct xfs_log_vec *lv) 184 { 185 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 186 struct xfs_log_iovec *vecp = NULL; 187 188 cudp->cud_format.cud_type = XFS_LI_CUD; 189 cudp->cud_format.cud_size = 1; 190 191 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format, 192 sizeof(struct xfs_cud_log_format)); 193 } 194 195 /* 196 * The CUD is either committed or aborted if the transaction is cancelled. If 197 * the transaction is cancelled, drop our reference to the CUI and free the 198 * CUD. 199 */ 200 STATIC void 201 xfs_cud_item_release( 202 struct xfs_log_item *lip) 203 { 204 struct xfs_cud_log_item *cudp = CUD_ITEM(lip); 205 206 xfs_cui_release(cudp->cud_cuip); 207 kmem_cache_free(xfs_cud_zone, cudp); 208 } 209 210 static const struct xfs_item_ops xfs_cud_item_ops = { 211 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED, 212 .iop_size = xfs_cud_item_size, 213 .iop_format = xfs_cud_item_format, 214 .iop_release = xfs_cud_item_release, 215 }; 216 217 static struct xfs_cud_log_item * 218 xfs_trans_get_cud( 219 struct xfs_trans *tp, 220 struct xfs_cui_log_item *cuip) 221 { 222 struct xfs_cud_log_item *cudp; 223 224 cudp = kmem_cache_zalloc(xfs_cud_zone, GFP_KERNEL | __GFP_NOFAIL); 225 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD, 226 &xfs_cud_item_ops); 227 cudp->cud_cuip = cuip; 228 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id; 229 230 xfs_trans_add_item(tp, &cudp->cud_item); 231 return cudp; 232 } 233 234 /* 235 * Finish an refcount update and log it to the CUD. Note that the 236 * transaction is marked dirty regardless of whether the refcount 237 * update succeeds or fails to support the CUI/CUD lifecycle rules. 238 */ 239 static int 240 xfs_trans_log_finish_refcount_update( 241 struct xfs_trans *tp, 242 struct xfs_cud_log_item *cudp, 243 enum xfs_refcount_intent_type type, 244 xfs_fsblock_t startblock, 245 xfs_extlen_t blockcount, 246 xfs_fsblock_t *new_fsb, 247 xfs_extlen_t *new_len, 248 struct xfs_btree_cur **pcur) 249 { 250 int error; 251 252 error = xfs_refcount_finish_one(tp, type, startblock, 253 blockcount, new_fsb, new_len, pcur); 254 255 /* 256 * Mark the transaction dirty, even on error. This ensures the 257 * transaction is aborted, which: 258 * 259 * 1.) releases the CUI and frees the CUD 260 * 2.) shuts down the filesystem 261 */ 262 tp->t_flags |= XFS_TRANS_DIRTY; 263 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags); 264 265 return error; 266 } 267 268 /* Sort refcount intents by AG. */ 269 static int 270 xfs_refcount_update_diff_items( 271 void *priv, 272 struct list_head *a, 273 struct list_head *b) 274 { 275 struct xfs_mount *mp = priv; 276 struct xfs_refcount_intent *ra; 277 struct xfs_refcount_intent *rb; 278 279 ra = container_of(a, struct xfs_refcount_intent, ri_list); 280 rb = container_of(b, struct xfs_refcount_intent, ri_list); 281 return XFS_FSB_TO_AGNO(mp, ra->ri_startblock) - 282 XFS_FSB_TO_AGNO(mp, rb->ri_startblock); 283 } 284 285 /* Set the phys extent flags for this reverse mapping. */ 286 static void 287 xfs_trans_set_refcount_flags( 288 struct xfs_phys_extent *refc, 289 enum xfs_refcount_intent_type type) 290 { 291 refc->pe_flags = 0; 292 switch (type) { 293 case XFS_REFCOUNT_INCREASE: 294 case XFS_REFCOUNT_DECREASE: 295 case XFS_REFCOUNT_ALLOC_COW: 296 case XFS_REFCOUNT_FREE_COW: 297 refc->pe_flags |= type; 298 break; 299 default: 300 ASSERT(0); 301 } 302 } 303 304 /* Log refcount updates in the intent item. */ 305 STATIC void 306 xfs_refcount_update_log_item( 307 struct xfs_trans *tp, 308 struct xfs_cui_log_item *cuip, 309 struct xfs_refcount_intent *refc) 310 { 311 uint next_extent; 312 struct xfs_phys_extent *ext; 313 314 tp->t_flags |= XFS_TRANS_DIRTY; 315 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags); 316 317 /* 318 * atomic_inc_return gives us the value after the increment; 319 * we want to use it as an array index so we need to subtract 1 from 320 * it. 321 */ 322 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1; 323 ASSERT(next_extent < cuip->cui_format.cui_nextents); 324 ext = &cuip->cui_format.cui_extents[next_extent]; 325 ext->pe_startblock = refc->ri_startblock; 326 ext->pe_len = refc->ri_blockcount; 327 xfs_trans_set_refcount_flags(ext, refc->ri_type); 328 } 329 330 static struct xfs_log_item * 331 xfs_refcount_update_create_intent( 332 struct xfs_trans *tp, 333 struct list_head *items, 334 unsigned int count, 335 bool sort) 336 { 337 struct xfs_mount *mp = tp->t_mountp; 338 struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count); 339 struct xfs_refcount_intent *refc; 340 341 ASSERT(count > 0); 342 343 xfs_trans_add_item(tp, &cuip->cui_item); 344 if (sort) 345 list_sort(mp, items, xfs_refcount_update_diff_items); 346 list_for_each_entry(refc, items, ri_list) 347 xfs_refcount_update_log_item(tp, cuip, refc); 348 return &cuip->cui_item; 349 } 350 351 /* Get an CUD so we can process all the deferred refcount updates. */ 352 static struct xfs_log_item * 353 xfs_refcount_update_create_done( 354 struct xfs_trans *tp, 355 struct xfs_log_item *intent, 356 unsigned int count) 357 { 358 return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item; 359 } 360 361 /* Process a deferred refcount update. */ 362 STATIC int 363 xfs_refcount_update_finish_item( 364 struct xfs_trans *tp, 365 struct xfs_log_item *done, 366 struct list_head *item, 367 struct xfs_btree_cur **state) 368 { 369 struct xfs_refcount_intent *refc; 370 xfs_fsblock_t new_fsb; 371 xfs_extlen_t new_aglen; 372 int error; 373 374 refc = container_of(item, struct xfs_refcount_intent, ri_list); 375 error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), 376 refc->ri_type, refc->ri_startblock, refc->ri_blockcount, 377 &new_fsb, &new_aglen, state); 378 379 /* Did we run out of reservation? Requeue what we didn't finish. */ 380 if (!error && new_aglen > 0) { 381 ASSERT(refc->ri_type == XFS_REFCOUNT_INCREASE || 382 refc->ri_type == XFS_REFCOUNT_DECREASE); 383 refc->ri_startblock = new_fsb; 384 refc->ri_blockcount = new_aglen; 385 return -EAGAIN; 386 } 387 kmem_free(refc); 388 return error; 389 } 390 391 /* Abort all pending CUIs. */ 392 STATIC void 393 xfs_refcount_update_abort_intent( 394 struct xfs_log_item *intent) 395 { 396 xfs_cui_release(CUI_ITEM(intent)); 397 } 398 399 /* Cancel a deferred refcount update. */ 400 STATIC void 401 xfs_refcount_update_cancel_item( 402 struct list_head *item) 403 { 404 struct xfs_refcount_intent *refc; 405 406 refc = container_of(item, struct xfs_refcount_intent, ri_list); 407 kmem_free(refc); 408 } 409 410 const struct xfs_defer_op_type xfs_refcount_update_defer_type = { 411 .max_items = XFS_CUI_MAX_FAST_EXTENTS, 412 .create_intent = xfs_refcount_update_create_intent, 413 .abort_intent = xfs_refcount_update_abort_intent, 414 .create_done = xfs_refcount_update_create_done, 415 .finish_item = xfs_refcount_update_finish_item, 416 .finish_cleanup = xfs_refcount_finish_one_cleanup, 417 .cancel_item = xfs_refcount_update_cancel_item, 418 }; 419 420 /* 421 * Process a refcount update intent item that was recovered from the log. 422 * We need to update the refcountbt. 