1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_shared.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_refcount_item.h"
18 #include "xfs_log.h"
19 #include "xfs_refcount.h"
20 #include "xfs_error.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_ag.h"
24
25 struct kmem_cache *xfs_cui_cache;
26 struct kmem_cache *xfs_cud_cache;
27
28 static const struct xfs_item_ops xfs_cui_item_ops;
29
CUI_ITEM(struct xfs_log_item * lip)30 static inline struct xfs_cui_log_item *CUI_ITEM(struct xfs_log_item *lip)
31 {
32 return container_of(lip, struct xfs_cui_log_item, cui_item);
33 }
34
35 STATIC void
xfs_cui_item_free(struct xfs_cui_log_item * cuip)36 xfs_cui_item_free(
37 struct xfs_cui_log_item *cuip)
38 {
39 kmem_free(cuip->cui_item.li_lv_shadow);
40 if (cuip->cui_format.cui_nextents > XFS_CUI_MAX_FAST_EXTENTS)
41 kmem_free(cuip);
42 else
43 kmem_cache_free(xfs_cui_cache, cuip);
44 }
45
46 /*
47 * Freeing the CUI requires that we remove it from the AIL if it has already
48 * been placed there. However, the CUI may not yet have been placed in the AIL
49 * when called by xfs_cui_release() from CUD processing due to the ordering of
50 * committed vs unpin operations in bulk insert operations. Hence the reference
51 * count to ensure only the last caller frees the CUI.
52 */
53 STATIC void
xfs_cui_release(struct xfs_cui_log_item * cuip)54 xfs_cui_release(
55 struct xfs_cui_log_item *cuip)
56 {
57 ASSERT(atomic_read(&cuip->cui_refcount) > 0);
58 if (!atomic_dec_and_test(&cuip->cui_refcount))
59 return;
60
61 xfs_trans_ail_delete(&cuip->cui_item, 0);
62 xfs_cui_item_free(cuip);
63 }
64
65
66 STATIC void
xfs_cui_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)67 xfs_cui_item_size(
68 struct xfs_log_item *lip,
69 int *nvecs,
70 int *nbytes)
71 {
72 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
73
74 *nvecs += 1;
75 *nbytes += xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents);
76 }
77
78 /*
79 * This is called to fill in the vector of log iovecs for the
80 * given cui log item. We use only 1 iovec, and we point that
81 * at the cui_log_format structure embedded in the cui item.
82 * It is at this point that we assert that all of the extent
83 * slots in the cui item have been filled.
84 */
85 STATIC void
xfs_cui_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)86 xfs_cui_item_format(
87 struct xfs_log_item *lip,
88 struct xfs_log_vec *lv)
89 {
90 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
91 struct xfs_log_iovec *vecp = NULL;
92
93 ASSERT(atomic_read(&cuip->cui_next_extent) ==
94 cuip->cui_format.cui_nextents);
95
96 cuip->cui_format.cui_type = XFS_LI_CUI;
97 cuip->cui_format.cui_size = 1;
98
99 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUI_FORMAT, &cuip->cui_format,
100 xfs_cui_log_format_sizeof(cuip->cui_format.cui_nextents));
101 }
102
103 /*
104 * The unpin operation is the last place an CUI is manipulated in the log. It is
105 * either inserted in the AIL or aborted in the event of a log I/O error. In
106 * either case, the CUI transaction has been successfully committed to make it
107 * this far. Therefore, we expect whoever committed the CUI to either construct
108 * and commit the CUD or drop the CUD's reference in the event of error. Simply
109 * drop the log's CUI reference now that the log is done with it.
110 */
111 STATIC void
xfs_cui_item_unpin(struct xfs_log_item * lip,int remove)112 xfs_cui_item_unpin(
113 struct xfs_log_item *lip,
114 int remove)
115 {
116 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
117
118 xfs_cui_release(cuip);
119 }
120
121 /*
122 * The CUI has been either committed or aborted if the transaction has been
123 * cancelled. If the transaction was cancelled, an CUD isn't going to be
124 * constructed and thus we free the CUI here directly.
