xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision faf69551)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 #include "xfs_ag.h"
36 
37 static DEFINE_MUTEX(xfs_uuid_table_mutex);
38 static int xfs_uuid_table_size;
39 static uuid_t *xfs_uuid_table;
40 
41 void
42 xfs_uuid_table_free(void)
43 {
44 	if (xfs_uuid_table_size == 0)
45 		return;
46 	kmem_free(xfs_uuid_table);
47 	xfs_uuid_table = NULL;
48 	xfs_uuid_table_size = 0;
49 }
50 
51 /*
52  * See if the UUID is unique among mounted XFS filesystems.
53  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54  */
55 STATIC int
56 xfs_uuid_mount(
57 	struct xfs_mount	*mp)
58 {
59 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
60 	int			hole, i;
61 
62 	/* Publish UUID in struct super_block */
63 	uuid_copy(&mp->m_super->s_uuid, uuid);
64 
65 	if (xfs_has_nouuid(mp))
66 		return 0;
67 
68 	if (uuid_is_null(uuid)) {
69 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
70 		return -EINVAL;
71 	}
72 
73 	mutex_lock(&xfs_uuid_table_mutex);
74 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
75 		if (uuid_is_null(&xfs_uuid_table[i])) {
76 			hole = i;
77 			continue;
78 		}
79 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 			goto out_duplicate;
81 	}
82 
83 	if (hole < 0) {
84 		xfs_uuid_table = krealloc(xfs_uuid_table,
85 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
86 			GFP_KERNEL | __GFP_NOFAIL);
87 		hole = xfs_uuid_table_size++;
88 	}
89 	xfs_uuid_table[hole] = *uuid;
90 	mutex_unlock(&xfs_uuid_table_mutex);
91 
92 	return 0;
93 
94  out_duplicate:
95 	mutex_unlock(&xfs_uuid_table_mutex);
96 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
97 	return -EINVAL;
98 }
99 
100 STATIC void
101 xfs_uuid_unmount(
102 	struct xfs_mount	*mp)
103 {
104 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
105 	int			i;
106 
107 	if (xfs_has_nouuid(mp))
108 		return;
109 
110 	mutex_lock(&xfs_uuid_table_mutex);
111 	for (i = 0; i < xfs_uuid_table_size; i++) {
112 		if (uuid_is_null(&xfs_uuid_table[i]))
113 			continue;
114 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 			continue;
116 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 		break;
118 	}
119 	ASSERT(i < xfs_uuid_table_size);
120 	mutex_unlock(&xfs_uuid_table_mutex);
121 }
122 
123 /*
124  * Check size of device based on the (data/realtime) block count.
125  * Note: this check is used by the growfs code as well as mount.
126  */
127 int
128 xfs_sb_validate_fsb_count(
129 	xfs_sb_t	*sbp,
130 	uint64_t	nblocks)
131 {
132 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
134 
135 	/* Limited by ULONG_MAX of page cache index */
136 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
137 		return -EFBIG;
138 	return 0;
139 }
140 
141 /*
142  * xfs_readsb
143  *
144  * Does the initial read of the superblock.
145  */
146 int
147 xfs_readsb(
148 	struct xfs_mount *mp,
149 	int		flags)
150 {
151 	unsigned int	sector_size;
152 	struct xfs_buf	*bp;
153 	struct xfs_sb	*sbp = &mp->m_sb;
154 	int		error;
155 	int		loud = !(flags & XFS_MFSI_QUIET);
156 	const struct xfs_buf_ops *buf_ops;
157 
158 	ASSERT(mp->m_sb_bp == NULL);
159 	ASSERT(mp->m_ddev_targp != NULL);
160 
161 	/*
162 	 * For the initial read, we must guess at the sector
163 	 * size based on the block device.  It's enough to
164 	 * get the sb_sectsize out of the superblock and
165 	 * then reread with the proper length.
166 	 * We don't verify it yet, because it may not be complete.
167 	 */
168 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
169 	buf_ops = NULL;
170 
171 	/*
172 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 	 * around at all times to optimize access to the superblock. Therefore,
174 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
175 	 * elevated.
176 	 */
177 reread:
178 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
179 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
180 				      buf_ops);
181 	if (error) {
182 		if (loud)
183 			xfs_warn(mp, "SB validate failed with error %d.", error);
184 		/* bad CRC means corrupted metadata */
185 		if (error == -EFSBADCRC)
186 			error = -EFSCORRUPTED;
187 		return error;
188 	}
189 
190 	/*
191 	 * Initialize the mount structure from the superblock.
192 	 */
193 	xfs_sb_from_disk(sbp, bp->b_addr);
194 
195 	/*
196 	 * If we haven't validated the superblock, do so now before we try
197 	 * to check the sector size and reread the superblock appropriately.
198 	 */
199 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
200 		if (loud)
201 			xfs_warn(mp, "Invalid superblock magic number");
202 		error = -EINVAL;
203 		goto release_buf;
204 	}
205 
206 	/*
207 	 * We must be able to do sector-sized and sector-aligned IO.
208 	 */
209 	if (sector_size > sbp->sb_sectsize) {
210 		if (loud)
211 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
212 				sector_size, sbp->sb_sectsize);
213 		error = -ENOSYS;
214 		goto release_buf;
215 	}
216 
217 	if (buf_ops == NULL) {
218 		/*
219 		 * Re-read the superblock so the buffer is correctly sized,
220 		 * and properly verified.
