xref: /openbmc/linux/fs/xfs/xfs_mru_cache.c (revision 643d1f7f)
1 /*
2  * Copyright (c) 2006-2007 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_mru_cache.h"
20 
21 /*
22  * The MRU Cache data structure consists of a data store, an array of lists and
23  * a lock to protect its internal state.  At initialisation time, the client
24  * supplies an element lifetime in milliseconds and a group count, as well as a
25  * function pointer to call when deleting elements.  A data structure for
26  * queueing up work in the form of timed callbacks is also included.
27  *
28  * The group count controls how many lists are created, and thereby how finely
29  * the elements are grouped in time.  When reaping occurs, all the elements in
30  * all the lists whose time has expired are deleted.
31  *
32  * To give an example of how this works in practice, consider a client that
33  * initialises an MRU Cache with a lifetime of ten seconds and a group count of
34  * five.  Five internal lists will be created, each representing a two second
35  * period in time.  When the first element is added, time zero for the data
36  * structure is initialised to the current time.
37  *
38  * All the elements added in the first two seconds are appended to the first
39  * list.  Elements added in the third second go into the second list, and so on.
40  * If an element is accessed at any point, it is removed from its list and
41  * inserted at the head of the current most-recently-used list.
42  *
43  * The reaper function will have nothing to do until at least twelve seconds
44  * have elapsed since the first element was added.  The reason for this is that
45  * if it were called at t=11s, there could be elements in the first list that
46  * have only been inactive for nine seconds, so it still does nothing.  If it is
47  * called anywhere between t=12 and t=14 seconds, it will delete all the
48  * elements that remain in the first list.  It's therefore possible for elements
49  * to remain in the data store even after they've been inactive for up to
50  * (t + t/g) seconds, where t is the inactive element lifetime and g is the
51  * number of groups.
52  *
53  * The above example assumes that the reaper function gets called at least once
54  * every (t/g) seconds.  If it is called less frequently, unused elements will
55  * accumulate in the reap list until the reaper function is eventually called.
56  * The current implementation uses work queue callbacks to carefully time the
57  * reaper function calls, so this should happen rarely, if at all.
58  *
59  * From a design perspective, the primary reason for the choice of a list array
60  * representing discrete time intervals is that it's only practical to reap
61  * expired elements in groups of some appreciable size.  This automatically
62  * introduces a granularity to element lifetimes, so there's no point storing an
63  * individual timeout with each element that specifies a more precise reap time.
64  * The bonus is a saving of sizeof(long) bytes of memory per element stored.
65  *
66  * The elements could have been stored in just one list, but an array of
67  * counters or pointers would need to be maintained to allow them to be divided
68  * up into discrete time groups.  More critically, the process of touching or
69  * removing an element would involve walking large portions of the entire list,
70  * which would have a detrimental effect on performance.  The additional memory
71  * requirement for the array of list heads is minimal.
72  *
73  * When an element is touched or deleted, it needs to be removed from its
74  * current list.  Doubly linked lists are used to make the list maintenance
75  * portion of these operations O(1).  Since reaper timing can be imprecise,
76  * inserts and lookups can occur when there are no free lists available.  When
77  * this happens, all the elements on the LRU list need to be migrated to the end
78  * of the reap list.  To keep the list maintenance portion of these operations
79  * O(1) also, list tails need to be accessible without walking the entire list.
80  * This is the reason why doubly linked list heads are used.
81  */
82 
83 /*
84  * An MRU Cache is a dynamic data structure that stores its elements in a way
85  * that allows efficient lookups, but also groups them into discrete time
86  * intervals based on insertion time.  This allows elements to be efficiently
87  * and automatically reaped after a fixed period of inactivity.
88  *
89  * When a client data pointer is stored in the MRU Cache it needs to be added to
90  * both the data store and to one of the lists.  It must also be possible to
91  * access each of these entries via the other, i.e. to:
92  *
93  *    a) Walk a list, removing the corresponding data store entry for each item.
94  *    b) Look up a data store entry, then access its list entry directly.
95  *
96  * To achieve both of these goals, each entry must contain both a list entry and
97  * a key, in addition to the user's data pointer.  Note that it's not a good
98  * idea to have the client embed one of these structures at the top of their own
99  * data structure, because inserting the same item more than once would most
100  * likely result in a loop in one of the lists.  That's a sure-fire recipe for
101  * an infinite loop in the code.