125 */
126 STATIC void
xfs_cui_item_release(struct xfs_log_item * lip)127 xfs_cui_item_release(
128 struct xfs_log_item *lip)
129 {
130 xfs_cui_release(CUI_ITEM(lip));
131 }
132
133 /*
134 * Allocate and initialize an cui item with the given number of extents.
135 */
136 STATIC struct xfs_cui_log_item *
xfs_cui_init(struct xfs_mount * mp,uint nextents)137 xfs_cui_init(
138 struct xfs_mount *mp,
139 uint nextents)
140
141 {
142 struct xfs_cui_log_item *cuip;
143
144 ASSERT(nextents > 0);
145 if (nextents > XFS_CUI_MAX_FAST_EXTENTS)
146 cuip = kmem_zalloc(xfs_cui_log_item_sizeof(nextents),
147 0);
148 else
149 cuip = kmem_cache_zalloc(xfs_cui_cache,
150 GFP_KERNEL | __GFP_NOFAIL);
151
152 xfs_log_item_init(mp, &cuip->cui_item, XFS_LI_CUI, &xfs_cui_item_ops);
153 cuip->cui_format.cui_nextents = nextents;
154 cuip->cui_format.cui_id = (uintptr_t)(void *)cuip;
155 atomic_set(&cuip->cui_next_extent, 0);
156 atomic_set(&cuip->cui_refcount, 2);
157
158 return cuip;
159 }
160
CUD_ITEM(struct xfs_log_item * lip)161 static inline struct xfs_cud_log_item *CUD_ITEM(struct xfs_log_item *lip)
162 {
163 return container_of(lip, struct xfs_cud_log_item, cud_item);
164 }
165
166 STATIC void
xfs_cud_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)167 xfs_cud_item_size(
168 struct xfs_log_item *lip,
169 int *nvecs,
170 int *nbytes)
171 {
172 *nvecs += 1;
173 *nbytes += sizeof(struct xfs_cud_log_format);
174 }
175
176 /*
177 * This is called to fill in the vector of log iovecs for the
178 * given cud log item. We use only 1 iovec, and we point that
179 * at the cud_log_format structure embedded in the cud item.
180 * It is at this point that we assert that all of the extent
181 * slots in the cud item have been filled.
182 */
183 STATIC void
xfs_cud_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)184 xfs_cud_item_format(
185 struct xfs_log_item *lip,
186 struct xfs_log_vec *lv)
187 {
188 struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
189 struct xfs_log_iovec *vecp = NULL;
190
191 cudp->cud_format.cud_type = XFS_LI_CUD;
192 cudp->cud_format.cud_size = 1;
193
194 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_CUD_FORMAT, &cudp->cud_format,
195 sizeof(struct xfs_cud_log_format));
196 }
197
198 /*
199 * The CUD is either committed or aborted if the transaction is cancelled. If
200 * the transaction is cancelled, drop our reference to the CUI and free the
201 * CUD.
202 */
203 STATIC void
xfs_cud_item_release(struct xfs_log_item * lip)204 xfs_cud_item_release(
205 struct xfs_log_item *lip)
206 {
207 struct xfs_cud_log_item *cudp = CUD_ITEM(lip);
208
209 xfs_cui_release(cudp->cud_cuip);
210 kmem_free(cudp->cud_item.li_lv_shadow);
211 kmem_cache_free(xfs_cud_cache, cudp);
212 }
213
214 static struct xfs_log_item *
xfs_cud_item_intent(struct xfs_log_item * lip)215 xfs_cud_item_intent(
216 struct xfs_log_item *lip)
217 {
218 return &CUD_ITEM(lip)->cud_cuip->cui_item;
219 }
220
221 static const struct xfs_item_ops xfs_cud_item_ops = {
222 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
223 XFS_ITEM_INTENT_DONE,
224 .iop_size = xfs_cud_item_size,
225 .iop_format = xfs_cud_item_format,
226 .iop_release = xfs_cud_item_release,
227 .iop_intent = xfs_cud_item_intent,
228 };
229
230 static struct xfs_cud_log_item *
xfs_trans_get_cud(struct xfs_trans * tp,struct xfs_cui_log_item * cuip)231 xfs_trans_get_cud(
232 struct xfs_trans *tp,
233 struct xfs_cui_log_item *cuip)
234 {
235 struct xfs_cud_log_item *cudp;
236
237 cudp = kmem_cache_zalloc(xfs_cud_cache, GFP_KERNEL | __GFP_NOFAIL);
238 xfs_log_item_init(tp->t_mountp, &cudp->cud_item, XFS_LI_CUD,
239 &xfs_cud_item_ops);
240 cudp->cud_cuip = cuip;
241 cudp->cud_format.cud_cui_id = cuip->cui_format.cui_id;
242
243 xfs_trans_add_item(tp, &cudp->cud_item);
244 return cudp;
245 }
246
247 /*
248 * Finish an refcount update and log it to the CUD. Note that the
249 * transaction is marked dirty regardless of whether the refcount
250 * update succeeds or fails to support the CUI/CUD lifecycle rules.
