xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision f42b3800)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 
48 STATIC int	xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int	xfs_uuid_mount(xfs_mount_t *);
50 STATIC void	xfs_uuid_unmount(xfs_mount_t *mp);
51 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
52 
53 
54 #ifdef HAVE_PERCPU_SB
55 STATIC void	xfs_icsb_destroy_counters(xfs_mount_t *);
56 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
57 						int, int);
58 STATIC void	xfs_icsb_sync_counters(xfs_mount_t *);
59 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
60 						int64_t, int);
61 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
62 
63 #else
64 
65 #define xfs_icsb_destroy_counters(mp)			do { } while (0)
66 #define xfs_icsb_balance_counter(mp, a, b, c)		do { } while (0)
67 #define xfs_icsb_sync_counters(mp)			do { } while (0)
68 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
69 
70 #endif
71 
72 static const struct {
73 	short offset;
74 	short type;	/* 0 = integer
75 			 * 1 = binary / string (no translation)
76 			 */
77 } xfs_sb_info[] = {
78     { offsetof(xfs_sb_t, sb_magicnum),   0 },
79     { offsetof(xfs_sb_t, sb_blocksize),  0 },
80     { offsetof(xfs_sb_t, sb_dblocks),    0 },
81     { offsetof(xfs_sb_t, sb_rblocks),    0 },
82     { offsetof(xfs_sb_t, sb_rextents),   0 },
83     { offsetof(xfs_sb_t, sb_uuid),       1 },
84     { offsetof(xfs_sb_t, sb_logstart),   0 },
85     { offsetof(xfs_sb_t, sb_rootino),    0 },
86     { offsetof(xfs_sb_t, sb_rbmino),     0 },
87     { offsetof(xfs_sb_t, sb_rsumino),    0 },
88     { offsetof(xfs_sb_t, sb_rextsize),   0 },
89     { offsetof(xfs_sb_t, sb_agblocks),   0 },
90     { offsetof(xfs_sb_t, sb_agcount),    0 },
91     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
92     { offsetof(xfs_sb_t, sb_logblocks),  0 },
93     { offsetof(xfs_sb_t, sb_versionnum), 0 },
94     { offsetof(xfs_sb_t, sb_sectsize),   0 },
95     { offsetof(xfs_sb_t, sb_inodesize),  0 },
96     { offsetof(xfs_sb_t, sb_inopblock),  0 },
97     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
98     { offsetof(xfs_sb_t, sb_blocklog),   0 },
99     { offsetof(xfs_sb_t, sb_sectlog),    0 },
100     { offsetof(xfs_sb_t, sb_inodelog),   0 },
101     { offsetof(xfs_sb_t, sb_inopblog),   0 },
102     { offsetof(xfs_sb_t, sb_agblklog),   0 },
103     { offsetof(xfs_sb_t, sb_rextslog),   0 },
104     { offsetof(xfs_sb_t, sb_inprogress), 0 },
105     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
106     { offsetof(xfs_sb_t, sb_icount),     0 },
107     { offsetof(xfs_sb_t, sb_ifree),      0 },
108     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
109     { offsetof(xfs_sb_t, sb_frextents),  0 },
110     { offsetof(xfs_sb_t, sb_uquotino),   0 },
111     { offsetof(xfs_sb_t, sb_gquotino),   0 },
112     { offsetof(xfs_sb_t, sb_qflags),     0 },
113     { offsetof(xfs_sb_t, sb_flags),      0 },
114     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
115     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
116     { offsetof(xfs_sb_t, sb_unit),	 0 },
117     { offsetof(xfs_sb_t, sb_width),	 0 },
118     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
119     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
120     { offsetof(xfs_sb_t, sb_logsectsize),0 },
121     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
122     { offsetof(xfs_sb_t, sb_features2),	 0 },
123     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
124     { sizeof(xfs_sb_t),			 0 }
125 };
126 
127 /*
128  * Return a pointer to an initialized xfs_mount structure.
129  */
130 xfs_mount_t *
131 xfs_mount_init(void)
132 {
133 	xfs_mount_t *mp;
134 
135 	mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
136 
137 	if (xfs_icsb_init_counters(mp)) {
138 		mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
139 	}
140 
141 	spin_lock_init(&mp->m_sb_lock);
142 	mutex_init(&mp->m_ilock);
143 	mutex_init(&mp->m_growlock);
144 	atomic_set(&mp->m_active_trans, 0);
145 
146 	return mp;
147 }
148 
149 /*
150  * Free up the resources associated with a mount structure.  Assume that
151  * the structure was initially zeroed, so we can tell which fields got
152  * initialized.
153  */
154 void
155 xfs_mount_free(
156 	xfs_mount_t	*mp)
157 {
158 	if (mp->m_perag) {
159 		int	agno;
160 
161 		for (agno = 0; agno < mp->m_maxagi; agno++)
162 			if (mp->m_perag[agno].pagb_list)
163 				kmem_free(mp->m_perag[agno].pagb_list,
164 						sizeof(xfs_perag_busy_t) *
165 							XFS_PAGB_NUM_SLOTS);
166 		kmem_free(mp->m_perag,
167 			  sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
168 	}
169 
170 	spinlock_destroy(&mp->m_ail_lock);
171 	spinlock_destroy(&mp->m_sb_lock);
172 	mutex_destroy(&mp->m_ilock);
173 	mutex_destroy(&mp->m_growlock);
174 	if (mp->m_quotainfo)
175 		XFS_QM_DONE(mp);
176 
177 	if (mp->m_fsname != NULL)
178 		kmem_free(mp->m_fsname, mp->m_fsname_len);
179 	if (mp->m_rtname != NULL)
180 		kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
181 	if (mp->m_logname != NULL)
182 		kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
183 
184 	xfs_icsb_destroy_counters(mp);
185 }
186 
187 /*
188  * Check size of device based on the (data/realtime) block count.
189  * Note: this check is used by the growfs code as well as mount.
190  */
191 int
192 xfs_sb_validate_fsb_count(
193 	xfs_sb_t	*sbp,
194 	__uint64_t	nblocks)
195 {
196 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
197 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
198 
199 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
200 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
201 		return E2BIG;
202 #else                  /* Limited by UINT_MAX of sectors */
203 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
204 		return E2BIG;
205 #endif
206 	return 0;
207 }
208 
209 /*
210  * Check the validity of the SB found.
211  */
212 STATIC int
213 xfs_mount_validate_sb(
214 	xfs_mount_t	*mp,
215 	xfs_sb_t	*sbp,
216 	int		flags)
217 {
218 	/*
219 	 * If the log device and data device have the
220 	 * same device number, the log is internal.
221 	 * Consequently, the sb_logstart should be non-zero.  If
222 	 * we have a zero sb_logstart in this case, we may be trying to mount
223 	 * a volume filesystem in a non-volume manner.
224 	 */
225 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
226 		xfs_fs_mount_cmn_err(flags, "bad magic number");
227 		return XFS_ERROR(EWRONGFS);
228 	}
229 
230 	if (!xfs_sb_good_version(sbp)) {
231 		xfs_fs_mount_cmn_err(flags, "bad version");
232 		return XFS_ERROR(EWRONGFS);
233 	}
234 
235 	if (unlikely(
236 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
237 		xfs_fs_mount_cmn_err(flags,
238 			"filesystem is marked as having an external log; "
239 			"specify logdev on the\nmount command line.");
240 		return XFS_ERROR(EINVAL);
241 	}
242 
243 	if (unlikely(
244 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
245 		xfs_fs_mount_cmn_err(flags,
246 			"filesystem is marked as having an internal log; "
247 			"do not specify logdev on\nthe mount command line.");
248 		return XFS_ERROR(EINVAL);
249 	}
250 
251 	/*
252 	 * More sanity checking. These were stolen directly from
253 	 * xfs_repair.
254 	 */
255 	if (unlikely(
256 	    sbp->sb_agcount <= 0					||
257 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
258 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
259 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
260 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
261 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
262 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
263 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
264 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
265 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
266 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
267 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
268 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
269 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
270 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
271 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
272 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
273 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
274 		return XFS_ERROR(EFSCORRUPTED);
275 	}
276 
277 	/*
278 	 * Sanity check AG count, size fields against data size field
279 	 */
280 	if (unlikely(
281 	    sbp->sb_dblocks == 0 ||
282 	    sbp->sb_dblocks >
283 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
284 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
285 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
286 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
287 		return XFS_ERROR(EFSCORRUPTED);
288 	}
289 
290 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
291 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
292 		xfs_fs_mount_cmn_err(flags,
293 			"file system too large to be mounted on this system.");
294 		return XFS_ERROR(E2BIG);
295 	}
296 
297 	if (unlikely(sbp->sb_inprogress)) {
298 		xfs_fs_mount_cmn_err(flags, "file system busy");
299 		return XFS_ERROR(EFSCORRUPTED);
300 	}
301 
302 	/*
303 	 * Version 1 directory format has never worked on Linux.
304 	 */
305 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
306 		xfs_fs_mount_cmn_err(flags,
307 			"file system using version 1 directory format");
308 		return XFS_ERROR(ENOSYS);
309 	}
310 
311 	/*
312 	 * Until this is fixed only page-sized or smaller data blocks work.
313 	 */
314 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
315 		xfs_fs_mount_cmn_err(flags,
316 			"file system with blocksize %d bytes",
317 			sbp->sb_blocksize);
318 		xfs_fs_mount_cmn_err(flags,
319 			"only pagesize (%ld) or less will currently work.",
320 			PAGE_SIZE);
321 		return XFS_ERROR(ENOSYS);
322 	}
323 
324 	return 0;
325 }
326 
327 STATIC void
328 xfs_initialize_perag_icache(
329 	xfs_perag_t	*pag)
330 {
331 	if (!pag->pag_ici_init) {
332 		rwlock_init(&pag->pag_ici_lock);
333 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
334 		pag->pag_ici_init = 1;
335 	}
336 }
337 
338 xfs_agnumber_t
339 xfs_initialize_perag(
340 	xfs_mount_t	*mp,
341 	xfs_agnumber_t	agcount)
342 {
343 	xfs_agnumber_t	index, max_metadata;
344 	xfs_perag_t	*pag;
345 	xfs_agino_t	agino;
346 	xfs_ino_t	ino;
347 	xfs_sb_t	*sbp = &mp->m_sb;
348 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32;
349 
350 	/* Check to see if the filesystem can overflow 32 bit inodes */
351 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
352 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
353 
354 	/* Clear the mount flag if no inode can overflow 32 bits
355 	 * on this filesystem, or if specifically requested..