221 		 */
222 		xfs_buf_relse(bp);
223 		sector_size = sbp->sb_sectsize;
224 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
225 		goto reread;
226 	}
227 
228 	mp->m_features |= xfs_sb_version_to_features(sbp);
229 	xfs_reinit_percpu_counters(mp);
230 
231 	/* no need to be quiet anymore, so reset the buf ops */
232 	bp->b_ops = &xfs_sb_buf_ops;
233 
234 	mp->m_sb_bp = bp;
235 	xfs_buf_unlock(bp);
236 	return 0;
237 
238 release_buf:
239 	xfs_buf_relse(bp);
240 	return error;
241 }
242 
243 /*
244  * If the sunit/swidth change would move the precomputed root inode value, we
245  * must reject the ondisk change because repair will stumble over that.
246  * However, we allow the mount to proceed because we never rejected this
247  * combination before.  Returns true to update the sb, false otherwise.
248  */
249 static inline int
250 xfs_check_new_dalign(
251 	struct xfs_mount	*mp,
252 	int			new_dalign,
253 	bool			*update_sb)
254 {
255 	struct xfs_sb		*sbp = &mp->m_sb;
256 	xfs_ino_t		calc_ino;
257 
258 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
259 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
260 
261 	if (sbp->sb_rootino == calc_ino) {
262 		*update_sb = true;
263 		return 0;
264 	}
265 
266 	xfs_warn(mp,
267 "Cannot change stripe alignment; would require moving root inode.");
268 
269 	/*
270 	 * XXX: Next time we add a new incompat feature, this should start
271 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
272 	 * that we're ignoring the administrator's instructions.
273 	 */
274 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
275 	*update_sb = false;
276 	return 0;
277 }
278 
279 /*
280  * If we were provided with new sunit/swidth values as mount options, make sure
281  * that they pass basic alignment and superblock feature checks, and convert
282  * them into the same units (FSB) that everything else expects.  This step
283  * /must/ be done before computing the inode geometry.
284  */
285 STATIC int
286 xfs_validate_new_dalign(
287 	struct xfs_mount	*mp)
288 {
289 	if (mp->m_dalign == 0)
290 		return 0;
291 
292 	/*
293 	 * If stripe unit and stripe width are not multiples
294 	 * of the fs blocksize turn off alignment.
295 	 */
296 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
297 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
298 		xfs_warn(mp,
299 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
300 			mp->m_sb.sb_blocksize);
301 		return -EINVAL;
302 	} else {
303 		/*
304 		 * Convert the stripe unit and width to FSBs.
305 		 */
306 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
307 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
308 			xfs_warn(mp,
309 		"alignment check failed: sunit/swidth vs. agsize(%d)",
310 				 mp->m_sb.sb_agblocks);
311 			return -EINVAL;
312 		} else if (mp->m_dalign) {
313 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
314 		} else {
315 			xfs_warn(mp,
316 		"alignment check failed: sunit(%d) less than bsize(%d)",
317 				 mp->m_dalign, mp->m_sb.sb_blocksize);
318 			return -EINVAL;
319 		}
320 	}
321 
322 	if (!xfs_has_dalign(mp)) {
323 		xfs_warn(mp,
324 "cannot change alignment: superblock does not support data alignment");
325 		return -EINVAL;
326 	}
327 
328 	return 0;
329 }
330 
331 /* Update alignment values based on mount options and sb values. */
332 STATIC int
333 xfs_update_alignment(
334 	struct xfs_mount	*mp)
335 {
336 	struct xfs_sb		*sbp = &mp->m_sb;
337 
338 	if (mp->m_dalign) {
339 		bool		update_sb;
340 		int		error;
341 
342 		if (sbp->sb_unit == mp->m_dalign &&
343 		    sbp->sb_width == mp->m_swidth)
344 			return 0;
345 
346 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
347 		if (error || !update_sb)
348 			return error;
349 
350 		sbp->sb_unit = mp->m_dalign;
351 		sbp->sb_width = mp->m_swidth;
352 		mp->m_update_sb = true;
353 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
354 		mp->m_dalign = sbp->sb_unit;
355 		mp->m_swidth = sbp->sb_width;
356 	}
357 
358 	return 0;
359 }
360 
361 /*
362  * precalculate the low space thresholds for dynamic speculative preallocation.
363  */
364 void
365 xfs_set_low_space_thresholds(
366 	struct xfs_mount	*mp)
367 {
368 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
369 	uint64_t		rtexts = mp->m_sb.sb_rextents;
370 	int			i;
371 
372 	do_div(dblocks, 100);
373 	do_div(rtexts, 100);
374 
375 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
376 		mp->m_low_space[i] = dblocks * (i + 1);
377 		mp->m_low_rtexts[i] = rtexts * (i + 1);
378 	}
379 }
380 
381 /*
382  * Check that the data (and log if separate) is an ok size.
383  */
384 STATIC int
385 xfs_check_sizes(
386 	struct xfs_mount *mp)
387 {
388 	struct xfs_buf	*bp;
389 	xfs_daddr_t	d;
390 	int		error;
391 
392 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
393 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
394 		xfs_warn(mp, "filesystem size mismatch detected");
395 		return -EFBIG;
396 	}
397 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
398 					d - XFS_FSS_TO_BB(mp, 1),
399 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
400 	if (error) {
401 		xfs_warn(mp, "last sector read failed");
402 		return error;
403 	}
404 	xfs_buf_relse(bp);
405 
406 	if (mp->m_logdev_targp == mp->m_ddev_targp)
407 		return 0;
408 
409 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
410 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
411 		xfs_warn(mp, "log size mismatch detected");
412 		return -EFBIG;
413 	}
414 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
415 					d - XFS_FSB_TO_BB(mp, 1),
416 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
417 	if (error) {
418 		xfs_warn(mp, "log device read failed");
419 		return error;
420 	}
421 	xfs_buf_relse(bp);
422 	return 0;
423 }
424 
425 /*
426  * Clear the quotaflags in memory and in the superblock.
