xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision ff148d8a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
19 #include "xfs_dir2.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_alloc.h"
22 #include "xfs_rtalloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_log.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_fsops.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_refcount_btree.h"
35 #include "xfs_reflink.h"
36 #include "xfs_extent_busy.h"
37 #include "xfs_health.h"
38 
39 
40 static DEFINE_MUTEX(xfs_uuid_table_mutex);
41 static int xfs_uuid_table_size;
42 static uuid_t *xfs_uuid_table;
43 
44 void
45 xfs_uuid_table_free(void)
46 {
47 	if (xfs_uuid_table_size == 0)
48 		return;
49 	kmem_free(xfs_uuid_table);
50 	xfs_uuid_table = NULL;
51 	xfs_uuid_table_size = 0;
52 }
53 
54 /*
55  * See if the UUID is unique among mounted XFS filesystems.
56  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
57  */
58 STATIC int
59 xfs_uuid_mount(
60 	struct xfs_mount	*mp)
61 {
62 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
63 	int			hole, i;
64 
65 	/* Publish UUID in struct super_block */
66 	uuid_copy(&mp->m_super->s_uuid, uuid);
67 
68 	if (mp->m_flags & XFS_MOUNT_NOUUID)
69 		return 0;
70 
71 	if (uuid_is_null(uuid)) {
72 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
73 		return -EINVAL;
74 	}
75 
76 	mutex_lock(&xfs_uuid_table_mutex);
77 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
78 		if (uuid_is_null(&xfs_uuid_table[i])) {
79 			hole = i;
80 			continue;
81 		}
82 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
83 			goto out_duplicate;
84 	}
85 
86 	if (hole < 0) {
87 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
88 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
89 			KM_SLEEP);
90 		hole = xfs_uuid_table_size++;
91 	}
92 	xfs_uuid_table[hole] = *uuid;
93 	mutex_unlock(&xfs_uuid_table_mutex);
94 
95 	return 0;
96 
97  out_duplicate:
98 	mutex_unlock(&xfs_uuid_table_mutex);
99 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
100 	return -EINVAL;
101 }
102 
103 STATIC void
104 xfs_uuid_unmount(
105 	struct xfs_mount	*mp)
106 {
107 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
108 	int			i;
109 
110 	if (mp->m_flags & XFS_MOUNT_NOUUID)
111 		return;
112 
113 	mutex_lock(&xfs_uuid_table_mutex);
114 	for (i = 0; i < xfs_uuid_table_size; i++) {
115 		if (uuid_is_null(&xfs_uuid_table[i]))
116 			continue;
117 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
118 			continue;
119 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
120 		break;
121 	}
122 	ASSERT(i < xfs_uuid_table_size);
123 	mutex_unlock(&xfs_uuid_table_mutex);
124 }
125 
126 
127 STATIC void
128 __xfs_free_perag(
129 	struct rcu_head	*head)
130 {
131 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
132 
133 	ASSERT(atomic_read(&pag->pag_ref) == 0);
134 	kmem_free(pag);
135 }
136 
137 /*
138  * Free up the per-ag resources associated with the mount structure.
139  */
140 STATIC void
141 xfs_free_perag(
142 	xfs_mount_t	*mp)
143 {
144 	xfs_agnumber_t	agno;
145 	struct xfs_perag *pag;
146 
147 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
148 		spin_lock(&mp->m_perag_lock);
149 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
150 		spin_unlock(&mp->m_perag_lock);
151 		ASSERT(pag);
152 		ASSERT(atomic_read(&pag->pag_ref) == 0);
153 		xfs_iunlink_destroy(pag);
154 		xfs_buf_hash_destroy(pag);
155 		mutex_destroy(&pag->pag_ici_reclaim_lock);
156 		call_rcu(&pag->rcu_head, __xfs_free_perag);
157 	}
158 }
159 
160 /*
161  * Check size of device based on the (data/realtime) block count.
162  * Note: this check is used by the growfs code as well as mount.
163  */
164 int
165 xfs_sb_validate_fsb_count(
166 	xfs_sb_t	*sbp,
167 	uint64_t	nblocks)
168 {
169 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
170 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
171 
172 	/* Limited by ULONG_MAX of page cache index */
173 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
174 		return -EFBIG;
175 	return 0;
176 }
177 
178 int
179 xfs_initialize_perag(
180 	xfs_mount_t	*mp,
181 	xfs_agnumber_t	agcount,
182 	xfs_agnumber_t	*maxagi)
183 {
184 	xfs_agnumber_t	index;
185 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
186 	xfs_perag_t	*pag;
187 	int		error = -ENOMEM;
188 
189 	/*
190 	 * Walk the current per-ag tree so we don't try to initialise AGs
191 	 * that already exist (growfs case). Allocate and insert all the
192 	 * AGs we don't find ready for initialisation.
