1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 48 STATIC int xfs_mount_log_sb(xfs_mount_t *, __int64_t); 49 STATIC int xfs_uuid_mount(xfs_mount_t *); 50 STATIC void xfs_uuid_unmount(xfs_mount_t *mp); 51 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 52 53 54 #ifdef HAVE_PERCPU_SB 55 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *); 56 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 57 int, int); 58 STATIC void xfs_icsb_sync_counters(xfs_mount_t *); 59 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 60 int64_t, int); 61 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 62 63 #else 64 65 #define xfs_icsb_destroy_counters(mp) do { } while (0) 66 #define xfs_icsb_balance_counter(mp, a, b, c) do { } while (0) 67 #define xfs_icsb_sync_counters(mp) do { } while (0) 68 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 69 70 #endif 71 72 static const struct { 73 short offset; 74 short type; /* 0 = integer 75 * 1 = binary / string (no translation) 76 */ 77 } xfs_sb_info[] = { 78 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 79 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 80 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 81 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_rextents), 0 }, 83 { offsetof(xfs_sb_t, sb_uuid), 1 }, 84 { offsetof(xfs_sb_t, sb_logstart), 0 }, 85 { offsetof(xfs_sb_t, sb_rootino), 0 }, 86 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 87 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 88 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 89 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 90 { offsetof(xfs_sb_t, sb_agcount), 0 }, 91 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 92 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 93 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 94 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 95 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 96 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 97 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 98 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 99 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 100 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 101 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 102 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 103 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 104 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 105 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 106 { offsetof(xfs_sb_t, sb_icount), 0 }, 107 { offsetof(xfs_sb_t, sb_ifree), 0 }, 108 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 109 { offsetof(xfs_sb_t, sb_frextents), 0 }, 110 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 111 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 112 { offsetof(xfs_sb_t, sb_qflags), 0 }, 113 { offsetof(xfs_sb_t, sb_flags), 0 }, 114 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 115 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 116 { offsetof(xfs_sb_t, sb_unit), 0 }, 117 { offsetof(xfs_sb_t, sb_width), 0 }, 118 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 119 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 120 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 121 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 122 { offsetof(xfs_sb_t, sb_features2), 0 }, 123 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 124 { sizeof(xfs_sb_t), 0 } 125 }; 126 127 /* 128 * Return a pointer to an initialized xfs_mount structure. 129 */ 130 xfs_mount_t * 131 xfs_mount_init(void) 132 { 133 xfs_mount_t *mp; 134 135 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP); 136 137 if (xfs_icsb_init_counters(mp)) { 138 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB; 139 } 140 141 spin_lock_init(&mp->m_sb_lock); 142 mutex_init(&mp->m_ilock); 143 mutex_init(&mp->m_growlock); 144 atomic_set(&mp->m_active_trans, 0); 145 146 return mp; 147 } 148 149 /* 150 * Free up the resources associated with a mount structure. Assume that 151 * the structure was initially zeroed, so we can tell which fields got 152 * initialized. 153 */ 154 void 155 xfs_mount_free( 156 xfs_mount_t *mp) 157 { 158 if (mp->m_perag) { 159 int agno; 160 161 for (agno = 0; agno < mp->m_maxagi; agno++) 162 if (mp->m_perag[agno].pagb_list) 163 kmem_free(mp->m_perag[agno].pagb_list, 164 sizeof(xfs_perag_busy_t) * 165 XFS_PAGB_NUM_SLOTS); 166 kmem_free(mp->m_perag, 167 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount); 168 } 169 170 spinlock_destroy(&mp->m_ail_lock); 171 spinlock_destroy(&mp->m_sb_lock); 172 mutex_destroy(&mp->m_ilock); 173 mutex_destroy(&mp->m_growlock); 174 if (mp->m_quotainfo) 175 XFS_QM_DONE(mp); 176 177 if (mp->m_fsname != NULL) 178 kmem_free(mp->m_fsname, mp->m_fsname_len); 179 if (mp->m_rtname != NULL) 180 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1); 181 if (mp->m_logname != NULL) 182 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1); 183 184 xfs_icsb_destroy_counters(mp); 185 } 186 187 /* 188 * Check size of device based on the (data/realtime) block count. 189 * Note: this check is used by the growfs code as well as mount. 190 */ 191 int 192 xfs_sb_validate_fsb_count( 193 xfs_sb_t *sbp, 194 __uint64_t nblocks) 195 { 196 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 197 ASSERT(sbp->sb_blocklog >= BBSHIFT); 198 199 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 200 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 201 return E2BIG; 202 #else /* Limited by UINT_MAX of sectors */ 203 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 204 return E2BIG; 205 #endif 206 return 0; 207 } 208 209 /* 210 * Check the validity of the SB found. 211 */ 212 STATIC int 213 xfs_mount_validate_sb( 214 xfs_mount_t *mp, 215 xfs_sb_t *sbp, 216 int flags) 217 { 218 /* 219 * If the log device and data device have the 220 * same device number, the log is internal. 221 * Consequently, the sb_logstart should be non-zero. If 222 * we have a zero sb_logstart in this case, we may be trying to mount 223 * a volume filesystem in a non-volume manner. 224 */ 225 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 226 xfs_fs_mount_cmn_err(flags, "bad magic number"); 227 return XFS_ERROR(EWRONGFS); 228 } 229 230 if (!xfs_sb_good_version(sbp)) { 231 xfs_fs_mount_cmn_err(flags, "bad version"); 232 return XFS_ERROR(EWRONGFS); 233 } 234 235 if (unlikely( 236 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 237 xfs_fs_mount_cmn_err(flags, 238 "filesystem is marked as having an external log; " 239 "specify logdev on the\nmount command line."); 240 return XFS_ERROR(EINVAL); 241 } 242 243 if (unlikely( 244 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 245 xfs_fs_mount_cmn_err(flags, 246 "filesystem is marked as having an internal log; " 247 "do not specify logdev on\nthe mount command line."); 248 return XFS_ERROR(EINVAL); 249 } 250 251 /* 252 * More sanity checking. These were stolen directly from 253 * xfs_repair. 254 */ 255 if (unlikely( 256 sbp->sb_agcount <= 0 || 257 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 258 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 259 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 260 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 261 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 262 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 263 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 264 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 265 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 266 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 267 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 268 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 269 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 270 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 271 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 272 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 273 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 274 return XFS_ERROR(EFSCORRUPTED); 275 } 276 277 /* 278 * Sanity check AG count, size fields against data size field 279 */ 280 if (unlikely( 281 sbp->sb_dblocks == 0 || 282 sbp->sb_dblocks > 283 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 284 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 285 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 286 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 287 return XFS_ERROR(EFSCORRUPTED); 288 } 289 290 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 291 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 292 xfs_fs_mount_cmn_err(flags, 293 "file system too large to be mounted on this system."); 294 return XFS_ERROR(E2BIG); 295 } 296 297 if (unlikely(sbp->sb_inprogress)) { 298 xfs_fs_mount_cmn_err(flags, "file system busy"); 299 return XFS_ERROR(EFSCORRUPTED); 300 } 301 302 /* 303 * Version 1 directory format has never worked on Linux. 