427  */
428 int
429 xfs_mount_reset_sbqflags(
430 	struct xfs_mount	*mp)
431 {
432 	mp->m_qflags = 0;
433 
434 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
435 	if (mp->m_sb.sb_qflags == 0)
436 		return 0;
437 	spin_lock(&mp->m_sb_lock);
438 	mp->m_sb.sb_qflags = 0;
439 	spin_unlock(&mp->m_sb_lock);
440 
441 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
442 		return 0;
443 
444 	return xfs_sync_sb(mp, false);
445 }
446 
447 uint64_t
448 xfs_default_resblks(xfs_mount_t *mp)
449 {
450 	uint64_t resblks;
451 
452 	/*
453 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
454 	 * smaller.  This is intended to cover concurrent allocation
455 	 * transactions when we initially hit enospc. These each require a 4
456 	 * block reservation. Hence by default we cover roughly 2000 concurrent
457 	 * allocation reservations.
458 	 */
459 	resblks = mp->m_sb.sb_dblocks;
460 	do_div(resblks, 20);
461 	resblks = min_t(uint64_t, resblks, 8192);
462 	return resblks;
463 }
464 
465 /* Ensure the summary counts are correct. */
466 STATIC int
467 xfs_check_summary_counts(
468 	struct xfs_mount	*mp)
469 {
470 	/*
471 	 * The AG0 superblock verifier rejects in-progress filesystems,
472 	 * so we should never see the flag set this far into mounting.
473 	 */
474 	if (mp->m_sb.sb_inprogress) {
475 		xfs_err(mp, "sb_inprogress set after log recovery??");
476 		WARN_ON(1);
477 		return -EFSCORRUPTED;
478 	}
479 
480 	/*
481 	 * Now the log is mounted, we know if it was an unclean shutdown or
482 	 * not. If it was, with the first phase of recovery has completed, we
483 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
484 	 * but they are recovered transactionally in the second recovery phase
485 	 * later.
486 	 *
487 	 * If the log was clean when we mounted, we can check the summary
488 	 * counters.  If any of them are obviously incorrect, we can recompute
489 	 * them from the AGF headers in the next step.
490 	 */
491 	if (xfs_is_clean(mp) &&
492 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
493 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
494 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
495 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
496 
497 	/*
498 	 * We can safely re-initialise incore superblock counters from the
499 	 * per-ag data. These may not be correct if the filesystem was not
500 	 * cleanly unmounted, so we waited for recovery to finish before doing
501 	 * this.
502 	 *
503 	 * If the filesystem was cleanly unmounted or the previous check did
504 	 * not flag anything weird, then we can trust the values in the
505 	 * superblock to be correct and we don't need to do anything here.
506 	 * Otherwise, recalculate the summary counters.
507 	 */
508 	if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) &&
509 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
510 		return 0;
511 
512 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
513 }
514 
515 /*
516  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
517  * internal inode structures can be sitting in the CIL and AIL at this point,
518  * so we need to unpin them, write them back and/or reclaim them before unmount
519  * can proceed.  In other words, callers are required to have inactivated all
520  * inodes.
521  *
522  * An inode cluster that has been freed can have its buffer still pinned in
523  * memory because the transaction is still sitting in a iclog. The stale inodes
524  * on that buffer will be pinned to the buffer until the transaction hits the
525  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
526  * may never see the pinned buffer, so nothing will push out the iclog and
527  * unpin the buffer.
528  *
529  * Hence we need to force the log to unpin everything first. However, log
530  * forces don't wait for the discards they issue to complete, so we have to
531  * explicitly wait for them to complete here as well.
532  *
533  * Then we can tell the world we are unmounting so that error handling knows
534  * that the filesystem is going away and we should error out anything that we
535  * have been retrying in the background.  This will prevent never-ending
536  * retries in AIL pushing from hanging the unmount.
537  *
538  * Finally, we can push the AIL to clean all the remaining dirty objects, then
539  * reclaim the remaining inodes that are still in memory at this point in time.
