xref: /openbmc/linux/fs/xfs/xfs_refcount_item.c (revision 236a9bf2)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2016 Oracle.  All Rights Reserved.
4  * Author: Darrick J. Wong <darrick.wong@oracle.com>
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_ag.h"
24 
25 struct kmem_cache	*xfs_cui_cache;
26 struct kmem_cache	*xfs_cud_cache;
27 
28 static const struct xfs_item_ops xfs_cui_item_ops;
29 
30 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
31 {
32 	return container_of(lip, struct xfs_cui_log_item, cui_item);
33 }
34 
35 STATIC void
36 xfs_cui_item_free(
37 	struct xfs_cui_log_item	*cuip)
38 {
39 	kmem_free(cuip->cui_item.li_lv_shadow);
40 	if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
41 		kmem_free(cuip);
42 	else
43 		kmem_cache_free(xfs_cui_cache, cuip);
44 }
45 
46 /*
47  * Freeing the CUI requires that we remove it from the AIL if it has already
48  * been placed there. However, the CUI may not yet have been placed in the AIL
49  * when called by xfs_cui_release() from CUD processing due to the ordering of
50  * committed vs unpin operations in bulk insert operations. Hence the reference
51  * count to ensure only the last caller frees the CUI.
52  */
53 STATIC void
54 xfs_cui_release(
55 	struct xfs_cui_log_item	*cuip)
56 {
57 	ASSERT(atomic_read(&cuip->cui_refcount) > 0);
58 	if (!atomic_dec_and_test(&cuip->cui_refcount))
59 		return;
60 
61 	xfs_trans_ail_delete(&cuip->cui_item, 0);
62 	xfs_cui_item_free(cuip);
63 }
64 
65 
66 STATIC void
67 xfs_cui_item_size(
68 	struct xfs_log_item	*lip,
69 	int			*nvecs,
70 	int			*nbytes)
71 {
72 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
73 
74 	*nvecs += 1;
75 	*nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
76 }
77 
78 /*
79  * This is called to fill in the vector of log iovecs for the
80  * given cui log item. We use only 1 iovec, and we point that
81  * at the cui_log_format structure embedded in the cui item.
82  * It is at this point that we assert that all of the extent
83  * slots in the cui item have been filled.
84  */
85 STATIC void
86 xfs_cui_item_format(
87 	struct xfs_log_item	*lip,
88 	struct xfs_log_vec	*lv)
89 {
90 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
91 	struct xfs_log_iovec	*vecp = NULL;
92 
93 	ASSERT(atomic_read(&cuip->cui_next_extent) ==
94 			cuip->cui_format.cui_nextents);
95 
96 	cuip->cui_format.cui_type = XFS_LI_CUI;
97 	cuip->cui_format.cui_size = 1;
98 
99 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
100 			xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
101 }
102 
103 /*
104  * The unpin operation is the last place an CUI is manipulated in the log. It is
105  * either inserted in the AIL or aborted in the event of a log I/O error. In
106  * either case, the CUI transaction has been successfully committed to make it
107  * this far. Therefore, we expect whoever committed the CUI to either construct
108  * and commit the CUD or drop the CUD's reference in the event of error. Simply
109  * drop the log's CUI reference now that the log is done with it.
110  */
111 STATIC void
112 xfs_cui_item_unpin(
113 	struct xfs_log_item	*lip,
114 	int			remove)
115 {
116 	struct xfs_cui_log_item	*cuip = CUI_ITEM(lip);
117 
118 	xfs_cui_release(cuip);
119 }
120 
121 /*
122  * The CUI has been either committed or aborted if the transaction has been
123  * cancelled. If the transaction was cancelled, an CUD isn't going to be
124  * constructed and thus we free the CUI here directly.
125  */
126 STATIC void
127 xfs_cui_item_release(
128 	struct xfs_log_item	*lip)
129 {
130 	xfs_cui_release(CUI_ITEM(lip));
131 }
132 
133 /*
134  * Allocate and initialize an cui item with the given number of extents.