251 */
252 static int
xfs_trans_log_finish_refcount_update(struct xfs_trans * tp,struct xfs_cud_log_item * cudp,struct xfs_refcount_intent * ri,struct xfs_btree_cur ** pcur)253 xfs_trans_log_finish_refcount_update(
254 struct xfs_trans *tp,
255 struct xfs_cud_log_item *cudp,
256 struct xfs_refcount_intent *ri,
257 struct xfs_btree_cur **pcur)
258 {
259 int error;
260
261 error = xfs_refcount_finish_one(tp, ri, pcur);
262
263 /*
264 * Mark the transaction dirty, even on error. This ensures the
265 * transaction is aborted, which:
266 *
267 * 1.) releases the CUI and frees the CUD
268 * 2.) shuts down the filesystem
269 */
270 tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
271 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
272
273 return error;
274 }
275
276 /* Sort refcount intents by AG. */
277 static int
xfs_refcount_update_diff_items(void * priv,const struct list_head * a,const struct list_head * b)278 xfs_refcount_update_diff_items(
279 void *priv,
280 const struct list_head *a,
281 const struct list_head *b)
282 {
283 struct xfs_refcount_intent *ra;
284 struct xfs_refcount_intent *rb;
285
286 ra = container_of(a, struct xfs_refcount_intent, ri_list);
287 rb = container_of(b, struct xfs_refcount_intent, ri_list);
288
289 return ra->ri_pag->pag_agno - rb->ri_pag->pag_agno;
290 }
291
292 /* Set the phys extent flags for this reverse mapping. */
293 static void
xfs_trans_set_refcount_flags(struct xfs_phys_extent * pmap,enum xfs_refcount_intent_type type)294 xfs_trans_set_refcount_flags(
295 struct xfs_phys_extent *pmap,
296 enum xfs_refcount_intent_type type)
297 {
298 pmap->pe_flags = 0;
299 switch (type) {
300 case XFS_REFCOUNT_INCREASE:
301 case XFS_REFCOUNT_DECREASE:
302 case XFS_REFCOUNT_ALLOC_COW:
303 case XFS_REFCOUNT_FREE_COW:
304 pmap->pe_flags |= type;
305 break;
306 default:
307 ASSERT(0);
308 }
309 }
310
311 /* Log refcount updates in the intent item. */
312 STATIC void
xfs_refcount_update_log_item(struct xfs_trans * tp,struct xfs_cui_log_item * cuip,struct xfs_refcount_intent * ri)313 xfs_refcount_update_log_item(
314 struct xfs_trans *tp,
315 struct xfs_cui_log_item *cuip,
316 struct xfs_refcount_intent *ri)
317 {
318 uint next_extent;
319 struct xfs_phys_extent *pmap;
320
321 tp->t_flags |= XFS_TRANS_DIRTY;
322 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
323
324 /*
325 * atomic_inc_return gives us the value after the increment;
326 * we want to use it as an array index so we need to subtract 1 from
327 * it.