540  */
541 static void
542 xfs_unmount_flush_inodes(
543 	struct xfs_mount	*mp)
544 {
545 	xfs_log_force(mp, XFS_LOG_SYNC);
546 	xfs_extent_busy_wait_all(mp);
547 	flush_workqueue(xfs_discard_wq);
548 
549 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
550 
551 	xfs_ail_push_all_sync(mp->m_ail);
552 	xfs_inodegc_stop(mp);
553 	cancel_delayed_work_sync(&mp->m_reclaim_work);
554 	xfs_reclaim_inodes(mp);
555 	xfs_health_unmount(mp);
556 }
557 
558 static void
559 xfs_mount_setup_inode_geom(
560 	struct xfs_mount	*mp)
561 {
562 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
563 
564 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
565 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
566 
567 	xfs_ialloc_setup_geometry(mp);
568 }
569 
570 /* Compute maximum possible height for per-AG btree types for this fs. */
571 static inline void
572 xfs_agbtree_compute_maxlevels(
573 	struct xfs_mount	*mp)
574 {
575 	unsigned int		levels;
576 
577 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
578 	levels = max(levels, mp->m_rmap_maxlevels);
579 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
580 }
581 
582 /*
583  * This function does the following on an initial mount of a file system:
584  *	- reads the superblock from disk and init the mount struct
585  *	- if we're a 32-bit kernel, do a size check on the superblock
586  *		so we don't mount terabyte filesystems
587  *	- init mount struct realtime fields
588  *	- allocate inode hash table for fs
589  *	- init directory manager
590  *	- perform recovery and init the log manager
591  */
592 int
593 xfs_mountfs(
594 	struct xfs_mount	*mp)
595 {
596 	struct xfs_sb		*sbp = &(mp->m_sb);
597 	struct xfs_inode	*rip;
598 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
599 	uint64_t		resblks;
600 	uint			quotamount = 0;
601 	uint			quotaflags = 0;
602 	int			error = 0;
603 
604 	xfs_sb_mount_common(mp, sbp);
605 
606 	/*
607 	 * Check for a mismatched features2 values.  Older kernels read & wrote
608 	 * into the wrong sb offset for sb_features2 on some platforms due to
609 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
610 	 * which made older superblock reading/writing routines swap it as a
611 	 * 64-bit value.
612 	 *
613 	 * For backwards compatibility, we make both slots equal.
614 	 *
615 	 * If we detect a mismatched field, we OR the set bits into the existing
616 	 * features2 field in case it has already been modified; we don't want
617 	 * to lose any features.  We then update the bad location with the ORed
618 	 * value so that older kernels will see any features2 flags. The
619 	 * superblock writeback code ensures the new sb_features2 is copied to
620 	 * sb_bad_features2 before it is logged or written to disk.
621 	 */
622 	if (xfs_sb_has_mismatched_features2(sbp)) {
623 		xfs_warn(mp, "correcting sb_features alignment problem");
624 		sbp->sb_features2 |= sbp->sb_bad_features2;
625 		mp->m_update_sb = true;
626 	}
627 
628 
629 	/* always use v2 inodes by default now */
630 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
631 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
632 		mp->m_features |= XFS_FEAT_NLINK;
633 		mp->m_update_sb = true;
634 	}
635 
636 	/*
637 	 * If we were given new sunit/swidth options, do some basic validation
638 	 * checks and convert the incore dalign and swidth values to the
639 	 * same units (FSB) that everything else uses.  This /must/ happen
640 	 * before computing the inode geometry.
641 	 */
642 	error = xfs_validate_new_dalign(mp);
643 	if (error)
644 		goto out;
645 
646 	xfs_alloc_compute_maxlevels(mp);
647 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
648 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
649 	xfs_mount_setup_inode_geom(mp);
650 	xfs_rmapbt_compute_maxlevels(mp);
651 	xfs_refcountbt_compute_maxlevels(mp);
652 
653 	xfs_agbtree_compute_maxlevels(mp);
654 
655 	/*
656 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
657 	 * is NOT aligned turn off m_dalign since allocator alignment is within
658 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
659 	 * we must compute the free space and rmap btree geometry before doing
660 	 * this.
661 	 */
662 	error = xfs_update_alignment(mp);
663 	if (error)
664 		goto out;
665 
666 	/* enable fail_at_unmount as default */
667 	mp->m_fail_unmount = true;
668 
669 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
670 			       NULL, mp->m_super->s_id);
671 	if (error)
672 		goto out;
673 
674 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
675 			       &mp->m_kobj, "stats");
676 	if (error)
677 		goto out_remove_sysfs;
678 
679 	error = xfs_error_sysfs_init(mp);
680 	if (error)
681 		goto out_del_stats;
682 
683 	error = xfs_errortag_init(mp);
684 	if (error)
685 		goto out_remove_error_sysfs;
686 
687 	error = xfs_uuid_mount(mp);
688 	if (error)
689 		goto out_remove_errortag;
690 
691 	/*
692 	 * Update the preferred write size based on the information from the
693 	 * on-disk superblock.
694 	 */
695 	mp->m_allocsize_log =
696 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
697 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
698 
699 	/* set the low space thresholds for dynamic preallocation */
700 	xfs_set_low_space_thresholds(mp);
701 
702 	/*
703 	 * If enabled, sparse inode chunk alignment is expected to match the
704 	 * cluster size. Full inode chunk alignment must match the chunk size,
705 	 * but that is checked on sb read verification...
706 	 */
707 	if (xfs_has_sparseinodes(mp) &&
708 	    mp->m_sb.sb_spino_align !=
709 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
710 		xfs_warn(mp,
711 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
712 			 mp->m_sb.sb_spino_align,
713 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
714 		error = -EINVAL;
715 		goto out_remove_uuid;
716 	}
717 
718 	/*
719 	 * Check that the data (and log if separate) is an ok size.
720 	 */
721 	error = xfs_check_sizes(mp);
722 	if (error)
723 		goto out_remove_uuid;
724 
725 	/*
726 	 * Initialize realtime fields in the mount structure
727 	 */
728 	error = xfs_rtmount_init(mp);
729 	if (error) {
730 		xfs_warn(mp, "RT mount failed");
731 		goto out_remove_uuid;
732 	}
733 
734 	/*
735 	 *  Copies the low order bits of the timestamp and the randomly
736 	 *  set "sequence" number out of a UUID.