135  */
136 STATIC struct xfs_cui_log_item *
137 xfs_cui_init(
138 	struct xfs_mount		*mp,
139 	uint				nextents)
140 
141 {
142 	struct xfs_cui_log_item		*cuip;
143 
144 	ASSERT(nextents > 0);
145 	if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
146 		cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
147 				0);
148 	else
149 		cuip = kmem_cache_zalloc(xfs_cui_cache,
150 					 GFP_KERNEL | __GFP_NOFAIL);
151 
152 	xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
153 	cuip->cui_format.cui_nextents = nextents;
154 	cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
155 	atomic_set(&cuip->cui_next_extent, 0);
156 	atomic_set(&cuip->cui_refcount, 2);
157 
158 	return cuip;
159 }
160 
161 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
162 {
163 	return container_of(lip, struct xfs_cud_log_item, cud_item);
164 }
165 
166 STATIC void
167 xfs_cud_item_size(
168 	struct xfs_log_item	*lip,
169 	int			*nvecs,
170 	int			*nbytes)
171 {
172 	*nvecs += 1;
173 	*nbytes += sizeof(struct xfs_cud_log_format);
174 }
175 
176 /*
177  * This is called to fill in the vector of log iovecs for the
178  * given cud log item. We use only 1 iovec, and we point that
179  * at the cud_log_format structure embedded in the cud item.
180  * It is at this point that we assert that all of the extent
181  * slots in the cud item have been filled.
182  */
183 STATIC void
184 xfs_cud_item_format(
185 	struct xfs_log_item	*lip,
186 	struct xfs_log_vec	*lv)
187 {
188 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
189 	struct xfs_log_iovec	*vecp = NULL;
190 
191 	cudp->cud_format.cud_type = XFS_LI_CUD;
192 	cudp->cud_format.cud_size = 1;
193 
194 	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
195 			sizeof(struct xfs_cud_log_format));
196 }
197 
198 /*
199  * The CUD is either committed or aborted if the transaction is cancelled. If
200  * the transaction is cancelled, drop our reference to the CUI and free the
201  * CUD.
202  */
203 STATIC void
204 xfs_cud_item_release(
205 	struct xfs_log_item	*lip)
206 {
207 	struct xfs_cud_log_item	*cudp = CUD_ITEM(lip);
208 
209 	xfs_cui_release(cudp->cud_cuip);
210 	kmem_free(cudp->cud_item.li_lv_shadow);
211 	kmem_cache_free(xfs_cud_cache, cudp);
212 }
213 
214 static struct xfs_log_item *
215 xfs_cud_item_intent(
216 	struct xfs_log_item	*lip)
217 {
218 	return &CUD_ITEM(lip)->cud_cuip->cui_item;
219 }
220 
221 static const struct xfs_item_ops xfs_cud_item_ops = {
222 	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
223 			  XFS_ITEM_INTENT_DONE,
224 	.iop_size	= xfs_cud_item_size,
225 	.iop_format	= xfs_cud_item_format,
226 	.iop_release	= xfs_cud_item_release,
227 	.iop_intent	= xfs_cud_item_intent,
228 };
229 
230 static struct xfs_cud_log_item *
231 xfs_trans_get_cud(
232 	struct xfs_trans		*tp,
233 	struct xfs_cui_log_item		*cuip)
234 {
235 	struct xfs_cud_log_item		*cudp;
236 
237 	cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL);
238 	xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
239 			  &xfs_cud_item_ops);
240 	cudp->cud_cuip = cuip;
241 	cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
242 
243 	xfs_trans_add_item(tp, &cudp->cud_item);
244 	return cudp;
245 }
246 
247 /*
248  * Finish an refcount update and log it to the CUD. Note that the
249  * transaction is marked dirty regardless of whether the refcount
250  * update succeeds or fails to support the CUI/CUD lifecycle rules.