304 */ 305 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 306 xfs_fs_mount_cmn_err(flags, 307 "file system using version 1 directory format"); 308 return XFS_ERROR(ENOSYS); 309 } 310 311 /* 312 * Until this is fixed only page-sized or smaller data blocks work. 313 */ 314 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 315 xfs_fs_mount_cmn_err(flags, 316 "file system with blocksize %d bytes", 317 sbp->sb_blocksize); 318 xfs_fs_mount_cmn_err(flags, 319 "only pagesize (%ld) or less will currently work.", 320 PAGE_SIZE); 321 return XFS_ERROR(ENOSYS); 322 } 323 324 return 0; 325 } 326 327 STATIC void 328 xfs_initialize_perag_icache( 329 xfs_perag_t *pag) 330 { 331 if (!pag->pag_ici_init) { 332 rwlock_init(&pag->pag_ici_lock); 333 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 334 pag->pag_ici_init = 1; 335 } 336 } 337 338 xfs_agnumber_t 339 xfs_initialize_perag( 340 xfs_mount_t *mp, 341 xfs_agnumber_t agcount) 342 { 343 xfs_agnumber_t index, max_metadata; 344 xfs_perag_t *pag; 345 xfs_agino_t agino; 346 xfs_ino_t ino; 347 xfs_sb_t *sbp = &mp->m_sb; 348 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 349 350 /* Check to see if the filesystem can overflow 32 bit inodes */ 351 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 352 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 353 354 /* Clear the mount flag if no inode can overflow 32 bits 355 * on this filesystem, or if specifically requested.. 356 */ 357 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 358 mp->m_flags |= XFS_MOUNT_32BITINODES; 359 } else { 360 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 361 } 362 363 /* If we can overflow then setup the ag headers accordingly */ 364 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 365 /* Calculate how much should be reserved for inodes to 366 * meet the max inode percentage. 367 */ 368 if (mp->m_maxicount) { 369 __uint64_t icount; 370 371 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 372 do_div(icount, 100); 373 icount += sbp->sb_agblocks - 1; 374 do_div(icount, sbp->sb_agblocks); 375 max_metadata = icount; 376 } else { 377 max_metadata = agcount; 378 } 379 for (index = 0; index < agcount; index++) { 380 ino = XFS_AGINO_TO_INO(mp, index, agino); 381 if (ino > max_inum) { 382 index++; 383 break; 384 } 385 386 /* This ag is preferred for inodes */ 387 pag = &mp->m_perag[index]; 388 pag->pagi_inodeok = 1; 389 if (index < max_metadata) 390 pag->pagf_metadata = 1; 391 xfs_initialize_perag_icache(pag); 392 } 393 } else { 394 /* Setup default behavior for smaller filesystems */ 395 for (index = 0; index < agcount; index++) { 396 pag = &mp->m_perag[index]; 397 pag->pagi_inodeok = 1; 398 xfs_initialize_perag_icache(pag); 399 } 400 } 401 return index; 402 } 403 404 void 405 xfs_sb_from_disk( 406 xfs_sb_t *to, 407 xfs_dsb_t *from) 408 { 409 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 410 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 411 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 412 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 413 to->sb_rextents = be64_to_cpu(from->sb_rextents); 414 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 415 to->sb_logstart = be64_to_cpu(from->sb_logstart); 416 to->sb_rootino = be64_to_cpu(from->sb_rootino); 417 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 418 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 419 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 420 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 421 to->sb_agcount = be32_to_cpu(from->sb_agcount); 422 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 423 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 424 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 425 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 426 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 427 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 428 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 429 to->sb_blocklog = from->sb_blocklog; 430 to->sb_sectlog = from->sb_sectlog; 431 to->sb_inodelog = from->sb_inodelog; 432 to->sb_inopblog = from->sb_inopblog; 433 to->sb_agblklog = from->sb_agblklog; 434 to->sb_rextslog = from->sb_rextslog; 435 to->sb_inprogress = from->sb_inprogress; 436 to->sb_imax_pct = from->sb_imax_pct; 437 to->sb_icount = be64_to_cpu(from->sb_icount); 438 to->sb_ifree = be64_to_cpu(from->sb_ifree); 439 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 440 to->sb_frextents = be64_to_cpu(from->sb_frextents); 441 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 442 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 443 to->sb_qflags = be16_to_cpu(from->sb_qflags); 444 to->sb_flags = from->sb_flags; 445 to->sb_shared_vn = from->sb_shared_vn; 446 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 447 to->sb_unit = be32_to_cpu(from->sb_unit); 448 to->sb_width = be32_to_cpu(from->sb_width); 449 to->sb_dirblklog = from->sb_dirblklog; 450 to->sb_logsectlog = from->sb_logsectlog; 451 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 452 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 453 to->sb_features2 = be32_to_cpu(from->sb_features2); 454 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 455 } 456 457 /* 458 * Copy in core superblock to ondisk one. 459 * 460 * The fields argument is mask of superblock fields to copy. 461 */ 462 void 463 xfs_sb_to_disk( 464 xfs_dsb_t *to, 465 xfs_sb_t *from, 466 __int64_t fields) 467 { 468 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 469 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 470 xfs_sb_field_t f; 471 int first; 472 int size; 473 474 ASSERT(fields); 475 if (!fields) 476 return; 477 478 while (fields) { 479 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 480 first = xfs_sb_info[f].offset; 481 size = xfs_sb_info[f + 1].offset - first; 482 483 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 484 485 if (size == 1 || xfs_sb_info[f].type == 1) { 486 memcpy(to_ptr + first, from_ptr + first, size); 487 } else { 488 switch (size) { 489 case 2: 490 *(__be16 *)(to_ptr + first) = 491 cpu_to_be16(*(__u16 *)(from_ptr + first)); 492 break; 493 case 4: 494 *(__be32 *)(to_ptr + first) = 495 cpu_to_be32(*(__u32 *)(from_ptr + first)); 496 break; 497 case 8: 498 *(__be64 *)(to_ptr + first) = 499 cpu_to_be64(*(__u64 *)(from_ptr + first)); 500 break; 501 default: 502 ASSERT(0); 503 } 504 } 505 506 fields &= ~(1LL << f); 507 } 508 } 509 510 /* 511 * xfs_readsb 512 * 513 * Does the initial read of the superblock. 514 */ 515 int 516 xfs_readsb(xfs_mount_t *mp, int flags) 517 { 518 unsigned int sector_size; 519 unsigned int extra_flags; 520 xfs_buf_t *bp; 521 int error; 522 523 ASSERT(mp->m_sb_bp == NULL); 524 ASSERT(mp->m_ddev_targp != NULL); 525 526 /* 527 * Allocate a (locked) buffer to hold the superblock. 528 * This will be kept around at all times to optimize 529 * access to the superblock. 530 */ 531 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 532 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 533 534 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 535 BTOBB(sector_size), extra_flags); 536 if (!bp || XFS_BUF_ISERROR(bp)) { 537 xfs_fs_mount_cmn_err(flags, "SB read failed"); 538 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 539 goto fail; 540 } 541 ASSERT(XFS_BUF_ISBUSY(bp)); 542 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 543 544 /* 545 * Initialize the mount structure from the superblock. 546 * But first do some basic consistency checking. 547 */ 548 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 549 550 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 551 if (error) { 552 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 553 goto fail; 554 } 555 556 /* 557 * We must be able to do sector-sized and sector-aligned IO. 558 */ 559 if (sector_size > mp->m_sb.sb_sectsize) { 560 xfs_fs_mount_cmn_err(flags, 561 "device supports only %u byte sectors (not %u)", 562 sector_size, mp->m_sb.sb_sectsize); 563 error = ENOSYS; 564 goto fail; 565 } 566 567 /* 568 * If device sector size is smaller than the superblock size, 569 * re-read the superblock so the buffer is correctly sized. 570 */ 571 if (sector_size < mp->m_sb.sb_sectsize) { 572 XFS_BUF_UNMANAGE(bp); 573 xfs_buf_relse(bp); 574 sector_size = mp->m_sb.sb_sectsize; 575 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 576 BTOBB(sector_size), extra_flags); 577 if (!bp || XFS_BUF_ISERROR(bp)) { 578 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 579 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 580 goto fail; 581 } 582 ASSERT(XFS_BUF_ISBUSY(bp)); 583 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 584 } 585 586 /* Initialize per-cpu counters */ 587 xfs_icsb_reinit_counters(mp); 588 589 mp->m_sb_bp = bp; 590 xfs_buf_relse(bp); 591 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 592 return 0; 593 594 fail: 595 if (bp) { 596 XFS_BUF_UNMANAGE(bp); 597 xfs_buf_relse(bp); 598 } 599 return error; 600 } 601 602 603 /* 604 * xfs_mount_common 605 * 606 * Mount initialization code establishing various mount 607 * fields from the superblock associated with the given 608 * mount structure 609 */ 610 STATIC void 611 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 612 { 613 int i; 614 615 mp->m_agfrotor = mp->m_agirotor = 0; 616 spin_lock_init(&mp->m_agirotor_lock); 617 mp->m_maxagi = mp->m_sb.sb_agcount; 618 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 619 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 620 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 621 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 622 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 623 mp->m_litino = sbp->sb_inodesize - 624 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t)); 625 mp->m_blockmask = sbp->sb_blocksize - 1; 626 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 627 mp->m_blockwmask = mp->m_blockwsize - 1; 628 INIT_LIST_HEAD(&mp->m_del_inodes); 629 630 /* 631 * Setup for attributes, in case they get created. 