737 	 */
738 	mp->m_fixedfsid[0] =
739 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
740 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
741 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
742 
743 	error = xfs_da_mount(mp);
744 	if (error) {
745 		xfs_warn(mp, "Failed dir/attr init: %d", error);
746 		goto out_remove_uuid;
747 	}
748 
749 	/*
750 	 * Initialize the precomputed transaction reservations values.
751 	 */
752 	xfs_trans_init(mp);
753 
754 	/*
755 	 * Allocate and initialize the per-ag data.
756 	 */
757 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
758 	if (error) {
759 		xfs_warn(mp, "Failed per-ag init: %d", error);
760 		goto out_free_dir;
761 	}
762 
763 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
764 		xfs_warn(mp, "no log defined");
765 		error = -EFSCORRUPTED;
766 		goto out_free_perag;
767 	}
768 
769 	error = xfs_inodegc_register_shrinker(mp);
770 	if (error)
771 		goto out_fail_wait;
772 
773 	/*
774 	 * Log's mount-time initialization. The first part of recovery can place
775 	 * some items on the AIL, to be handled when recovery is finished or
776 	 * cancelled.
777 	 */
778 	error = xfs_log_mount(mp, mp->m_logdev_targp,
779 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
780 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
781 	if (error) {
782 		xfs_warn(mp, "log mount failed");
783 		goto out_inodegc_shrinker;
784 	}
785 
786 	/* Make sure the summary counts are ok. */
787 	error = xfs_check_summary_counts(mp);
788 	if (error)
789 		goto out_log_dealloc;
790 
791 	/* Enable background inode inactivation workers. */
792 	xfs_inodegc_start(mp);
793 	xfs_blockgc_start(mp);
794 
795 	/*
796 	 * Now that we've recovered any pending superblock feature bit
797 	 * additions, we can finish setting up the attr2 behaviour for the
798 	 * mount. The noattr2 option overrides the superblock flag, so only
799 	 * check the superblock feature flag if the mount option is not set.
800 	 */
801 	if (xfs_has_noattr2(mp)) {
802 		mp->m_features &= ~XFS_FEAT_ATTR2;
803 	} else if (!xfs_has_attr2(mp) &&
804 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
805 		mp->m_features |= XFS_FEAT_ATTR2;
806 	}
807 
808 	/*
809 	 * Get and sanity-check the root inode.
810 	 * Save the pointer to it in the mount structure.
811 	 */
812 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
813 			 XFS_ILOCK_EXCL, &rip);
814 	if (error) {
815 		xfs_warn(mp,
816 			"Failed to read root inode 0x%llx, error %d",
817 			sbp->sb_rootino, -error);
818 		goto out_log_dealloc;
819 	}
820 
821 	ASSERT(rip != NULL);
822 
823 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
824 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
825 			(unsigned long long)rip->i_ino);
826 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
827 		error = -EFSCORRUPTED;
828 		goto out_rele_rip;
829 	}
830 	mp->m_rootip = rip;	/* save it */
831 
832 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
833 
834 	/*
835 	 * Initialize realtime inode pointers in the mount structure
836 	 */
837 	error = xfs_rtmount_inodes(mp);
838 	if (error) {
839 		/*
840 		 * Free up the root inode.
841 		 */
842 		xfs_warn(mp, "failed to read RT inodes");
843 		goto out_rele_rip;
844 	}
845 
846 	/*
847 	 * If this is a read-only mount defer the superblock updates until
848 	 * the next remount into writeable mode.  Otherwise we would never
849 	 * perform the update e.g. for the root filesystem.
850 	 */
851 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
852 		error = xfs_sync_sb(mp, false);
853 		if (error) {
854 			xfs_warn(mp, "failed to write sb changes");
855 			goto out_rtunmount;
856 		}
857 	}
858 
859 	/*
860 	 * Initialise the XFS quota management subsystem for this mount
861 	 */
862 	if (XFS_IS_QUOTA_ON(mp)) {
863 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
864 		if (error)
865 			goto out_rtunmount;
866 	} else {
867 		/*
868 		 * If a file system had quotas running earlier, but decided to
869 		 * mount without -o uquota/pquota/gquota options, revoke the
870 		 * quotachecked license.
871 		 */
872 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
873 			xfs_notice(mp, "resetting quota flags");
874 			error = xfs_mount_reset_sbqflags(mp);
875 			if (error)
876 				goto out_rtunmount;
877 		}
878 	}
879 
880 	/*
881 	 * Finish recovering the file system.  This part needed to be delayed
882 	 * until after the root and real-time bitmap inodes were consistently
883 	 * read in.  Temporarily create per-AG space reservations for metadata
884 	 * btree shape changes because space freeing transactions (for inode
885 	 * inactivation) require the per-AG reservation in lieu of reserving
886 	 * blocks.
887 	 */
888 	error = xfs_fs_reserve_ag_blocks(mp);
889 	if (error && error == -ENOSPC)
890 		xfs_warn(mp,
891 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
892 	error = xfs_log_mount_finish(mp);
893 	xfs_fs_unreserve_ag_blocks(mp);
894 	if (error) {
895 		xfs_warn(mp, "log mount finish failed");
896 		goto out_rtunmount;
897 	}
898 
899 	/*
900 	 * Now the log is fully replayed, we can transition to full read-only
901 	 * mode for read-only mounts. This will sync all the metadata and clean
902 	 * the log so that the recovery we just performed does not have to be
903 	 * replayed again on the next mount.
904 	 *
905 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
906 	 * semantically identical operations.