328 */
329 next_extent = atomic_inc_return(&cuip->cui_next_extent) - 1;
330 ASSERT(next_extent < cuip->cui_format.cui_nextents);
331 pmap = &cuip->cui_format.cui_extents[next_extent];
332 pmap->pe_startblock = ri->ri_startblock;
333 pmap->pe_len = ri->ri_blockcount;
334 xfs_trans_set_refcount_flags(pmap, ri->ri_type);
335 }
336
337 static struct xfs_log_item *
xfs_refcount_update_create_intent(struct xfs_trans * tp,struct list_head * items,unsigned int count,bool sort)338 xfs_refcount_update_create_intent(
339 struct xfs_trans *tp,
340 struct list_head *items,
341 unsigned int count,
342 bool sort)
343 {
344 struct xfs_mount *mp = tp->t_mountp;
345 struct xfs_cui_log_item *cuip = xfs_cui_init(mp, count);
346 struct xfs_refcount_intent *ri;
347
348 ASSERT(count > 0);
349
350 xfs_trans_add_item(tp, &cuip->cui_item);
351 if (sort)
352 list_sort(mp, items, xfs_refcount_update_diff_items);
353 list_for_each_entry(ri, items, ri_list)
354 xfs_refcount_update_log_item(tp, cuip, ri);
355 return &cuip->cui_item;
356 }
357
358 /* Get an CUD so we can process all the deferred refcount updates. */
359 static struct xfs_log_item *
xfs_refcount_update_create_done(struct xfs_trans * tp,struct xfs_log_item * intent,unsigned int count)360 xfs_refcount_update_create_done(
361 struct xfs_trans *tp,
362 struct xfs_log_item *intent,
363 unsigned int count)
364 {
365 return &xfs_trans_get_cud(tp, CUI_ITEM(intent))->cud_item;
366 }
367
368 /* Take a passive ref to the AG containing the space we're refcounting. */
369 void
xfs_refcount_update_get_group(struct xfs_mount * mp,struct xfs_refcount_intent * ri)370 xfs_refcount_update_get_group(
371 struct xfs_mount *mp,
372 struct xfs_refcount_intent *ri)
373 {
374 xfs_agnumber_t agno;
375
376 agno = XFS_FSB_TO_AGNO(mp, ri->ri_startblock);
377 ri->ri_pag = xfs_perag_intent_get(mp, agno);
378 }
379
380 /* Release a passive AG ref after finishing refcounting work. */
381 static inline void
xfs_refcount_update_put_group(struct xfs_refcount_intent * ri)382 xfs_refcount_update_put_group(
383 struct xfs_refcount_intent *ri)
384 {
385 xfs_perag_intent_put(ri->ri_pag);
386 }
387
388 /* Process a deferred refcount update. */
389 STATIC int
xfs_refcount_update_finish_item(struct xfs_trans * tp,struct xfs_log_item * done,struct list_head * item,struct xfs_btree_cur ** state)390 xfs_refcount_update_finish_item(
391 struct xfs_trans *tp,
392 struct xfs_log_item *done,
393 struct list_head *item,
394 struct xfs_btree_cur **state)
395 {
396 struct xfs_refcount_intent *ri;
397 int error;
398
399 ri = container_of(item, struct xfs_refcount_intent, ri_list);
400 error = xfs_trans_log_finish_refcount_update(tp, CUD_ITEM(done), ri,
401 state);
402
403 /* Did we run out of reservation? Requeue what we didn't finish. */
404 if (!error && ri->ri_blockcount > 0) {
405 ASSERT(ri->ri_type == XFS_REFCOUNT_INCREASE ||
406 ri->ri_type == XFS_REFCOUNT_DECREASE);
407 return -EAGAIN;
408 }
409
410 xfs_refcount_update_put_group(ri);
411 kmem_cache_free(xfs_refcount_intent_cache, ri);
412 return error;
413 }
414
415 /* Abort all pending CUIs. */
416 STATIC void
xfs_refcount_update_abort_intent(struct xfs_log_item * intent)417 xfs_refcount_update_abort_intent(
418 struct xfs_log_item *intent)
419 {
420 xfs_cui_release(CUI_ITEM(intent));
421 }
422