632 * This value is for inodes getting attributes for the first time, 633 * the per-inode value is for old attribute values. 634 */ 635 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048); 636 switch (sbp->sb_inodesize) { 637 case 256: 638 mp->m_attroffset = XFS_LITINO(mp) - 639 XFS_BMDR_SPACE_CALC(MINABTPTRS); 640 break; 641 case 512: 642 case 1024: 643 case 2048: 644 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS); 645 break; 646 default: 647 ASSERT(0); 648 } 649 ASSERT(mp->m_attroffset < XFS_LITINO(mp)); 650 651 for (i = 0; i < 2; i++) { 652 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 653 xfs_alloc, i == 0); 654 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 655 xfs_alloc, i == 0); 656 } 657 for (i = 0; i < 2; i++) { 658 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 659 xfs_bmbt, i == 0); 660 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 661 xfs_bmbt, i == 0); 662 } 663 for (i = 0; i < 2; i++) { 664 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 665 xfs_inobt, i == 0); 666 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 667 xfs_inobt, i == 0); 668 } 669 670 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 671 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 672 sbp->sb_inopblock); 673 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 674 } 675 676 /* 677 * xfs_initialize_perag_data 678 * 679 * Read in each per-ag structure so we can count up the number of 680 * allocated inodes, free inodes and used filesystem blocks as this 681 * information is no longer persistent in the superblock. Once we have 682 * this information, write it into the in-core superblock structure. 683 */ 684 STATIC int 685 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 686 { 687 xfs_agnumber_t index; 688 xfs_perag_t *pag; 689 xfs_sb_t *sbp = &mp->m_sb; 690 uint64_t ifree = 0; 691 uint64_t ialloc = 0; 692 uint64_t bfree = 0; 693 uint64_t bfreelst = 0; 694 uint64_t btree = 0; 695 int error; 696 697 for (index = 0; index < agcount; index++) { 698 /* 699 * read the agf, then the agi. This gets us 700 * all the inforamtion we need and populates the 701 * per-ag structures for us. 702 */ 703 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 704 if (error) 705 return error; 706 707 error = xfs_ialloc_pagi_init(mp, NULL, index); 708 if (error) 709 return error; 710 pag = &mp->m_perag[index]; 711 ifree += pag->pagi_freecount; 712 ialloc += pag->pagi_count; 713 bfree += pag->pagf_freeblks; 714 bfreelst += pag->pagf_flcount; 715 btree += pag->pagf_btreeblks; 716 } 717 /* 718 * Overwrite incore superblock counters with just-read data 719 */ 720 spin_lock(&mp->m_sb_lock); 721 sbp->sb_ifree = ifree; 722 sbp->sb_icount = ialloc; 723 sbp->sb_fdblocks = bfree + bfreelst + btree; 724 spin_unlock(&mp->m_sb_lock); 725 726 /* Fixup the per-cpu counters as well. */ 727 xfs_icsb_reinit_counters(mp); 728 729 return 0; 730 } 731 732 /* 733 * Update alignment values based on mount options and sb values 734 */ 735 STATIC int 736 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags) 737 { 738 xfs_sb_t *sbp = &(mp->m_sb); 739 740 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) { 741 /* 742 * If stripe unit and stripe width are not multiples 743 * of the fs blocksize turn off alignment. 744 */ 745 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 746 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 747 if (mp->m_flags & XFS_MOUNT_RETERR) { 748 cmn_err(CE_WARN, 749 "XFS: alignment check 1 failed"); 750 return XFS_ERROR(EINVAL); 751 } 752 mp->m_dalign = mp->m_swidth = 0; 753 } else { 754 /* 755 * Convert the stripe unit and width to FSBs. 756 */ 757 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 758 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 759 if (mp->m_flags & XFS_MOUNT_RETERR) { 760 return XFS_ERROR(EINVAL); 761 } 762 xfs_fs_cmn_err(CE_WARN, mp, 763 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 764 mp->m_dalign, mp->m_swidth, 765 sbp->sb_agblocks); 766 767 mp->m_dalign = 0; 768 mp->m_swidth = 0; 769 } else if (mp->m_dalign) { 770 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 771 } else { 772 if (mp->m_flags & XFS_MOUNT_RETERR) { 773 xfs_fs_cmn_err(CE_WARN, mp, 774 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 775 mp->m_dalign, 776 mp->m_blockmask +1); 777 return XFS_ERROR(EINVAL); 778 } 779 mp->m_swidth = 0; 780 } 781 } 782 783 /* 784 * Update superblock with new values 785 * and log changes 786 */ 787 if (xfs_sb_version_hasdalign(sbp)) { 788 if (sbp->sb_unit != mp->m_dalign) { 789 sbp->sb_unit = mp->m_dalign; 790 *update_flags |= XFS_SB_UNIT; 791 } 792 if (sbp->sb_width != mp->m_swidth) { 793 sbp->sb_width = mp->m_swidth; 794 *update_flags |= XFS_SB_WIDTH; 795 } 796 } 797 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 798 xfs_sb_version_hasdalign(&mp->m_sb)) { 799 mp->m_dalign = sbp->sb_unit; 800 mp->m_swidth = sbp->sb_width; 801 } 802 803 return 0; 804 } 805 806 /* 807 * Set the maximum inode count for this filesystem 808 */ 809 STATIC void 810 xfs_set_maxicount(xfs_mount_t *mp) 811 { 812 xfs_sb_t *sbp = &(mp->m_sb); 813 __uint64_t icount; 814 815 if (sbp->sb_imax_pct) { 816 /* 817 * Make sure the maximum inode count is a multiple 818 * of the units we allocate inodes in. 819 */ 820 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 821 do_div(icount, 100); 822 do_div(icount, mp->m_ialloc_blks); 823 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 824 sbp->sb_inopblog; 825 } else { 826 mp->m_maxicount = 0; 827 } 828 } 829 830 /* 831 * Set the default minimum read and write sizes unless 832 * already specified in a mount option. 833 * We use smaller I/O sizes when the file system 834 * is being used for NFS service (wsync mount option). 835 */ 836 STATIC void 837 xfs_set_rw_sizes(xfs_mount_t *mp) 838 { 839 xfs_sb_t *sbp = &(mp->m_sb); 840 int readio_log, writeio_log; 841 842 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 843 if (mp->m_flags & XFS_MOUNT_WSYNC) { 844 readio_log = XFS_WSYNC_READIO_LOG; 845 writeio_log = XFS_WSYNC_WRITEIO_LOG; 846 } else { 847 readio_log = XFS_READIO_LOG_LARGE; 848 writeio_log = XFS_WRITEIO_LOG_LARGE; 849 } 850 } else { 851 readio_log = mp->m_readio_log; 852 writeio_log = mp->m_writeio_log; 853 } 854 855 if (sbp->sb_blocklog > readio_log) { 856 mp->m_readio_log = sbp->sb_blocklog; 857 } else { 858 mp->m_readio_log = readio_log; 859 } 860 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 861 if (sbp->sb_blocklog > writeio_log) { 862 mp->m_writeio_log = sbp->sb_blocklog; 863 } else { 864 mp->m_writeio_log = writeio_log; 865 } 866 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 867 } 868 869 /* 870 * Set whether we're using inode alignment. 871 */ 872 STATIC void 873 xfs_set_inoalignment(xfs_mount_t *mp) 874 { 875 if (xfs_sb_version_hasalign(&mp->m_sb) && 876 mp->m_sb.sb_inoalignmt >= 877 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 878 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 879 else 880 mp->m_inoalign_mask = 0; 881 /* 882 * If we are using stripe alignment, check whether 883 * the stripe unit is a multiple of the inode alignment 884 */ 885 if (mp->m_dalign && mp->m_inoalign_mask && 886 !(mp->m_dalign & mp->m_inoalign_mask)) 887 mp->m_sinoalign = mp->m_dalign; 888 else 889 mp->m_sinoalign = 0; 890 } 891 892 /* 893 * Check that the data (and log if separate) are an ok size. 894 */ 895 STATIC int 896 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags) 897 { 898 xfs_buf_t *bp; 899 xfs_daddr_t d; 900 int error; 901 902 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 903 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 904 cmn_err(CE_WARN, "XFS: size check 1 failed"); 905 return XFS_ERROR(E2BIG); 906 } 907 error = xfs_read_buf(mp, mp->m_ddev_targp, 908 d - XFS_FSS_TO_BB(mp, 1), 909 XFS_FSS_TO_BB(mp, 1), 0, &bp); 910 if (!error) { 911 xfs_buf_relse(bp); 912 } else { 913 cmn_err(CE_WARN, "XFS: size check 2 failed"); 914 if (error == ENOSPC) 915 error = XFS_ERROR(E2BIG); 916 return error; 917 } 918 919 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) && 920 mp->m_logdev_targp != mp->m_ddev_targp) { 921 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 922 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 923 cmn_err(CE_WARN, "XFS: size check 3 failed"); 924 return XFS_ERROR(E2BIG); 925 } 926 error = xfs_read_buf(mp, mp->m_logdev_targp, 927 d - XFS_FSB_TO_BB(mp, 1), 928 XFS_FSB_TO_BB(mp, 1), 0, &bp); 929 if (!error) { 930 xfs_buf_relse(bp); 931 } else { 932 cmn_err(CE_WARN, "XFS: size check 3 failed"); 933 if (error == ENOSPC) 934 error = XFS_ERROR(E2BIG); 935 return error; 936 } 937 } 938 return 0; 939 } 940 941 /* 942 * xfs_mountfs 943 * 944 * This function does the following on an initial mount of a file system: 945 * - reads the superblock from disk and init the mount struct 946 * - if we're a 32-bit kernel, do a size check on the superblock 947 * so we don't mount terabyte filesystems 948 * - init mount struct realtime fields 949 * - allocate inode hash table for fs 950 * - init directory manager 951 * - perform recovery and init the log manager 952 */ 953 int 954 xfs_mountfs( 955 xfs_mount_t *mp, 956 int mfsi_flags) 957 { 958 xfs_sb_t *sbp = &(mp->m_sb); 959 xfs_inode_t *rip; 960 __uint64_t resblks; 961 __int64_t update_flags = 0LL; 962 uint quotamount, quotaflags; 963 int agno; 964 int uuid_mounted = 0; 965 int error = 0; 966 967 xfs_mount_common(mp, sbp); 968 969 /* 970 * Check for a mismatched features2 values. Older kernels 971 * read & wrote into the wrong sb offset for sb_features2 972 * on some platforms due to xfs_sb_t not being 64bit size aligned 973 * when sb_features2 was added, which made older superblock 974 * reading/writing routines swap it as a 64-bit value. 