907 	 */
908 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
909 		xfs_log_clean(mp);
910 
911 	/*
912 	 * Complete the quota initialisation, post-log-replay component.
913 	 */
914 	if (quotamount) {
915 		ASSERT(mp->m_qflags == 0);
916 		mp->m_qflags = quotaflags;
917 
918 		xfs_qm_mount_quotas(mp);
919 	}
920 
921 	/*
922 	 * Now we are mounted, reserve a small amount of unused space for
923 	 * privileged transactions. This is needed so that transaction
924 	 * space required for critical operations can dip into this pool
925 	 * when at ENOSPC. This is needed for operations like create with
926 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
927 	 * are not allowed to use this reserved space.
928 	 *
929 	 * This may drive us straight to ENOSPC on mount, but that implies
930 	 * we were already there on the last unmount. Warn if this occurs.
931 	 */
932 	if (!xfs_is_readonly(mp)) {
933 		resblks = xfs_default_resblks(mp);
934 		error = xfs_reserve_blocks(mp, &resblks, NULL);
935 		if (error)
936 			xfs_warn(mp,
937 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
938 
939 		/* Recover any CoW blocks that never got remapped. */
940 		error = xfs_reflink_recover_cow(mp);
941 		if (error) {
942 			xfs_err(mp,
943 	"Error %d recovering leftover CoW allocations.", error);
944 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
945 			goto out_quota;
946 		}
947 
948 		/* Reserve AG blocks for future btree expansion. */
949 		error = xfs_fs_reserve_ag_blocks(mp);
950 		if (error && error != -ENOSPC)
951 			goto out_agresv;
952 	}
953 
954 	return 0;
955 
956  out_agresv:
957 	xfs_fs_unreserve_ag_blocks(mp);
958  out_quota:
959 	xfs_qm_unmount_quotas(mp);
960  out_rtunmount:
961 	xfs_rtunmount_inodes(mp);
962  out_rele_rip:
963 	xfs_irele(rip);
964 	/* Clean out dquots that might be in memory after quotacheck. */
965 	xfs_qm_unmount(mp);
966 
967 	/*
968 	 * Inactivate all inodes that might still be in memory after a log
969 	 * intent recovery failure so that reclaim can free them.  Metadata
970 	 * inodes and the root directory shouldn't need inactivation, but the
971 	 * mount failed for some reason, so pull down all the state and flee.
972 	 */
973 	xfs_inodegc_flush(mp);
974 
975 	/*
976 	 * Flush all inode reclamation work and flush the log.
977 	 * We have to do this /after/ rtunmount and qm_unmount because those
978 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
979 	 *
980 	 * This is slightly different from the unmountfs call sequence
981 	 * because we could be tearing down a partially set up mount.  In
982 	 * particular, if log_mount_finish fails we bail out without calling
983 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
984 	 * quota inodes.
985 	 */
986 	xfs_unmount_flush_inodes(mp);
987  out_log_dealloc:
988 	xfs_log_mount_cancel(mp);
989  out_inodegc_shrinker:
990 	unregister_shrinker(&mp->m_inodegc_shrinker);
991  out_fail_wait:
992 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
993 		xfs_buftarg_drain(mp->m_logdev_targp);
994 	xfs_buftarg_drain(mp->m_ddev_targp);
995  out_free_perag:
996 	xfs_free_perag(mp);
997  out_free_dir:
998 	xfs_da_unmount(mp);
999  out_remove_uuid:
1000 	xfs_uuid_unmount(mp);
1001  out_remove_errortag:
1002 	xfs_errortag_del(mp);
1003  out_remove_error_sysfs:
1004 	xfs_error_sysfs_del(mp);
1005  out_del_stats:
1006 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1007  out_remove_sysfs:
1008 	xfs_sysfs_del(&mp->m_kobj);
1009  out:
1010 	return error;
1011 }
1012 
1013 /*
1014  * This flushes out the inodes,dquots and the superblock, unmounts the
1015  * log and makes sure that incore structures are freed.
1016  */
1017 void
1018 xfs_unmountfs(
1019 	struct xfs_mount	*mp)
1020 {
1021 	uint64_t		resblks;
1022 	int			error;
1023 
1024 	/*
1025 	 * Perform all on-disk metadata updates required to inactivate inodes
1026 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1027 	 * and discarding CoW fork preallocations can cause shape changes to
1028 	 * the free inode and refcount btrees, respectively, so we must finish
1029 	 * this before we discard the metadata space reservations.  Metadata
1030 	 * inodes and the root directory do not require inactivation.
1031 	 */
1032 	xfs_inodegc_flush(mp);
1033 
1034 	xfs_blockgc_stop(mp);
1035 	xfs_fs_unreserve_ag_blocks(mp);
1036 	xfs_qm_unmount_quotas(mp);
1037 	xfs_rtunmount_inodes(mp);
1038 	xfs_irele(mp->m_rootip);
1039 
1040 	xfs_unmount_flush_inodes(mp);
1041 
1042 	xfs_qm_unmount(mp);
1043 
1044 	/*
1045 	 * Unreserve any blocks we have so that when we unmount we don't account
1046 	 * the reserved free space as used. This is really only necessary for
1047 	 * lazy superblock counting because it trusts the incore superblock
1048 	 * counters to be absolutely correct on clean unmount.
1049 	 *
1050 	 * We don't bother correcting this elsewhere for lazy superblock
1051 	 * counting because on mount of an unclean filesystem we reconstruct the
1052 	 * correct counter value and this is irrelevant.
