xref: /openbmc/linux/fs/xfs/xfs_mru_cache.c (revision 2359ccdd)
1 /*
2  * Copyright (c) 2006-2007 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_mru_cache.h"
20 
21 /*
22  * The MRU Cache data structure consists of a data store, an array of lists and
23  * a lock to protect its internal state.  At initialisation time, the client
24  * supplies an element lifetime in milliseconds and a group count, as well as a
25  * function pointer to call when deleting elements.  A data structure for
26  * queueing up work in the form of timed callbacks is also included.
27  *
28  * The group count controls how many lists are created, and thereby how finely
29  * the elements are grouped in time.  When reaping occurs, all the elements in
30  * all the lists whose time has expired are deleted.
31  *
32  * To give an example of how this works in practice, consider a client that
33  * initialises an MRU Cache with a lifetime of ten seconds and a group count of
34  * five.  Five internal lists will be created, each representing a two second
35  * period in time.  When the first element is added, time zero for the data
36  * structure is initialised to the current time.
37  *
38  * All the elements added in the first two seconds are appended to the first
39  * list.  Elements added in the third second go into the second list, and so on.
40  * If an element is accessed at any point, it is removed from its list and
41  * inserted at the head of the current most-recently-used list.
42  *
43  * The reaper function will have nothing to do until at least twelve seconds
44  * have elapsed since the first element was added.  The reason for this is that
45  * if it were called at t=11s, there could be elements in the first list that
46  * have only been inactive for nine seconds, so it still does nothing.  If it is
47  * called anywhere between t=12 and t=14 seconds, it will delete all the
48  * elements that remain in the first list.  It's therefore possible for elements
49  * to remain in the data store even after they've been inactive for up to
50  * (t + t/g) seconds, where t is the inactive element lifetime and g is the
51  * number of groups.
52  *
53  * The above example assumes that the reaper function gets called at least once
54  * every (t/g) seconds.  If it is called less frequently, unused elements will
55  * accumulate in the reap list until the reaper function is eventually called.
56  * The current implementation uses work queue callbacks to carefully time the
57  * reaper function calls, so this should happen rarely, if at all.
58  *
59  * From a design perspective, the primary reason for the choice of a list array
60  * representing discrete time intervals is that it's only practical to reap
61  * expired elements in groups of some appreciable size.  This automatically
62  * introduces a granularity to element lifetimes, so there's no point storing an
63  * individual timeout with each element that specifies a more precise reap time.
64  * The bonus is a saving of sizeof(long) bytes of memory per element stored.
65  *
66  * The elements could have been stored in just one list, but an array of
67  * counters or pointers would need to be maintained to allow them to be divided
68  * up into discrete time groups.  More critically, the process of touching or
69  * removing an element would involve walking large portions of the entire list,
70  * which would have a detrimental effect on performance.  The additional memory
71  * requirement for the array of list heads is minimal.
72  *
73  * When an element is touched or deleted, it needs to be removed from its
74  * current list.  Doubly linked lists are used to make the list maintenance
75  * portion of these operations O(1).  Since reaper timing can be imprecise,
76  * inserts and lookups can occur when there are no free lists available.  When
77  * this happens, all the elements on the LRU list need to be migrated to the end
78  * of the reap list.  To keep the list maintenance portion of these operations
79  * O(1) also, list tails need to be accessible without walking the entire list.
80  * This is the reason why doubly linked list heads are used.
81  */
82 
83 /*
84  * An MRU Cache is a dynamic data structure that stores its elements in a way
85  * that allows efficient lookups, but also groups them into discrete time
86  * intervals based on insertion time.  This allows elements to be efficiently
87  * and automatically reaped after a fixed period of inactivity.
88  *
89  * When a client data pointer is stored in the MRU Cache it needs to be added to
90  * both the data store and to one of the lists.  It must also be possible to
91  * access each of these entries via the other, i.e. to:
92  *
93  *    a) Walk a list, removing the corresponding data store entry for each item.
94  *    b) Look up a data store entry, then access its list entry directly.
95  *
96  * To achieve both of these goals, each entry must contain both a list entry and
97  * a key, in addition to the user's data pointer.  Note that it's not a good
98  * idea to have the client embed one of these structures at the top of their own
99  * data structure, because inserting the same item more than once would most
100  * likely result in a loop in one of the lists.  That's a sure-fire recipe for
101  * an infinite loop in the code.