423 /* Cancel a deferred refcount update. */
424 STATIC void
xfs_refcount_update_cancel_item(struct list_head * item)425 xfs_refcount_update_cancel_item(
426 struct list_head *item)
427 {
428 struct xfs_refcount_intent *ri;
429
430 ri = container_of(item, struct xfs_refcount_intent, ri_list);
431
432 xfs_refcount_update_put_group(ri);
433 kmem_cache_free(xfs_refcount_intent_cache, ri);
434 }
435
436 const struct xfs_defer_op_type xfs_refcount_update_defer_type = {
437 .max_items = XFS_CUI_MAX_FAST_EXTENTS,
438 .create_intent = xfs_refcount_update_create_intent,
439 .abort_intent = xfs_refcount_update_abort_intent,
440 .create_done = xfs_refcount_update_create_done,
441 .finish_item = xfs_refcount_update_finish_item,
442 .finish_cleanup = xfs_refcount_finish_one_cleanup,
443 .cancel_item = xfs_refcount_update_cancel_item,
444 };
445
446 /* Is this recovered CUI ok? */
447 static inline bool
xfs_cui_validate_phys(struct xfs_mount * mp,struct xfs_phys_extent * pmap)448 xfs_cui_validate_phys(
449 struct xfs_mount *mp,
450 struct xfs_phys_extent *pmap)
451 {
452 if (!xfs_has_reflink(mp))
453 return false;
454
455 if (pmap->pe_flags & ~XFS_REFCOUNT_EXTENT_FLAGS)
456 return false;
457
458 switch (pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK) {
459 case XFS_REFCOUNT_INCREASE:
460 case XFS_REFCOUNT_DECREASE:
461 case XFS_REFCOUNT_ALLOC_COW:
462 case XFS_REFCOUNT_FREE_COW:
463 break;
464 default:
465 return false;
466 }
467
468 return xfs_verify_fsbext(mp, pmap->pe_startblock, pmap->pe_len);
469 }
470
471 /*
472 * Process a refcount update intent item that was recovered from the log.
473 * We need to update the refcountbt.
474 */
475 STATIC int
xfs_cui_item_recover(struct xfs_defer_pending * dfp,struct list_head * capture_list)476 xfs_cui_item_recover(
477 struct xfs_defer_pending *dfp,
478 struct list_head *capture_list)
479 {
480 struct xfs_trans_res resv;
481 struct xfs_log_item *lip = dfp->dfp_intent;
482 struct xfs_cui_log_item *cuip = CUI_ITEM(lip);
483 struct xfs_cud_log_item *cudp;
484 struct xfs_trans *tp;
485 struct xfs_btree_cur *rcur = NULL;
486 struct xfs_mount *mp = lip->li_log->l_mp;
487 unsigned int refc_type;
488 bool requeue_only = false;
489 int i;
490 int error = 0;
491
492 /*
493 * First check the validity of the extents described by the
494 * CUI. If any are bad, then assume that all are bad and
495 * just toss the CUI.
496 */
497 for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
498 if (!xfs_cui_validate_phys(mp,
499 &cuip->cui_format.cui_extents[i])) {
500 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
501 &cuip->cui_format,
502 sizeof(cuip->cui_format));
503 return -EFSCORRUPTED;
504 }
505 }
506
507 /*
508 * Under normal operation, refcount updates are deferred, so we
509 * wouldn't be adding them directly to a transaction. All
510 * refcount updates manage reservation usage internally and
511 * dynamically by deferring work that won't fit in the
512 * transaction. Normally, any work that needs to be deferred
513 * gets attached to the same defer_ops that scheduled the
514 * refcount update. However, we're in log recovery here, so we
515 * use the passed in defer_ops and to finish up any work that
516 * doesn't fit. We need to reserve enough blocks to handle a
517 * full btree split on either end of the refcount range.