251  */
252 static int
253 xfs_trans_log_finish_refcount_update(
254 	struct xfs_trans		*tp,
255 	struct xfs_cud_log_item		*cudp,
256 	struct xfs_refcount_intent	*ri,
257 	struct xfs_btree_cur		**pcur)
258 {
259 	int				error;
260 
261 	error = xfs_refcount_finish_one(tp, ri, pcur);
262 
263 	/*
264 	 * Mark the transaction dirty, even on error. This ensures the
265 	 * transaction is aborted, which:
266 	 *
267 	 * 1.) releases the CUI and frees the CUD
268 	 * 2.) shuts down the filesystem
269 	 */
270 	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
271 	set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
272 
273 	return error;
274 }
275 
276 /* Sort refcount intents by AG. */
277 static int
278 xfs_refcount_update_diff_items(
279 	void				*priv,
280 	const struct list_head		*a,
281 	const struct list_head		*b)
282 {
283 	struct xfs_refcount_intent	*ra;
284 	struct xfs_refcount_intent	*rb;
285 
286 	ra = container_of(a, struct xfs_refcount_intent, ri_list);
287 	rb = container_of(b, struct xfs_refcount_intent, ri_list);
288 
289 	return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
290 }
291 
292 /* Set the phys extent flags for this reverse mapping. */
293 static void
294 xfs_trans_set_refcount_flags(
295 	struct xfs_phys_extent		*pmap,
296 	enum xfs_refcount_intent_type	type)
297 {
298 	pmap->pe_flags = 0;
299 	switch (type) {
300 	case XFS_REFCOUNT_INCREASE:
301 	case XFS_REFCOUNT_DECREASE:
302 	case XFS_REFCOUNT_ALLOC_COW:
303 	case XFS_REFCOUNT_FREE_COW:
304 		pmap->pe_flags |= type;
305 		break;
306 	default:
307 		ASSERT(0);
308 	}
309 }
310 
311 /* Log refcount updates in the intent item. */
312 STATIC void
313 xfs_refcount_update_log_item(
314 	struct xfs_trans		*tp,
315 	struct xfs_cui_log_item		*cuip,
316 	struct xfs_refcount_intent	*ri)
317 {
318 	uint				next_extent;
319 	struct xfs_phys_extent		*pmap;
320 
321 	tp->t_flags |= XFS_TRANS_DIRTY;
322 	set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
323 
324 	/*
325 	 * atomic_inc_return gives us the value after the increment;
326 	 * we want to use it as an array index so we need to subtract 1 from
327 	 * it.
328 	 */
329 	next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
330 	ASSERT(next_extent < cuip->cui_format.cui_nextents);
331 	pmap = &cuip->cui_format.cui_extents[next_extent];
332 	pmap->pe_startblock = ri->ri_startblock;
333 	pmap->pe_len = ri->ri_blockcount;
334 	xfs_trans_set_refcount_flags(pmap, ri->ri_type);
335 }
336 
337 static struct xfs_log_item *
338 xfs_refcount_update_create_intent(
339 	struct xfs_trans		*tp,
340 	struct list_head		*items,
341 	unsigned int			count,
342 	bool				sort)
343 {
344 	struct xfs_mount		*mp = tp->t_mountp;
345 	struct xfs_cui_log_item		*cuip = xfs_cui_init(mp, count);
346 	struct xfs_refcount_intent	*ri;
347 
348 	ASSERT(count > 0);
349 
350 	xfs_trans_add_item(tp, &cuip->cui_item);
351 	if (sort)
352 		list_sort(mp, items, xfs_refcount_update_diff_items);
353 	list_for_each_entry(ri, items, ri_list)
354 		xfs_refcount_update_log_item(tp, cuip, ri);
355 	return &cuip->cui_item;
356 }
357 
358 /* Get an CUD so we can process all the deferred refcount updates. */
359 static struct xfs_log_item *
360 xfs_refcount_update_create_done(
361 	struct xfs_trans		*tp,
362 	struct xfs_log_item		*intent,
363 	unsigned int			count)
364 {
365 	return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item;
366 }
367 
368 /* Take a passive ref to the AG containing the space we're refcounting. */
369 void
370 xfs_refcount_update_get_group(
371 	struct xfs_mount		*mp,
372 	struct xfs_refcount_intent	*ri)
373 {
374 	xfs_agnumber_t			agno;
375 
376 	agno = XFS_FSB_TO_AGNO(mp, ri->ri_startblock);
377 	ri->ri_pag = xfs_perag_intent_get(mp, agno);
378 }
379 
380 /* Release a passive AG ref after finishing refcounting work. */
381 static inline void
382 xfs_refcount_update_put_group(
383 	struct xfs_refcount_intent	*ri)
384 {
385 	xfs_perag_intent_put(ri->ri_pag);
386 }
387 
388 /* Process a deferred refcount update. */
389 STATIC int
390 xfs_refcount_update_finish_item(