1053 	 *
1054 	 * For non-lazy counter filesystems, this doesn't matter at all because
1055 	 * we only every apply deltas to the superblock and hence the incore
1056 	 * value does not matter....
1057 	 */
1058 	resblks = 0;
1059 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1060 	if (error)
1061 		xfs_warn(mp, "Unable to free reserved block pool. "
1062 				"Freespace may not be correct on next mount.");
1063 
1064 	xfs_log_unmount(mp);
1065 	xfs_da_unmount(mp);
1066 	xfs_uuid_unmount(mp);
1067 
1068 #if defined(DEBUG)
1069 	xfs_errortag_clearall(mp);
1070 #endif
1071 	unregister_shrinker(&mp->m_inodegc_shrinker);
1072 	xfs_free_perag(mp);
1073 
1074 	xfs_errortag_del(mp);
1075 	xfs_error_sysfs_del(mp);
1076 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1077 	xfs_sysfs_del(&mp->m_kobj);
1078 }
1079 
1080 /*
1081  * Determine whether modifications can proceed. The caller specifies the minimum
1082  * freeze level for which modifications should not be allowed. This allows
1083  * certain operations to proceed while the freeze sequence is in progress, if
1084  * necessary.
1085  */
1086 bool
1087 xfs_fs_writable(
1088 	struct xfs_mount	*mp,
1089 	int			level)
1090 {
1091 	ASSERT(level > SB_UNFROZEN);
1092 	if ((mp->m_super->s_writers.frozen >= level) ||
1093 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1094 		return false;
1095 
1096 	return true;
1097 }
1098 
1099 int
1100 xfs_mod_fdblocks(
1101 	struct xfs_mount	*mp,
1102 	int64_t			delta,
1103 	bool			rsvd)
1104 {
1105 	int64_t			lcounter;
1106 	long long		res_used;
1107 	s32			batch;
1108 	uint64_t		set_aside;
1109 
1110 	if (delta > 0) {
1111 		/*
1112 		 * If the reserve pool is depleted, put blocks back into it
1113 		 * first. Most of the time the pool is full.
1114 		 */
1115 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1116 			percpu_counter_add(&mp->m_fdblocks, delta);
1117 			return 0;
1118 		}
1119 
1120 		spin_lock(&mp->m_sb_lock);
1121 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1122 
1123 		if (res_used > delta) {
1124 			mp->m_resblks_avail += delta;
1125 		} else {
1126 			delta -= res_used;
1127 			mp->m_resblks_avail = mp->m_resblks;
1128 			percpu_counter_add(&mp->m_fdblocks, delta);
1129 		}
1130 		spin_unlock(&mp->m_sb_lock);
1131 		return 0;
1132 	}
1133 
1134 	/*
1135 	 * Taking blocks away, need to be more accurate the closer we
1136 	 * are to zero.
1137 	 *
1138 	 * If the counter has a value of less than 2 * max batch size,
1139 	 * then make everything serialise as we are real close to
1140 	 * ENOSPC.
1141 	 */
1142 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1143 				     XFS_FDBLOCKS_BATCH) < 0)
1144 		batch = 1;
1145 	else
1146 		batch = XFS_FDBLOCKS_BATCH;
1147 
1148 	/*
1149 	 * Set aside allocbt blocks because these blocks are tracked as free
1150 	 * space but not available for allocation. Technically this means that a
1151 	 * single reservation cannot consume all remaining free space, but the
1152 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1153 	 * The tradeoff without this is that filesystems that maintain high
1154 	 * perag block reservations can over reserve physical block availability
1155 	 * and fail physical allocation, which leads to much more serious
1156 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1157 	 * slightly premature -ENOSPC.
1158 	 */
1159 	set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1160 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1161 	if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1162 				     XFS_FDBLOCKS_BATCH) >= 0) {
1163 		/* we had space! */
1164 		return 0;
1165 	}
1166 
1167 	/*
1168 	 * lock up the sb for dipping into reserves before releasing the space
1169 	 * that took us to ENOSPC.
1170 	 */
1171 	spin_lock(&mp->m_sb_lock);
1172 	percpu_counter_add(&mp->m_fdblocks, -delta);
1173 	if (!rsvd)
1174 		goto fdblocks_enospc;
1175 
1176 	lcounter = (long long)mp->m_resblks_avail + delta;
1177 	if (lcounter >= 0) {
1178 		mp->m_resblks_avail = lcounter;
1179 		spin_unlock(&mp->m_sb_lock);
1180 		return 0;
1181 	}
1182 	xfs_warn_once(mp,
1183 "Reserve blocks depleted! Consider increasing reserve pool size.");
1184 
1185 fdblocks_enospc:
1186 	spin_unlock(&mp->m_sb_lock);
1187 	return -ENOSPC;
1188 }
1189 
1190 int
1191 xfs_mod_frextents(
1192 	struct xfs_mount	*mp,
1193 	int64_t			delta)
1194 {
1195 	int64_t			lcounter;
1196 	int			ret = 0;
1197 
1198 	spin_lock(&mp->m_sb_lock);
1199 	lcounter = mp->m_sb.sb_frextents + delta;
1200 	if (lcounter < 0)
1201 		ret = -ENOSPC;
1202 	else
1203 		mp->m_sb.sb_frextents = lcounter;
1204 	spin_unlock(&mp->m_sb_lock);
1205 	return ret;
1206 }
1207 
1208 /*
1209  * Used to free the superblock along various error paths.