975 * 976 * For backwards compatibility, we make both slots equal. 977 * 978 * If we detect a mismatched field, we OR the set bits into the 979 * existing features2 field in case it has already been modified; we 980 * don't want to lose any features. We then update the bad location 981 * with the ORed value so that older kernels will see any features2 982 * flags, and mark the two fields as needing updates once the 983 * transaction subsystem is online. 984 */ 985 if (xfs_sb_has_mismatched_features2(sbp)) { 986 cmn_err(CE_WARN, 987 "XFS: correcting sb_features alignment problem"); 988 sbp->sb_features2 |= sbp->sb_bad_features2; 989 sbp->sb_bad_features2 = sbp->sb_features2; 990 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 991 992 /* 993 * Re-check for ATTR2 in case it was found in bad_features2 994 * slot. 995 */ 996 if (xfs_sb_version_hasattr2(&mp->m_sb)) 997 mp->m_flags |= XFS_MOUNT_ATTR2; 998 999 } 1000 1001 /* 1002 * Check if sb_agblocks is aligned at stripe boundary 1003 * If sb_agblocks is NOT aligned turn off m_dalign since 1004 * allocator alignment is within an ag, therefore ag has 1005 * to be aligned at stripe boundary. 1006 */ 1007 error = xfs_update_alignment(mp, mfsi_flags, &update_flags); 1008 if (error) 1009 goto error1; 1010 1011 xfs_alloc_compute_maxlevels(mp); 1012 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1013 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1014 xfs_ialloc_compute_maxlevels(mp); 1015 1016 xfs_set_maxicount(mp); 1017 1018 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1019 1020 /* 1021 * XFS uses the uuid from the superblock as the unique 1022 * identifier for fsid. We can not use the uuid from the volume 1023 * since a single partition filesystem is identical to a single 1024 * partition volume/filesystem. 1025 */ 1026 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 && 1027 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) { 1028 if (xfs_uuid_mount(mp)) { 1029 error = XFS_ERROR(EINVAL); 1030 goto error1; 1031 } 1032 uuid_mounted=1; 1033 } 1034 1035 /* 1036 * Set the minimum read and write sizes 1037 */ 1038 xfs_set_rw_sizes(mp); 1039 1040 /* 1041 * Set the inode cluster size. 1042 * This may still be overridden by the file system 1043 * block size if it is larger than the chosen cluster size. 1044 */ 1045 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1046 1047 /* 1048 * Set inode alignment fields 1049 */ 1050 xfs_set_inoalignment(mp); 1051 1052 /* 1053 * Check that the data (and log if separate) are an ok size. 1054 */ 1055 error = xfs_check_sizes(mp, mfsi_flags); 1056 if (error) 1057 goto error1; 1058 1059 /* 1060 * Initialize realtime fields in the mount structure 1061 */ 1062 error = xfs_rtmount_init(mp); 1063 if (error) { 1064 cmn_err(CE_WARN, "XFS: RT mount failed"); 1065 goto error1; 1066 } 1067 1068 /* 1069 * For client case we are done now 1070 */ 1071 if (mfsi_flags & XFS_MFSI_CLIENT) { 1072 return 0; 1073 } 1074 1075 /* 1076 * Copies the low order bits of the timestamp and the randomly 1077 * set "sequence" number out of a UUID. 1078 */ 1079 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1080 1081 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1082 1083 xfs_dir_mount(mp); 1084 1085 /* 1086 * Initialize the attribute manager's entries. 1087 */ 1088 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1089 1090 /* 1091 * Initialize the precomputed transaction reservations values. 1092 */ 1093 xfs_trans_init(mp); 1094 1095 /* 1096 * Allocate and initialize the per-ag data. 1097 */ 1098 init_rwsem(&mp->m_peraglock); 1099 mp->m_perag = 1100 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP); 1101 1102 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1103 1104 /* 1105 * log's mount-time initialization. Perform 1st part recovery if needed 1106 */ 1107 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */ 1108 error = xfs_log_mount(mp, mp->m_logdev_targp, 1109 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1110 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1111 if (error) { 1112 cmn_err(CE_WARN, "XFS: log mount failed"); 1113 goto error2; 1114 } 1115 } else { /* No log has been defined */ 1116 cmn_err(CE_WARN, "XFS: no log defined"); 1117 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp); 1118 error = XFS_ERROR(EFSCORRUPTED); 1119 goto error2; 1120 } 1121 1122 /* 1123 * Now the log is mounted, we know if it was an unclean shutdown or 1124 * not. If it was, with the first phase of recovery has completed, we 1125 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1126 * but they are recovered transactionally in the second recovery phase 1127 * later. 1128 * 1129 * Hence we can safely re-initialise incore superblock counters from 1130 * the per-ag data. These may not be correct if the filesystem was not 1131 * cleanly unmounted, so we need to wait for recovery to finish before 1132 * doing this. 1133 * 1134 * If the filesystem was cleanly unmounted, then we can trust the 1135 * values in the superblock to be correct and we don't need to do 1136 * anything here. 1137 * 1138 * If we are currently making the filesystem, the initialisation will 1139 * fail as the perag data is in an undefined state. 1140 */ 1141 1142 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1143 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1144 !mp->m_sb.sb_inprogress) { 1145 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1146 if (error) { 1147 goto error2; 1148 } 1149 } 1150 /* 1151 * Get and sanity-check the root inode. 1152 * Save the pointer to it in the mount structure. 1153 */ 1154 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1155 if (error) { 1156 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1157 goto error3; 1158 } 1159 1160 ASSERT(rip != NULL); 1161 1162 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1163 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1164 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1165 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1166 (unsigned long long)rip->i_ino); 1167 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1168 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1169 mp); 1170 error = XFS_ERROR(EFSCORRUPTED); 1171 goto error4; 1172 } 1173 mp->m_rootip = rip; /* save it */ 1174 1175 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1176 1177 /* 1178 * Initialize realtime inode pointers in the mount structure 1179 */ 1180 error = xfs_rtmount_inodes(mp); 1181 if (error) { 1182 /* 1183 * Free up the root inode. 1184 */ 1185 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1186 goto error4; 1187 } 1188 1189 /* 1190 * If fs is not mounted readonly, then update the superblock changes. 1191 */ 1192 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1193 error = xfs_mount_log_sb(mp, update_flags); 1194 if (error) { 1195 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1196 goto error4; 1197 } 1198 } 1199 1200 /* 1201 * Initialise the XFS quota management subsystem for this mount 1202 */ 1203 error = XFS_QM_INIT(mp, "amount, "aflags); 1204 if (error) 1205 goto error4; 1206 1207 /* 1208 * Finish recovering the file system. This part needed to be 1209 * delayed until after the root and real-time bitmap inodes 1210 * were consistently read in. 1211 */ 1212 error = xfs_log_mount_finish(mp, mfsi_flags); 1213 if (error) { 1214 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1215 goto error4; 1216 } 1217 1218 /* 1219 * Complete the quota initialisation, post-log-replay component. 1220 */ 1221 error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags); 1222 if (error) 1223 goto error4; 1224 1225 /* 1226 * Now we are mounted, reserve a small amount of unused space for 1227 * privileged transactions. This is needed so that transaction 1228 * space required for critical operations can dip into this pool 1229 * when at ENOSPC. This is needed for operations like create with 1230 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1231 * are not allowed to use this reserved space. 1232 * 1233 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1234 * This may drive us straight to ENOSPC on mount, but that implies 1235 * we were already there on the last unmount. Warn if this occurs. 