193 	 */
194 	for (index = 0; index < agcount; index++) {
195 		pag = xfs_perag_get(mp, index);
196 		if (pag) {
197 			xfs_perag_put(pag);
198 			continue;
199 		}
200 
201 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
202 		if (!pag)
203 			goto out_unwind_new_pags;
204 		pag->pag_agno = index;
205 		pag->pag_mount = mp;
206 		spin_lock_init(&pag->pag_ici_lock);
207 		mutex_init(&pag->pag_ici_reclaim_lock);
208 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
209 		if (xfs_buf_hash_init(pag))
210 			goto out_free_pag;
211 		init_waitqueue_head(&pag->pagb_wait);
212 		spin_lock_init(&pag->pagb_lock);
213 		pag->pagb_count = 0;
214 		pag->pagb_tree = RB_ROOT;
215 
216 		if (radix_tree_preload(GFP_NOFS))
217 			goto out_hash_destroy;
218 
219 		spin_lock(&mp->m_perag_lock);
220 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
221 			BUG();
222 			spin_unlock(&mp->m_perag_lock);
223 			radix_tree_preload_end();
224 			error = -EEXIST;
225 			goto out_hash_destroy;
226 		}
227 		spin_unlock(&mp->m_perag_lock);
228 		radix_tree_preload_end();
229 		/* first new pag is fully initialized */
230 		if (first_initialised == NULLAGNUMBER)
231 			first_initialised = index;
232 		error = xfs_iunlink_init(pag);
233 		if (error)
234 			goto out_hash_destroy;
235 		spin_lock_init(&pag->pag_state_lock);
236 	}
237 
238 	index = xfs_set_inode_alloc(mp, agcount);
239 
240 	if (maxagi)
241 		*maxagi = index;
242 
243 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
244 	return 0;
245 
246 out_hash_destroy:
247 	xfs_buf_hash_destroy(pag);
248 out_free_pag:
249 	mutex_destroy(&pag->pag_ici_reclaim_lock);
250 	kmem_free(pag);
251 out_unwind_new_pags:
252 	/* unwind any prior newly initialized pags */
253 	for (index = first_initialised; index < agcount; index++) {
254 		pag = radix_tree_delete(&mp->m_perag_tree, index);
255 		if (!pag)
256 			break;
257 		xfs_buf_hash_destroy(pag);
258 		xfs_iunlink_destroy(pag);
259 		mutex_destroy(&pag->pag_ici_reclaim_lock);
260 		kmem_free(pag);
261 	}
262 	return error;
263 }
264 
265 /*
266  * xfs_readsb
267  *
268  * Does the initial read of the superblock.
269  */
270 int
271 xfs_readsb(
272 	struct xfs_mount *mp,
273 	int		flags)
274 {
275 	unsigned int	sector_size;
276 	struct xfs_buf	*bp;
277 	struct xfs_sb	*sbp = &mp->m_sb;
278 	int		error;
279 	int		loud = !(flags & XFS_MFSI_QUIET);
280 	const struct xfs_buf_ops *buf_ops;
281 
282 	ASSERT(mp->m_sb_bp == NULL);
283 	ASSERT(mp->m_ddev_targp != NULL);
284 
285 	/*
286 	 * For the initial read, we must guess at the sector
287 	 * size based on the block device.  It's enough to
288 	 * get the sb_sectsize out of the superblock and
289 	 * then reread with the proper length.
290 	 * We don't verify it yet, because it may not be complete.
291 	 */
292 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
293 	buf_ops = NULL;
294 
295 	/*
296 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
297 	 * around at all times to optimize access to the superblock. Therefore,
298 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
299 	 * elevated.
300 	 */
301 reread:
302 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
303 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
304 				      buf_ops);
305 	if (error) {
306 		if (loud)
307 			xfs_warn(mp, "SB validate failed with error %d.", error);
308 		/* bad CRC means corrupted metadata */
309 		if (error == -EFSBADCRC)
310 			error = -EFSCORRUPTED;
311 		return error;
312 	}
313 
314 	/*
315 	 * Initialize the mount structure from the superblock.
316 	 */
317 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
318 
319 	/*
320 	 * If we haven't validated the superblock, do so now before we try
321 	 * to check the sector size and reread the superblock appropriately.
322 	 */
323 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
324 		if (loud)
325 			xfs_warn(mp, "Invalid superblock magic number");
326 		error = -EINVAL;
327 		goto release_buf;
328 	}
329 
330 	/*
331 	 * We must be able to do sector-sized and sector-aligned IO.
332 	 */
333 	if (sector_size > sbp->sb_sectsize) {
334 		if (loud)
335 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
336 				sector_size, sbp->sb_sectsize);
337 		error = -ENOSYS;
338 		goto release_buf;
339 	}
340 
341 	if (buf_ops == NULL) {
342 		/*
343 		 * Re-read the superblock so the buffer is correctly sized,
344 		 * and properly verified.
345 		 */
346 		xfs_buf_relse(bp);
347 		sector_size = sbp->sb_sectsize;
348 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
349 		goto reread;
350 	}
351 
352 	xfs_reinit_percpu_counters(mp);
353 
354 	/* no need to be quiet anymore, so reset the buf ops */
355 	bp->b_ops = &xfs_sb_buf_ops;
356 
357 	mp->m_sb_bp = bp;
358 	xfs_buf_unlock(bp);
359 	return 0;
360 
361 release_buf:
362 	xfs_buf_relse(bp);
363 	return error;
364 }
365 
366 /*
367  * Update alignment values based on mount options and sb values
368  */
369 STATIC int
370 xfs_update_alignment(xfs_mount_t *mp)
371 {
372 	xfs_sb_t	*sbp = &(mp->m_sb);
373 
374 	if (mp->m_dalign) {
375 		/*
376 		 * If stripe unit and stripe width are not multiples
377 		 * of the fs blocksize turn off alignment.
378 		 */
379 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
380 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
381 			xfs_warn(mp,
382 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
383 				sbp->sb_blocksize);
384 			return -EINVAL;
385 		} else {
386 			/*
387 			 * Convert the stripe unit and width to FSBs.