391 	struct xfs_trans		*tp,
392 	struct xfs_log_item		*done,
393 	struct list_head		*item,
394 	struct xfs_btree_cur		**state)
395 {
396 	struct xfs_refcount_intent	*ri;
397 	int				error;
398 
399 	ri = container_of(item, struct xfs_refcount_intent, ri_list);
400 	error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), ri,
401 			state);
402 
403 	/* Did we run out of reservation?  Requeue what we didn't finish. */
404 	if (!error && ri->ri_blockcount > 0) {
405 		ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE ||
406 		       ri->ri_type == XFS_REFCOUNT_DECREASE);
407 		return -EAGAIN;
408 	}
409 
410 	xfs_refcount_update_put_group(ri);
411 	kmem_cache_free(xfs_refcount_intent_cache, ri);
412 	return error;
413 }
414 
415 /* Abort all pending CUIs. */
416 STATIC void
417 xfs_refcount_update_abort_intent(
418 	struct xfs_log_item		*intent)
419 {
420 	xfs_cui_release(CUI_ITEM(intent));
421 }
422 
423 /* Cancel a deferred refcount update. */
424 STATIC void
425 xfs_refcount_update_cancel_item(
426 	struct list_head		*item)
427 {
428 	struct xfs_refcount_intent	*ri;
429 
430 	ri = container_of(item, struct xfs_refcount_intent, ri_list);
431 
432 	xfs_refcount_update_put_group(ri);
433 	kmem_cache_free(xfs_refcount_intent_cache, ri);
434 }
435 
436 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
437 	.max_items	= XFS_CUI_MAX_FAST_EXTENTS,
438 	.create_intent	= xfs_refcount_update_create_intent,
439 	.abort_intent	= xfs_refcount_update_abort_intent,
440 	.create_done	= xfs_refcount_update_create_done,
441 	.finish_item	= xfs_refcount_update_finish_item,
442 	.finish_cleanup = xfs_refcount_finish_one_cleanup,
443 	.cancel_item	= xfs_refcount_update_cancel_item,
444 };
445 
446 /* Is this recovered CUI ok? */
447 static inline bool
448 xfs_cui_validate_phys(
449 	struct xfs_mount		*mp,
450 	struct xfs_phys_extent		*pmap)
451 {
452 	if (!xfs_has_reflink(mp))
453 		return false;
454 
455 	if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)
456 		return false;
457 
458 	switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
459 	case XFS_REFCOUNT_INCREASE:
460 	case XFS_REFCOUNT_DECREASE:
461 	case XFS_REFCOUNT_ALLOC_COW:
462 	case XFS_REFCOUNT_FREE_COW:
463 		break;
464 	default:
465 		return false;
466 	}
467 
468 	return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len);
469 }
470 
471 /*
472  * Process a refcount update intent item that was recovered from the log.
473  * We need to update the refcountbt.
474  */
475 STATIC int
476 xfs_cui_item_recover(
477 	struct xfs_log_item		*lip,
478 	struct list_head		*capture_list)
479 {
480 	struct xfs_trans_res		resv;
481 	struct xfs_cui_log_item		*cuip = CUI_ITEM(lip);
482 	struct xfs_cud_log_item		*cudp;
483 	struct xfs_trans		*tp;
484 	struct xfs_btree_cur		*rcur = NULL;
485 	struct xfs_mount		*mp = lip->li_log->l_mp;
486 	unsigned int			refc_type;
487 	bool				requeue_only = false;
488 	int				i;
489 	int				error = 0;
490 
491 	/*
492 	 * First check the validity of the extents described by the
493 	 * CUI.  If any are bad, then assume that all are bad and
494 	 * just toss the CUI.
495 	 */
496 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
497 		if (!xfs_cui_validate_phys(mp,
498 					&cuip->cui_format.cui_extents[i])) {
499 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
500 					&cuip->cui_format,
501 					sizeof(cuip->cui_format));
502 			return -EFSCORRUPTED;
503 		}
504 	}
505 
506 	/*
507 	 * Under normal operation, refcount updates are deferred, so we
508 	 * wouldn't be adding them directly to a transaction.  All
509 	 * refcount updates manage reservation usage internally and
510 	 * dynamically by deferring work that won't fit in the
511 	 * transaction.  Normally, any work that needs to be deferred
512 	 * gets attached to the same defer_ops that scheduled the
513 	 * refcount update.  However, we're in log recovery here, so we
514 	 * use the passed in defer_ops and to finish up any work that
515 	 * doesn't fit.  We need to reserve enough blocks to handle a
516 	 * full btree split on either end of the refcount range.