356 	 */
357 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
358 		mp->m_flags |= XFS_MOUNT_32BITINODES;
359 	} else {
360 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
361 	}
362 
363 	/* If we can overflow then setup the ag headers accordingly */
364 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
365 		/* Calculate how much should be reserved for inodes to
366 		 * meet the max inode percentage.
367 		 */
368 		if (mp->m_maxicount) {
369 			__uint64_t	icount;
370 
371 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
372 			do_div(icount, 100);
373 			icount += sbp->sb_agblocks - 1;
374 			do_div(icount, sbp->sb_agblocks);
375 			max_metadata = icount;
376 		} else {
377 			max_metadata = agcount;
378 		}
379 		for (index = 0; index < agcount; index++) {
380 			ino = XFS_AGINO_TO_INO(mp, index, agino);
381 			if (ino > max_inum) {
382 				index++;
383 				break;
384 			}
385 
386 			/* This ag is preferred for inodes */
387 			pag = &mp->m_perag[index];
388 			pag->pagi_inodeok = 1;
389 			if (index < max_metadata)
390 				pag->pagf_metadata = 1;
391 			xfs_initialize_perag_icache(pag);
392 		}
393 	} else {
394 		/* Setup default behavior for smaller filesystems */
395 		for (index = 0; index < agcount; index++) {
396 			pag = &mp->m_perag[index];
397 			pag->pagi_inodeok = 1;
398 			xfs_initialize_perag_icache(pag);
399 		}
400 	}
401 	return index;
402 }
403 
404 void
405 xfs_sb_from_disk(
406 	xfs_sb_t	*to,
407 	xfs_dsb_t	*from)
408 {
409 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
410 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
411 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
412 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
413 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
414 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
415 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
416 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
417 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
418 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
419 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
420 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
421 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
422 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
423 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
424 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
425 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
426 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
427 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
428 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
429 	to->sb_blocklog = from->sb_blocklog;
430 	to->sb_sectlog = from->sb_sectlog;
431 	to->sb_inodelog = from->sb_inodelog;
432 	to->sb_inopblog = from->sb_inopblog;
433 	to->sb_agblklog = from->sb_agblklog;
434 	to->sb_rextslog = from->sb_rextslog;
435 	to->sb_inprogress = from->sb_inprogress;
436 	to->sb_imax_pct = from->sb_imax_pct;
437 	to->sb_icount = be64_to_cpu(from->sb_icount);
438 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
439 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
440 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
441 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
442 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
443 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
444 	to->sb_flags = from->sb_flags;
445 	to->sb_shared_vn = from->sb_shared_vn;
446 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
447 	to->sb_unit = be32_to_cpu(from->sb_unit);
448 	to->sb_width = be32_to_cpu(from->sb_width);
449 	to->sb_dirblklog = from->sb_dirblklog;
450 	to->sb_logsectlog = from->sb_logsectlog;
451 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
452 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
453 	to->sb_features2 = be32_to_cpu(from->sb_features2);
454 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
455 }
456 
457 /*
458  * Copy in core superblock to ondisk one.
459  *
460  * The fields argument is mask of superblock fields to copy.
461  */
462 void
463 xfs_sb_to_disk(
464 	xfs_dsb_t	*to,
465 	xfs_sb_t	*from,
466 	__int64_t	fields)
467 {
468 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
469 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
470 	xfs_sb_field_t	f;
471 	int		first;
472 	int		size;
473 
474 	ASSERT(fields);
475 	if (!fields)
476 		return;
477 
478 	while (fields) {
479 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
480 		first = xfs_sb_info[f].offset;
481 		size = xfs_sb_info[f + 1].offset - first;
482 
483 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
484 
485 		if (size == 1 || xfs_sb_info[f].type == 1) {
486 			memcpy(to_ptr + first, from_ptr + first, size);
487 		} else {
488 			switch (size) {
489 			case 2:
490 				*(__be16 *)(to_ptr + first) =
491 					cpu_to_be16(*(__u16 *)(from_ptr + first));
492 				break;
493 			case 4:
494 				*(__be32 *)(to_ptr + first) =
495 					cpu_to_be32(*(__u32 *)(from_ptr + first));
496 				break;
497 			case 8:
498 				*(__be64 *)(to_ptr + first) =
499 					cpu_to_be64(*(__u64 *)(from_ptr + first));
500 				break;
501 			default:
502 				ASSERT(0);
503 			}
504 		}
505 
506 		fields &= ~(1LL << f);
507 	}
508 }
509 
510 /*
511  * xfs_readsb
512  *
513  * Does the initial read of the superblock.
514  */
515 int
516 xfs_readsb(xfs_mount_t *mp, int flags)
517 {
518 	unsigned int	sector_size;
519 	unsigned int	extra_flags;
520 	xfs_buf_t	*bp;
521 	int		error;
522 
523 	ASSERT(mp->m_sb_bp == NULL);
524 	ASSERT(mp->m_ddev_targp != NULL);
525 
526 	/*
527 	 * Allocate a (locked) buffer to hold the superblock.
528 	 * This will be kept around at all times to optimize
529 	 * access to the superblock.
530 	 */
531 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
532 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
533 
534 	bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
535 				BTOBB(sector_size), extra_flags);
536 	if (!bp || XFS_BUF_ISERROR(bp)) {
537 		xfs_fs_mount_cmn_err(flags, "SB read failed");
538 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
539 		goto fail;
540 	}
541 	ASSERT(XFS_BUF_ISBUSY(bp));
542 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
543 
544 	/*
545 	 * Initialize the mount structure from the superblock.
546 	 * But first do some basic consistency checking.
547 	 */
548 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
549 
550 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
551 	if (error) {
552 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
553 		goto fail;
554 	}
555 
556 	/*
557 	 * We must be able to do sector-sized and sector-aligned IO.
558 	 */
559 	if (sector_size > mp->m_sb.sb_sectsize) {
560 		xfs_fs_mount_cmn_err(flags,
561 			"device supports only %u byte sectors (not %u)",
562 			sector_size, mp->m_sb.sb_sectsize);
563 		error = ENOSYS;
564 		goto fail;
565 	}
566 
567 	/*
568 	 * If device sector size is smaller than the superblock size,
569 	 * re-read the superblock so the buffer is correctly sized.
570 	 */
571 	if (sector_size < mp->m_sb.sb_sectsize) {
572 		XFS_BUF_UNMANAGE(bp);
573 		xfs_buf_relse(bp);
574 		sector_size = mp->m_sb.sb_sectsize;
575 		bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
576 					BTOBB(sector_size), extra_flags);
577 		if (!bp || XFS_BUF_ISERROR(bp)) {
578 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
579 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
580 			goto fail;
581 		}
582 		ASSERT(XFS_BUF_ISBUSY(bp));
583 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
584 	}
585 
586 	/* Initialize per-cpu counters */
587 	xfs_icsb_reinit_counters(mp);
588 
589 	mp->m_sb_bp = bp;
590 	xfs_buf_relse(bp);
591 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
592 	return 0;
593 
594  fail:
595 	if (bp) {
596 		XFS_BUF_UNMANAGE(bp);
597 		xfs_buf_relse(bp);
598 	}
599 	return error;
600 }
601 
602 
603 /*
604  * xfs_mount_common
605  *
606  * Mount initialization code establishing various mount
607  * fields from the superblock associated with the given
608  * mount structure
609  */
610 STATIC void
611 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
612 {
613 	int	i;
614 
615 	mp->m_agfrotor = mp->m_agirotor = 0;
616 	spin_lock_init(&mp->m_agirotor_lock);
617 	mp->m_maxagi = mp->m_sb.sb_agcount;
618 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
619 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
620 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
621 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
622 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
623 	mp->m_litino = sbp->sb_inodesize -
624 		((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
625 	mp->m_blockmask = sbp->sb_blocksize - 1;
626 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
627 	mp->m_blockwmask = mp->m_blockwsize - 1;
628 	INIT_LIST_HEAD(&mp->m_del_inodes);
629 
630 	/*
631 	 * Setup for attributes, in case they get created.
632 	 * This value is for inodes getting attributes for the first time,
633 	 * the per-inode value is for old attribute values.
634 	 */
635 	ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
636 	switch (sbp->sb_inodesize) {
637 	case 256:
638 		mp->m_attroffset = XFS_LITINO(mp) -
639 				   XFS_BMDR_SPACE_CALC(MINABTPTRS);
640 		break;
641 	case 512:
642 	case 1024:
643 	case 2048:
644 		mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
645 		break;
646 	default:
647 		ASSERT(0);
648 	}
649 	ASSERT(mp->m_attroffset < XFS_LITINO(mp));
650 
651 	for (i = 0; i < 2; i++) {
652 		mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
653 			xfs_alloc, i == 0);
654 		mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
655 			xfs_alloc, i == 0);
656 	}
657 	for (i = 0; i < 2; i++) {
658 		mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
659 			xfs_bmbt, i == 0);
660 		mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
661 			xfs_bmbt, i == 0);
662 	}
663 	for (i = 0; i < 2; i++) {
664 		mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
665 			xfs_inobt, i == 0);
666 		mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
667 			xfs_inobt, i == 0);
668 	}
669 
670 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
671 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
672 					sbp->sb_inopblock);
673 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
674 }
675 
676 /*
677  * xfs_initialize_perag_data
678  *
679  * Read in each per-ag structure so we can count up the number of
680  * allocated inodes, free inodes and used filesystem blocks as this
681  * information is no longer persistent in the superblock. Once we have
682  * this information, write it into the in-core superblock structure.