1210  */
1211 void
1212 xfs_freesb(
1213 	struct xfs_mount	*mp)
1214 {
1215 	struct xfs_buf		*bp = mp->m_sb_bp;
1216 
1217 	xfs_buf_lock(bp);
1218 	mp->m_sb_bp = NULL;
1219 	xfs_buf_relse(bp);
1220 }
1221 
1222 /*
1223  * If the underlying (data/log/rt) device is readonly, there are some
1224  * operations that cannot proceed.
1225  */
1226 int
1227 xfs_dev_is_read_only(
1228 	struct xfs_mount	*mp,
1229 	char			*message)
1230 {
1231 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1232 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1233 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1234 		xfs_notice(mp, "%s required on read-only device.", message);
1235 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1236 		return -EROFS;
1237 	}
1238 	return 0;
1239 }
1240 
1241 /* Force the summary counters to be recalculated at next mount. */
1242 void
1243 xfs_force_summary_recalc(
1244 	struct xfs_mount	*mp)
1245 {
1246 	if (!xfs_has_lazysbcount(mp))
1247 		return;
1248 
1249 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1250 }
1251 
1252 /*
1253  * Enable a log incompat feature flag in the primary superblock.  The caller
1254  * cannot have any other transactions in progress.
1255  */
1256 int
1257 xfs_add_incompat_log_feature(
1258 	struct xfs_mount	*mp,
1259 	uint32_t		feature)
1260 {
1261 	struct xfs_dsb		*dsb;
1262 	int			error;
1263 
1264 	ASSERT(hweight32(feature) == 1);
1265 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1266 
1267 	/*
1268 	 * Force the log to disk and kick the background AIL thread to reduce
1269 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1270 	 * the primary superblock buffer.  This isn't a data integrity
1271 	 * operation, so we don't need a synchronous push.
1272 	 */
1273 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1274 	if (error)
1275 		return error;
1276 	xfs_ail_push_all(mp->m_ail);
1277 
1278 	/*
1279 	 * Lock the primary superblock buffer to serialize all callers that
1280 	 * are trying to set feature bits.
1281 	 */
1282 	xfs_buf_lock(mp->m_sb_bp);
1283 	xfs_buf_hold(mp->m_sb_bp);
1284 
1285 	if (xfs_is_shutdown(mp)) {
1286 		error = -EIO;
1287 		goto rele;
1288 	}
1289 
1290 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1291 		goto rele;
1292 
1293 	/*
1294 	 * Write the primary superblock to disk immediately, because we need
1295 	 * the log_incompat bit to be set in the primary super now to protect
1296 	 * the log items that we're going to commit later.
1297 	 */
1298 	dsb = mp->m_sb_bp->b_addr;
1299 	xfs_sb_to_disk(dsb, &mp->m_sb);
1300 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1301 	error = xfs_bwrite(mp->m_sb_bp);
1302 	if (error)
1303 		goto shutdown;
1304 
1305 	/*
1306 	 * Add the feature bits to the incore superblock before we unlock the
1307 	 * buffer.
1308 	 */
1309 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1310 	xfs_buf_relse(mp->m_sb_bp);
1311 
1312 	/* Log the superblock to disk. */
1313 	return xfs_sync_sb(mp, false);
1314 shutdown:
1315 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1316 rele:
1317 	xfs_buf_relse(mp->m_sb_bp);
1318 	return error;
1319 }
1320 
1321 /*
1322  * Clear all the log incompat flags from the superblock.
1323  *
1324  * The caller cannot be in a transaction, must ensure that the log does not
1325  * contain any log items protected by any log incompat bit, and must ensure
1326  * that there are no other threads that depend on the state of the log incompat
1327  * feature flags in the primary super.
1328  *
1329  * Returns true if the superblock is dirty.
1330  */
1331 bool
1332 xfs_clear_incompat_log_features(
1333 	struct xfs_mount	*mp)
1334 {
1335 	bool			ret = false;
1336 
1337 	if (!xfs_has_crc(mp) ||
1338 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1339 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1340 	    xfs_is_shutdown(mp))
1341 		return false;
1342 
1343 	/*
1344 	 * Update the incore superblock.  We synchronize on the primary super
1345 	 * buffer lock to be consistent with the add function, though at least
1346 	 * in theory this shouldn't be necessary.
1347 	 */
1348 	xfs_buf_lock(mp->m_sb_bp);
1349 	xfs_buf_hold(mp->m_sb_bp);
1350 
1351 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1352 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1353 		xfs_info(mp, "Clearing log incompat feature flags.");
1354 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1355 		ret = true;
1356 	}
1357 
1358 	xfs_buf_relse(mp->m_sb_bp);
1359 	return ret;
1360 }
1361 
1362 /*
1363  * Update the in-core delayed block counter.
1364  *
1365  * We prefer to update the counter without having to take a spinlock for every
1366  * counter update (i.e. batching).  Each change to delayed allocation
1367  * reservations can change can easily exceed the default percpu counter
1368  * batching, so we use a larger batch factor here.
1369  *
1370  * Note that we don't currently have any callers requiring fast summation
1371  * (e.g. percpu_counter_read) so we can use a big batch value here.
1372  */
1373 #define XFS_DELALLOC_BATCH	(4096)
1374 void
1375 xfs_mod_delalloc(
1376 	struct xfs_mount	*mp,
1377 	int64_t			delta)
1378 {
1379 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1380 			XFS_DELALLOC_BATCH);
1381 }
1382