102  */
103 struct xfs_mru_cache {
104 	struct radix_tree_root	store;     /* Core storage data structure.  */
105 	struct list_head	*lists;    /* Array of lists, one per grp.  */
106 	struct list_head	reap_list; /* Elements overdue for reaping. */
107 	spinlock_t		lock;      /* Lock to protect this struct.  */
108 	unsigned int		grp_count; /* Number of discrete groups.    */
109 	unsigned int		grp_time;  /* Time period spanned by grps.  */
110 	unsigned int		lru_grp;   /* Group containing time zero.   */
111 	unsigned long		time_zero; /* Time first element was added. */
112 	xfs_mru_cache_free_func_t free_func; /* Function pointer for freeing. */
113 	struct delayed_work	work;      /* Workqueue data for reaping.   */
114 	unsigned int		queued;	   /* work has been queued */
115 	void			*data;
116 };
117 
118 static struct workqueue_struct	*xfs_mru_reap_wq;
119 
120 /*
121  * When inserting, destroying or reaping, it's first necessary to update the
122  * lists relative to a particular time.  In the case of destroying, that time
123  * will be well in the future to ensure that all items are moved to the reap
124  * list.  In all other cases though, the time will be the current time.
125  *
126  * This function enters a loop, moving the contents of the LRU list to the reap
127  * list again and again until either a) the lists are all empty, or b) time zero
128  * has been advanced sufficiently to be within the immediate element lifetime.
129  *
130  * Case a) above is detected by counting how many groups are migrated and
131  * stopping when they've all been moved.  Case b) is detected by monitoring the
132  * time_zero field, which is updated as each group is migrated.
133  *
134  * The return value is the earliest time that more migration could be needed, or
135  * zero if there's no need to schedule more work because the lists are empty.
136  */
137 STATIC unsigned long
138 _xfs_mru_cache_migrate(
139 	struct xfs_mru_cache	*mru,
140 	unsigned long		now)
141 {
142 	unsigned int		grp;
143 	unsigned int		migrated = 0;
144 	struct list_head	*lru_list;
145 
146 	/* Nothing to do if the data store is empty. */
147 	if (!mru->time_zero)
148 		return 0;
149 
150 	/* While time zero is older than the time spanned by all the lists. */
151 	while (mru->time_zero <= now - mru->grp_count * mru->grp_time) {
152 
153 		/*
154 		 * If the LRU list isn't empty, migrate its elements to the tail
155 		 * of the reap list.
156 		 */
157 		lru_list = mru->lists + mru->lru_grp;
158 		if (!list_empty(lru_list))
159 			list_splice_init(lru_list, mru->reap_list.prev);
160 
161 		/*
162 		 * Advance the LRU group number, freeing the old LRU list to
163 		 * become the new MRU list; advance time zero accordingly.
164 		 */
165 		mru->lru_grp = (mru->lru_grp + 1) % mru->grp_count;
166 		mru->time_zero += mru->grp_time;
167 
168 		/*
169 		 * If reaping is so far behind that all the elements on all the
170 		 * lists have been migrated to the reap list, it's now empty.
171 		 */
172 		if (++migrated == mru->grp_count) {
173 			mru->lru_grp = 0;
174 			mru->time_zero = 0;
175 			return 0;
176 		}
177 	}
178 
179 	/* Find the first non-empty list from the LRU end. */
180 	for (grp = 0; grp < mru->grp_count; grp++) {
181 
182 		/* Check the grp'th list from the LRU end. */
183 		lru_list = mru->lists + ((mru->lru_grp + grp) % mru->grp_count);
184 		if (!list_empty(lru_list))
185 			return mru->time_zero +
186 			       (mru->grp_count + grp) * mru->grp_time;
187 	}
188 
189 	/* All the lists must be empty. */
190 	mru->lru_grp = 0;
191 	mru->time_zero = 0;
192 	return 0;
193 }
194 
195 /*
196  * When inserting or doing a lookup, an element needs to be inserted into the
197  * MRU list.  The lists must be migrated first to ensure that they're
198  * up-to-date, otherwise the new element could be given a shorter lifetime in
199  * the cache than it should.