518 */
519 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
520 error = xfs_trans_alloc(mp, &resv, mp->m_refc_maxlevels * 2, 0,
521 XFS_TRANS_RESERVE, &tp);
522 if (error)
523 return error;
524
525 cudp = xfs_trans_get_cud(tp, cuip);
526 xlog_recover_transfer_intent(tp, dfp);
527
528 for (i = 0; i < cuip->cui_format.cui_nextents; i++) {
529 struct xfs_refcount_intent fake = { };
530 struct xfs_phys_extent *pmap;
531
532 pmap = &cuip->cui_format.cui_extents[i];
533 refc_type = pmap->pe_flags & XFS_REFCOUNT_EXTENT_TYPE_MASK;
534 switch (refc_type) {
535 case XFS_REFCOUNT_INCREASE:
536 case XFS_REFCOUNT_DECREASE:
537 case XFS_REFCOUNT_ALLOC_COW:
538 case XFS_REFCOUNT_FREE_COW:
539 fake.ri_type = refc_type;
540 break;
541 default:
542 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
543 &cuip->cui_format,
544 sizeof(cuip->cui_format));
545 error = -EFSCORRUPTED;
546 goto abort_error;
547 }
548
549 fake.ri_startblock = pmap->pe_startblock;
550 fake.ri_blockcount = pmap->pe_len;
551
552 if (!requeue_only) {
553 xfs_refcount_update_get_group(mp, &fake);
554 error = xfs_trans_log_finish_refcount_update(tp, cudp,
555 &fake, &rcur);
556 xfs_refcount_update_put_group(&fake);
557 }
558 if (error == -EFSCORRUPTED)
559 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
560 &cuip->cui_format,
561 sizeof(cuip->cui_format));
562 if (error)
563 goto abort_error;
564
565 /* Requeue what we didn't finish. */
566 if (fake.ri_blockcount > 0) {
567 struct xfs_bmbt_irec irec = {
568 .br_startblock = fake.ri_startblock,
569 .br_blockcount = fake.ri_blockcount,
570 };
571
572 switch (fake.ri_type) {
573 case XFS_REFCOUNT_INCREASE:
574 xfs_refcount_increase_extent(tp, &irec);
575 break;
576 case XFS_REFCOUNT_DECREASE:
577 xfs_refcount_decrease_extent(tp, &irec);
578 break;
579 case XFS_REFCOUNT_ALLOC_COW:
580 xfs_refcount_alloc_cow_extent(tp,
581 irec.br_startblock,
582 irec.br_blockcount);
583 break;
584 case XFS_REFCOUNT_FREE_COW:
585 xfs_refcount_free_cow_extent(tp,
586 irec.br_startblock,
587 irec.br_blockcount);
588 break;
589 default:
590 ASSERT(0);
591 }
592 requeue_only = true;
593 }
594 }
595
596 xfs_refcount_finish_one_cleanup(tp, rcur, error);
597 return xfs_defer_ops_capture_and_commit(tp, capture_list);
598
599 abort_error:
600 xfs_refcount_finish_one_cleanup(tp, rcur, error);
601 xfs_trans_cancel(tp);
602 return error;
603 }
604
605 STATIC bool
xfs_cui_item_match(struct xfs_log_item * lip,uint64_t intent_id)606 xfs_cui_item_match(
607 struct xfs_log_item *lip,
608 uint64_t intent_id)
609 {
610 return CUI_ITEM(lip)->cui_format.cui_id == intent_id;
611 }
612
613 /* Relog an intent item to push the log tail forward. */
614 static struct xfs_log_item *
xfs_cui_item_relog(struct xfs_log_item * intent,struct xfs_trans * tp)615 xfs_cui_item_relog(
616 struct xfs_log_item *intent,
617 struct xfs_trans *tp)
618 {
619 struct xfs_cud_log_item *cudp;
620 struct xfs_cui_log_item *cuip;
621 struct xfs_phys_extent *pmap;
622 unsigned int count;
623
624 count = CUI_ITEM(intent)->cui_format.cui_nextents;
625 pmap = CUI_ITEM(intent)->cui_format.cui_extents;
626
627 tp->t_flags |= XFS_TRANS_DIRTY;
628 cudp = xfs_trans_get_cud(tp, CUI_ITEM(intent));
629 set_bit(XFS_LI_DIRTY, &cudp->cud_item.li_flags);
630
631 cuip = xfs_cui_init(tp->t_mountp, count);
632 memcpy(cuip->cui_format.cui_extents, pmap, count * sizeof(*pmap));
633 atomic_set(&cuip->cui_next_extent, count);
634 xfs_trans_add_item(tp, &cuip->cui_item);
635 set_bit(XFS_LI_DIRTY, &cuip->cui_item.li_flags);
636 return &cuip->cui_item;
637 }
638
639 static const struct xfs_item_ops xfs_cui_item_ops = {