683  */
684 STATIC int
685 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
686 {
687 	xfs_agnumber_t	index;
688 	xfs_perag_t	*pag;
689 	xfs_sb_t	*sbp = &mp->m_sb;
690 	uint64_t	ifree = 0;
691 	uint64_t	ialloc = 0;
692 	uint64_t	bfree = 0;
693 	uint64_t	bfreelst = 0;
694 	uint64_t	btree = 0;
695 	int		error;
696 
697 	for (index = 0; index < agcount; index++) {
698 		/*
699 		 * read the agf, then the agi. This gets us
700 		 * all the inforamtion we need and populates the
701 		 * per-ag structures for us.
702 		 */
703 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
704 		if (error)
705 			return error;
706 
707 		error = xfs_ialloc_pagi_init(mp, NULL, index);
708 		if (error)
709 			return error;
710 		pag = &mp->m_perag[index];
711 		ifree += pag->pagi_freecount;
712 		ialloc += pag->pagi_count;
713 		bfree += pag->pagf_freeblks;
714 		bfreelst += pag->pagf_flcount;
715 		btree += pag->pagf_btreeblks;
716 	}
717 	/*
718 	 * Overwrite incore superblock counters with just-read data
719 	 */
720 	spin_lock(&mp->m_sb_lock);
721 	sbp->sb_ifree = ifree;
722 	sbp->sb_icount = ialloc;
723 	sbp->sb_fdblocks = bfree + bfreelst + btree;
724 	spin_unlock(&mp->m_sb_lock);
725 
726 	/* Fixup the per-cpu counters as well. */
727 	xfs_icsb_reinit_counters(mp);
728 
729 	return 0;
730 }
731 
732 /*
733  * Update alignment values based on mount options and sb values
734  */
735 STATIC int
736 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
737 {
738 	xfs_sb_t	*sbp = &(mp->m_sb);
739 
740 	if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
741 		/*
742 		 * If stripe unit and stripe width are not multiples
743 		 * of the fs blocksize turn off alignment.
744 		 */
745 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
746 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
747 			if (mp->m_flags & XFS_MOUNT_RETERR) {
748 				cmn_err(CE_WARN,
749 					"XFS: alignment check 1 failed");
750 				return XFS_ERROR(EINVAL);
751 			}
752 			mp->m_dalign = mp->m_swidth = 0;
753 		} else {
754 			/*
755 			 * Convert the stripe unit and width to FSBs.
756 			 */
757 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
758 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
759 				if (mp->m_flags & XFS_MOUNT_RETERR) {
760 					return XFS_ERROR(EINVAL);
761 				}
762 				xfs_fs_cmn_err(CE_WARN, mp,
763 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
764 					mp->m_dalign, mp->m_swidth,
765 					sbp->sb_agblocks);
766 
767 				mp->m_dalign = 0;
768 				mp->m_swidth = 0;
769 			} else if (mp->m_dalign) {
770 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
771 			} else {
772 				if (mp->m_flags & XFS_MOUNT_RETERR) {
773 					xfs_fs_cmn_err(CE_WARN, mp,
774 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
775                                         	mp->m_dalign,
776 						mp->m_blockmask +1);
777 					return XFS_ERROR(EINVAL);
778 				}
779 				mp->m_swidth = 0;
780 			}
781 		}
782 
783 		/*
784 		 * Update superblock with new values
785 		 * and log changes
786 		 */
787 		if (xfs_sb_version_hasdalign(sbp)) {
788 			if (sbp->sb_unit != mp->m_dalign) {
789 				sbp->sb_unit = mp->m_dalign;
790 				*update_flags |= XFS_SB_UNIT;
791 			}
792 			if (sbp->sb_width != mp->m_swidth) {
793 				sbp->sb_width = mp->m_swidth;
794 				*update_flags |= XFS_SB_WIDTH;
795 			}
796 		}
797 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
798 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
799 			mp->m_dalign = sbp->sb_unit;
800 			mp->m_swidth = sbp->sb_width;
801 	}
802 
803 	return 0;
804 }
805 
806 /*
807  * Set the maximum inode count for this filesystem
808  */
809 STATIC void
810 xfs_set_maxicount(xfs_mount_t *mp)
811 {
812 	xfs_sb_t	*sbp = &(mp->m_sb);
813 	__uint64_t	icount;
814 
815 	if (sbp->sb_imax_pct) {
816 		/*
817 		 * Make sure the maximum inode count is a multiple
818 		 * of the units we allocate inodes in.
819 		 */
820 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
821 		do_div(icount, 100);
822 		do_div(icount, mp->m_ialloc_blks);
823 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
824 				   sbp->sb_inopblog;
825 	} else {
826 		mp->m_maxicount = 0;
827 	}
828 }
829 
830 /*
831  * Set the default minimum read and write sizes unless
832  * already specified in a mount option.
833  * We use smaller I/O sizes when the file system
834  * is being used for NFS service (wsync mount option).
835  */
836 STATIC void
837 xfs_set_rw_sizes(xfs_mount_t *mp)
838 {
839 	xfs_sb_t	*sbp = &(mp->m_sb);
840 	int		readio_log, writeio_log;
841 
842 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
843 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
844 			readio_log = XFS_WSYNC_READIO_LOG;
845 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
846 		} else {
847 			readio_log = XFS_READIO_LOG_LARGE;
848 			writeio_log = XFS_WRITEIO_LOG_LARGE;
849 		}
850 	} else {
851 		readio_log = mp->m_readio_log;
852 		writeio_log = mp->m_writeio_log;
853 	}
854 
855 	if (sbp->sb_blocklog > readio_log) {
856 		mp->m_readio_log = sbp->sb_blocklog;
857 	} else {
858 		mp->m_readio_log = readio_log;
859 	}
860 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
861 	if (sbp->sb_blocklog > writeio_log) {
862 		mp->m_writeio_log = sbp->sb_blocklog;
863 	} else {
864 		mp->m_writeio_log = writeio_log;
865 	}
866 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
867 }
868 
869 /*
870  * Set whether we're using inode alignment.
871  */
872 STATIC void
873 xfs_set_inoalignment(xfs_mount_t *mp)
874 {
875 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
876 	    mp->m_sb.sb_inoalignmt >=
877 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
878 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
879 	else
880 		mp->m_inoalign_mask = 0;
881 	/*
882 	 * If we are using stripe alignment, check whether
883 	 * the stripe unit is a multiple of the inode alignment
884 	 */
885 	if (mp->m_dalign && mp->m_inoalign_mask &&
886 	    !(mp->m_dalign & mp->m_inoalign_mask))
887 		mp->m_sinoalign = mp->m_dalign;
888 	else
889 		mp->m_sinoalign = 0;
890 }
891 
892 /*
893  * Check that the data (and log if separate) are an ok size.
894  */
895 STATIC int
896 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
897 {
898 	xfs_buf_t	*bp;
899 	xfs_daddr_t	d;
900 	int		error;
901 
902 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
903 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
904 		cmn_err(CE_WARN, "XFS: size check 1 failed");
905 		return XFS_ERROR(E2BIG);
906 	}
907 	error = xfs_read_buf(mp, mp->m_ddev_targp,
908 			     d - XFS_FSS_TO_BB(mp, 1),
909 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
910 	if (!error) {
911 		xfs_buf_relse(bp);
912 	} else {
913 		cmn_err(CE_WARN, "XFS: size check 2 failed");
914 		if (error == ENOSPC)
915 			error = XFS_ERROR(E2BIG);
916 		return error;
917 	}
918 
919 	if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
920 	    mp->m_logdev_targp != mp->m_ddev_targp) {
921 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
922 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
923 			cmn_err(CE_WARN, "XFS: size check 3 failed");
924 			return XFS_ERROR(E2BIG);
925 		}
926 		error = xfs_read_buf(mp, mp->m_logdev_targp,
927 				     d - XFS_FSB_TO_BB(mp, 1),
928 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
929 		if (!error) {
930 			xfs_buf_relse(bp);
931 		} else {
932 			cmn_err(CE_WARN, "XFS: size check 3 failed");
933 			if (error == ENOSPC)
934 				error = XFS_ERROR(E2BIG);
935 			return error;
936 		}
937 	}
938 	return 0;
939 }
940 
941 /*
942  * xfs_mountfs
943  *
944  * This function does the following on an initial mount of a file system:
945  *	- reads the superblock from disk and init the mount struct
946  *	- if we're a 32-bit kernel, do a size check on the superblock
947  *		so we don't mount terabyte filesystems
948  *	- init mount struct realtime fields
949  *	- allocate inode hash table for fs
950  *	- init directory manager
951  *	- perform recovery and init the log manager
952  */
953 int
954 xfs_mountfs(
955 	xfs_mount_t	*mp,
956 	int		mfsi_flags)
957 {
958 	xfs_sb_t	*sbp = &(mp->m_sb);
959 	xfs_inode_t	*rip;
960 	__uint64_t	resblks;
961 	__int64_t	update_flags = 0LL;
962 	uint		quotamount, quotaflags;
963 	int		agno;
964 	int		uuid_mounted = 0;
965 	int		error = 0;
966 
967 	xfs_mount_common(mp, sbp);
968 
969 	/*
970 	 * Check for a mismatched features2 values.  Older kernels
971 	 * read & wrote into the wrong sb offset for sb_features2
972 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
973 	 * when sb_features2 was added, which made older superblock
974 	 * reading/writing routines swap it as a 64-bit value.
975 	 *
976 	 * For backwards compatibility, we make both slots equal.
977 	 *
978 	 * If we detect a mismatched field, we OR the set bits into the
979 	 * existing features2 field in case it has already been modified; we
980 	 * don't want to lose any features.  We then update the bad location
981 	 * with the ORed value so that older kernels will see any features2
982 	 * flags, and mark the two fields as needing updates once the
983 	 * transaction subsystem is online.
984 	 */
985 	if (xfs_sb_has_mismatched_features2(sbp)) {
986 		cmn_err(CE_WARN,
987 			"XFS: correcting sb_features alignment problem");
988 		sbp->sb_features2 |= sbp->sb_bad_features2;
989 		sbp->sb_bad_features2 = sbp->sb_features2;
990 		update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
991 
992 		/*
993 		 * Re-check for ATTR2 in case it was found in bad_features2
994 		 * slot.