1236 */ 1237 resblks = mp->m_sb.sb_dblocks; 1238 do_div(resblks, 20); 1239 resblks = min_t(__uint64_t, resblks, 1024); 1240 error = xfs_reserve_blocks(mp, &resblks, NULL); 1241 if (error) 1242 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1243 "Continuing without a reserve pool."); 1244 1245 return 0; 1246 1247 error4: 1248 /* 1249 * Free up the root inode. 1250 */ 1251 IRELE(rip); 1252 error3: 1253 xfs_log_unmount_dealloc(mp); 1254 error2: 1255 for (agno = 0; agno < sbp->sb_agcount; agno++) 1256 if (mp->m_perag[agno].pagb_list) 1257 kmem_free(mp->m_perag[agno].pagb_list, 1258 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS); 1259 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t)); 1260 mp->m_perag = NULL; 1261 /* FALLTHROUGH */ 1262 error1: 1263 if (uuid_mounted) 1264 xfs_uuid_unmount(mp); 1265 xfs_freesb(mp); 1266 return error; 1267 } 1268 1269 /* 1270 * xfs_unmountfs 1271 * 1272 * This flushes out the inodes,dquots and the superblock, unmounts the 1273 * log and makes sure that incore structures are freed. 1274 */ 1275 int 1276 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr) 1277 { 1278 __uint64_t resblks; 1279 int error = 0; 1280 1281 /* 1282 * We can potentially deadlock here if we have an inode cluster 1283 * that has been freed has it's buffer still pinned in memory because 1284 * the transaction is still sitting in a iclog. The stale inodes 1285 * on that buffer will have their flush locks held until the 1286 * transaction hits the disk and the callbacks run. the inode 1287 * flush takes the flush lock unconditionally and with nothing to 1288 * push out the iclog we will never get that unlocked. hence we 1289 * need to force the log first. 1290 */ 1291 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1292 xfs_iflush_all(mp); 1293 1294 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); 1295 1296 /* 1297 * Flush out the log synchronously so that we know for sure 1298 * that nothing is pinned. This is important because bflush() 1299 * will skip pinned buffers. 1300 */ 1301 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1302 1303 xfs_binval(mp->m_ddev_targp); 1304 if (mp->m_rtdev_targp) { 1305 xfs_binval(mp->m_rtdev_targp); 1306 } 1307 1308 /* 1309 * Unreserve any blocks we have so that when we unmount we don't account 1310 * the reserved free space as used. This is really only necessary for 1311 * lazy superblock counting because it trusts the incore superblock 1312 * counters to be aboslutely correct on clean unmount. 1313 * 1314 * We don't bother correcting this elsewhere for lazy superblock 1315 * counting because on mount of an unclean filesystem we reconstruct the 1316 * correct counter value and this is irrelevant. 1317 * 1318 * For non-lazy counter filesystems, this doesn't matter at all because 1319 * we only every apply deltas to the superblock and hence the incore 1320 * value does not matter.... 1321 */ 1322 resblks = 0; 1323 error = xfs_reserve_blocks(mp, &resblks, NULL); 1324 if (error) 1325 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1326 "Freespace may not be correct on next mount."); 1327 1328 error = xfs_log_sbcount(mp, 1); 1329 if (error) 1330 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1331 "Freespace may not be correct on next mount."); 1332 xfs_unmountfs_writesb(mp); 1333 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1334 xfs_log_unmount(mp); /* Done! No more fs ops. */ 1335 1336 xfs_freesb(mp); 1337 1338 /* 1339 * All inodes from this mount point should be freed. 1340 */ 1341 ASSERT(mp->m_inodes == NULL); 1342 1343 xfs_unmountfs_close(mp, cr); 1344 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) 1345 xfs_uuid_unmount(mp); 1346 1347 #if defined(DEBUG) || defined(INDUCE_IO_ERROR) 1348 xfs_errortag_clearall(mp, 0); 1349 #endif 1350 xfs_mount_free(mp); 1351 return 0; 1352 } 1353 1354 void 1355 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr) 1356 { 1357 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1358 xfs_free_buftarg(mp->m_logdev_targp, 1); 1359 if (mp->m_rtdev_targp) 1360 xfs_free_buftarg(mp->m_rtdev_targp, 1); 1361 xfs_free_buftarg(mp->m_ddev_targp, 0); 1362 } 1363 1364 STATIC void 1365 xfs_unmountfs_wait(xfs_mount_t *mp) 1366 { 1367 if (mp->m_logdev_targp != mp->m_ddev_targp) 1368 xfs_wait_buftarg(mp->m_logdev_targp); 1369 if (mp->m_rtdev_targp) 1370 xfs_wait_buftarg(mp->m_rtdev_targp); 1371 xfs_wait_buftarg(mp->m_ddev_targp); 1372 } 1373 1374 int 1375 xfs_fs_writable(xfs_mount_t *mp) 1376 { 1377 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1378 (mp->m_flags & XFS_MOUNT_RDONLY)); 1379 } 1380 1381 /* 1382 * xfs_log_sbcount 1383 * 1384 * Called either periodically to keep the on disk superblock values 1385 * roughly up to date or from unmount to make sure the values are 1386 * correct on a clean unmount. 1387 * 1388 * Note this code can be called during the process of freezing, so 1389 * we may need to use the transaction allocator which does not not 1390 * block when the transaction subsystem is in its frozen state. 1391 */ 1392 int 1393 xfs_log_sbcount( 1394 xfs_mount_t *mp, 1395 uint sync) 1396 { 1397 xfs_trans_t *tp; 1398 int error; 1399 1400 if (!xfs_fs_writable(mp)) 1401 return 0; 1402 1403 xfs_icsb_sync_counters(mp); 1404 1405 /* 1406 * we don't need to do this if we are updating the superblock 1407 * counters on every modification. 1408 */ 1409 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1410 return 0; 1411 1412 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); 1413 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1414 XFS_DEFAULT_LOG_COUNT); 1415 if (error) { 1416 xfs_trans_cancel(tp, 0); 1417 return error; 1418 } 1419 1420 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1421 if (sync) 1422 xfs_trans_set_sync(tp); 1423 error = xfs_trans_commit(tp, 0); 1424 return error; 1425 } 1426 1427 STATIC void 1428 xfs_mark_shared_ro( 1429 xfs_mount_t *mp, 1430 xfs_buf_t *bp) 1431 { 1432 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp); 1433 __uint16_t version; 1434 1435 if (!(sb->sb_flags & XFS_SBF_READONLY)) 1436 sb->sb_flags |= XFS_SBF_READONLY; 1437 1438 version = be16_to_cpu(sb->sb_versionnum); 1439 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 || 1440 !(version & XFS_SB_VERSION_SHAREDBIT)) 1441 version |= XFS_SB_VERSION_SHAREDBIT; 1442 sb->sb_versionnum = cpu_to_be16(version); 1443 } 1444 1445 int 1446 xfs_unmountfs_writesb(xfs_mount_t *mp) 1447 { 1448 xfs_buf_t *sbp; 1449 int error = 0; 1450 1451 /* 1452 * skip superblock write if fs is read-only, or 1453 * if we are doing a forced umount. 1454 */ 1455 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1456 XFS_FORCED_SHUTDOWN(mp))) { 1457 1458 sbp = xfs_getsb(mp, 0); 1459 1460 /* 1461 * mark shared-readonly if desired 1462 */ 1463 if (mp->m_mk_sharedro) 1464 xfs_mark_shared_ro(mp, sbp); 1465 1466 XFS_BUF_UNDONE(sbp); 1467 XFS_BUF_UNREAD(sbp); 1468 XFS_BUF_UNDELAYWRITE(sbp); 1469 XFS_BUF_WRITE(sbp); 1470 XFS_BUF_UNASYNC(sbp); 1471 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1472 xfsbdstrat(mp, sbp); 1473 error = xfs_iowait(sbp); 1474 if (error) 1475 xfs_ioerror_alert("xfs_unmountfs_writesb", 1476 mp, sbp, XFS_BUF_ADDR(sbp)); 1477 if (error && mp->m_mk_sharedro) 1478 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly"); 1479 xfs_buf_relse(sbp); 1480 } 1481 return error; 1482 } 1483 1484 /* 1485 * xfs_mod_sb() can be used to copy arbitrary changes to the 1486 * in-core superblock into the superblock buffer to be logged. 1487 * It does not provide the higher level of locking that is 1488 * needed to protect the in-core superblock from concurrent 1489 * access. 1490 */ 1491 void 1492 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1493 { 1494 xfs_buf_t *bp; 1495 int first; 1496 int last; 1497 xfs_mount_t *mp; 1498 xfs_sb_field_t f; 1499 1500 ASSERT(fields); 1501 if (!fields) 1502 return; 1503 mp = tp->t_mountp; 1504 bp = xfs_trans_getsb(tp, mp, 0); 1505 first = sizeof(xfs_sb_t); 1506 last = 0; 1507 1508 /* translate/copy */ 1509 1510 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1511 1512 /* find modified range */ 1513 1514 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1515 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1516 first = xfs_sb_info[f].offset; 1517 1518 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1519 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1520 last = xfs_sb_info[f + 1].offset - 1; 1521 1522 xfs_trans_log_buf(tp, bp, first, last); 1523 } 1524 1525 1526 /* 1527 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1528 * a delta to a specified field in the in-core superblock. Simply 1529 * switch on the field indicated and apply the delta to that field. 1530 * Fields are not allowed to dip below zero, so if the delta would 1531 * do this do not apply it and return EINVAL. 1532 * 1533 * The m_sb_lock must be held when this routine is called. 