517 	 */
518 	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
519 	error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0,
520 			XFS_TRANS_RESERVE, &tp);
521 	if (error)
522 		return error;
523 
524 	cudp = xfs_trans_get_cud(tp, cuip);
525 
526 	for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
527 		struct xfs_refcount_intent	fake = { };
528 		struct xfs_phys_extent		*pmap;
529 
530 		pmap = &cuip->cui_format.cui_extents[i];
531 		refc_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
532 		switch (refc_type) {
533 		case XFS_REFCOUNT_INCREASE:
534 		case XFS_REFCOUNT_DECREASE:
535 		case XFS_REFCOUNT_ALLOC_COW:
536 		case XFS_REFCOUNT_FREE_COW:
537 			fake.ri_type = refc_type;
538 			break;
539 		default:
540 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
541 					&cuip->cui_format,
542 					sizeof(cuip->cui_format));
543 			error = -EFSCORRUPTED;
544 			goto abort_error;
545 		}
546 
547 		fake.ri_startblock = pmap->pe_startblock;
548 		fake.ri_blockcount = pmap->pe_len;
549 
550 		if (!requeue_only) {
551 			xfs_refcount_update_get_group(mp, &fake);
552 			error = xfs_trans_log_finish_refcount_update(tp, cudp,
553 					&fake, &rcur);
554 			xfs_refcount_update_put_group(&fake);
555 		}
556 		if (error == -EFSCORRUPTED)
557 			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
558 					&cuip->cui_format,
559 					sizeof(cuip->cui_format));
560 		if (error)
561 			goto abort_error;
562 
563 		/* Requeue what we didn't finish. */
564 		if (fake.ri_blockcount > 0) {
565 			struct xfs_bmbt_irec	irec = {
566 				.br_startblock	= fake.ri_startblock,
567 				.br_blockcount	= fake.ri_blockcount,
568 			};
569 
570 			switch (fake.ri_type) {
571 			case XFS_REFCOUNT_INCREASE:
572 				xfs_refcount_increase_extent(tp, &irec);
573 				break;
574 			case XFS_REFCOUNT_DECREASE:
575 				xfs_refcount_decrease_extent(tp, &irec);
576 				break;
577 			case XFS_REFCOUNT_ALLOC_COW:
578 				xfs_refcount_alloc_cow_extent(tp,
579 						irec.br_startblock,
580 						irec.br_blockcount);
581 				break;
582 			case XFS_REFCOUNT_FREE_COW:
583 				xfs_refcount_free_cow_extent(tp,
584 						irec.br_startblock,
585 						irec.br_blockcount);
586 				break;
587 			default:
588 				ASSERT(0);
589 			}
590 			requeue_only = true;
591 		}
592 	}
593 
594 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
595 	return xfs_defer_ops_capture_and_commit(tp, capture_list);
596 
597 abort_error:
598 	xfs_refcount_finish_one_cleanup(tp, rcur, error);
599 	xfs_trans_cancel(tp);
600 	return error;
601 }
602 
603 STATIC bool
604 xfs_cui_item_match(
605 	struct xfs_log_item	*lip,
606 	uint64_t		intent_id)
607 {
608 	return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
609 }
610 
611 /* Relog an intent item to push the log tail forward. */
612 static struct xfs_log_item *
613 xfs_cui_item_relog(
614 	struct xfs_log_item		*intent,
615 	struct xfs_trans		*tp)
616 {
617 	struct xfs_cud_log_item		*cudp;
618 	struct xfs_cui_log_item		*cuip;
619 	struct xfs_phys_extent		*pmap;
620 	unsigned int			count;
621 
622 	count = CUI_ITEM(intent)->cui_format.cui_nextents;
623 	pmap = CUI_ITEM(intent)->cui_format.cui_extents;
624 
625 	tp->t_flags |= XFS_TRANS_DIRTY;
626 	cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent));
627 	set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
628 
629 	cuip = xfs_cui_init(tp->t_mountp, count);
630 	memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap));
631 	atomic_set(&cuip->cui_next_extent, count);
632 	xfs_trans_add_item(tp, &cuip->cui_item);
633 	set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
634 	return &cuip->cui_item;
635 }
636 