995 		 */
996 		if (xfs_sb_version_hasattr2(&mp->m_sb))
997 			mp->m_flags |= XFS_MOUNT_ATTR2;
998 
999 	}
1000 
1001 	/*
1002 	 * Check if sb_agblocks is aligned at stripe boundary
1003 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1004 	 * allocator alignment is within an ag, therefore ag has
1005 	 * to be aligned at stripe boundary.
1006 	 */
1007 	error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
1008 	if (error)
1009 		goto error1;
1010 
1011 	xfs_alloc_compute_maxlevels(mp);
1012 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1013 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1014 	xfs_ialloc_compute_maxlevels(mp);
1015 
1016 	xfs_set_maxicount(mp);
1017 
1018 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1019 
1020 	/*
1021 	 * XFS uses the uuid from the superblock as the unique
1022 	 * identifier for fsid.  We can not use the uuid from the volume
1023 	 * since a single partition filesystem is identical to a single
1024 	 * partition volume/filesystem.
1025 	 */
1026 	if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1027 	    (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1028 		if (xfs_uuid_mount(mp)) {
1029 			error = XFS_ERROR(EINVAL);
1030 			goto error1;
1031 		}
1032 		uuid_mounted=1;
1033 	}
1034 
1035 	/*
1036 	 * Set the minimum read and write sizes
1037 	 */
1038 	xfs_set_rw_sizes(mp);
1039 
1040 	/*
1041 	 * Set the inode cluster size.
1042 	 * This may still be overridden by the file system
1043 	 * block size if it is larger than the chosen cluster size.
1044 	 */
1045 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1046 
1047 	/*
1048 	 * Set inode alignment fields
1049 	 */
1050 	xfs_set_inoalignment(mp);
1051 
1052 	/*
1053 	 * Check that the data (and log if separate) are an ok size.
1054 	 */
1055 	error = xfs_check_sizes(mp, mfsi_flags);
1056 	if (error)
1057 		goto error1;
1058 
1059 	/*
1060 	 * Initialize realtime fields in the mount structure
1061 	 */
1062 	error = xfs_rtmount_init(mp);
1063 	if (error) {
1064 		cmn_err(CE_WARN, "XFS: RT mount failed");
1065 		goto error1;
1066 	}
1067 
1068 	/*
1069 	 * For client case we are done now
1070 	 */
1071 	if (mfsi_flags & XFS_MFSI_CLIENT) {
1072 		return 0;
1073 	}
1074 
1075 	/*
1076 	 *  Copies the low order bits of the timestamp and the randomly
1077 	 *  set "sequence" number out of a UUID.
1078 	 */
1079 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1080 
1081 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1082 
1083 	xfs_dir_mount(mp);
1084 
1085 	/*
1086 	 * Initialize the attribute manager's entries.
1087 	 */
1088 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1089 
1090 	/*
1091 	 * Initialize the precomputed transaction reservations values.
1092 	 */
1093 	xfs_trans_init(mp);
1094 
1095 	/*
1096 	 * Allocate and initialize the per-ag data.
1097 	 */
1098 	init_rwsem(&mp->m_peraglock);
1099 	mp->m_perag =
1100 		kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1101 
1102 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1103 
1104 	/*
1105 	 * log's mount-time initialization. Perform 1st part recovery if needed
1106 	 */
1107 	if (likely(sbp->sb_logblocks > 0)) {	/* check for volume case */
1108 		error = xfs_log_mount(mp, mp->m_logdev_targp,
1109 				      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1110 				      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1111 		if (error) {
1112 			cmn_err(CE_WARN, "XFS: log mount failed");
1113 			goto error2;
1114 		}
1115 	} else {	/* No log has been defined */
1116 		cmn_err(CE_WARN, "XFS: no log defined");
1117 		XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1118 		error = XFS_ERROR(EFSCORRUPTED);
1119 		goto error2;
1120 	}
1121 
1122 	/*
1123 	 * Now the log is mounted, we know if it was an unclean shutdown or
1124 	 * not. If it was, with the first phase of recovery has completed, we
1125 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1126 	 * but they are recovered transactionally in the second recovery phase
1127 	 * later.
1128 	 *
1129 	 * Hence we can safely re-initialise incore superblock counters from
1130 	 * the per-ag data. These may not be correct if the filesystem was not
1131 	 * cleanly unmounted, so we need to wait for recovery to finish before
1132 	 * doing this.
1133 	 *
1134 	 * If the filesystem was cleanly unmounted, then we can trust the
1135 	 * values in the superblock to be correct and we don't need to do
1136 	 * anything here.
1137 	 *
1138 	 * If we are currently making the filesystem, the initialisation will
1139 	 * fail as the perag data is in an undefined state.
1140 	 */
1141 
1142 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1143 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1144 	     !mp->m_sb.sb_inprogress) {
1145 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1146 		if (error) {
1147 			goto error2;
1148 		}
1149 	}
1150 	/*
1151 	 * Get and sanity-check the root inode.
1152 	 * Save the pointer to it in the mount structure.
1153 	 */
1154 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1155 	if (error) {
1156 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1157 		goto error3;
1158 	}
1159 
1160 	ASSERT(rip != NULL);
1161 
1162 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1163 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1164 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1165 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1166 			(unsigned long long)rip->i_ino);
1167 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1168 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1169 				 mp);
1170 		error = XFS_ERROR(EFSCORRUPTED);
1171 		goto error4;
1172 	}
1173 	mp->m_rootip = rip;	/* save it */
1174 
1175 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1176 
1177 	/*
1178 	 * Initialize realtime inode pointers in the mount structure
1179 	 */
1180 	error = xfs_rtmount_inodes(mp);
1181 	if (error) {
1182 		/*
1183 		 * Free up the root inode.
1184 		 */
1185 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1186 		goto error4;
1187 	}
1188 
1189 	/*
1190 	 * If fs is not mounted readonly, then update the superblock changes.
1191 	 */
1192 	if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1193 		error = xfs_mount_log_sb(mp, update_flags);
1194 		if (error) {
1195 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1196 			goto error4;
1197 		}
1198 	}
1199 
1200 	/*
1201 	 * Initialise the XFS quota management subsystem for this mount
1202 	 */
1203 	error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1204 	if (error)
1205 		goto error4;
1206 
1207 	/*
1208 	 * Finish recovering the file system.  This part needed to be
1209 	 * delayed until after the root and real-time bitmap inodes
1210 	 * were consistently read in.
1211 	 */
1212 	error = xfs_log_mount_finish(mp, mfsi_flags);
1213 	if (error) {
1214 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1215 		goto error4;
1216 	}
1217 
1218 	/*
1219 	 * Complete the quota initialisation, post-log-replay component.
1220 	 */
1221 	error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1222 	if (error)
1223 		goto error4;
1224 
1225 	/*
1226 	 * Now we are mounted, reserve a small amount of unused space for
1227 	 * privileged transactions. This is needed so that transaction
1228 	 * space required for critical operations can dip into this pool
1229 	 * when at ENOSPC. This is needed for operations like create with
1230 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1231 	 * are not allowed to use this reserved space.
1232 	 *
1233 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1234 	 * This may drive us straight to ENOSPC on mount, but that implies
1235 	 * we were already there on the last unmount. Warn if this occurs.
1236 	 */
1237 	resblks = mp->m_sb.sb_dblocks;
1238 	do_div(resblks, 20);
1239 	resblks = min_t(__uint64_t, resblks, 1024);
1240 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1241 	if (error)
1242 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1243 				"Continuing without a reserve pool.");
1244 
1245 	return 0;
1246 
1247  error4:
1248 	/*
1249 	 * Free up the root inode.
1250 	 */
1251 	IRELE(rip);
1252  error3:
1253 	xfs_log_unmount_dealloc(mp);
1254  error2:
1255 	for (agno = 0; agno < sbp->sb_agcount; agno++)
1256 		if (mp->m_perag[agno].pagb_list)
1257 			kmem_free(mp->m_perag[agno].pagb_list,
1258 			  sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1259 	kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1260 	mp->m_perag = NULL;
1261 	/* FALLTHROUGH */
1262  error1:
1263 	if (uuid_mounted)
1264 		xfs_uuid_unmount(mp);
1265 	xfs_freesb(mp);
1266 	return error;
1267 }
1268 
1269 /*
1270  * xfs_unmountfs
1271  *
1272  * This flushes out the inodes,dquots and the superblock, unmounts the
1273  * log and makes sure that incore structures are freed.
1274  */
1275 int
1276 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1277 {
1278 	__uint64_t	resblks;
1279 	int		error = 0;
1280 
1281 	/*
1282 	 * We can potentially deadlock here if we have an inode cluster
1283 	 * that has been freed has it's buffer still pinned in memory because
1284 	 * the transaction is still sitting in a iclog. The stale inodes
1285 	 * on that buffer will have their flush locks held until the
1286 	 * transaction hits the disk and the callbacks run. the inode
1287 	 * flush takes the flush lock unconditionally and with nothing to
1288 	 * push out the iclog we will never get that unlocked. hence we
1289 	 * need to force the log first.
1290 	 */
1291 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1292 	xfs_iflush_all(mp);
1293 
1294 	XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1295 
1296 	/*
1297 	 * Flush out the log synchronously so that we know for sure
1298 	 * that nothing is pinned.  This is important because bflush()
1299 	 * will skip pinned buffers.
1300 	 */
1301 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1302 
1303 	xfs_binval(mp->m_ddev_targp);
1304 	if (mp->m_rtdev_targp) {
1305 		xfs_binval(mp->m_rtdev_targp);
1306 	}
1307 
1308 	/*
1309 	 * Unreserve any blocks we have so that when we unmount we don't account
1310 	 * the reserved free space as used. This is really only necessary for
1311 	 * lazy superblock counting because it trusts the incore superblock
1312 	 * counters to be aboslutely correct on clean unmount.