388 			 */
389 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
390 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
391 				xfs_warn(mp,
392 			"alignment check failed: sunit/swidth vs. agsize(%d)",
393 					 sbp->sb_agblocks);
394 				return -EINVAL;
395 			} else if (mp->m_dalign) {
396 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
397 			} else {
398 				xfs_warn(mp,
399 			"alignment check failed: sunit(%d) less than bsize(%d)",
400 					 mp->m_dalign, sbp->sb_blocksize);
401 				return -EINVAL;
402 			}
403 		}
404 
405 		/*
406 		 * Update superblock with new values
407 		 * and log changes
408 		 */
409 		if (xfs_sb_version_hasdalign(sbp)) {
410 			if (sbp->sb_unit != mp->m_dalign) {
411 				sbp->sb_unit = mp->m_dalign;
412 				mp->m_update_sb = true;
413 			}
414 			if (sbp->sb_width != mp->m_swidth) {
415 				sbp->sb_width = mp->m_swidth;
416 				mp->m_update_sb = true;
417 			}
418 		} else {
419 			xfs_warn(mp,
420 	"cannot change alignment: superblock does not support data alignment");
421 			return -EINVAL;
422 		}
423 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
424 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
425 			mp->m_dalign = sbp->sb_unit;
426 			mp->m_swidth = sbp->sb_width;
427 	}
428 
429 	return 0;
430 }
431 
432 /*
433  * Set the maximum inode count for this filesystem
434  */
435 STATIC void
436 xfs_set_maxicount(xfs_mount_t *mp)
437 {
438 	xfs_sb_t	*sbp = &(mp->m_sb);
439 	uint64_t	icount;
440 
441 	if (sbp->sb_imax_pct) {
442 		/*
443 		 * Make sure the maximum inode count is a multiple
444 		 * of the units we allocate inodes in.
445 		 */
446 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
447 		do_div(icount, 100);
448 		do_div(icount, mp->m_ialloc_blks);
449 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
450 				   sbp->sb_inopblog;
451 	} else {
452 		mp->m_maxicount = 0;
453 	}
454 }
455 
456 /*
457  * Set the default minimum read and write sizes unless
458  * already specified in a mount option.
459  * We use smaller I/O sizes when the file system
460  * is being used for NFS service (wsync mount option).
461  */
462 STATIC void
463 xfs_set_rw_sizes(xfs_mount_t *mp)
464 {
465 	xfs_sb_t	*sbp = &(mp->m_sb);
466 	int		readio_log, writeio_log;
467 
468 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
469 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
470 			readio_log = XFS_WSYNC_READIO_LOG;
471 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
472 		} else {
473 			readio_log = XFS_READIO_LOG_LARGE;
474 			writeio_log = XFS_WRITEIO_LOG_LARGE;
475 		}
476 	} else {
477 		readio_log = mp->m_readio_log;
478 		writeio_log = mp->m_writeio_log;
479 	}
480 
481 	if (sbp->sb_blocklog > readio_log) {
482 		mp->m_readio_log = sbp->sb_blocklog;
483 	} else {
484 		mp->m_readio_log = readio_log;
485 	}
486 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
487 	if (sbp->sb_blocklog > writeio_log) {
488 		mp->m_writeio_log = sbp->sb_blocklog;
489 	} else {
490 		mp->m_writeio_log = writeio_log;
491 	}
492 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
493 }
494 
495 /*
496  * precalculate the low space thresholds for dynamic speculative preallocation.
497  */
498 void
499 xfs_set_low_space_thresholds(
500 	struct xfs_mount	*mp)
501 {
502 	int i;
503 
504 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
505 		uint64_t space = mp->m_sb.sb_dblocks;
506 
507 		do_div(space, 100);
508 		mp->m_low_space[i] = space * (i + 1);
509 	}
510 }
511 
512 
513 /*
514  * Set whether we're using inode alignment.
515  */
516 STATIC void
517 xfs_set_inoalignment(xfs_mount_t *mp)
518 {
519 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
520 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
521 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
522 	else
523 		mp->m_inoalign_mask = 0;
524 	/*
525 	 * If we are using stripe alignment, check whether
526 	 * the stripe unit is a multiple of the inode alignment
527 	 */
528 	if (mp->m_dalign && mp->m_inoalign_mask &&
529 	    !(mp->m_dalign & mp->m_inoalign_mask))
530 		mp->m_sinoalign = mp->m_dalign;
531 	else
532 		mp->m_sinoalign = 0;
533 }
534 
535 /*
536  * Check that the data (and log if separate) is an ok size.
537  */
538 STATIC int
539 xfs_check_sizes(
540 	struct xfs_mount *mp)
541 {
542 	struct xfs_buf	*bp;
543 	xfs_daddr_t	d;
544 	int		error;
545 
546 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
547 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
548 		xfs_warn(mp, "filesystem size mismatch detected");
549 		return -EFBIG;
550 	}
551 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
552 					d - XFS_FSS_TO_BB(mp, 1),
553 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
554 	if (error) {
555 		xfs_warn(mp, "last sector read failed");
556 		return error;
557 	}
558 	xfs_buf_relse(bp);
559 
560 	if (mp->m_logdev_targp == mp->m_ddev_targp)
561 		return 0;
562 
563 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
564 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
565 		xfs_warn(mp, "log size mismatch detected");
566 		return -EFBIG;
567 	}
568 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
569 					d - XFS_FSB_TO_BB(mp, 1),
570 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
571 	if (error) {
572 		xfs_warn(mp, "log device read failed");
573 		return error;
574 	}
575 	xfs_buf_relse(bp);
576 	return 0;
577 }
578 
579 /*
580  * Clear the quotaflags in memory and in the superblock.
581  */
582 int
583 xfs_mount_reset_sbqflags(
584 	struct xfs_mount	*mp)
585 {
586 	mp->m_qflags = 0;
587 
588 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
589 	if (mp->m_sb.sb_qflags == 0)
590 		return 0;
591 	spin_lock(&mp->m_sb_lock);
592 	mp->m_sb.sb_qflags = 0;
593 	spin_unlock(&mp->m_sb_lock);
594 
595 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
596 		return 0;
597 
598 	return xfs_sync_sb(mp, false);
599 }
600 
601 uint64_t
602 xfs_default_resblks(xfs_mount_t *mp)
603 {
604 	uint64_t resblks;
605 
606 	/*
607 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
608 	 * smaller.  This is intended to cover concurrent allocation
609 	 * transactions when we initially hit enospc. These each require a 4
610 	 * block reservation. Hence by default we cover roughly 2000 concurrent
611 	 * allocation reservations.
