xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision f3d7c2cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 #include "xfs_ag.h"
36 
37 static DEFINE_MUTEX(xfs_uuid_table_mutex);
38 static int xfs_uuid_table_size;
39 static uuid_t *xfs_uuid_table;
40 
41 void
42 xfs_uuid_table_free(void)
43 {
44 	if (xfs_uuid_table_size == 0)
45 		return;
46 	kmem_free(xfs_uuid_table);
47 	xfs_uuid_table = NULL;
48 	xfs_uuid_table_size = 0;
49 }
50 
51 /*
52  * See if the UUID is unique among mounted XFS filesystems.
53  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54  */
55 STATIC int
56 xfs_uuid_mount(
57 	struct xfs_mount	*mp)
58 {
59 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
60 	int			hole, i;
61 
62 	/* Publish UUID in struct super_block */
63 	uuid_copy(&mp->m_super->s_uuid, uuid);
64 
65 	if (xfs_has_nouuid(mp))
66 		return 0;
67 
68 	if (uuid_is_null(uuid)) {
69 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
70 		return -EINVAL;
71 	}
72 
73 	mutex_lock(&xfs_uuid_table_mutex);
74 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
75 		if (uuid_is_null(&xfs_uuid_table[i])) {
76 			hole = i;
77 			continue;
78 		}
79 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 			goto out_duplicate;
81 	}
82 
83 	if (hole < 0) {
84 		xfs_uuid_table = krealloc(xfs_uuid_table,
85 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
86 			GFP_KERNEL | __GFP_NOFAIL);
87 		hole = xfs_uuid_table_size++;
88 	}
89 	xfs_uuid_table[hole] = *uuid;
90 	mutex_unlock(&xfs_uuid_table_mutex);
91 
92 	return 0;
93 
94  out_duplicate:
95 	mutex_unlock(&xfs_uuid_table_mutex);
96 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
97 	return -EINVAL;
98 }
99 
100 STATIC void
101 xfs_uuid_unmount(
102 	struct xfs_mount	*mp)
103 {
104 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
105 	int			i;
106 
107 	if (xfs_has_nouuid(mp))
108 		return;
109 
110 	mutex_lock(&xfs_uuid_table_mutex);
111 	for (i = 0; i < xfs_uuid_table_size; i++) {
112 		if (uuid_is_null(&xfs_uuid_table[i]))
113 			continue;
114 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 			continue;
116 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 		break;
118 	}
119 	ASSERT(i < xfs_uuid_table_size);
120 	mutex_unlock(&xfs_uuid_table_mutex);
121 }
122 
123 /*
124  * Check size of device based on the (data/realtime) block count.
125  * Note: this check is used by the growfs code as well as mount.
126  */
127 int
128 xfs_sb_validate_fsb_count(
129 	xfs_sb_t	*sbp,
130 	uint64_t	nblocks)
131 {
132 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
134 
135 	/* Limited by ULONG_MAX of page cache index */
136 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
137 		return -EFBIG;
138 	return 0;
139 }
140 
141 /*
142  * xfs_readsb
143  *
144  * Does the initial read of the superblock.
145  */
146 int
147 xfs_readsb(
148 	struct xfs_mount *mp,
149 	int		flags)
150 {
151 	unsigned int	sector_size;
152 	struct xfs_buf	*bp;
153 	struct xfs_sb	*sbp = &mp->m_sb;
154 	int		error;
155 	int		loud = !(flags & XFS_MFSI_QUIET);
156 	const struct xfs_buf_ops *buf_ops;
157 
158 	ASSERT(mp->m_sb_bp == NULL);
159 	ASSERT(mp->m_ddev_targp != NULL);
160 
161 	/*
162 	 * For the initial read, we must guess at the sector
163 	 * size based on the block device.  It's enough to
164 	 * get the sb_sectsize out of the superblock and
165 	 * then reread with the proper length.
166 	 * We don't verify it yet, because it may not be complete.
167 	 */
168 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
169 	buf_ops = NULL;
170 
171 	/*
172 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 	 * around at all times to optimize access to the superblock. Therefore,
174 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
175 	 * elevated.