1534 */ 1535 int 1536 xfs_mod_incore_sb_unlocked( 1537 xfs_mount_t *mp, 1538 xfs_sb_field_t field, 1539 int64_t delta, 1540 int rsvd) 1541 { 1542 int scounter; /* short counter for 32 bit fields */ 1543 long long lcounter; /* long counter for 64 bit fields */ 1544 long long res_used, rem; 1545 1546 /* 1547 * With the in-core superblock spin lock held, switch 1548 * on the indicated field. Apply the delta to the 1549 * proper field. If the fields value would dip below 1550 * 0, then do not apply the delta and return EINVAL. 1551 */ 1552 switch (field) { 1553 case XFS_SBS_ICOUNT: 1554 lcounter = (long long)mp->m_sb.sb_icount; 1555 lcounter += delta; 1556 if (lcounter < 0) { 1557 ASSERT(0); 1558 return XFS_ERROR(EINVAL); 1559 } 1560 mp->m_sb.sb_icount = lcounter; 1561 return 0; 1562 case XFS_SBS_IFREE: 1563 lcounter = (long long)mp->m_sb.sb_ifree; 1564 lcounter += delta; 1565 if (lcounter < 0) { 1566 ASSERT(0); 1567 return XFS_ERROR(EINVAL); 1568 } 1569 mp->m_sb.sb_ifree = lcounter; 1570 return 0; 1571 case XFS_SBS_FDBLOCKS: 1572 lcounter = (long long) 1573 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1574 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1575 1576 if (delta > 0) { /* Putting blocks back */ 1577 if (res_used > delta) { 1578 mp->m_resblks_avail += delta; 1579 } else { 1580 rem = delta - res_used; 1581 mp->m_resblks_avail = mp->m_resblks; 1582 lcounter += rem; 1583 } 1584 } else { /* Taking blocks away */ 1585 1586 lcounter += delta; 1587 1588 /* 1589 * If were out of blocks, use any available reserved blocks if 1590 * were allowed to. 1591 */ 1592 1593 if (lcounter < 0) { 1594 if (rsvd) { 1595 lcounter = (long long)mp->m_resblks_avail + delta; 1596 if (lcounter < 0) { 1597 return XFS_ERROR(ENOSPC); 1598 } 1599 mp->m_resblks_avail = lcounter; 1600 return 0; 1601 } else { /* not reserved */ 1602 return XFS_ERROR(ENOSPC); 1603 } 1604 } 1605 } 1606 1607 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1608 return 0; 1609 case XFS_SBS_FREXTENTS: 1610 lcounter = (long long)mp->m_sb.sb_frextents; 1611 lcounter += delta; 1612 if (lcounter < 0) { 1613 return XFS_ERROR(ENOSPC); 1614 } 1615 mp->m_sb.sb_frextents = lcounter; 1616 return 0; 1617 case XFS_SBS_DBLOCKS: 1618 lcounter = (long long)mp->m_sb.sb_dblocks; 1619 lcounter += delta; 1620 if (lcounter < 0) { 1621 ASSERT(0); 1622 return XFS_ERROR(EINVAL); 1623 } 1624 mp->m_sb.sb_dblocks = lcounter; 1625 return 0; 1626 case XFS_SBS_AGCOUNT: 1627 scounter = mp->m_sb.sb_agcount; 1628 scounter += delta; 1629 if (scounter < 0) { 1630 ASSERT(0); 1631 return XFS_ERROR(EINVAL); 1632 } 1633 mp->m_sb.sb_agcount = scounter; 1634 return 0; 1635 case XFS_SBS_IMAX_PCT: 1636 scounter = mp->m_sb.sb_imax_pct; 1637 scounter += delta; 1638 if (scounter < 0) { 1639 ASSERT(0); 1640 return XFS_ERROR(EINVAL); 1641 } 1642 mp->m_sb.sb_imax_pct = scounter; 1643 return 0; 1644 case XFS_SBS_REXTSIZE: 1645 scounter = mp->m_sb.sb_rextsize; 1646 scounter += delta; 1647 if (scounter < 0) { 1648 ASSERT(0); 1649 return XFS_ERROR(EINVAL); 1650 } 1651 mp->m_sb.sb_rextsize = scounter; 1652 return 0; 1653 case XFS_SBS_RBMBLOCKS: 1654 scounter = mp->m_sb.sb_rbmblocks; 1655 scounter += delta; 1656 if (scounter < 0) { 1657 ASSERT(0); 1658 return XFS_ERROR(EINVAL); 1659 } 1660 mp->m_sb.sb_rbmblocks = scounter; 1661 return 0; 1662 case XFS_SBS_RBLOCKS: 1663 lcounter = (long long)mp->m_sb.sb_rblocks; 1664 lcounter += delta; 1665 if (lcounter < 0) { 1666 ASSERT(0); 1667 return XFS_ERROR(EINVAL); 1668 } 1669 mp->m_sb.sb_rblocks = lcounter; 1670 return 0; 1671 case XFS_SBS_REXTENTS: 1672 lcounter = (long long)mp->m_sb.sb_rextents; 1673 lcounter += delta; 1674 if (lcounter < 0) { 1675 ASSERT(0); 1676 return XFS_ERROR(EINVAL); 1677 } 1678 mp->m_sb.sb_rextents = lcounter; 1679 return 0; 1680 case XFS_SBS_REXTSLOG: 1681 scounter = mp->m_sb.sb_rextslog; 1682 scounter += delta; 1683 if (scounter < 0) { 1684 ASSERT(0); 1685 return XFS_ERROR(EINVAL); 1686 } 1687 mp->m_sb.sb_rextslog = scounter; 1688 return 0; 1689 default: 1690 ASSERT(0); 1691 return XFS_ERROR(EINVAL); 1692 } 1693 } 1694 1695 /* 1696 * xfs_mod_incore_sb() is used to change a field in the in-core 1697 * superblock structure by the specified delta. This modification 1698 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1699 * routine to do the work. 1700 */ 1701 int 1702 xfs_mod_incore_sb( 1703 xfs_mount_t *mp, 1704 xfs_sb_field_t field, 1705 int64_t delta, 1706 int rsvd) 1707 { 1708 int status; 1709 1710 /* check for per-cpu counters */ 1711 switch (field) { 1712 #ifdef HAVE_PERCPU_SB 1713 case XFS_SBS_ICOUNT: 1714 case XFS_SBS_IFREE: 1715 case XFS_SBS_FDBLOCKS: 1716 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1717 status = xfs_icsb_modify_counters(mp, field, 1718 delta, rsvd); 1719 break; 1720 } 1721 /* FALLTHROUGH */ 1722 #endif 1723 default: 1724 spin_lock(&mp->m_sb_lock); 1725 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1726 spin_unlock(&mp->m_sb_lock); 1727 break; 1728 } 1729 1730 return status; 1731 } 1732 1733 /* 1734 * xfs_mod_incore_sb_batch() is used to change more than one field 1735 * in the in-core superblock structure at a time. This modification 1736 * is protected by a lock internal to this module. The fields and 1737 * changes to those fields are specified in the array of xfs_mod_sb 1738 * structures passed in. 1739 * 1740 * Either all of the specified deltas will be applied or none of 1741 * them will. If any modified field dips below 0, then all modifications 1742 * will be backed out and EINVAL will be returned. 1743 */ 1744 int 1745 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1746 { 1747 int status=0; 1748 xfs_mod_sb_t *msbp; 1749 1750 /* 1751 * Loop through the array of mod structures and apply each 1752 * individually. If any fail, then back out all those 1753 * which have already been applied. Do all of this within 1754 * the scope of the m_sb_lock so that all of the changes will 1755 * be atomic. 1756 */ 1757 spin_lock(&mp->m_sb_lock); 1758 msbp = &msb[0]; 1759 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1760 /* 1761 * Apply the delta at index n. If it fails, break 1762 * from the loop so we'll fall into the undo loop 1763 * below. 1764 */ 1765 switch (msbp->msb_field) { 1766 #ifdef HAVE_PERCPU_SB 1767 case XFS_SBS_ICOUNT: 1768 case XFS_SBS_IFREE: 1769 case XFS_SBS_FDBLOCKS: 1770 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1771 spin_unlock(&mp->m_sb_lock); 1772 status = xfs_icsb_modify_counters(mp, 1773 msbp->msb_field, 1774 msbp->msb_delta, rsvd); 1775 spin_lock(&mp->m_sb_lock); 1776 break; 1777 } 1778 /* FALLTHROUGH */ 1779 #endif 1780 default: 1781 status = xfs_mod_incore_sb_unlocked(mp, 1782 msbp->msb_field, 1783 msbp->msb_delta, rsvd); 1784 break; 1785 } 1786 1787 if (status != 0) { 1788 break; 1789 } 1790 } 1791 1792 /* 1793 * If we didn't complete the loop above, then back out 1794 * any changes made to the superblock. If you add code 1795 * between the loop above and here, make sure that you 1796 * preserve the value of status. Loop back until 1797 * we step below the beginning of the array. Make sure 1798 * we don't touch anything back there. 1799 */ 1800 if (status != 0) { 1801 msbp--; 1802 while (msbp >= msb) { 1803 switch (msbp->msb_field) { 1804 #ifdef HAVE_PERCPU_SB 1805 case XFS_SBS_ICOUNT: 1806 case XFS_SBS_IFREE: 1807 case XFS_SBS_FDBLOCKS: 1808 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1809 spin_unlock(&mp->m_sb_lock); 1810 status = xfs_icsb_modify_counters(mp, 1811 msbp->msb_field, 1812 -(msbp->msb_delta), 1813 rsvd); 1814 spin_lock(&mp->m_sb_lock); 1815 break; 1816 } 1817 /* FALLTHROUGH */ 1818 #endif 1819 default: 1820 status = xfs_mod_incore_sb_unlocked(mp, 1821 msbp->msb_field, 1822 -(msbp->msb_delta), 1823 rsvd); 1824 break; 1825 } 1826 ASSERT(status == 0); 1827 msbp--; 1828 } 1829 } 1830 spin_unlock(&mp->m_sb_lock); 1831 return status; 1832 } 1833 1834 /* 1835 * xfs_getsb() is called to obtain the buffer for the superblock. 1836 * The buffer is returned locked and read in from disk. 1837 * The buffer should be released with a call to xfs_brelse(). 1838 * 1839 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1840 * the superblock buffer if it can be locked without sleeping. 1841 * If it can't then we'll return NULL. 1842 */ 1843 xfs_buf_t * 1844 xfs_getsb( 1845 xfs_mount_t *mp, 1846 int flags) 1847 { 1848 xfs_buf_t *bp; 1849 1850 ASSERT(mp->m_sb_bp != NULL); 1851 bp = mp->m_sb_bp; 1852 if (flags & XFS_BUF_TRYLOCK) { 1853 if (!XFS_BUF_CPSEMA(bp)) { 1854 return NULL; 1855 } 1856 } else { 1857 XFS_BUF_PSEMA(bp, PRIBIO); 1858 } 1859 XFS_BUF_HOLD(bp); 1860 ASSERT(XFS_BUF_ISDONE(bp)); 1861 return bp; 1862 } 1863 1864 /* 1865 * Used to free the superblock along various error paths. 1866 */ 1867 void 1868 xfs_freesb( 1869 xfs_mount_t *mp) 1870 { 1871 xfs_buf_t *bp; 1872 1873 /* 1874 * Use xfs_getsb() so that the buffer will be locked 1875 * when we call xfs_buf_relse(). 1876 */ 1877 bp = xfs_getsb(mp, 0); 1878 XFS_BUF_UNMANAGE(bp); 1879 xfs_buf_relse(bp); 1880 mp->m_sb_bp = NULL; 1881 } 1882 1883 /* 1884 * See if the UUID is unique among mounted XFS filesystems. 1885 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 1886 */ 1887 STATIC int 1888 xfs_uuid_mount( 1889 xfs_mount_t *mp) 1890 { 1891 if (uuid_is_nil(&mp->m_sb.sb_uuid)) { 1892 cmn_err(CE_WARN, 1893 "XFS: Filesystem %s has nil UUID - can't mount", 1894 mp->m_fsname); 1895 return -1; 1896 } 1897 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) { 1898 cmn_err(CE_WARN, 1899 "XFS: Filesystem %s has duplicate UUID - can't mount", 1900 mp->m_fsname); 1901 return -1; 1902 } 1903 return 0; 1904 } 1905 1906 /* 1907 * Remove filesystem from the UUID table. 