102  */
103 typedef struct xfs_mru_cache_elem
104 {
105 	struct list_head list_node;
106 	unsigned long	key;
107 	void		*value;
108 } xfs_mru_cache_elem_t;
109 
110 static kmem_zone_t		*xfs_mru_elem_zone;
111 static struct workqueue_struct	*xfs_mru_reap_wq;
112 
113 /*
114  * When inserting, destroying or reaping, it's first necessary to update the
115  * lists relative to a particular time.  In the case of destroying, that time
116  * will be well in the future to ensure that all items are moved to the reap
117  * list.  In all other cases though, the time will be the current time.
118  *
119  * This function enters a loop, moving the contents of the LRU list to the reap
120  * list again and again until either a) the lists are all empty, or b) time zero
121  * has been advanced sufficiently to be within the immediate element lifetime.
122  *
123  * Case a) above is detected by counting how many groups are migrated and
124  * stopping when they've all been moved.  Case b) is detected by monitoring the
125  * time_zero field, which is updated as each group is migrated.
126  *
127  * The return value is the earliest time that more migration could be needed, or
128  * zero if there's no need to schedule more work because the lists are empty.
129  */
130 STATIC unsigned long
131 _xfs_mru_cache_migrate(
132 	xfs_mru_cache_t	*mru,
133 	unsigned long	now)
134 {
135 	unsigned int	grp;
136 	unsigned int	migrated = 0;
137 	struct list_head *lru_list;
138 
139 	/* Nothing to do if the data store is empty. */
140 	if (!mru->time_zero)
141 		return 0;
142 
143 	/* While time zero is older than the time spanned by all the lists. */
144 	while (mru->time_zero <= now - mru->grp_count * mru->grp_time) {
145 
146 		/*
147 		 * If the LRU list isn't empty, migrate its elements to the tail
148 		 * of the reap list.
149 		 */
150 		lru_list = mru->lists + mru->lru_grp;
151 		if (!list_empty(lru_list))
152 			list_splice_init(lru_list, mru->reap_list.prev);
153 
154 		/*
155 		 * Advance the LRU group number, freeing the old LRU list to
156 		 * become the new MRU list; advance time zero accordingly.
157 		 */
158 		mru->lru_grp = (mru->lru_grp + 1) % mru->grp_count;
159 		mru->time_zero += mru->grp_time;
160 
161 		/*
162 		 * If reaping is so far behind that all the elements on all the
163 		 * lists have been migrated to the reap list, it's now empty.
164 		 */
165 		if (++migrated == mru->grp_count) {
166 			mru->lru_grp = 0;
167 			mru->time_zero = 0;
168 			return 0;
169 		}
170 	}
171 
172 	/* Find the first non-empty list from the LRU end. */
173 	for (grp = 0; grp < mru->grp_count; grp++) {
174 
175 		/* Check the grp'th list from the LRU end. */
176 		lru_list = mru->lists + ((mru->lru_grp + grp) % mru->grp_count);
177 		if (!list_empty(lru_list))
178 			return mru->time_zero +
179 			       (mru->grp_count + grp) * mru->grp_time;
180 	}
181 
182 	/* All the lists must be empty. */
183 	mru->lru_grp = 0;
184 	mru->time_zero = 0;
185 	return 0;
186 }
187 
188 /*
189  * When inserting or doing a lookup, an element needs to be inserted into the
190  * MRU list.  The lists must be migrated first to ensure that they're
191  * up-to-date, otherwise the new element could be given a shorter lifetime in
192  * the cache than it should.
193  */
194 STATIC void
195 _xfs_mru_cache_list_insert(
196 	xfs_mru_cache_t		*mru,
197 	xfs_mru_cache_elem_t	*elem)
198 {
199 	unsigned int	grp = 0;
200 	unsigned long	now = jiffies;
201 
202 	/*
203 	 * If the data store is empty, initialise time zero, leave grp set to
204 	 * zero and start the work queue timer if necessary.  Otherwise, set grp
205 	 * to the number of group times that have elapsed since time zero.
206 	 */
207 	if (!_xfs_mru_cache_migrate(mru, now)) {
208 		mru->time_zero = now;
209 		if (!mru->queued) {
210 			mru->queued = 1;
211 			queue_delayed_work(xfs_mru_reap_wq, &mru->work,
212 			                   mru->grp_count * mru->grp_time);
213 		}
214 	} else {
215 		grp = (now - mru->time_zero) / mru->grp_time;
216 		grp = (mru->lru_grp + grp) % mru->grp_count;
217 	}
218 
219 	/* Insert the element at the tail of the corresponding list. */
220 	list_add_tail(&elem->list_node, mru->lists + grp);
221 }
222 
223 /*
224  * When destroying or reaping, all the elements that were migrated to the reap
225  * list need to be deleted.  For each element this involves removing it from the
226  * data store, removing it from the reap list, calling the client's free
227  * function and deleting the element from the element zone.