640 .flags = XFS_ITEM_INTENT,
641 .iop_size = xfs_cui_item_size,
642 .iop_format = xfs_cui_item_format,
643 .iop_unpin = xfs_cui_item_unpin,
644 .iop_release = xfs_cui_item_release,
645 .iop_recover = xfs_cui_item_recover,
646 .iop_match = xfs_cui_item_match,
647 .iop_relog = xfs_cui_item_relog,
648 };
649
650 static inline void
xfs_cui_copy_format(struct xfs_cui_log_format * dst,const struct xfs_cui_log_format * src)651 xfs_cui_copy_format(
652 struct xfs_cui_log_format *dst,
653 const struct xfs_cui_log_format *src)
654 {
655 unsigned int i;
656
657 memcpy(dst, src, offsetof(struct xfs_cui_log_format, cui_extents));
658
659 for (i = 0; i < src->cui_nextents; i++)
660 memcpy(&dst->cui_extents[i], &src->cui_extents[i],
661 sizeof(struct xfs_phys_extent));
662 }
663
664 /*
665 * This routine is called to create an in-core extent refcount update
666 * item from the cui format structure which was logged on disk.
667 * It allocates an in-core cui, copies the extents from the format
668 * structure into it, and adds the cui to the AIL with the given
669 * LSN.
670 */
671 STATIC int
xlog_recover_cui_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)672 xlog_recover_cui_commit_pass2(
673 struct xlog *log,
674 struct list_head *buffer_list,
675 struct xlog_recover_item *item,
676 xfs_lsn_t lsn)
677 {
678 struct xfs_mount *mp = log->l_mp;
679 struct xfs_cui_log_item *cuip;
680 struct xfs_cui_log_format *cui_formatp;
681 size_t len;
682
683 cui_formatp = item->ri_buf[0].i_addr;
684
685 if (item->ri_buf[0].i_len < xfs_cui_log_format_sizeof(0)) {
686 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
687 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
688 return -EFSCORRUPTED;
689 }
690
691 len = xfs_cui_log_format_sizeof(cui_formatp->cui_nextents);
692 if (item->ri_buf[0].i_len != len) {
693 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
694 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
695 return -EFSCORRUPTED;
696 }
697
698 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
699 xfs_cui_copy_format(&cuip->cui_format, cui_formatp);
700 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
701
702 xlog_recover_intent_item(log, &cuip->cui_item, lsn,
703 XFS_DEFER_OPS_TYPE_REFCOUNT);
704 return 0;
705 }
706
707 const struct xlog_recover_item_ops xlog_cui_item_ops = {
708 .item_type = XFS_LI_CUI,
709 .commit_pass2 = xlog_recover_cui_commit_pass2,
710 };
711
712 /*
713 * This routine is called when an CUD format structure is found in a committed
714 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
715 * was still in the log. To do this it searches the AIL for the CUI with an id
716 * equal to that in the CUD format structure. If we find it we drop the CUD
717 * reference, which removes the CUI from the AIL and frees it.
718 */
719 STATIC int
xlog_recover_cud_commit_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t lsn)720 xlog_recover_cud_commit_pass2(
721 struct xlog *log,
722 struct list_head *buffer_list,
723 struct xlog_recover_item *item,
724 xfs_lsn_t lsn)
725 {
726 struct xfs_cud_log_format *cud_formatp;
727
728 cud_formatp = item->ri_buf[0].i_addr;
729 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format)) {
730 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
731 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
732 return -EFSCORRUPTED;
733 }
734
735 xlog_recover_release_intent(log, XFS_LI_CUI, cud_formatp->cud_cui_id);
736 return 0;
737 }
738
739 const struct xlog_recover_item_ops xlog_cud_item_ops = {
740 .item_type = XFS_LI_CUD,
741 .commit_pass2 = xlog_recover_cud_commit_pass2,
742 };
743