200  */
201 STATIC void
202 _xfs_mru_cache_list_insert(
203 	struct xfs_mru_cache	*mru,
204 	struct xfs_mru_cache_elem *elem)
205 {
206 	unsigned int		grp = 0;
207 	unsigned long		now = jiffies;
208 
209 	/*
210 	 * If the data store is empty, initialise time zero, leave grp set to
211 	 * zero and start the work queue timer if necessary.  Otherwise, set grp
212 	 * to the number of group times that have elapsed since time zero.
213 	 */
214 	if (!_xfs_mru_cache_migrate(mru, now)) {
215 		mru->time_zero = now;
216 		if (!mru->queued) {
217 			mru->queued = 1;
218 			queue_delayed_work(xfs_mru_reap_wq, &mru->work,
219 			                   mru->grp_count * mru->grp_time);
220 		}
221 	} else {
222 		grp = (now - mru->time_zero) / mru->grp_time;
223 		grp = (mru->lru_grp + grp) % mru->grp_count;
224 	}
225 
226 	/* Insert the element at the tail of the corresponding list. */
227 	list_add_tail(&elem->list_node, mru->lists + grp);
228 }
229 
230 /*
231  * When destroying or reaping, all the elements that were migrated to the reap
232  * list need to be deleted.  For each element this involves removing it from the
233  * data store, removing it from the reap list, calling the client's free
234  * function and deleting the element from the element zone.
235  *
236  * We get called holding the mru->lock, which we drop and then reacquire.
237  * Sparse need special help with this to tell it we know what we are doing.
238  */
239 STATIC void
240 _xfs_mru_cache_clear_reap_list(
241 	struct xfs_mru_cache	*mru)
242 		__releases(mru->lock) __acquires(mru->lock)
243 {
244 	struct xfs_mru_cache_elem *elem, *next;
245 	struct list_head	tmp;
246 
247 	INIT_LIST_HEAD(&tmp);
248 	list_for_each_entry_safe(elem, next, &mru->reap_list, list_node) {
249 
250 		/* Remove the element from the data store. */
251 		radix_tree_delete(&mru->store, elem->key);
252 
253 		/*
254 		 * remove to temp list so it can be freed without
255 		 * needing to hold the lock
256 		 */
257 		list_move(&elem->list_node, &tmp);
258 	}
259 	spin_unlock(&mru->lock);
260 
261 	list_for_each_entry_safe(elem, next, &tmp, list_node) {
262 		list_del_init(&elem->list_node);
263 		mru->free_func(mru->data, elem);
264 	}
265 
266 	spin_lock(&mru->lock);
267 }
268 
269 /*
270  * We fire the reap timer every group expiry interval so
271  * we always have a reaper ready to run. This makes shutdown
272  * and flushing of the reaper easy to do. Hence we need to
273  * keep when the next reap must occur so we can determine
274  * at each interval whether there is anything we need to do.
275  */
276 STATIC void
277 _xfs_mru_cache_reap(
278 	struct work_struct	*work)
279 {
280 	struct xfs_mru_cache	*mru =
281 		container_of(work, struct xfs_mru_cache, work.work);
282 	unsigned long		now, next;
283 
284 	ASSERT(mru && mru->lists);
285 	if (!mru || !mru->lists)
286 		return;
287 
288 	spin_lock(&mru->lock);
289 	next = _xfs_mru_cache_migrate(mru, jiffies);
290 	_xfs_mru_cache_clear_reap_list(mru);
291 
292 	mru->queued = next;
293 	if ((mru->queued > 0)) {
294 		now = jiffies;
295 		if (next <= now)
296 			next = 0;
297 		else
298 			next -= now;
299 		queue_delayed_work(xfs_mru_reap_wq, &mru->work, next);
300 	}
301 
302 	spin_unlock(&mru->lock);
303 }
304 
305 int
306 xfs_mru_cache_init(void)
307 {
308 	xfs_mru_reap_wq = alloc_workqueue("xfs_mru_cache",
309 				WQ_MEM_RECLAIM|WQ_FREEZABLE, 1);
310 	if (!xfs_mru_reap_wq)
311 		return -ENOMEM;
312 	return 0;
313 }
314 
315 void
316 xfs_mru_cache_uninit(void)
317 {
318 	destroy_workqueue(xfs_mru_reap_wq);
319 }
320 
321 /*
322  * To initialise a struct xfs_mru_cache pointer, call xfs_mru_cache_create()
323  * with the address of the pointer, a lifetime value in milliseconds, a group
324  * count and a free function to use when deleting elements.  This function
325  * returns 0 if the initialisation was successful.