423 */ 424 STATIC int 425 xfs_cui_item_recover( 426 struct xfs_log_item *lip, 427 struct xfs_trans *parent_tp) 428 { 429 struct xfs_bmbt_irec irec; 430 struct xfs_cui_log_item *cuip = CUI_ITEM(lip); 431 struct xfs_phys_extent *refc; 432 struct xfs_cud_log_item *cudp; 433 struct xfs_trans *tp; 434 struct xfs_btree_cur *rcur = NULL; 435 struct xfs_mount *mp = parent_tp->t_mountp; 436 xfs_fsblock_t startblock_fsb; 437 xfs_fsblock_t new_fsb; 438 xfs_extlen_t new_len; 439 unsigned int refc_type; 440 bool op_ok; 441 bool requeue_only = false; 442 enum xfs_refcount_intent_type type; 443 int i; 444 int error = 0; 445 446 /* 447 * First check the validity of the extents described by the 448 * CUI. If any are bad, then assume that all are bad and 449 * just toss the CUI. 450 */ 451 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 452 refc = &cuip->cui_format.cui_extents[i]; 453 startblock_fsb = XFS_BB_TO_FSB(mp, 454 XFS_FSB_TO_DADDR(mp, refc->pe_startblock)); 455 switch (refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) { 456 case XFS_REFCOUNT_INCREASE: 457 case XFS_REFCOUNT_DECREASE: 458 case XFS_REFCOUNT_ALLOC_COW: 459 case XFS_REFCOUNT_FREE_COW: 460 op_ok = true; 461 break; 462 default: 463 op_ok = false; 464 break; 465 } 466 if (!op_ok || startblock_fsb == 0 || 467 refc->pe_len == 0 || 468 startblock_fsb >= mp->m_sb.sb_dblocks || 469 refc->pe_len >= mp->m_sb.sb_agblocks || 470 (refc->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)) { 471 /* 472 * This will pull the CUI from the AIL and 473 * free the memory associated with it. 474 */ 475 xfs_cui_release(cuip); 476 return -EFSCORRUPTED; 477 } 478 } 479 480 /* 481 * Under normal operation, refcount updates are deferred, so we 482 * wouldn't be adding them directly to a transaction. All 483 * refcount updates manage reservation usage internally and 484 * dynamically by deferring work that won't fit in the 485 * transaction. Normally, any work that needs to be deferred 486 * gets attached to the same defer_ops that scheduled the 487 * refcount update. However, we're in log recovery here, so we 488 * use the passed in defer_ops and to finish up any work that 489 * doesn't fit. We need to reserve enough blocks to handle a 490 * full btree split on either end of the refcount range. 491 */ 492 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 493 mp->m_refc_maxlevels * 2, 0, XFS_TRANS_RESERVE, &tp); 494 if (error) 495 return error; 496 /* 497 * Recovery stashes all deferred ops during intent processing and 498 * finishes them on completion. Transfer current dfops state to this 499 * transaction and transfer the result back before we return. 500 */ 501 xfs_defer_move(tp, parent_tp); 502 cudp = xfs_trans_get_cud(tp, cuip); 503 504 for (i = 0; i < cuip->cui_format.cui_nextents; i++) { 505 refc = &cuip->cui_format.cui_extents[i]; 506 refc_type = refc->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK; 507 switch (refc_type) { 508 case XFS_REFCOUNT_INCREASE: 509 case XFS_REFCOUNT_DECREASE: 510 case XFS_REFCOUNT_ALLOC_COW: 511 case XFS_REFCOUNT_FREE_COW: 512 type = refc_type; 513 break; 514 default: 515 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp); 516 error = -EFSCORRUPTED; 517 goto abort_error; 518 } 519 if (requeue_only) { 520 new_fsb = refc->pe_startblock; 521 new_len = refc->pe_len; 522 } else 523 error = xfs_trans_log_finish_refcount_update(tp, cudp, 524 type, refc->pe_startblock, refc->pe_len, 525 &new_fsb, &new_len, &rcur); 526 if (error) 527 goto abort_error; 528 529 /* Requeue what we didn't finish. */ 530 if (new_len > 0) { 531 irec.br_startblock = new_fsb; 532 irec.br_blockcount = new_len; 533 switch (type) { 534 case XFS_REFCOUNT_INCREASE: 535 xfs_refcount_increase_extent(tp, &irec); 536 break; 537 case XFS_REFCOUNT_DECREASE: 538 xfs_refcount_decrease_extent(tp, &irec); 539 break; 540 case XFS_REFCOUNT_ALLOC_COW: 541 xfs_refcount_alloc_cow_extent(tp, 542 irec.br_startblock, 543 irec.br_blockcount); 544 break; 545 case XFS_REFCOUNT_FREE_COW: 546 xfs_refcount_free_cow_extent(tp, 547 irec.br_startblock, 548 irec.br_blockcount); 549 break; 550 default: 551 ASSERT(0); 552 } 553 requeue_only = true; 554 } 555 } 556 557 xfs_refcount_finish_one_cleanup(tp, rcur, error); 558 