612 	 */
613 	resblks = mp->m_sb.sb_dblocks;
614 	do_div(resblks, 20);
615 	resblks = min_t(uint64_t, resblks, 8192);
616 	return resblks;
617 }
618 
619 /* Ensure the summary counts are correct. */
620 STATIC int
621 xfs_check_summary_counts(
622 	struct xfs_mount	*mp)
623 {
624 	/*
625 	 * The AG0 superblock verifier rejects in-progress filesystems,
626 	 * so we should never see the flag set this far into mounting.
627 	 */
628 	if (mp->m_sb.sb_inprogress) {
629 		xfs_err(mp, "sb_inprogress set after log recovery??");
630 		WARN_ON(1);
631 		return -EFSCORRUPTED;
632 	}
633 
634 	/*
635 	 * Now the log is mounted, we know if it was an unclean shutdown or
636 	 * not. If it was, with the first phase of recovery has completed, we
637 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
638 	 * but they are recovered transactionally in the second recovery phase
639 	 * later.
640 	 *
641 	 * If the log was clean when we mounted, we can check the summary
642 	 * counters.  If any of them are obviously incorrect, we can recompute
643 	 * them from the AGF headers in the next step.
644 	 */
645 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
646 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
647 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
648 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
649 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
650 
651 	/*
652 	 * We can safely re-initialise incore superblock counters from the
653 	 * per-ag data. These may not be correct if the filesystem was not
654 	 * cleanly unmounted, so we waited for recovery to finish before doing
655 	 * this.
656 	 *
657 	 * If the filesystem was cleanly unmounted or the previous check did
658 	 * not flag anything weird, then we can trust the values in the
659 	 * superblock to be correct and we don't need to do anything here.
660 	 * Otherwise, recalculate the summary counters.
661 	 */
662 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
663 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
664 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
665 		return 0;
666 
667 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
668 }
669 
670 /*
671  * This function does the following on an initial mount of a file system:
672  *	- reads the superblock from disk and init the mount struct
673  *	- if we're a 32-bit kernel, do a size check on the superblock
674  *		so we don't mount terabyte filesystems
675  *	- init mount struct realtime fields
676  *	- allocate inode hash table for fs
677  *	- init directory manager
678  *	- perform recovery and init the log manager
679  */
680 int
681 xfs_mountfs(
682 	struct xfs_mount	*mp)
683 {
684 	struct xfs_sb		*sbp = &(mp->m_sb);
685 	struct xfs_inode	*rip;
686 	uint64_t		resblks;
687 	uint			quotamount = 0;
688 	uint			quotaflags = 0;
689 	int			error = 0;
690 
691 	xfs_sb_mount_common(mp, sbp);
692 
693 	/*
694 	 * Check for a mismatched features2 values.  Older kernels read & wrote
695 	 * into the wrong sb offset for sb_features2 on some platforms due to
696 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
697 	 * which made older superblock reading/writing routines swap it as a
698 	 * 64-bit value.
699 	 *
700 	 * For backwards compatibility, we make both slots equal.
701 	 *
702 	 * If we detect a mismatched field, we OR the set bits into the existing
703 	 * features2 field in case it has already been modified; we don't want
704 	 * to lose any features.  We then update the bad location with the ORed
705 	 * value so that older kernels will see any features2 flags. The
706 	 * superblock writeback code ensures the new sb_features2 is copied to
707 	 * sb_bad_features2 before it is logged or written to disk.
708 	 */
709 	if (xfs_sb_has_mismatched_features2(sbp)) {
710 		xfs_warn(mp, "correcting sb_features alignment problem");
711 		sbp->sb_features2 |= sbp->sb_bad_features2;
712 		mp->m_update_sb = true;
713 
714 		/*
715 		 * Re-check for ATTR2 in case it was found in bad_features2
716 		 * slot.
717 		 */
718 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
719 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
720 			mp->m_flags |= XFS_MOUNT_ATTR2;
721 	}
722 
723 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
724 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
725 		xfs_sb_version_removeattr2(&mp->m_sb);
726 		mp->m_update_sb = true;
727 
728 		/* update sb_versionnum for the clearing of the morebits */
729 		if (!sbp->sb_features2)
730 			mp->m_update_sb = true;
731 	}
732 
733 	/* always use v2 inodes by default now */
734 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
735 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
736 		mp->m_update_sb = true;
737 	}
738 
739 	/*
740 	 * Check if sb_agblocks is aligned at stripe boundary
741 	 * If sb_agblocks is NOT aligned turn off m_dalign since
742 	 * allocator alignment is within an ag, therefore ag has
743 	 * to be aligned at stripe boundary.
744 	 */
745 	error = xfs_update_alignment(mp);
746 	if (error)
747 		goto out;
748 
749 	xfs_alloc_compute_maxlevels(mp);
750 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
751 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
752 	xfs_ialloc_compute_maxlevels(mp);
753 	xfs_rmapbt_compute_maxlevels(mp);
754 	xfs_refcountbt_compute_maxlevels(mp);
755 
756 	xfs_set_maxicount(mp);
757 
758 	/* enable fail_at_unmount as default */
759 	mp->m_fail_unmount = true;
760 
761 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
762 	if (error)
763 		goto out;
764 
765 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
766 			       &mp->m_kobj, "stats");
767 	if (error)
768 		goto out_remove_sysfs;
769 
770 	error = xfs_error_sysfs_init(mp);
771 	if (error)
772 		goto out_del_stats;
773 
774 	error = xfs_errortag_init(mp);
775 	if (error)
776 		goto out_remove_error_sysfs;
777 
778 	error = xfs_uuid_mount(mp);
779 	if (error)
780 		goto out_remove_errortag;
781 
782 	/*
783 	 * Set the minimum read and write sizes
784 	 */
785 	xfs_set_rw_sizes(mp);
786 
787 	/* set the low space thresholds for dynamic preallocation */
788 	xfs_set_low_space_thresholds(mp);
789 
790 	/*
791 	 * Set the inode cluster size.