326  */
327 int
328 xfs_mru_cache_create(
329 	struct xfs_mru_cache	**mrup,
330 	void			*data,
331 	unsigned int		lifetime_ms,
332 	unsigned int		grp_count,
333 	xfs_mru_cache_free_func_t free_func)
334 {
335 	struct xfs_mru_cache	*mru = NULL;
336 	int			err = 0, grp;
337 	unsigned int		grp_time;
338 
339 	if (mrup)
340 		*mrup = NULL;
341 
342 	if (!mrup || !grp_count || !lifetime_ms || !free_func)
343 		return -EINVAL;
344 
345 	if (!(grp_time = msecs_to_jiffies(lifetime_ms) / grp_count))
346 		return -EINVAL;
347 
348 	if (!(mru = kmem_zalloc(sizeof(*mru), KM_SLEEP)))
349 		return -ENOMEM;
350 
351 	/* An extra list is needed to avoid reaping up to a grp_time early. */
352 	mru->grp_count = grp_count + 1;
353 	mru->lists = kmem_zalloc(mru->grp_count * sizeof(*mru->lists), KM_SLEEP);
354 
355 	if (!mru->lists) {
356 		err = -ENOMEM;
357 		goto exit;
358 	}
359 
360 	for (grp = 0; grp < mru->grp_count; grp++)
361 		INIT_LIST_HEAD(mru->lists + grp);
362 
363 	/*
364 	 * We use GFP_KERNEL radix tree preload and do inserts under a
365 	 * spinlock so GFP_ATOMIC is appropriate for the radix tree itself.
366 	 */
367 	INIT_RADIX_TREE(&mru->store, GFP_ATOMIC);
368 	INIT_LIST_HEAD(&mru->reap_list);
369 	spin_lock_init(&mru->lock);
370 	INIT_DELAYED_WORK(&mru->work, _xfs_mru_cache_reap);
371 
372 	mru->grp_time  = grp_time;
373 	mru->free_func = free_func;
374 	mru->data = data;
375 	*mrup = mru;
376 
377 exit:
378 	if (err && mru && mru->lists)
379 		kmem_free(mru->lists);
380 	if (err && mru)
381 		kmem_free(mru);
382 
383 	return err;
384 }
385 
386 /*
387  * Call xfs_mru_cache_flush() to flush out all cached entries, calling their
388  * free functions as they're deleted.  When this function returns, the caller is
389  * guaranteed that all the free functions for all the elements have finished
390  * executing and the reaper is not running.
391  */
392 static void
393 xfs_mru_cache_flush(
394 	struct xfs_mru_cache	*mru)
395 {
396 	if (!mru || !mru->lists)
397 		return;
398 
399 	spin_lock(&mru->lock);
400 	if (mru->queued) {
401 		spin_unlock(&mru->lock);
402 		cancel_delayed_work_sync(&mru->work);
403 		spin_lock(&mru->lock);
404 	}
405 
406 	_xfs_mru_cache_migrate(mru, jiffies + mru->grp_count * mru->grp_time);
407 	_xfs_mru_cache_clear_reap_list(mru);
408 
409 	spin_unlock(&mru->lock);
410 }
411 
412 void
413 xfs_mru_cache_destroy(
414 	struct xfs_mru_cache	*mru)
415 {
416 	if (!mru || !mru->lists)
417 		return;
418 
419 	xfs_mru_cache_flush(mru);
420 
421 	kmem_free(mru->lists);
422 	kmem_free(mru);
423 }
424 
425 /*
426  * To insert an element, call xfs_mru_cache_insert() with the data store, the
427  * element's key and the client data pointer.  This function returns 0 on
428  * success or ENOMEM if memory for the data element couldn't be allocated.