1313 	 *
1314 	 * We don't bother correcting this elsewhere for lazy superblock
1315 	 * counting because on mount of an unclean filesystem we reconstruct the
1316 	 * correct counter value and this is irrelevant.
1317 	 *
1318 	 * For non-lazy counter filesystems, this doesn't matter at all because
1319 	 * we only every apply deltas to the superblock and hence the incore
1320 	 * value does not matter....
1321 	 */
1322 	resblks = 0;
1323 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1324 	if (error)
1325 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1326 				"Freespace may not be correct on next mount.");
1327 
1328 	error = xfs_log_sbcount(mp, 1);
1329 	if (error)
1330 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1331 				"Freespace may not be correct on next mount.");
1332 	xfs_unmountfs_writesb(mp);
1333 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1334 	xfs_log_unmount(mp);			/* Done! No more fs ops. */
1335 
1336 	xfs_freesb(mp);
1337 
1338 	/*
1339 	 * All inodes from this mount point should be freed.
1340 	 */
1341 	ASSERT(mp->m_inodes == NULL);
1342 
1343 	xfs_unmountfs_close(mp, cr);
1344 	if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1345 		xfs_uuid_unmount(mp);
1346 
1347 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1348 	xfs_errortag_clearall(mp, 0);
1349 #endif
1350 	xfs_mount_free(mp);
1351 	return 0;
1352 }
1353 
1354 void
1355 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1356 {
1357 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1358 		xfs_free_buftarg(mp->m_logdev_targp, 1);
1359 	if (mp->m_rtdev_targp)
1360 		xfs_free_buftarg(mp->m_rtdev_targp, 1);
1361 	xfs_free_buftarg(mp->m_ddev_targp, 0);
1362 }
1363 
1364 STATIC void
1365 xfs_unmountfs_wait(xfs_mount_t *mp)
1366 {
1367 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1368 		xfs_wait_buftarg(mp->m_logdev_targp);
1369 	if (mp->m_rtdev_targp)
1370 		xfs_wait_buftarg(mp->m_rtdev_targp);
1371 	xfs_wait_buftarg(mp->m_ddev_targp);
1372 }
1373 
1374 int
1375 xfs_fs_writable(xfs_mount_t *mp)
1376 {
1377 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1378 		(mp->m_flags & XFS_MOUNT_RDONLY));
1379 }
1380 
1381 /*
1382  * xfs_log_sbcount
1383  *
1384  * Called either periodically to keep the on disk superblock values
1385  * roughly up to date or from unmount to make sure the values are
1386  * correct on a clean unmount.
1387  *
1388  * Note this code can be called during the process of freezing, so
1389  * we may need to use the transaction allocator which does not not
1390  * block when the transaction subsystem is in its frozen state.
1391  */
1392 int
1393 xfs_log_sbcount(
1394 	xfs_mount_t	*mp,
1395 	uint		sync)
1396 {
1397 	xfs_trans_t	*tp;
1398 	int		error;
1399 
1400 	if (!xfs_fs_writable(mp))
1401 		return 0;
1402 
1403 	xfs_icsb_sync_counters(mp);
1404 
1405 	/*
1406 	 * we don't need to do this if we are updating the superblock
1407 	 * counters on every modification.
1408 	 */
1409 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1410 		return 0;
1411 
1412 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1413 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1414 					XFS_DEFAULT_LOG_COUNT);
1415 	if (error) {
1416 		xfs_trans_cancel(tp, 0);
1417 		return error;
1418 	}
1419 
1420 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1421 	if (sync)
1422 		xfs_trans_set_sync(tp);
1423 	error = xfs_trans_commit(tp, 0);
1424 	return error;
1425 }
1426 
1427 STATIC void
1428 xfs_mark_shared_ro(
1429 	xfs_mount_t	*mp,
1430 	xfs_buf_t	*bp)
1431 {
1432 	xfs_dsb_t	*sb = XFS_BUF_TO_SBP(bp);
1433 	__uint16_t	version;
1434 
1435 	if (!(sb->sb_flags & XFS_SBF_READONLY))
1436 		sb->sb_flags |= XFS_SBF_READONLY;
1437 
1438 	version = be16_to_cpu(sb->sb_versionnum);
1439 	if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1440 	    !(version & XFS_SB_VERSION_SHAREDBIT))
1441 		version |= XFS_SB_VERSION_SHAREDBIT;
1442 	sb->sb_versionnum = cpu_to_be16(version);
1443 }
1444 
1445 int
1446 xfs_unmountfs_writesb(xfs_mount_t *mp)
1447 {
1448 	xfs_buf_t	*sbp;
1449 	int		error = 0;
1450 
1451 	/*
1452 	 * skip superblock write if fs is read-only, or
1453 	 * if we are doing a forced umount.
1454 	 */
1455 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1456 		XFS_FORCED_SHUTDOWN(mp))) {
1457 
1458 		sbp = xfs_getsb(mp, 0);
1459 
1460 		/*
1461 		 * mark shared-readonly if desired
1462 		 */
1463 		if (mp->m_mk_sharedro)
1464 			xfs_mark_shared_ro(mp, sbp);
1465 
1466 		XFS_BUF_UNDONE(sbp);
1467 		XFS_BUF_UNREAD(sbp);
1468 		XFS_BUF_UNDELAYWRITE(sbp);
1469 		XFS_BUF_WRITE(sbp);
1470 		XFS_BUF_UNASYNC(sbp);
1471 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1472 		xfsbdstrat(mp, sbp);
1473 		error = xfs_iowait(sbp);
1474 		if (error)
1475 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1476 					  mp, sbp, XFS_BUF_ADDR(sbp));
1477 		if (error && mp->m_mk_sharedro)
1478 			xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly");
1479 		xfs_buf_relse(sbp);
1480 	}
1481 	return error;
1482 }
1483 
1484 /*
1485  * xfs_mod_sb() can be used to copy arbitrary changes to the
1486  * in-core superblock into the superblock buffer to be logged.
1487  * It does not provide the higher level of locking that is
1488  * needed to protect the in-core superblock from concurrent
1489  * access.
1490  */
1491 void
1492 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1493 {
1494 	xfs_buf_t	*bp;
1495 	int		first;
1496 	int		last;
1497 	xfs_mount_t	*mp;
1498 	xfs_sb_field_t	f;
1499 
1500 	ASSERT(fields);
1501 	if (!fields)
1502 		return;
1503 	mp = tp->t_mountp;
1504 	bp = xfs_trans_getsb(tp, mp, 0);
1505 	first = sizeof(xfs_sb_t);
1506 	last = 0;
1507 
1508 	/* translate/copy */
1509 
1510 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1511 
1512 	/* find modified range */
1513 
1514 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1515 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1516 	first = xfs_sb_info[f].offset;
1517 
1518 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1519 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1520 	last = xfs_sb_info[f + 1].offset - 1;
1521 
1522 	xfs_trans_log_buf(tp, bp, first, last);
1523 }
1524 
1525 
1526 /*
1527  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1528  * a delta to a specified field in the in-core superblock.  Simply
1529  * switch on the field indicated and apply the delta to that field.
1530  * Fields are not allowed to dip below zero, so if the delta would
1531  * do this do not apply it and return EINVAL.
1532  *
1533  * The m_sb_lock must be held when this routine is called.
1534  */
1535 int
1536 xfs_mod_incore_sb_unlocked(
1537 	xfs_mount_t	*mp,
1538 	xfs_sb_field_t	field,
1539 	int64_t		delta,
1540 	int		rsvd)
1541 {
1542 	int		scounter;	/* short counter for 32 bit fields */
1543 	long long	lcounter;	/* long counter for 64 bit fields */
1544 	long long	res_used, rem;
1545 
1546 	/*
1547 	 * With the in-core superblock spin lock held, switch
1548 	 * on the indicated field.  Apply the delta to the
1549 	 * proper field.  If the fields value would dip below
1550 	 * 0, then do not apply the delta and return EINVAL.
1551 	 */
1552 	switch (field) {
1553 	case XFS_SBS_ICOUNT:
1554 		lcounter = (long long)mp->m_sb.sb_icount;
1555 		lcounter += delta;
1556 		if (lcounter < 0) {
1557 			ASSERT(0);
1558 			return XFS_ERROR(EINVAL);
1559 		}
1560 		mp->m_sb.sb_icount = lcounter;
1561 		return 0;
1562 	case XFS_SBS_IFREE:
1563 		lcounter = (long long)mp->m_sb.sb_ifree;
1564 		lcounter += delta;
1565 		if (lcounter < 0) {
1566 			ASSERT(0);
1567 			return XFS_ERROR(EINVAL);
1568 		}
1569 		mp->m_sb.sb_ifree = lcounter;
1570 		return 0;
1571 	case XFS_SBS_FDBLOCKS:
1572 		lcounter = (long long)
1573 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1574 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1575 
1576 		if (delta > 0) {		/* Putting blocks back */
1577 			if (res_used > delta) {
1578 				mp->m_resblks_avail += delta;
1579 			} else {
1580 				rem = delta - res_used;
1581 				mp->m_resblks_avail = mp->m_resblks;
1582 				lcounter += rem;
1583 			}
1584 		} else {				/* Taking blocks away */
1585 
1586 			lcounter += delta;
1587 
1588 		/*
1589 		 * If were out of blocks, use any available reserved blocks if
1590 		 * were allowed to.