792 	 * This may still be overridden by the file system
793 	 * block size if it is larger than the chosen cluster size.
794 	 *
795 	 * For v5 filesystems, scale the cluster size with the inode size to
796 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
797 	 * has set the inode alignment value appropriately for larger cluster
798 	 * sizes.
799 	 */
800 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
801 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
802 		int	new_size = mp->m_inode_cluster_size;
803 
804 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
805 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
806 			mp->m_inode_cluster_size = new_size;
807 	}
808 	mp->m_blocks_per_cluster = xfs_icluster_size_fsb(mp);
809 	mp->m_inodes_per_cluster = XFS_FSB_TO_INO(mp, mp->m_blocks_per_cluster);
810 	mp->m_cluster_align = xfs_ialloc_cluster_alignment(mp);
811 	mp->m_cluster_align_inodes = XFS_FSB_TO_INO(mp, mp->m_cluster_align);
812 
813 	/*
814 	 * If enabled, sparse inode chunk alignment is expected to match the
815 	 * cluster size. Full inode chunk alignment must match the chunk size,
816 	 * but that is checked on sb read verification...
817 	 */
818 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
819 	    mp->m_sb.sb_spino_align !=
820 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
821 		xfs_warn(mp,
822 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
823 			 mp->m_sb.sb_spino_align,
824 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
825 		error = -EINVAL;
826 		goto out_remove_uuid;
827 	}
828 
829 	/*
830 	 * Set inode alignment fields
831 	 */
832 	xfs_set_inoalignment(mp);
833 
834 	/*
835 	 * Check that the data (and log if separate) is an ok size.
836 	 */
837 	error = xfs_check_sizes(mp);
838 	if (error)
839 		goto out_remove_uuid;
840 
841 	/*
842 	 * Initialize realtime fields in the mount structure
843 	 */
844 	error = xfs_rtmount_init(mp);
845 	if (error) {
846 		xfs_warn(mp, "RT mount failed");
847 		goto out_remove_uuid;
848 	}
849 
850 	/*
851 	 *  Copies the low order bits of the timestamp and the randomly
852 	 *  set "sequence" number out of a UUID.
853 	 */
854 	mp->m_fixedfsid[0] =
855 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
856 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
857 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
858 
859 	error = xfs_da_mount(mp);
860 	if (error) {
861 		xfs_warn(mp, "Failed dir/attr init: %d", error);
862 		goto out_remove_uuid;
863 	}
864 
865 	/*
866 	 * Initialize the precomputed transaction reservations values.
867 	 */
868 	xfs_trans_init(mp);
869 
870 	/*
871 	 * Allocate and initialize the per-ag data.
872 	 */
873 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
874 	if (error) {
875 		xfs_warn(mp, "Failed per-ag init: %d", error);
876 		goto out_free_dir;
877 	}
878 
879 	if (!sbp->sb_logblocks) {
880 		xfs_warn(mp, "no log defined");
881 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
882 		error = -EFSCORRUPTED;
883 		goto out_free_perag;
884 	}
885 
886 	/*
887 	 * Log's mount-time initialization. The first part of recovery can place
888 	 * some items on the AIL, to be handled when recovery is finished or
889 	 * cancelled.
890 	 */
891 	error = xfs_log_mount(mp, mp->m_logdev_targp,
892 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
893 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
894 	if (error) {
895 		xfs_warn(mp, "log mount failed");
896 		goto out_fail_wait;
897 	}
898 
899 	/* Make sure the summary counts are ok. */
900 	error = xfs_check_summary_counts(mp);
901 	if (error)
902 		goto out_log_dealloc;
903 
904 	/*
905 	 * Get and sanity-check the root inode.
906 	 * Save the pointer to it in the mount structure.
907 	 */
908 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
909 			 XFS_ILOCK_EXCL, &rip);
910 	if (error) {
911 		xfs_warn(mp,
912 			"Failed to read root inode 0x%llx, error %d",
913 			sbp->sb_rootino, -error);
914 		goto out_log_dealloc;
915 	}
916 
917 	ASSERT(rip != NULL);
918 
919 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
920 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
921 			(unsigned long long)rip->i_ino);
922 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
923 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
924 				 mp);
925 		error = -EFSCORRUPTED;
926 		goto out_rele_rip;
927 	}
928 	mp->m_rootip = rip;	/* save it */
929 
930 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
931 
932 	/*
933 	 * Initialize realtime inode pointers in the mount structure
934 	 */
935 	error = xfs_rtmount_inodes(mp);
936 	if (error) {
937 		/*
938 		 * Free up the root inode.
939 		 */
940 		xfs_warn(mp, "failed to read RT inodes");
941 		goto out_rele_rip;
942 	}
943 
944 	/*
945 	 * If this is a read-only mount defer the superblock updates until
946 	 * the next remount into writeable mode.  Otherwise we would never
947 	 * perform the update e.g. for the root filesystem.
948 	 */
949 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
950 		error = xfs_sync_sb(mp, false);
951 		if (error) {
952 			xfs_warn(mp, "failed to write sb changes");
953 			goto out_rtunmount;
954 		}
955 	}
956 
957 	/*
958 	 * Initialise the XFS quota management subsystem for this mount
959 	 */
960 	if (XFS_IS_QUOTA_RUNNING(mp)) {
961 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
962 		if (error)
963 			goto out_rtunmount;
964 	} else {
965 		ASSERT(!XFS_IS_QUOTA_ON(mp));
966 
967 		/*
968 		 * If a file system had quotas running earlier, but decided to
969 		 * mount without -o uquota/pquota/gquota options, revoke the
970 		 * quotachecked license.