429  */
430 int
431 xfs_mru_cache_insert(
432 	struct xfs_mru_cache	*mru,
433 	unsigned long		key,
434 	struct xfs_mru_cache_elem *elem)
435 {
436 	int			error;
437 
438 	ASSERT(mru && mru->lists);
439 	if (!mru || !mru->lists)
440 		return -EINVAL;
441 
442 	if (radix_tree_preload(GFP_NOFS))
443 		return -ENOMEM;
444 
445 	INIT_LIST_HEAD(&elem->list_node);
446 	elem->key = key;
447 
448 	spin_lock(&mru->lock);
449 	error = radix_tree_insert(&mru->store, key, elem);
450 	radix_tree_preload_end();
451 	if (!error)
452 		_xfs_mru_cache_list_insert(mru, elem);
453 	spin_unlock(&mru->lock);
454 
455 	return error;
456 }
457 
458 /*
459  * To remove an element without calling the free function, call
460  * xfs_mru_cache_remove() with the data store and the element's key.  On success
461  * the client data pointer for the removed element is returned, otherwise this
462  * function will return a NULL pointer.
463  */
464 struct xfs_mru_cache_elem *
465 xfs_mru_cache_remove(
466 	struct xfs_mru_cache	*mru,
467 	unsigned long		key)
468 {
469 	struct xfs_mru_cache_elem *elem;
470 
471 	ASSERT(mru && mru->lists);
472 	if (!mru || !mru->lists)
473 		return NULL;
474 
475 	spin_lock(&mru->lock);
476 	elem = radix_tree_delete(&mru->store, key);
477 	if (elem)
478 		list_del(&elem->list_node);
479 	spin_unlock(&mru->lock);
480 
481 	return elem;
482 }
483 
484 /*
485  * To remove and element and call the free function, call xfs_mru_cache_delete()
486  * with the data store and the element's key.
487  */
488 void
489 xfs_mru_cache_delete(
490 	struct xfs_mru_cache	*mru,
491 	unsigned long		key)
492 {
493 	struct xfs_mru_cache_elem *elem;
494 
495 	elem = xfs_mru_cache_remove(mru, key);
496 	if (elem)
497 		mru->free_func(mru->data, elem);
498 }
499 
500 /*
501  * To look up an element using its key, call xfs_mru_cache_lookup() with the
502  * data store and the element's key.  If found, the element will be moved to the
503  * head of the MRU list to indicate that it's been touched.
504  *
505  * The internal data structures are protected by a spinlock that is STILL HELD
506  * when this function returns.  Call xfs_mru_cache_done() to release it.  Note
507  * that it is not safe to call any function that might sleep in the interim.
508  *
509  * The implementation could have used reference counting to avoid this
510  * restriction, but since most clients simply want to get, set or test a member
511  * of the returned data structure, the extra per-element memory isn't warranted.
512  *
513  * If the element isn't found, this function returns NULL and the spinlock is
514  * released.  xfs_mru_cache_done() should NOT be called when this occurs.
515  *
516  * Because sparse isn't smart enough to know about conditional lock return
517  * status, we need to help it get it right by annotating the path that does
518  * not release the lock.
519  */
520 struct xfs_mru_cache_elem *
521 xfs_mru_cache_lookup(
522 	struct xfs_mru_cache	*mru,
523 	unsigned long		key)
524 {
525 	struct xfs_mru_cache_elem *elem;
526 
527 	ASSERT(mru && mru->lists);
528 	if (!mru || !mru->lists)
529 		return NULL;
530 
531 	spin_lock(&mru->lock);
532 	elem = radix_tree_lookup(&mru->store, key);
533 	if (elem) {
534 		list_del(&elem->list_node);
535 		_xfs_mru_cache_list_insert(mru, elem);
536 		__release(mru_lock); /* help sparse not be stupid */
537 	} else
538 		spin_unlock(&mru->lock);
539 
540 	return elem;
541 }
542 
543 /*
544  * To release the internal data structure spinlock after having performed an
545  * xfs_mru_cache_lookup() or an xfs_mru_cache_peek(), call xfs_mru_cache_done()
546  * with the data store pointer.
547  */
548 void
549 xfs_mru_cache_done(
550 	struct xfs_mru_cache	*mru)
551 		__releases(mru->lock)
552 {
553 	spin_unlock(&mru->lock);
554 }
555