1908 */ 1909 STATIC void 1910 xfs_uuid_unmount( 1911 xfs_mount_t *mp) 1912 { 1913 uuid_table_remove(&mp->m_sb.sb_uuid); 1914 } 1915 1916 /* 1917 * Used to log changes to the superblock unit and width fields which could 1918 * be altered by the mount options, as well as any potential sb_features2 1919 * fixup. Only the first superblock is updated. 1920 */ 1921 STATIC int 1922 xfs_mount_log_sb( 1923 xfs_mount_t *mp, 1924 __int64_t fields) 1925 { 1926 xfs_trans_t *tp; 1927 int error; 1928 1929 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1930 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2)); 1931 1932 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1933 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1934 XFS_DEFAULT_LOG_COUNT); 1935 if (error) { 1936 xfs_trans_cancel(tp, 0); 1937 return error; 1938 } 1939 xfs_mod_sb(tp, fields); 1940 error = xfs_trans_commit(tp, 0); 1941 return error; 1942 } 1943 1944 1945 #ifdef HAVE_PERCPU_SB 1946 /* 1947 * Per-cpu incore superblock counters 1948 * 1949 * Simple concept, difficult implementation 1950 * 1951 * Basically, replace the incore superblock counters with a distributed per cpu 1952 * counter for contended fields (e.g. free block count). 1953 * 1954 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1955 * hence needs to be accurately read when we are running low on space. Hence 1956 * there is a method to enable and disable the per-cpu counters based on how 1957 * much "stuff" is available in them. 1958 * 1959 * Basically, a counter is enabled if there is enough free resource to justify 1960 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1961 * ENOSPC), then we disable the counters to synchronise all callers and 1962 * re-distribute the available resources. 1963 * 1964 * If, once we redistributed the available resources, we still get a failure, 1965 * we disable the per-cpu counter and go through the slow path. 1966 * 1967 * The slow path is the current xfs_mod_incore_sb() function. This means that 1968 * when we disable a per-cpu counter, we need to drain it's resources back to 1969 * the global superblock. We do this after disabling the counter to prevent 1970 * more threads from queueing up on the counter. 1971 * 1972 * Essentially, this means that we still need a lock in the fast path to enable 1973 * synchronisation between the global counters and the per-cpu counters. This 1974 * is not a problem because the lock will be local to a CPU almost all the time 1975 * and have little contention except when we get to ENOSPC conditions. 1976 * 1977 * Basically, this lock becomes a barrier that enables us to lock out the fast 1978 * path while we do things like enabling and disabling counters and 1979 * synchronising the counters. 1980 * 1981 * Locking rules: 1982 * 1983 * 1. m_sb_lock before picking up per-cpu locks 1984 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1985 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1986 * 4. modifying per-cpu counters requires holding per-cpu lock 1987 * 5. modifying global counters requires holding m_sb_lock 1988 * 6. enabling or disabling a counter requires holding the m_sb_lock 1989 * and _none_ of the per-cpu locks. 1990 * 1991 * Disabled counters are only ever re-enabled by a balance operation 1992 * that results in more free resources per CPU than a given threshold. 1993 * To ensure counters don't remain disabled, they are rebalanced when 1994 * the global resource goes above a higher threshold (i.e. some hysteresis 1995 * is present to prevent thrashing). 1996 */ 1997 1998 #ifdef CONFIG_HOTPLUG_CPU 1999 /* 2000 * hot-plug CPU notifier support. 2001 * 2002 * We need a notifier per filesystem as we need to be able to identify 2003 * the filesystem to balance the counters out. This is achieved by 2004 * having a notifier block embedded in the xfs_mount_t and doing pointer 2005 * magic to get the mount pointer from the notifier block address. 2006 */ 2007 STATIC int 2008 xfs_icsb_cpu_notify( 2009 struct notifier_block *nfb, 2010 unsigned long action, 2011 void *hcpu) 2012 { 2013 xfs_icsb_cnts_t *cntp; 2014 xfs_mount_t *mp; 2015 2016 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2017 cntp = (xfs_icsb_cnts_t *) 2018 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2019 switch (action) { 2020 case CPU_UP_PREPARE: 2021 case CPU_UP_PREPARE_FROZEN: 2022 /* Easy Case - initialize the area and locks, and 2023 * then rebalance when online does everything else for us. */ 2024 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2025 break; 2026 case CPU_ONLINE: 2027 case CPU_ONLINE_FROZEN: 2028 xfs_icsb_lock(mp); 2029 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0); 2030 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0); 2031 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0); 2032 xfs_icsb_unlock(mp); 2033 break; 2034 case CPU_DEAD: 2035 case CPU_DEAD_FROZEN: 2036 /* Disable all the counters, then fold the dead cpu's 2037 * count into the total on the global superblock and 2038 * re-enable the counters. */ 2039 xfs_icsb_lock(mp); 2040 spin_lock(&mp->m_sb_lock); 2041 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2042 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2043 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2044 2045 mp->m_sb.sb_icount += cntp->icsb_icount; 2046 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2047 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2048 2049 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2050 2051 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 2052 XFS_ICSB_SB_LOCKED, 0); 2053 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 2054 XFS_ICSB_SB_LOCKED, 0); 2055 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 2056 XFS_ICSB_SB_LOCKED, 0); 2057 spin_unlock(&mp->m_sb_lock); 2058 xfs_icsb_unlock(mp); 2059 break; 2060 } 2061 2062 return NOTIFY_OK; 2063 } 2064 #endif /* CONFIG_HOTPLUG_CPU */ 2065 2066 int 2067 xfs_icsb_init_counters( 2068 xfs_mount_t *mp) 2069 { 2070 xfs_icsb_cnts_t *cntp; 2071 int i; 2072 2073 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2074 if (mp->m_sb_cnts == NULL) 2075 return -ENOMEM; 2076 2077 #ifdef CONFIG_HOTPLUG_CPU 2078 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2079 mp->m_icsb_notifier.priority = 0; 2080 register_hotcpu_notifier(&mp->m_icsb_notifier); 2081 #endif /* CONFIG_HOTPLUG_CPU */ 2082 2083 for_each_online_cpu(i) { 2084 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2085 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2086 } 2087 2088 mutex_init(&mp->m_icsb_mutex); 2089 2090 /* 2091 * start with all counters disabled so that the 2092 * initial balance kicks us off correctly 2093 */ 2094 mp->m_icsb_counters = -1; 2095 return 0; 2096 } 2097 2098 void 2099 xfs_icsb_reinit_counters( 2100 xfs_mount_t *mp) 2101 { 2102 xfs_icsb_lock(mp); 2103 /* 2104 * start with all counters disabled so that the 2105 * initial balance kicks us off correctly 2106 */ 2107 mp->m_icsb_counters = -1; 2108 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0, 0); 2109 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0, 0); 2110 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0, 0); 2111 xfs_icsb_unlock(mp); 2112 } 2113 2114 STATIC void 2115 xfs_icsb_destroy_counters( 2116 xfs_mount_t *mp) 2117 { 2118 if (mp->m_sb_cnts) { 2119 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2120 free_percpu(mp->m_sb_cnts); 2121 } 2122 mutex_destroy(&mp->m_icsb_mutex); 2123 } 2124 2125 STATIC_INLINE void 2126 xfs_icsb_lock_cntr( 2127 xfs_icsb_cnts_t *icsbp) 2128 { 2129 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2130 ndelay(1000); 2131 } 2132 } 2133 2134 STATIC_INLINE void 2135 xfs_icsb_unlock_cntr( 2136 xfs_icsb_cnts_t *icsbp) 2137 { 2138 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2139 } 2140 2141 2142 STATIC_INLINE void 2143 xfs_icsb_lock_all_counters( 2144 xfs_mount_t *mp) 2145 { 2146 xfs_icsb_cnts_t *cntp; 2147 int i; 2148 2149 for_each_online_cpu(i) { 2150 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2151 xfs_icsb_lock_cntr(cntp); 2152 } 2153 } 2154 2155 STATIC_INLINE void 2156 xfs_icsb_unlock_all_counters( 2157 xfs_mount_t *mp) 2158 { 2159 xfs_icsb_cnts_t *cntp; 2160 int i; 2161 2162 for_each_online_cpu(i) { 2163 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2164 xfs_icsb_unlock_cntr(cntp); 2165 } 2166 } 2167 2168 STATIC void 2169 xfs_icsb_count( 2170 xfs_mount_t *mp, 2171 xfs_icsb_cnts_t *cnt, 2172 int flags) 2173 { 2174 xfs_icsb_cnts_t *cntp; 2175 int i; 2176 2177 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2178 2179 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2180 xfs_icsb_lock_all_counters(mp); 2181 2182 for_each_online_cpu(i) { 2183 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2184 cnt->icsb_icount += cntp->icsb_icount; 2185 cnt->icsb_ifree += cntp->icsb_ifree; 2186 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2187 } 2188 2189 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2190 xfs_icsb_unlock_all_counters(mp); 2191 } 2192 2193 STATIC int 2194 xfs_icsb_counter_disabled( 2195 xfs_mount_t *mp, 2196 xfs_sb_field_t field) 2197 { 2198 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2199 return test_bit(field, &mp->m_icsb_counters); 2200 } 2201 2202 STATIC void 2203 xfs_icsb_disable_counter( 2204 xfs_mount_t *mp, 2205 xfs_sb_field_t field) 2206 { 2207 xfs_icsb_cnts_t cnt; 2208 2209 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2210 2211 /* 2212 * If we are already disabled, then there is nothing to do 2213 * here. We check before locking all the counters to avoid 2214 * the expensive lock operation when being called in the 2215 * slow path and the counter is already disabled. This is 2216 * safe because the only time we set or clear this state is under 2217 * the m_icsb_mutex. 