228  */
229 STATIC void
230 _xfs_mru_cache_clear_reap_list(
231 	xfs_mru_cache_t		*mru)
232 {
233 	xfs_mru_cache_elem_t	*elem, *next;
234 	struct list_head	tmp;
235 
236 	INIT_LIST_HEAD(&tmp);
237 	list_for_each_entry_safe(elem, next, &mru->reap_list, list_node) {
238 
239 		/* Remove the element from the data store. */
240 		radix_tree_delete(&mru->store, elem->key);
241 
242 		/*
243 		 * remove to temp list so it can be freed without
244 		 * needing to hold the lock
245 		 */
246 		list_move(&elem->list_node, &tmp);
247 	}
248 	mutex_spinunlock(&mru->lock, 0);
249 
250 	list_for_each_entry_safe(elem, next, &tmp, list_node) {
251 
252 		/* Remove the element from the reap list. */
253 		list_del_init(&elem->list_node);
254 
255 		/* Call the client's free function with the key and value pointer. */
256 		mru->free_func(elem->key, elem->value);
257 
258 		/* Free the element structure. */
259 		kmem_zone_free(xfs_mru_elem_zone, elem);
260 	}
261 
262 	mutex_spinlock(&mru->lock);
263 }
264 
265 /*
266  * We fire the reap timer every group expiry interval so
267  * we always have a reaper ready to run. This makes shutdown
268  * and flushing of the reaper easy to do. Hence we need to
269  * keep when the next reap must occur so we can determine
270  * at each interval whether there is anything we need to do.
271  */
272 STATIC void
273 _xfs_mru_cache_reap(
274 	struct work_struct	*work)
275 {
276 	xfs_mru_cache_t		*mru = container_of(work, xfs_mru_cache_t, work.work);
277 	unsigned long		now, next;
278 
279 	ASSERT(mru && mru->lists);
280 	if (!mru || !mru->lists)
281 		return;
282 
283 	mutex_spinlock(&mru->lock);
284 	next = _xfs_mru_cache_migrate(mru, jiffies);
285 	_xfs_mru_cache_clear_reap_list(mru);
286 
287 	mru->queued = next;
288 	if ((mru->queued > 0)) {
289 		now = jiffies;
290 		if (next <= now)
291 			next = 0;
292 		else
293 			next -= now;
294 		queue_delayed_work(xfs_mru_reap_wq, &mru->work, next);
295 	}
296 
297 	mutex_spinunlock(&mru->lock, 0);
298 }
299 
300 int
301 xfs_mru_cache_init(void)
302 {
303 	xfs_mru_elem_zone = kmem_zone_init(sizeof(xfs_mru_cache_elem_t),
304 	                                 "xfs_mru_cache_elem");
305 	if (!xfs_mru_elem_zone)
306 		return ENOMEM;
307 
308 	xfs_mru_reap_wq = create_singlethread_workqueue("xfs_mru_cache");
309 	if (!xfs_mru_reap_wq) {
310 		kmem_zone_destroy(xfs_mru_elem_zone);
311 		return ENOMEM;
312 	}
313 
314 	return 0;
315 }
316 
317 void
318 xfs_mru_cache_uninit(void)
319 {
320 	destroy_workqueue(xfs_mru_reap_wq);
321 	kmem_zone_destroy(xfs_mru_elem_zone);
322 }
323 
324 /*
325  * To initialise a struct xfs_mru_cache pointer, call xfs_mru_cache_create()
326  * with the address of the pointer, a lifetime value in milliseconds, a group
327  * count and a free function to use when deleting elements.  This function
328  * returns 0 if the initialisation was successful.