971 		 */
972 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
973 			xfs_notice(mp, "resetting quota flags");
974 			error = xfs_mount_reset_sbqflags(mp);
975 			if (error)
976 				goto out_rtunmount;
977 		}
978 	}
979 
980 	/*
981 	 * Finish recovering the file system.  This part needed to be delayed
982 	 * until after the root and real-time bitmap inodes were consistently
983 	 * read in.
984 	 */
985 	error = xfs_log_mount_finish(mp);
986 	if (error) {
987 		xfs_warn(mp, "log mount finish failed");
988 		goto out_rtunmount;
989 	}
990 
991 	/*
992 	 * Now the log is fully replayed, we can transition to full read-only
993 	 * mode for read-only mounts. This will sync all the metadata and clean
994 	 * the log so that the recovery we just performed does not have to be
995 	 * replayed again on the next mount.
996 	 *
997 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
998 	 * semantically identical operations.
999 	 */
1000 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
1001 							XFS_MOUNT_RDONLY) {
1002 		xfs_quiesce_attr(mp);
1003 	}
1004 
1005 	/*
1006 	 * Complete the quota initialisation, post-log-replay component.
1007 	 */
1008 	if (quotamount) {
1009 		ASSERT(mp->m_qflags == 0);
1010 		mp->m_qflags = quotaflags;
1011 
1012 		xfs_qm_mount_quotas(mp);
1013 	}
1014 
1015 	/*
1016 	 * Now we are mounted, reserve a small amount of unused space for
1017 	 * privileged transactions. This is needed so that transaction
1018 	 * space required for critical operations can dip into this pool
1019 	 * when at ENOSPC. This is needed for operations like create with
1020 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1021 	 * are not allowed to use this reserved space.
1022 	 *
1023 	 * This may drive us straight to ENOSPC on mount, but that implies
1024 	 * we were already there on the last unmount. Warn if this occurs.
1025 	 */
1026 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1027 		resblks = xfs_default_resblks(mp);
1028 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1029 		if (error)
1030 			xfs_warn(mp,
1031 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1032 
1033 		/* Recover any CoW blocks that never got remapped. */
1034 		error = xfs_reflink_recover_cow(mp);
1035 		if (error) {
1036 			xfs_err(mp,
1037 	"Error %d recovering leftover CoW allocations.", error);
1038 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1039 			goto out_quota;
1040 		}
1041 
1042 		/* Reserve AG blocks for future btree expansion. */
1043 		error = xfs_fs_reserve_ag_blocks(mp);
1044 		if (error && error != -ENOSPC)
1045 			goto out_agresv;
1046 	}
1047 
1048 	return 0;
1049 
1050  out_agresv:
1051 	xfs_fs_unreserve_ag_blocks(mp);
1052  out_quota:
1053 	xfs_qm_unmount_quotas(mp);
1054  out_rtunmount:
1055 	xfs_rtunmount_inodes(mp);
1056  out_rele_rip:
1057 	xfs_irele(rip);
1058 	/* Clean out dquots that might be in memory after quotacheck. */
1059 	xfs_qm_unmount(mp);
1060 	/*
1061 	 * Cancel all delayed reclaim work and reclaim the inodes directly.
1062 	 * We have to do this /after/ rtunmount and qm_unmount because those
1063 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1064 	 *
1065 	 * This is slightly different from the unmountfs call sequence
1066 	 * because we could be tearing down a partially set up mount.  In
1067 	 * particular, if log_mount_finish fails we bail out without calling
1068 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1069 	 * quota inodes.
1070 	 */
1071 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1072 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1073 	xfs_health_unmount(mp);
1074  out_log_dealloc:
1075 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1076 	xfs_log_mount_cancel(mp);
1077  out_fail_wait:
1078 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1079 		xfs_wait_buftarg(mp->m_logdev_targp);
1080 	xfs_wait_buftarg(mp->m_ddev_targp);
1081  out_free_perag:
1082 	xfs_free_perag(mp);
1083  out_free_dir:
1084 	xfs_da_unmount(mp);
1085  out_remove_uuid:
1086 	xfs_uuid_unmount(mp);
1087  out_remove_errortag:
1088 	xfs_errortag_del(mp);
1089  out_remove_error_sysfs:
1090 	xfs_error_sysfs_del(mp);
1091  out_del_stats:
1092 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1093  out_remove_sysfs:
1094 	xfs_sysfs_del(&mp->m_kobj);
1095  out:
1096 	return error;
1097 }
1098 
1099 /*
1100  * This flushes out the inodes,dquots and the superblock, unmounts the
1101  * log and makes sure that incore structures are freed.
1102  */
1103 void
1104 xfs_unmountfs(
1105 	struct xfs_mount	*mp)
1106 {
1107 	uint64_t		resblks;
1108 	int			error;
1109 
1110 	xfs_stop_block_reaping(mp);
1111 	xfs_fs_unreserve_ag_blocks(mp);
1112 	xfs_qm_unmount_quotas(mp);
1113 	xfs_rtunmount_inodes(mp);
1114 	xfs_irele(mp->m_rootip);
1115 
1116 	/*
1117 	 * We can potentially deadlock here if we have an inode cluster
1118 	 * that has been freed has its buffer still pinned in memory because
1119 	 * the transaction is still sitting in a iclog. The stale inodes
1120 	 * on that buffer will have their flush locks held until the
1121 	 * transaction hits the disk and the callbacks run. the inode
1122 	 * flush takes the flush lock unconditionally and with nothing to
1123 	 * push out the iclog we will never get that unlocked. hence we
1124 	 * need to force the log first.