xfs_defer_move(parent_tp, tp); 559 error = xfs_trans_commit(tp); 560 return error; 561 562 abort_error: 563 xfs_refcount_finish_one_cleanup(tp, rcur, error); 564 xfs_defer_move(parent_tp, tp); 565 xfs_trans_cancel(tp); 566 return error; 567 } 568 569 STATIC bool 570 xfs_cui_item_match( 571 struct xfs_log_item *lip, 572 uint64_t intent_id) 573 { 574 return CUI_ITEM(lip)->cui_format.cui_id == intent_id; 575 } 576 577 static const struct xfs_item_ops xfs_cui_item_ops = { 578 .iop_size = xfs_cui_item_size, 579 .iop_format = xfs_cui_item_format, 580 .iop_unpin = xfs_cui_item_unpin, 581 .iop_release = xfs_cui_item_release, 582 .iop_recover = xfs_cui_item_recover, 583 .iop_match = xfs_cui_item_match, 584 }; 585 586 /* 587 * Copy an CUI format buffer from the given buf, and into the destination 588 * CUI format structure. The CUI/CUD items were designed not to need any 589 * special alignment handling. 590 */ 591 static int 592 xfs_cui_copy_format( 593 struct xfs_log_iovec *buf, 594 struct xfs_cui_log_format *dst_cui_fmt) 595 { 596 struct xfs_cui_log_format *src_cui_fmt; 597 uint len; 598 599 src_cui_fmt = buf->i_addr; 600 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents); 601 602 if (buf->i_len == len) { 603 memcpy(dst_cui_fmt, src_cui_fmt, len); 604 return 0; 605 } 606 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL); 607 return -EFSCORRUPTED; 608 } 609 610 /* 611 * This routine is called to create an in-core extent refcount update 612 * item from the cui format structure which was logged on disk. 613 * It allocates an in-core cui, copies the extents from the format 614 * structure into it, and adds the cui to the AIL with the given 615 * LSN. 616 */ 617 STATIC int 618 xlog_recover_cui_commit_pass2( 619 struct xlog *log, 620 struct list_head *buffer_list, 621 struct xlog_recover_item *item, 622 xfs_lsn_t lsn) 623 { 624 int error; 625 struct xfs_mount *mp = log->l_mp; 626 struct xfs_cui_log_item *cuip; 627 struct xfs_cui_log_format *cui_formatp; 628 629 cui_formatp = item->ri_buf[0].i_addr; 630 631 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents); 632 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format); 633 if (error) { 634 xfs_cui_item_free(cuip); 635 return error; 636 } 637 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents); 638 /* 639 * Insert the intent into the AIL directly and drop one reference so 640 * that finishing or canceling the work will drop the other. 641 */ 642 xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn); 643 xfs_cui_release(cuip); 644 return 0; 645 } 646 647 const struct xlog_recover_item_ops xlog_cui_item_ops = { 648 .item_type = XFS_LI_CUI, 649 .commit_pass2 = xlog_recover_cui_commit_pass2, 650 }; 651 652 /* 653 * This routine is called when an CUD format structure is found in a committed 654 * transaction in the log. Its purpose is to cancel the corresponding CUI if it 655 * was still in the log. To do this it searches the AIL for the CUI with an id 656 * equal to that in the CUD format structure. If we find it we drop the CUD 657 * reference, which removes the CUI from the AIL and frees it. 658 */ 659 STATIC int 660 xlog_recover_cud_commit_pass2( 661 struct xlog *log, 662 struct list_head *buffer_list, 663 struct xlog_recover_item *item, 664 xfs_lsn_t lsn) 665 { 666 struct xfs_cud_log_format *cud_formatp; 667 668 cud_formatp = item->ri_buf[0].i_addr; 669 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) { 670 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 671 return -EFSCORRUPTED; 672 } 673 674 xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id); 675 return 0; 676 } 677 678 const struct xlog_recover_item_ops xlog_cud_item_ops = { 679 .item_type = XFS_LI_CUD, 680 .commit_pass2 = xlog_recover_cud_commit_pass2, 681 }; 682