329  */
330 int
331 xfs_mru_cache_create(
332 	xfs_mru_cache_t		**mrup,
333 	unsigned int		lifetime_ms,
334 	unsigned int		grp_count,
335 	xfs_mru_cache_free_func_t free_func)
336 {
337 	xfs_mru_cache_t	*mru = NULL;
338 	int		err = 0, grp;
339 	unsigned int	grp_time;
340 
341 	if (mrup)
342 		*mrup = NULL;
343 
344 	if (!mrup || !grp_count || !lifetime_ms || !free_func)
345 		return EINVAL;
346 
347 	if (!(grp_time = msecs_to_jiffies(lifetime_ms) / grp_count))
348 		return EINVAL;
349 
350 	if (!(mru = kmem_zalloc(sizeof(*mru), KM_SLEEP)))
351 		return ENOMEM;
352 
353 	/* An extra list is needed to avoid reaping up to a grp_time early. */
354 	mru->grp_count = grp_count + 1;
355 	mru->lists = kmem_zalloc(mru->grp_count * sizeof(*mru->lists), KM_SLEEP);
356 
357 	if (!mru->lists) {
358 		err = ENOMEM;
359 		goto exit;
360 	}
361 
362 	for (grp = 0; grp < mru->grp_count; grp++)
363 		INIT_LIST_HEAD(mru->lists + grp);
364 
365 	/*
366 	 * We use GFP_KERNEL radix tree preload and do inserts under a
367 	 * spinlock so GFP_ATOMIC is appropriate for the radix tree itself.
368 	 */
369 	INIT_RADIX_TREE(&mru->store, GFP_ATOMIC);
370 	INIT_LIST_HEAD(&mru->reap_list);
371 	spinlock_init(&mru->lock, "xfs_mru_cache");
372 	INIT_DELAYED_WORK(&mru->work, _xfs_mru_cache_reap);
373 
374 	mru->grp_time  = grp_time;
375 	mru->free_func = free_func;
376 
377 	*mrup = mru;
378 
379 exit:
380 	if (err && mru && mru->lists)
381 		kmem_free(mru->lists, mru->grp_count * sizeof(*mru->lists));
382 	if (err && mru)
383 		kmem_free(mru, sizeof(*mru));
384 
385 	return err;
386 }
387 
388 /*
389  * Call xfs_mru_cache_flush() to flush out all cached entries, calling their
390  * free functions as they're deleted.  When this function returns, the caller is
391  * guaranteed that all the free functions for all the elements have finished
392  * executing and the reaper is not running.
393  */
394 void
395 xfs_mru_cache_flush(
396 	xfs_mru_cache_t		*mru)
397 {
398 	if (!mru || !mru->lists)
399 		return;
400 
401 	mutex_spinlock(&mru->lock);
402 	if (mru->queued) {
403 		mutex_spinunlock(&mru->lock, 0);
404 		cancel_rearming_delayed_workqueue(xfs_mru_reap_wq, &mru->work);
405 		mutex_spinlock(&mru->lock);
406 	}
407 
408 	_xfs_mru_cache_migrate(mru, jiffies + mru->grp_count * mru->grp_time);
409 	_xfs_mru_cache_clear_reap_list(mru);
410 
411 	mutex_spinunlock(&mru->lock, 0);
412 }
413 
414 void
415 xfs_mru_cache_destroy(
416 	xfs_mru_cache_t		*mru)
417 {
418 	if (!mru || !mru->lists)
419 		return;
420 
421 	xfs_mru_cache_flush(mru);
422 
423 	kmem_free(mru->lists, mru->grp_count * sizeof(*mru->lists));
424 	kmem_free(mru, sizeof(*mru));
425 }
426 
427 /*
428  * To insert an element, call xfs_mru_cache_insert() with the data store, the
429  * element's key and the client data pointer.  This function returns 0 on
430  * success or ENOMEM if memory for the data element couldn't be allocated.
431  */
432 int
433 xfs_mru_cache_insert(
434 	xfs_mru_cache_t	*mru,
435 	unsigned long	key,
436 	void		*value)
437 {
438 	xfs_mru_cache_elem_t *elem;
439 
440 	ASSERT(mru && mru->lists);
441 	if (!mru || !mru->lists)
442 		return EINVAL;
443 
444 	elem = kmem_zone_zalloc(xfs_mru_elem_zone, KM_SLEEP);
445 	if (!elem)
446 		return ENOMEM;
447 
448 	if (radix_tree_preload(GFP_KERNEL)) {
449 		kmem_zone_free(xfs_mru_elem_zone, elem);
450 		return ENOMEM;
451 	}
452 
453 	INIT_LIST_HEAD(&elem->list_node);
454 	elem->key = key;
455 	elem->value = value;
456 
457 	mutex_spinlock(&mru->lock);
458 
459 	radix_tree_insert(&mru->store, key, elem);
460 	radix_tree_preload_end();
461 	_xfs_mru_cache_list_insert(mru, elem);
462 
463 	mutex_spinunlock(&mru->lock, 0);
464 
465 	return 0;
466 }
467 
468 /*
469  * To remove an element without calling the free function, call
470  * xfs_mru_cache_remove() with the data store and the element's key.  On success
471  * the client data pointer for the removed element is returned, otherwise this
472  * function will return a NULL pointer.