1591 		 */
1592 
1593 			if (lcounter < 0) {
1594 				if (rsvd) {
1595 					lcounter = (long long)mp->m_resblks_avail + delta;
1596 					if (lcounter < 0) {
1597 						return XFS_ERROR(ENOSPC);
1598 					}
1599 					mp->m_resblks_avail = lcounter;
1600 					return 0;
1601 				} else {	/* not reserved */
1602 					return XFS_ERROR(ENOSPC);
1603 				}
1604 			}
1605 		}
1606 
1607 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1608 		return 0;
1609 	case XFS_SBS_FREXTENTS:
1610 		lcounter = (long long)mp->m_sb.sb_frextents;
1611 		lcounter += delta;
1612 		if (lcounter < 0) {
1613 			return XFS_ERROR(ENOSPC);
1614 		}
1615 		mp->m_sb.sb_frextents = lcounter;
1616 		return 0;
1617 	case XFS_SBS_DBLOCKS:
1618 		lcounter = (long long)mp->m_sb.sb_dblocks;
1619 		lcounter += delta;
1620 		if (lcounter < 0) {
1621 			ASSERT(0);
1622 			return XFS_ERROR(EINVAL);
1623 		}
1624 		mp->m_sb.sb_dblocks = lcounter;
1625 		return 0;
1626 	case XFS_SBS_AGCOUNT:
1627 		scounter = mp->m_sb.sb_agcount;
1628 		scounter += delta;
1629 		if (scounter < 0) {
1630 			ASSERT(0);
1631 			return XFS_ERROR(EINVAL);
1632 		}
1633 		mp->m_sb.sb_agcount = scounter;
1634 		return 0;
1635 	case XFS_SBS_IMAX_PCT:
1636 		scounter = mp->m_sb.sb_imax_pct;
1637 		scounter += delta;
1638 		if (scounter < 0) {
1639 			ASSERT(0);
1640 			return XFS_ERROR(EINVAL);
1641 		}
1642 		mp->m_sb.sb_imax_pct = scounter;
1643 		return 0;
1644 	case XFS_SBS_REXTSIZE:
1645 		scounter = mp->m_sb.sb_rextsize;
1646 		scounter += delta;
1647 		if (scounter < 0) {
1648 			ASSERT(0);
1649 			return XFS_ERROR(EINVAL);
1650 		}
1651 		mp->m_sb.sb_rextsize = scounter;
1652 		return 0;
1653 	case XFS_SBS_RBMBLOCKS:
1654 		scounter = mp->m_sb.sb_rbmblocks;
1655 		scounter += delta;
1656 		if (scounter < 0) {
1657 			ASSERT(0);
1658 			return XFS_ERROR(EINVAL);
1659 		}
1660 		mp->m_sb.sb_rbmblocks = scounter;
1661 		return 0;
1662 	case XFS_SBS_RBLOCKS:
1663 		lcounter = (long long)mp->m_sb.sb_rblocks;
1664 		lcounter += delta;
1665 		if (lcounter < 0) {
1666 			ASSERT(0);
1667 			return XFS_ERROR(EINVAL);
1668 		}
1669 		mp->m_sb.sb_rblocks = lcounter;
1670 		return 0;
1671 	case XFS_SBS_REXTENTS:
1672 		lcounter = (long long)mp->m_sb.sb_rextents;
1673 		lcounter += delta;
1674 		if (lcounter < 0) {
1675 			ASSERT(0);
1676 			return XFS_ERROR(EINVAL);
1677 		}
1678 		mp->m_sb.sb_rextents = lcounter;
1679 		return 0;
1680 	case XFS_SBS_REXTSLOG:
1681 		scounter = mp->m_sb.sb_rextslog;
1682 		scounter += delta;
1683 		if (scounter < 0) {
1684 			ASSERT(0);
1685 			return XFS_ERROR(EINVAL);
1686 		}
1687 		mp->m_sb.sb_rextslog = scounter;
1688 		return 0;
1689 	default:
1690 		ASSERT(0);
1691 		return XFS_ERROR(EINVAL);
1692 	}
1693 }
1694 
1695 /*
1696  * xfs_mod_incore_sb() is used to change a field in the in-core
1697  * superblock structure by the specified delta.  This modification
1698  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1699  * routine to do the work.
1700  */
1701 int
1702 xfs_mod_incore_sb(
1703 	xfs_mount_t	*mp,
1704 	xfs_sb_field_t	field,
1705 	int64_t		delta,
1706 	int		rsvd)
1707 {
1708 	int	status;
1709 
1710 	/* check for per-cpu counters */
1711 	switch (field) {
1712 #ifdef HAVE_PERCPU_SB
1713 	case XFS_SBS_ICOUNT:
1714 	case XFS_SBS_IFREE:
1715 	case XFS_SBS_FDBLOCKS:
1716 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1717 			status = xfs_icsb_modify_counters(mp, field,
1718 							delta, rsvd);
1719 			break;
1720 		}
1721 		/* FALLTHROUGH */
1722 #endif
1723 	default:
1724 		spin_lock(&mp->m_sb_lock);
1725 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1726 		spin_unlock(&mp->m_sb_lock);
1727 		break;
1728 	}
1729 
1730 	return status;
1731 }
1732 
1733 /*
1734  * xfs_mod_incore_sb_batch() is used to change more than one field
1735  * in the in-core superblock structure at a time.  This modification
1736  * is protected by a lock internal to this module.  The fields and
1737  * changes to those fields are specified in the array of xfs_mod_sb
1738  * structures passed in.
1739  *
1740  * Either all of the specified deltas will be applied or none of
1741  * them will.  If any modified field dips below 0, then all modifications
1742  * will be backed out and EINVAL will be returned.
1743  */
1744 int
1745 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1746 {
1747 	int		status=0;
1748 	xfs_mod_sb_t	*msbp;
1749 
1750 	/*
1751 	 * Loop through the array of mod structures and apply each
1752 	 * individually.  If any fail, then back out all those
1753 	 * which have already been applied.  Do all of this within
1754 	 * the scope of the m_sb_lock so that all of the changes will
1755 	 * be atomic.
1756 	 */
1757 	spin_lock(&mp->m_sb_lock);
1758 	msbp = &msb[0];
1759 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1760 		/*
1761 		 * Apply the delta at index n.  If it fails, break
1762 		 * from the loop so we'll fall into the undo loop
1763 		 * below.
1764 		 */
1765 		switch (msbp->msb_field) {
1766 #ifdef HAVE_PERCPU_SB
1767 		case XFS_SBS_ICOUNT:
1768 		case XFS_SBS_IFREE:
1769 		case XFS_SBS_FDBLOCKS:
1770 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1771 				spin_unlock(&mp->m_sb_lock);
1772 				status = xfs_icsb_modify_counters(mp,
1773 							msbp->msb_field,
1774 							msbp->msb_delta, rsvd);
1775 				spin_lock(&mp->m_sb_lock);
1776 				break;
1777 			}
1778 			/* FALLTHROUGH */
1779 #endif
1780 		default:
1781 			status = xfs_mod_incore_sb_unlocked(mp,
1782 						msbp->msb_field,
1783 						msbp->msb_delta, rsvd);
1784 			break;
1785 		}
1786 
1787 		if (status != 0) {
1788 			break;
1789 		}
1790 	}
1791 
1792 	/*
1793 	 * If we didn't complete the loop above, then back out
1794 	 * any changes made to the superblock.  If you add code
1795 	 * between the loop above and here, make sure that you
1796 	 * preserve the value of status. Loop back until
1797 	 * we step below the beginning of the array.  Make sure
1798 	 * we don't touch anything back there.
1799 	 */
1800 	if (status != 0) {
1801 		msbp--;
1802 		while (msbp >= msb) {
1803 			switch (msbp->msb_field) {
1804 #ifdef HAVE_PERCPU_SB
1805 			case XFS_SBS_ICOUNT:
1806 			case XFS_SBS_IFREE:
1807 			case XFS_SBS_FDBLOCKS:
1808 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1809 					spin_unlock(&mp->m_sb_lock);
1810 					status = xfs_icsb_modify_counters(mp,
1811 							msbp->msb_field,
1812 							-(msbp->msb_delta),
1813 							rsvd);
1814 					spin_lock(&mp->m_sb_lock);
1815 					break;
1816 				}
1817 				/* FALLTHROUGH */
1818 #endif
1819 			default:
1820 				status = xfs_mod_incore_sb_unlocked(mp,
1821 							msbp->msb_field,
1822 							-(msbp->msb_delta),
1823 							rsvd);
1824 				break;
1825 			}
1826 			ASSERT(status == 0);
1827 			msbp--;
1828 		}
1829 	}
1830 	spin_unlock(&mp->m_sb_lock);
1831 	return status;
1832 }
1833 
1834 /*
1835  * xfs_getsb() is called to obtain the buffer for the superblock.
1836  * The buffer is returned locked and read in from disk.
1837  * The buffer should be released with a call to xfs_brelse().
1838  *
1839  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1840  * the superblock buffer if it can be locked without sleeping.
1841  * If it can't then we'll return NULL.
1842  */
1843 xfs_buf_t *
1844 xfs_getsb(
1845 	xfs_mount_t	*mp,
1846 	int		flags)
1847 {
1848 	xfs_buf_t	*bp;
1849 
1850 	ASSERT(mp->m_sb_bp != NULL);
1851 	bp = mp->m_sb_bp;
1852 	if (flags & XFS_BUF_TRYLOCK) {
1853 		if (!XFS_BUF_CPSEMA(bp)) {
1854 			return NULL;
1855 		}
1856 	} else {
1857 		XFS_BUF_PSEMA(bp, PRIBIO);
1858 	}
1859 	XFS_BUF_HOLD(bp);
1860 	ASSERT(XFS_BUF_ISDONE(bp));
1861 	return bp;
1862 }
1863 
1864 /*
1865  * Used to free the superblock along various error paths.
1866  */
1867 void
1868 xfs_freesb(
1869 	xfs_mount_t	*mp)
1870 {
1871 	xfs_buf_t	*bp;
1872 
1873 	/*
1874 	 * Use xfs_getsb() so that the buffer will be locked
1875 	 * when we call xfs_buf_relse().
1876 	 */
1877 	bp = xfs_getsb(mp, 0);
1878 	XFS_BUF_UNMANAGE(bp);
1879 	xfs_buf_relse(bp);
1880 	mp->m_sb_bp = NULL;
1881 }
1882 
1883 /*
1884  * See if the UUID is unique among mounted XFS filesystems.