637 static const struct xfs_item_ops xfs_cui_item_ops = {
638 	.flags		= XFS_ITEM_INTENT,
639 	.iop_size	= xfs_cui_item_size,
640 	.iop_format	= xfs_cui_item_format,
641 	.iop_unpin	= xfs_cui_item_unpin,
642 	.iop_release	= xfs_cui_item_release,
643 	.iop_recover	= xfs_cui_item_recover,
644 	.iop_match	= xfs_cui_item_match,
645 	.iop_relog	= xfs_cui_item_relog,
646 };
647 
648 static inline void
649 xfs_cui_copy_format(
650 	struct xfs_cui_log_format	*dst,
651 	const struct xfs_cui_log_format	*src)
652 {
653 	unsigned int			i;
654 
655 	memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents));
656 
657 	for (i = 0; i < src->cui_nextents; i++)
658 		memcpy(&dst->cui_extents[i], &src->cui_extents[i],
659 				sizeof(struct xfs_phys_extent));
660 }
661 
662 /*
663  * This routine is called to create an in-core extent refcount update
664  * item from the cui format structure which was logged on disk.
665  * It allocates an in-core cui, copies the extents from the format
666  * structure into it, and adds the cui to the AIL with the given
667  * LSN.
668  */
669 STATIC int
670 xlog_recover_cui_commit_pass2(
671 	struct xlog			*log,
672 	struct list_head		*buffer_list,
673 	struct xlog_recover_item	*item,
674 	xfs_lsn_t			lsn)
675 {
676 	struct xfs_mount		*mp = log->l_mp;
677 	struct xfs_cui_log_item		*cuip;
678 	struct xfs_cui_log_format	*cui_formatp;
679 	size_t				len;
680 
681 	cui_formatp = item->ri_buf[0].i_addr;
682 
683 	if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) {
684 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
685 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
686 		return -EFSCORRUPTED;
687 	}
688 
689 	len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents);
690 	if (item->ri_buf[0].i_len != len) {
691 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
692 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
693 		return -EFSCORRUPTED;
694 	}
695 
696 	cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
697 	xfs_cui_copy_format(&cuip->cui_format, cui_formatp);
698 	atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
699 	/*
700 	 * Insert the intent into the AIL directly and drop one reference so
701 	 * that finishing or canceling the work will drop the other.
702 	 */
703 	xfs_trans_ail_insert(log->l_ailp, &cuip->cui_item, lsn);
704 	xfs_cui_release(cuip);
705 	return 0;
706 }
707 
708 const struct xlog_recover_item_ops xlog_cui_item_ops = {
709 	.item_type		= XFS_LI_CUI,
710 	.commit_pass2		= xlog_recover_cui_commit_pass2,
711 };
712 
713 /*
714  * This routine is called when an CUD format structure is found in a committed
715  * transaction in the log. Its purpose is to cancel the corresponding CUI if it
716  * was still in the log. To do this it searches the AIL for the CUI with an id
717  * equal to that in the CUD format structure. If we find it we drop the CUD
718  * reference, which removes the CUI from the AIL and frees it.
719  */
720 STATIC int
721 xlog_recover_cud_commit_pass2(
722 	struct xlog			*log,
723 	struct list_head		*buffer_list,
724 	struct xlog_recover_item	*item,
725 	xfs_lsn_t			lsn)
726 {
727 	struct xfs_cud_log_format	*cud_formatp;
728 
729 	cud_formatp = item->ri_buf[0].i_addr;
730 	if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
731 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
732 				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
733 		return -EFSCORRUPTED;
734 	}
735 
736 	xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
737 	return 0;
738 }
739 
740 const struct xlog_recover_item_ops xlog_cud_item_ops = {
741 	.item_type		= XFS_LI_CUD,
742 	.commit_pass2		= xlog_recover_cud_commit_pass2,
743 };
744