473  */
474 void *
475 xfs_mru_cache_remove(
476 	xfs_mru_cache_t	*mru,
477 	unsigned long	key)
478 {
479 	xfs_mru_cache_elem_t *elem;
480 	void		*value = NULL;
481 
482 	ASSERT(mru && mru->lists);
483 	if (!mru || !mru->lists)
484 		return NULL;
485 
486 	mutex_spinlock(&mru->lock);
487 	elem = radix_tree_delete(&mru->store, key);
488 	if (elem) {
489 		value = elem->value;
490 		list_del(&elem->list_node);
491 	}
492 
493 	mutex_spinunlock(&mru->lock, 0);
494 
495 	if (elem)
496 		kmem_zone_free(xfs_mru_elem_zone, elem);
497 
498 	return value;
499 }
500 
501 /*
502  * To remove and element and call the free function, call xfs_mru_cache_delete()
503  * with the data store and the element's key.
504  */
505 void
506 xfs_mru_cache_delete(
507 	xfs_mru_cache_t	*mru,
508 	unsigned long	key)
509 {
510 	void		*value = xfs_mru_cache_remove(mru, key);
511 
512 	if (value)
513 		mru->free_func(key, value);
514 }
515 
516 /*
517  * To look up an element using its key, call xfs_mru_cache_lookup() with the
518  * data store and the element's key.  If found, the element will be moved to the
519  * head of the MRU list to indicate that it's been touched.
520  *
521  * The internal data structures are protected by a spinlock that is STILL HELD
522  * when this function returns.  Call xfs_mru_cache_done() to release it.  Note
523  * that it is not safe to call any function that might sleep in the interim.
524  *
525  * The implementation could have used reference counting to avoid this
526  * restriction, but since most clients simply want to get, set or test a member
527  * of the returned data structure, the extra per-element memory isn't warranted.
528  *
529  * If the element isn't found, this function returns NULL and the spinlock is
530  * released.  xfs_mru_cache_done() should NOT be called when this occurs.
531  */
532 void *
533 xfs_mru_cache_lookup(
534 	xfs_mru_cache_t	*mru,
535 	unsigned long	key)
536 {
537 	xfs_mru_cache_elem_t *elem;
538 
539 	ASSERT(mru && mru->lists);
540 	if (!mru || !mru->lists)
541 		return NULL;
542 
543 	mutex_spinlock(&mru->lock);
544 	elem = radix_tree_lookup(&mru->store, key);
545 	if (elem) {
546 		list_del(&elem->list_node);
547 		_xfs_mru_cache_list_insert(mru, elem);
548 	}
549 	else
550 		mutex_spinunlock(&mru->lock, 0);
551 
552 	return elem ? elem->value : NULL;
553 }
554 
555 /*
556  * To look up an element using its key, but leave its location in the internal
557  * lists alone, call xfs_mru_cache_peek().  If the element isn't found, this
558  * function returns NULL.
559  *
560  * See the comments above the declaration of the xfs_mru_cache_lookup() function
561  * for important locking information pertaining to this call.
562  */
563 void *
564 xfs_mru_cache_peek(
565 	xfs_mru_cache_t	*mru,
566 	unsigned long	key)
567 {
568 	xfs_mru_cache_elem_t *elem;
569 
570 	ASSERT(mru && mru->lists);
571 	if (!mru || !mru->lists)
572 		return NULL;
573 
574 	mutex_spinlock(&mru->lock);
575 	elem = radix_tree_lookup(&mru->store, key);
576 	if (!elem)
577 		mutex_spinunlock(&mru->lock, 0);
578 
579 	return elem ? elem->value : NULL;
580 }
581 
582 /*
583  * To release the internal data structure spinlock after having performed an
584  * xfs_mru_cache_lookup() or an xfs_mru_cache_peek(), call xfs_mru_cache_done()
585  * with the data store pointer.
586  */
587 void
588 xfs_mru_cache_done(
589 	xfs_mru_cache_t	*mru)
590 {
591 	mutex_spinunlock(&mru->lock, 0);
592 }
593