1125 	 */
1126 	xfs_log_force(mp, XFS_LOG_SYNC);
1127 
1128 	/*
1129 	 * Wait for all busy extents to be freed, including completion of
1130 	 * any discard operation.
1131 	 */
1132 	xfs_extent_busy_wait_all(mp);
1133 	flush_workqueue(xfs_discard_wq);
1134 
1135 	/*
1136 	 * We now need to tell the world we are unmounting. This will allow
1137 	 * us to detect that the filesystem is going away and we should error
1138 	 * out anything that we have been retrying in the background. This will
1139 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1140 	 */
1141 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1142 
1143 	/*
1144 	 * Flush all pending changes from the AIL.
1145 	 */
1146 	xfs_ail_push_all_sync(mp->m_ail);
1147 
1148 	/*
1149 	 * And reclaim all inodes.  At this point there should be no dirty
1150 	 * inodes and none should be pinned or locked, but use synchronous
1151 	 * reclaim just to be sure. We can stop background inode reclaim
1152 	 * here as well if it is still running.
1153 	 */
1154 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1155 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1156 	xfs_health_unmount(mp);
1157 
1158 	xfs_qm_unmount(mp);
1159 
1160 	/*
1161 	 * Unreserve any blocks we have so that when we unmount we don't account
1162 	 * the reserved free space as used. This is really only necessary for
1163 	 * lazy superblock counting because it trusts the incore superblock
1164 	 * counters to be absolutely correct on clean unmount.
1165 	 *
1166 	 * We don't bother correcting this elsewhere for lazy superblock
1167 	 * counting because on mount of an unclean filesystem we reconstruct the
1168 	 * correct counter value and this is irrelevant.
1169 	 *
1170 	 * For non-lazy counter filesystems, this doesn't matter at all because
1171 	 * we only every apply deltas to the superblock and hence the incore
1172 	 * value does not matter....
1173 	 */
1174 	resblks = 0;
1175 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1176 	if (error)
1177 		xfs_warn(mp, "Unable to free reserved block pool. "
1178 				"Freespace may not be correct on next mount.");
1179 
1180 	error = xfs_log_sbcount(mp);
1181 	if (error)
1182 		xfs_warn(mp, "Unable to update superblock counters. "
1183 				"Freespace may not be correct on next mount.");
1184 
1185 
1186 	xfs_log_unmount(mp);
1187 	xfs_da_unmount(mp);
1188 	xfs_uuid_unmount(mp);
1189 
1190 #if defined(DEBUG)
1191 	xfs_errortag_clearall(mp);
1192 #endif
1193 	xfs_free_perag(mp);
1194 
1195 	xfs_errortag_del(mp);
1196 	xfs_error_sysfs_del(mp);
1197 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1198 	xfs_sysfs_del(&mp->m_kobj);
1199 }
1200 
1201 /*
1202  * Determine whether modifications can proceed. The caller specifies the minimum
1203  * freeze level for which modifications should not be allowed. This allows
1204  * certain operations to proceed while the freeze sequence is in progress, if
1205  * necessary.
1206  */
1207 bool
1208 xfs_fs_writable(
1209 	struct xfs_mount	*mp,
1210 	int			level)
1211 {
1212 	ASSERT(level > SB_UNFROZEN);
1213 	if ((mp->m_super->s_writers.frozen >= level) ||
1214 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1215 		return false;
1216 
1217 	return true;
1218 }
1219 
1220 /*
1221  * xfs_log_sbcount
1222  *
1223  * Sync the superblock counters to disk.
1224  *
1225  * Note this code can be called during the process of freezing, so we use the
1226  * transaction allocator that does not block when the transaction subsystem is
1227  * in its frozen state.
1228  */
1229 int
1230 xfs_log_sbcount(xfs_mount_t *mp)
1231 {
1232 	/* allow this to proceed during the freeze sequence... */
1233 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1234 		return 0;
1235 
1236 	/*
1237 	 * we don't need to do this if we are updating the superblock
1238 	 * counters on every modification.
1239 	 */
1240 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1241 		return 0;
1242 
1243 	return xfs_sync_sb(mp, true);
1244 }
1245 
1246 /*
1247  * Deltas for the inode count are +/-64, hence we use a large batch size
1248  * of 128 so we don't need to take the counter lock on every update.
1249  */
1250 #define XFS_ICOUNT_BATCH	128
1251 int
1252 xfs_mod_icount(
1253 	struct xfs_mount	*mp,
1254 	int64_t			delta)
1255 {
1256 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1257 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1258 		ASSERT(0);
1259 		percpu_counter_add(&mp->m_icount, -delta);
1260 		return -EINVAL;
1261 	}
1262 	return 0;
1263 }
1264 
1265 int
1266 xfs_mod_ifree(
1267 	struct xfs_mount	*mp,
1268 	int64_t			delta)
1269 {
1270 	percpu_counter_add(&mp->m_ifree, delta);
1271 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1272 		ASSERT(0);
1273 		percpu_counter_add(&mp->m_ifree, -delta);
1274 		return -EINVAL;
1275 	}
1276 	return 0;
1277 }
1278 
1279 /*
1280  * Deltas for the block count can vary from 1 to very large, but lock contention
1281  * only occurs on frequent small block count updates such as in the delayed
1282  * allocation path for buffered writes (page a time updates). Hence we set
1283  * a large batch count (1024) to minimise global counter updates except when
1284  * we get near to ENOSPC and we have to be very accurate with our updates.
1285  */
1286 #define XFS_FDBLOCKS_BATCH	1024
1287 int
1288 xfs_mod_fdblocks(
1289 	struct xfs_mount	*mp,
1290 	int64_t			delta,
1291 	bool			rsvd)
1292 {
1293 	int64_t			lcounter;
1294 	long long		res_used;
1295 	s32			batch;
1296 
1297 	if (delta > 0) {
1298 		/*
1299 		 * If the reserve pool is depleted, put blocks back into it
1300 		 * first. Most of the time the pool is full.