1885  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1886  */
1887 STATIC int
1888 xfs_uuid_mount(
1889 	xfs_mount_t	*mp)
1890 {
1891 	if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1892 		cmn_err(CE_WARN,
1893 			"XFS: Filesystem %s has nil UUID - can't mount",
1894 			mp->m_fsname);
1895 		return -1;
1896 	}
1897 	if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1898 		cmn_err(CE_WARN,
1899 			"XFS: Filesystem %s has duplicate UUID - can't mount",
1900 			mp->m_fsname);
1901 		return -1;
1902 	}
1903 	return 0;
1904 }
1905 
1906 /*
1907  * Remove filesystem from the UUID table.
1908  */
1909 STATIC void
1910 xfs_uuid_unmount(
1911 	xfs_mount_t	*mp)
1912 {
1913 	uuid_table_remove(&mp->m_sb.sb_uuid);
1914 }
1915 
1916 /*
1917  * Used to log changes to the superblock unit and width fields which could
1918  * be altered by the mount options, as well as any potential sb_features2
1919  * fixup. Only the first superblock is updated.
1920  */
1921 STATIC int
1922 xfs_mount_log_sb(
1923 	xfs_mount_t	*mp,
1924 	__int64_t	fields)
1925 {
1926 	xfs_trans_t	*tp;
1927 	int		error;
1928 
1929 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1930 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2));
1931 
1932 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1933 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1934 				XFS_DEFAULT_LOG_COUNT);
1935 	if (error) {
1936 		xfs_trans_cancel(tp, 0);
1937 		return error;
1938 	}
1939 	xfs_mod_sb(tp, fields);
1940 	error = xfs_trans_commit(tp, 0);
1941 	return error;
1942 }
1943 
1944 
1945 #ifdef HAVE_PERCPU_SB
1946 /*
1947  * Per-cpu incore superblock counters
1948  *
1949  * Simple concept, difficult implementation
1950  *
1951  * Basically, replace the incore superblock counters with a distributed per cpu
1952  * counter for contended fields (e.g.  free block count).
1953  *
1954  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1955  * hence needs to be accurately read when we are running low on space. Hence
1956  * there is a method to enable and disable the per-cpu counters based on how
1957  * much "stuff" is available in them.
1958  *
1959  * Basically, a counter is enabled if there is enough free resource to justify
1960  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1961  * ENOSPC), then we disable the counters to synchronise all callers and
1962  * re-distribute the available resources.
1963  *
1964  * If, once we redistributed the available resources, we still get a failure,
1965  * we disable the per-cpu counter and go through the slow path.
1966  *
1967  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1968  * when we disable a per-cpu counter, we need to drain it's resources back to
1969  * the global superblock. We do this after disabling the counter to prevent
1970  * more threads from queueing up on the counter.
1971  *
1972  * Essentially, this means that we still need a lock in the fast path to enable
1973  * synchronisation between the global counters and the per-cpu counters. This
1974  * is not a problem because the lock will be local to a CPU almost all the time
1975  * and have little contention except when we get to ENOSPC conditions.
1976  *
1977  * Basically, this lock becomes a barrier that enables us to lock out the fast
1978  * path while we do things like enabling and disabling counters and
1979  * synchronising the counters.
1980  *
1981  * Locking rules:
1982  *
1983  * 	1. m_sb_lock before picking up per-cpu locks
1984  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1985  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1986  * 	4. modifying per-cpu counters requires holding per-cpu lock
1987  * 	5. modifying global counters requires holding m_sb_lock
1988  *	6. enabling or disabling a counter requires holding the m_sb_lock
1989  *	   and _none_ of the per-cpu locks.
1990  *
1991  * Disabled counters are only ever re-enabled by a balance operation
1992  * that results in more free resources per CPU than a given threshold.
1993  * To ensure counters don't remain disabled, they are rebalanced when
1994  * the global resource goes above a higher threshold (i.e. some hysteresis
1995  * is present to prevent thrashing).
1996  */
1997 
1998 #ifdef CONFIG_HOTPLUG_CPU
1999 /*
2000  * hot-plug CPU notifier support.
2001  *
2002  * We need a notifier per filesystem as we need to be able to identify
2003  * the filesystem to balance the counters out. This is achieved by
2004  * having a notifier block embedded in the xfs_mount_t and doing pointer
2005  * magic to get the mount pointer from the notifier block address.
2006  */
2007 STATIC int
2008 xfs_icsb_cpu_notify(
2009 	struct notifier_block *nfb,
2010 	unsigned long action,
2011 	void *hcpu)
2012 {
2013 	xfs_icsb_cnts_t *cntp;
2014 	xfs_mount_t	*mp;
2015 
2016 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2017 	cntp = (xfs_icsb_cnts_t *)
2018 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2019 	switch (action) {
2020 	case CPU_UP_PREPARE:
2021 	case CPU_UP_PREPARE_FROZEN:
2022 		/* Easy Case - initialize the area and locks, and
2023 		 * then rebalance when online does everything else for us. */
2024 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2025 		break;
2026 	case CPU_ONLINE:
2027 	case CPU_ONLINE_FROZEN:
2028 		xfs_icsb_lock(mp);
2029 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2030 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2031 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2032 		xfs_icsb_unlock(mp);
2033 		break;
2034 	case CPU_DEAD:
2035 	case CPU_DEAD_FROZEN:
2036 		/* Disable all the counters, then fold the dead cpu's
2037 		 * count into the total on the global superblock and
2038 		 * re-enable the counters. */
2039 		xfs_icsb_lock(mp);
2040 		spin_lock(&mp->m_sb_lock);
2041 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2042 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2043 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2044 
2045 		mp->m_sb.sb_icount += cntp->icsb_icount;
2046 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2047 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2048 
2049 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2050 
2051 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT,
2052 					 XFS_ICSB_SB_LOCKED, 0);
2053 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE,
2054 					 XFS_ICSB_SB_LOCKED, 0);
2055 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS,
2056 					 XFS_ICSB_SB_LOCKED, 0);
2057 		spin_unlock(&mp->m_sb_lock);
2058 		xfs_icsb_unlock(mp);
2059 		break;
2060 	}
2061 
2062 	return NOTIFY_OK;
2063 }
2064 #endif /* CONFIG_HOTPLUG_CPU */
2065 
2066 int
2067 xfs_icsb_init_counters(
2068 	xfs_mount_t	*mp)
2069 {
2070 	xfs_icsb_cnts_t *cntp;
2071 	int		i;
2072 
2073 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2074 	if (mp->m_sb_cnts == NULL)
2075 		return -ENOMEM;
2076 
2077 #ifdef CONFIG_HOTPLUG_CPU
2078 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2079 	mp->m_icsb_notifier.priority = 0;
2080 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2081 #endif /* CONFIG_HOTPLUG_CPU */
2082 
2083 	for_each_online_cpu(i) {
2084 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2085 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2086 	}
2087 
2088 	mutex_init(&mp->m_icsb_mutex);
2089 
2090 	/*
2091 	 * start with all counters disabled so that the
2092 	 * initial balance kicks us off correctly
2093 	 */
2094 	mp->m_icsb_counters = -1;
2095 	return 0;
2096 }
2097 
2098 void
2099 xfs_icsb_reinit_counters(
2100 	xfs_mount_t	*mp)
2101 {
2102 	xfs_icsb_lock(mp);
2103 	/*
2104 	 * start with all counters disabled so that the
2105 	 * initial balance kicks us off correctly
2106 	 */
2107 	mp->m_icsb_counters = -1;
2108 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0);
2109 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0);
2110 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0);
2111 	xfs_icsb_unlock(mp);
2112 }
2113 
2114 STATIC void
2115 xfs_icsb_destroy_counters(
2116 	xfs_mount_t	*mp)
2117 {
2118 	if (mp->m_sb_cnts) {
2119 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2120 		free_percpu(mp->m_sb_cnts);
2121 	}
2122 	mutex_destroy(&mp->m_icsb_mutex);
2123 }
2124 
2125 STATIC_INLINE void
2126 xfs_icsb_lock_cntr(
2127 	xfs_icsb_cnts_t	*icsbp)
2128 {
2129 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2130 		ndelay(1000);
2131 	}
2132 }
2133 
2134 STATIC_INLINE void
2135 xfs_icsb_unlock_cntr(
2136 	xfs_icsb_cnts_t	*icsbp)
2137 {
2138 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2139 }
2140 
2141 
2142 STATIC_INLINE void
2143 xfs_icsb_lock_all_counters(
2144 	xfs_mount_t	*mp)
2145 {
2146 	xfs_icsb_cnts_t *cntp;
2147 	int		i;
2148 
2149 	for_each_online_cpu(i) {
2150 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2151 		xfs_icsb_lock_cntr(cntp);
2152 	}
2153 }
2154 
2155 STATIC_INLINE void
2156 xfs_icsb_unlock_all_counters(
2157 	xfs_mount_t	*mp)
2158 {
2159 	xfs_icsb_cnts_t *cntp;
2160 	int		i;
2161 
2162 	for_each_online_cpu(i) {
2163 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2164 		xfs_icsb_unlock_cntr(cntp);
2165 	}
2166 }
2167 
2168 STATIC void
2169 xfs_icsb_count(
2170 	xfs_mount_t	*mp,
2171 	xfs_icsb_cnts_t	*cnt,
2172 	int		flags)
2173 {
2174 	xfs_icsb_cnts_t *cntp;
2175 	int		i;
2176 
2177 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2178 
2179 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2180 		xfs_icsb_lock_all_counters(mp);
2181 
2182 	for_each_online_cpu(i) {
2183 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2184 		cnt->icsb_icount += cntp->icsb_icount;
2185 		cnt->icsb_ifree += cntp->icsb_ifree;
2186 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2187 	}
2188 
2189 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2190 		xfs_icsb_unlock_all_counters(mp);
2191 }
2192 
2193 STATIC int
2194 xfs_icsb_counter_disabled(
2195 	xfs_mount_t	*mp,
2196 	xfs_sb_field_t	field)
2197 {
2198 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2199 	return test_bit(field, &mp->m_icsb_counters);
2200 }
2201 
2202 STATIC void
2203 xfs_icsb_disable_counter(
2204 	xfs_mount_t	*mp,
2205 	xfs_sb_field_t	field)
2206 {
2207 	xfs_icsb_cnts_t	cnt;
2208 
2209 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2210 
2211 	/*
2212 	 * If we are already disabled, then there is nothing to do
2213 	 * here. We check before locking all the counters to avoid
2214 	 * the expensive lock operation when being called in the
2215 	 * slow path and the counter is already disabled. This is
2216 	 * safe because the only time we set or clear this state is under
2217 	 * the m_icsb_mutex.