2218 */ 2219 if (xfs_icsb_counter_disabled(mp, field)) 2220 return; 2221 2222 xfs_icsb_lock_all_counters(mp); 2223 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2224 /* drain back to superblock */ 2225 2226 xfs_icsb_count(mp, &cnt, XFS_ICSB_SB_LOCKED|XFS_ICSB_LAZY_COUNT); 2227 switch(field) { 2228 case XFS_SBS_ICOUNT: 2229 mp->m_sb.sb_icount = cnt.icsb_icount; 2230 break; 2231 case XFS_SBS_IFREE: 2232 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2233 break; 2234 case XFS_SBS_FDBLOCKS: 2235 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2236 break; 2237 default: 2238 BUG(); 2239 } 2240 } 2241 2242 xfs_icsb_unlock_all_counters(mp); 2243 } 2244 2245 STATIC void 2246 xfs_icsb_enable_counter( 2247 xfs_mount_t *mp, 2248 xfs_sb_field_t field, 2249 uint64_t count, 2250 uint64_t resid) 2251 { 2252 xfs_icsb_cnts_t *cntp; 2253 int i; 2254 2255 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2256 2257 xfs_icsb_lock_all_counters(mp); 2258 for_each_online_cpu(i) { 2259 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2260 switch (field) { 2261 case XFS_SBS_ICOUNT: 2262 cntp->icsb_icount = count + resid; 2263 break; 2264 case XFS_SBS_IFREE: 2265 cntp->icsb_ifree = count + resid; 2266 break; 2267 case XFS_SBS_FDBLOCKS: 2268 cntp->icsb_fdblocks = count + resid; 2269 break; 2270 default: 2271 BUG(); 2272 break; 2273 } 2274 resid = 0; 2275 } 2276 clear_bit(field, &mp->m_icsb_counters); 2277 xfs_icsb_unlock_all_counters(mp); 2278 } 2279 2280 void 2281 xfs_icsb_sync_counters_flags( 2282 xfs_mount_t *mp, 2283 int flags) 2284 { 2285 xfs_icsb_cnts_t cnt; 2286 2287 /* Pass 1: lock all counters */ 2288 if ((flags & XFS_ICSB_SB_LOCKED) == 0) 2289 spin_lock(&mp->m_sb_lock); 2290 2291 xfs_icsb_count(mp, &cnt, flags); 2292 2293 /* Step 3: update mp->m_sb fields */ 2294 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2295 mp->m_sb.sb_icount = cnt.icsb_icount; 2296 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2297 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2298 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2299 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2300 2301 if ((flags & XFS_ICSB_SB_LOCKED) == 0) 2302 spin_unlock(&mp->m_sb_lock); 2303 } 2304 2305 /* 2306 * Accurate update of per-cpu counters to incore superblock 2307 */ 2308 STATIC void 2309 xfs_icsb_sync_counters( 2310 xfs_mount_t *mp) 2311 { 2312 xfs_icsb_sync_counters_flags(mp, 0); 2313 } 2314 2315 /* 2316 * Balance and enable/disable counters as necessary. 2317 * 2318 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2319 * chosen to be the same number as single on disk allocation chunk per CPU, and 2320 * free blocks is something far enough zero that we aren't going thrash when we 2321 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2322 * prevent looping endlessly when xfs_alloc_space asks for more than will 2323 * be distributed to a single CPU but each CPU has enough blocks to be 2324 * reenabled. 2325 * 2326 * Note that we can be called when counters are already disabled. 2327 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2328 * prevent locking every per-cpu counter needlessly. 2329 */ 2330 2331 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2332 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2333 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2334 STATIC void 2335 xfs_icsb_balance_counter( 2336 xfs_mount_t *mp, 2337 xfs_sb_field_t field, 2338 int flags, 2339 int min_per_cpu) 2340 { 2341 uint64_t count, resid; 2342 int weight = num_online_cpus(); 2343 uint64_t min = (uint64_t)min_per_cpu; 2344 2345 if (!(flags & XFS_ICSB_SB_LOCKED)) 2346 spin_lock(&mp->m_sb_lock); 2347 2348 /* disable counter and sync counter */ 2349 xfs_icsb_disable_counter(mp, field); 2350 2351 /* update counters - first CPU gets residual*/ 2352 switch (field) { 2353 case XFS_SBS_ICOUNT: 2354 count = mp->m_sb.sb_icount; 2355 resid = do_div(count, weight); 2356 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2357 goto out; 2358 break; 2359 case XFS_SBS_IFREE: 2360 count = mp->m_sb.sb_ifree; 2361 resid = do_div(count, weight); 2362 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2363 goto out; 2364 break; 2365 case XFS_SBS_FDBLOCKS: 2366 count = mp->m_sb.sb_fdblocks; 2367 resid = do_div(count, weight); 2368 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2369 goto out; 2370 break; 2371 default: 2372 BUG(); 2373 count = resid = 0; /* quiet, gcc */ 2374 break; 2375 } 2376 2377 xfs_icsb_enable_counter(mp, field, count, resid); 2378 out: 2379 if (!(flags & XFS_ICSB_SB_LOCKED)) 2380 spin_unlock(&mp->m_sb_lock); 2381 } 2382 2383 STATIC int 2384 xfs_icsb_modify_counters( 2385 xfs_mount_t *mp, 2386 xfs_sb_field_t field, 2387 int64_t delta, 2388 int rsvd) 2389 { 2390 xfs_icsb_cnts_t *icsbp; 2391 long long lcounter; /* long counter for 64 bit fields */ 2392 int cpu, ret = 0; 2393 2394 might_sleep(); 2395 again: 2396 cpu = get_cpu(); 2397 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); 2398 2399 /* 2400 * if the counter is disabled, go to slow path 2401 */ 2402 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2403 goto slow_path; 2404 xfs_icsb_lock_cntr(icsbp); 2405 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2406 xfs_icsb_unlock_cntr(icsbp); 2407 goto slow_path; 2408 } 2409 2410 switch (field) { 2411 case XFS_SBS_ICOUNT: 2412 lcounter = icsbp->icsb_icount; 2413 lcounter += delta; 2414 if (unlikely(lcounter < 0)) 2415 goto balance_counter; 2416 icsbp->icsb_icount = lcounter; 2417 break; 2418 2419 case XFS_SBS_IFREE: 2420 lcounter = icsbp->icsb_ifree; 2421 lcounter += delta; 2422 if (unlikely(lcounter < 0)) 2423 goto balance_counter; 2424 icsbp->icsb_ifree = lcounter; 2425 break; 2426 2427 case XFS_SBS_FDBLOCKS: 2428 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2429 2430 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2431 lcounter += delta; 2432 if (unlikely(lcounter < 0)) 2433 goto balance_counter; 2434 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2435 break; 2436 default: 2437 BUG(); 2438 break; 2439 } 2440 xfs_icsb_unlock_cntr(icsbp); 2441 put_cpu(); 2442 return 0; 2443 2444 slow_path: 2445 put_cpu(); 2446 2447 /* 2448 * serialise with a mutex so we don't burn lots of cpu on 2449 * the superblock lock. We still need to hold the superblock 2450 * lock, however, when we modify the global structures. 2451 */ 2452 xfs_icsb_lock(mp); 2453 2454 /* 2455 * Now running atomically. 2456 * 2457 * If the counter is enabled, someone has beaten us to rebalancing. 2458 * Drop the lock and try again in the fast path.... 2459 */ 2460 if (!(xfs_icsb_counter_disabled(mp, field))) { 2461 xfs_icsb_unlock(mp); 2462 goto again; 2463 } 2464 2465 /* 2466 * The counter is currently disabled. Because we are 2467 * running atomically here, we know a rebalance cannot 2468 * be in progress. Hence we can go straight to operating 2469 * on the global superblock. We do not call xfs_mod_incore_sb() 2470 * here even though we need to get the m_sb_lock. Doing so 2471 * will cause us to re-enter this function and deadlock. 2472 * Hence we get the m_sb_lock ourselves and then call 2473 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2474 * directly on the global counters. 2475 */ 2476 spin_lock(&mp->m_sb_lock); 2477 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2478 spin_unlock(&mp->m_sb_lock); 2479 2480 /* 2481 * Now that we've modified the global superblock, we 2482 * may be able to re-enable the distributed counters 2483 * (e.g. lots of space just got freed). After that 2484 * we are done. 2485 */ 2486 if (ret != ENOSPC) 2487 xfs_icsb_balance_counter(mp, field, 0, 0); 2488 xfs_icsb_unlock(mp); 2489 return ret; 2490 2491 balance_counter: 2492 xfs_icsb_unlock_cntr(icsbp); 2493 put_cpu(); 2494 2495 /* 2496 * We may have multiple threads here if multiple per-cpu 2497 * counters run dry at the same time. This will mean we can 2498 * do more balances than strictly necessary but it is not 2499 * the common slowpath case. 2500 */ 2501 xfs_icsb_lock(mp); 2502 2503 /* 2504 * running atomically. 2505 * 2506 * This will leave the counter in the correct state for future 2507 * accesses. After the rebalance, we simply try again and our retry 2508 * will either succeed through the fast path or slow path without 2509 * another balance operation being required. 2510 */ 2511 xfs_icsb_balance_counter(mp, field, 0, delta); 2512 xfs_icsb_unlock(mp); 2513 goto again; 2514 } 2515 2516 #endif 2517