1301 		 */
1302 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1303 			percpu_counter_add(&mp->m_fdblocks, delta);
1304 			return 0;
1305 		}
1306 
1307 		spin_lock(&mp->m_sb_lock);
1308 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1309 
1310 		if (res_used > delta) {
1311 			mp->m_resblks_avail += delta;
1312 		} else {
1313 			delta -= res_used;
1314 			mp->m_resblks_avail = mp->m_resblks;
1315 			percpu_counter_add(&mp->m_fdblocks, delta);
1316 		}
1317 		spin_unlock(&mp->m_sb_lock);
1318 		return 0;
1319 	}
1320 
1321 	/*
1322 	 * Taking blocks away, need to be more accurate the closer we
1323 	 * are to zero.
1324 	 *
1325 	 * If the counter has a value of less than 2 * max batch size,
1326 	 * then make everything serialise as we are real close to
1327 	 * ENOSPC.
1328 	 */
1329 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1330 				     XFS_FDBLOCKS_BATCH) < 0)
1331 		batch = 1;
1332 	else
1333 		batch = XFS_FDBLOCKS_BATCH;
1334 
1335 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1336 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1337 				     XFS_FDBLOCKS_BATCH) >= 0) {
1338 		/* we had space! */
1339 		return 0;
1340 	}
1341 
1342 	/*
1343 	 * lock up the sb for dipping into reserves before releasing the space
1344 	 * that took us to ENOSPC.
1345 	 */
1346 	spin_lock(&mp->m_sb_lock);
1347 	percpu_counter_add(&mp->m_fdblocks, -delta);
1348 	if (!rsvd)
1349 		goto fdblocks_enospc;
1350 
1351 	lcounter = (long long)mp->m_resblks_avail + delta;
1352 	if (lcounter >= 0) {
1353 		mp->m_resblks_avail = lcounter;
1354 		spin_unlock(&mp->m_sb_lock);
1355 		return 0;
1356 	}
1357 	printk_once(KERN_WARNING
1358 		"Filesystem \"%s\": reserve blocks depleted! "
1359 		"Consider increasing reserve pool size.",
1360 		mp->m_fsname);
1361 fdblocks_enospc:
1362 	spin_unlock(&mp->m_sb_lock);
1363 	return -ENOSPC;
1364 }
1365 
1366 int
1367 xfs_mod_frextents(
1368 	struct xfs_mount	*mp,
1369 	int64_t			delta)
1370 {
1371 	int64_t			lcounter;
1372 	int			ret = 0;
1373 
1374 	spin_lock(&mp->m_sb_lock);
1375 	lcounter = mp->m_sb.sb_frextents + delta;
1376 	if (lcounter < 0)
1377 		ret = -ENOSPC;
1378 	else
1379 		mp->m_sb.sb_frextents = lcounter;
1380 	spin_unlock(&mp->m_sb_lock);
1381 	return ret;
1382 }
1383 
1384 /*
1385  * xfs_getsb() is called to obtain the buffer for the superblock.
1386  * The buffer is returned locked and read in from disk.
1387  * The buffer should be released with a call to xfs_brelse().
1388  *
1389  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1390  * the superblock buffer if it can be locked without sleeping.
1391  * If it can't then we'll return NULL.
1392  */
1393 struct xfs_buf *
1394 xfs_getsb(
1395 	struct xfs_mount	*mp,
1396 	int			flags)
1397 {
1398 	struct xfs_buf		*bp = mp->m_sb_bp;
1399 
1400 	if (!xfs_buf_trylock(bp)) {
1401 		if (flags & XBF_TRYLOCK)
1402 			return NULL;
1403 		xfs_buf_lock(bp);
1404 	}
1405 
1406 	xfs_buf_hold(bp);
1407 	ASSERT(bp->b_flags & XBF_DONE);
1408 	return bp;
1409 }
1410 
1411 /*
1412  * Used to free the superblock along various error paths.
1413  */
1414 void
1415 xfs_freesb(
1416 	struct xfs_mount	*mp)
1417 {
1418 	struct xfs_buf		*bp = mp->m_sb_bp;
1419 
1420 	xfs_buf_lock(bp);
1421 	mp->m_sb_bp = NULL;
1422 	xfs_buf_relse(bp);
1423 }
1424 
1425 /*
1426  * If the underlying (data/log/rt) device is readonly, there are some
1427  * operations that cannot proceed.
1428  */
1429 int
1430 xfs_dev_is_read_only(
1431 	struct xfs_mount	*mp,
1432 	char			*message)
1433 {
1434 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1435 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1436 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1437 		xfs_notice(mp, "%s required on read-only device.", message);
1438 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1439 		return -EROFS;
1440 	}
1441 	return 0;
1442 }
1443 
1444 /* Force the summary counters to be recalculated at next mount. */
1445 void
1446 xfs_force_summary_recalc(
1447 	struct xfs_mount	*mp)
1448 {
1449 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1450 		return;
1451 
1452 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1453 }
1454 
1455 /*
1456  * Update the in-core delayed block counter.
1457  *
1458  * We prefer to update the counter without having to take a spinlock for every
1459  * counter update (i.e. batching).  Each change to delayed allocation
1460  * reservations can change can easily exceed the default percpu counter
1461  * batching, so we use a larger batch factor here.
1462  *
1463  * Note that we don't currently have any callers requiring fast summation
1464  * (e.g. percpu_counter_read) so we can use a big batch value here.
1465  */
1466 #define XFS_DELALLOC_BATCH	(4096)
1467 void
1468 xfs_mod_delalloc(
1469 	struct xfs_mount	*mp,
1470 	int64_t			delta)
1471 {
1472 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1473 			XFS_DELALLOC_BATCH);
1474 }
1475