2218 	 */
2219 	if (xfs_icsb_counter_disabled(mp, field))
2220 		return;
2221 
2222 	xfs_icsb_lock_all_counters(mp);
2223 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2224 		/* drain back to superblock */
2225 
2226 		xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT);
2227 		switch(field) {
2228 		case XFS_SBS_ICOUNT:
2229 			mp->m_sb.sb_icount = cnt.icsb_icount;
2230 			break;
2231 		case XFS_SBS_IFREE:
2232 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2233 			break;
2234 		case XFS_SBS_FDBLOCKS:
2235 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2236 			break;
2237 		default:
2238 			BUG();
2239 		}
2240 	}
2241 
2242 	xfs_icsb_unlock_all_counters(mp);
2243 }
2244 
2245 STATIC void
2246 xfs_icsb_enable_counter(
2247 	xfs_mount_t	*mp,
2248 	xfs_sb_field_t	field,
2249 	uint64_t	count,
2250 	uint64_t	resid)
2251 {
2252 	xfs_icsb_cnts_t	*cntp;
2253 	int		i;
2254 
2255 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2256 
2257 	xfs_icsb_lock_all_counters(mp);
2258 	for_each_online_cpu(i) {
2259 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2260 		switch (field) {
2261 		case XFS_SBS_ICOUNT:
2262 			cntp->icsb_icount = count + resid;
2263 			break;
2264 		case XFS_SBS_IFREE:
2265 			cntp->icsb_ifree = count + resid;
2266 			break;
2267 		case XFS_SBS_FDBLOCKS:
2268 			cntp->icsb_fdblocks = count + resid;
2269 			break;
2270 		default:
2271 			BUG();
2272 			break;
2273 		}
2274 		resid = 0;
2275 	}
2276 	clear_bit(field, &mp->m_icsb_counters);
2277 	xfs_icsb_unlock_all_counters(mp);
2278 }
2279 
2280 void
2281 xfs_icsb_sync_counters_flags(
2282 	xfs_mount_t	*mp,
2283 	int		flags)
2284 {
2285 	xfs_icsb_cnts_t	cnt;
2286 
2287 	/* Pass 1: lock all counters */
2288 	if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2289 		spin_lock(&mp->m_sb_lock);
2290 
2291 	xfs_icsb_count(mp, &cnt, flags);
2292 
2293 	/* Step 3: update mp->m_sb fields */
2294 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2295 		mp->m_sb.sb_icount = cnt.icsb_icount;
2296 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2297 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2298 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2299 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2300 
2301 	if ((flags & XFS_ICSB_SB_LOCKED) == 0)
2302 		spin_unlock(&mp->m_sb_lock);
2303 }
2304 
2305 /*
2306  * Accurate update of per-cpu counters to incore superblock
2307  */
2308 STATIC void
2309 xfs_icsb_sync_counters(
2310 	xfs_mount_t	*mp)
2311 {
2312 	xfs_icsb_sync_counters_flags(mp, 0);
2313 }
2314 
2315 /*
2316  * Balance and enable/disable counters as necessary.
2317  *
2318  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2319  * chosen to be the same number as single on disk allocation chunk per CPU, and
2320  * free blocks is something far enough zero that we aren't going thrash when we
2321  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2322  * prevent looping endlessly when xfs_alloc_space asks for more than will
2323  * be distributed to a single CPU but each CPU has enough blocks to be
2324  * reenabled.
2325  *
2326  * Note that we can be called when counters are already disabled.
2327  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2328  * prevent locking every per-cpu counter needlessly.
2329  */
2330 
2331 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2332 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2333 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2334 STATIC void
2335 xfs_icsb_balance_counter(
2336 	xfs_mount_t	*mp,
2337 	xfs_sb_field_t  field,
2338 	int		flags,
2339 	int		min_per_cpu)
2340 {
2341 	uint64_t	count, resid;
2342 	int		weight = num_online_cpus();
2343 	uint64_t	min = (uint64_t)min_per_cpu;
2344 
2345 	if (!(flags & XFS_ICSB_SB_LOCKED))
2346 		spin_lock(&mp->m_sb_lock);
2347 
2348 	/* disable counter and sync counter */
2349 	xfs_icsb_disable_counter(mp, field);
2350 
2351 	/* update counters  - first CPU gets residual*/
2352 	switch (field) {
2353 	case XFS_SBS_ICOUNT:
2354 		count = mp->m_sb.sb_icount;
2355 		resid = do_div(count, weight);
2356 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2357 			goto out;
2358 		break;
2359 	case XFS_SBS_IFREE:
2360 		count = mp->m_sb.sb_ifree;
2361 		resid = do_div(count, weight);
2362 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2363 			goto out;
2364 		break;
2365 	case XFS_SBS_FDBLOCKS:
2366 		count = mp->m_sb.sb_fdblocks;
2367 		resid = do_div(count, weight);
2368 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2369 			goto out;
2370 		break;
2371 	default:
2372 		BUG();
2373 		count = resid = 0;	/* quiet, gcc */
2374 		break;
2375 	}
2376 
2377 	xfs_icsb_enable_counter(mp, field, count, resid);
2378 out:
2379 	if (!(flags & XFS_ICSB_SB_LOCKED))
2380 		spin_unlock(&mp->m_sb_lock);
2381 }
2382 
2383 STATIC int
2384 xfs_icsb_modify_counters(
2385 	xfs_mount_t	*mp,
2386 	xfs_sb_field_t	field,
2387 	int64_t		delta,
2388 	int		rsvd)
2389 {
2390 	xfs_icsb_cnts_t	*icsbp;
2391 	long long	lcounter;	/* long counter for 64 bit fields */
2392 	int		cpu, ret = 0;
2393 
2394 	might_sleep();
2395 again:
2396 	cpu = get_cpu();
2397 	icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2398 
2399 	/*
2400 	 * if the counter is disabled, go to slow path
2401 	 */
2402 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2403 		goto slow_path;
2404 	xfs_icsb_lock_cntr(icsbp);
2405 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2406 		xfs_icsb_unlock_cntr(icsbp);
2407 		goto slow_path;
2408 	}
2409 
2410 	switch (field) {
2411 	case XFS_SBS_ICOUNT:
2412 		lcounter = icsbp->icsb_icount;
2413 		lcounter += delta;
2414 		if (unlikely(lcounter < 0))
2415 			goto balance_counter;
2416 		icsbp->icsb_icount = lcounter;
2417 		break;
2418 
2419 	case XFS_SBS_IFREE:
2420 		lcounter = icsbp->icsb_ifree;
2421 		lcounter += delta;
2422 		if (unlikely(lcounter < 0))
2423 			goto balance_counter;
2424 		icsbp->icsb_ifree = lcounter;
2425 		break;
2426 
2427 	case XFS_SBS_FDBLOCKS:
2428 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2429 
2430 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2431 		lcounter += delta;
2432 		if (unlikely(lcounter < 0))
2433 			goto balance_counter;
2434 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2435 		break;
2436 	default:
2437 		BUG();
2438 		break;
2439 	}
2440 	xfs_icsb_unlock_cntr(icsbp);
2441 	put_cpu();
2442 	return 0;
2443 
2444 slow_path:
2445 	put_cpu();
2446 
2447 	/*
2448 	 * serialise with a mutex so we don't burn lots of cpu on
2449 	 * the superblock lock. We still need to hold the superblock
2450 	 * lock, however, when we modify the global structures.
2451 	 */
2452 	xfs_icsb_lock(mp);
2453 
2454 	/*
2455 	 * Now running atomically.
2456 	 *
2457 	 * If the counter is enabled, someone has beaten us to rebalancing.
2458 	 * Drop the lock and try again in the fast path....
2459 	 */
2460 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2461 		xfs_icsb_unlock(mp);
2462 		goto again;
2463 	}
2464 
2465 	/*
2466 	 * The counter is currently disabled. Because we are
2467 	 * running atomically here, we know a rebalance cannot
2468 	 * be in progress. Hence we can go straight to operating
2469 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2470 	 * here even though we need to get the m_sb_lock. Doing so
2471 	 * will cause us to re-enter this function and deadlock.
2472 	 * Hence we get the m_sb_lock ourselves and then call
2473 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2474 	 * directly on the global counters.
2475 	 */
2476 	spin_lock(&mp->m_sb_lock);
2477 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2478 	spin_unlock(&mp->m_sb_lock);
2479 
2480 	/*
2481 	 * Now that we've modified the global superblock, we
2482 	 * may be able to re-enable the distributed counters
2483 	 * (e.g. lots of space just got freed). After that
2484 	 * we are done.
2485 	 */
2486 	if (ret != ENOSPC)
2487 		xfs_icsb_balance_counter(mp, field, 0, 0);
2488 	xfs_icsb_unlock(mp);
2489 	return ret;
2490 
2491 balance_counter:
2492 	xfs_icsb_unlock_cntr(icsbp);
2493 	put_cpu();
2494 
2495 	/*
2496 	 * We may have multiple threads here if multiple per-cpu
2497 	 * counters run dry at the same time. This will mean we can
2498 	 * do more balances than strictly necessary but it is not
2499 	 * the common slowpath case.
2500 	 */
2501 	xfs_icsb_lock(mp);
2502 
2503 	/*
2504 	 * running atomically.
2505 	 *
2506 	 * This will leave the counter in the correct state for future
2507 	 * accesses. After the rebalance, we simply try again and our retry
2508 	 * will either succeed through the fast path or slow path without
2509 	 * another balance operation being required.
2510 	 */
2511 	xfs_icsb_balance_counter(mp, field, 0, delta);
2512 	xfs_icsb_unlock(mp);
2513 	goto again;
2514 }
2515 
2516 #endif
2517