176 	 */
177 reread:
178 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
179 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
180 				      buf_ops);
181 	if (error) {
182 		if (loud)
183 			xfs_warn(mp, "SB validate failed with error %d.", error);
184 		/* bad CRC means corrupted metadata */
185 		if (error == -EFSBADCRC)
186 			error = -EFSCORRUPTED;
187 		return error;
188 	}
189 
190 	/*
191 	 * Initialize the mount structure from the superblock.
192 	 */
193 	xfs_sb_from_disk(sbp, bp->b_addr);
194 
195 	/*
196 	 * If we haven't validated the superblock, do so now before we try
197 	 * to check the sector size and reread the superblock appropriately.
198 	 */
199 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
200 		if (loud)
201 			xfs_warn(mp, "Invalid superblock magic number");
202 		error = -EINVAL;
203 		goto release_buf;
204 	}
205 
206 	/*
207 	 * We must be able to do sector-sized and sector-aligned IO.
208 	 */
209 	if (sector_size > sbp->sb_sectsize) {
210 		if (loud)
211 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
212 				sector_size, sbp->sb_sectsize);
213 		error = -ENOSYS;
214 		goto release_buf;
215 	}
216 
217 	if (buf_ops == NULL) {
218 		/*
219 		 * Re-read the superblock so the buffer is correctly sized,
220 		 * and properly verified.
221 		 */
222 		xfs_buf_relse(bp);
223 		sector_size = sbp->sb_sectsize;
224 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
225 		goto reread;
226 	}
227 
228 	mp->m_features |= xfs_sb_version_to_features(sbp);
229 	xfs_reinit_percpu_counters(mp);
230 
231 	/* no need to be quiet anymore, so reset the buf ops */
232 	bp->b_ops = &xfs_sb_buf_ops;
233 
234 	mp->m_sb_bp = bp;
235 	xfs_buf_unlock(bp);
236 	return 0;
237 
238 release_buf:
239 	xfs_buf_relse(bp);
240 	return error;
241 }
242 
243 /*
244  * If the sunit/swidth change would move the precomputed root inode value, we
245  * must reject the ondisk change because repair will stumble over that.
246  * However, we allow the mount to proceed because we never rejected this
247  * combination before.  Returns true to update the sb, false otherwise.
248  */
249 static inline int
250 xfs_check_new_dalign(
251 	struct xfs_mount	*mp,
252 	int			new_dalign,
253 	bool			*update_sb)
254 {
255 	struct xfs_sb		*sbp = &mp->m_sb;
256 	xfs_ino_t		calc_ino;
257 
258 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
259 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
260 
261 	if (sbp->sb_rootino == calc_ino) {
262 		*update_sb = true;
263 		return 0;
264 	}
265 
266 	xfs_warn(mp,
267 "Cannot change stripe alignment; would require moving root inode.");
268 
269 	/*
270 	 * XXX: Next time we add a new incompat feature, this should start
271 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
272 	 * that we're ignoring the administrator's instructions.
273 	 */
274 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
275 	*update_sb = false;
276 	return 0;
277 }
278 
279 /*
280  * If we were provided with new sunit/swidth values as mount options, make sure
281  * that they pass basic alignment and superblock feature checks, and convert
282  * them into the same units (FSB) that everything else expects.  This step
283  * /must/ be done before computing the inode geometry.
284  */
285 STATIC int
286 xfs_validate_new_dalign(
287 	struct xfs_mount	*mp)
288 {
289 	if (mp->m_dalign == 0)
290 		return 0;
291 
292 	/*
293 	 * If stripe unit and stripe width are not multiples
294 	 * of the fs blocksize turn off alignment.
295 	 */
296 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
297 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
298 		xfs_warn(mp,
299 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
300 			mp->m_sb.sb_blocksize);
301 		return -EINVAL;
302 	} else {
303 		/*
304 		 * Convert the stripe unit and width to FSBs.
305 		 */
306 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
307 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
308 			xfs_warn(mp,
309 		"alignment check failed: sunit/swidth vs. agsize(%d)",
310 				 mp->m_sb.sb_agblocks);
311 			return -EINVAL;
312 		} else if (mp->m_dalign) {
313 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
314 		} else {
315 			xfs_warn(mp,
316 		"alignment check failed: sunit(%d) less than bsize(%d)",
317 				 mp->m_dalign, mp->m_sb.sb_blocksize);
318 			return -EINVAL;
319 		}
320 	}
321 
322 	if (!xfs_has_dalign(mp)) {
323 		xfs_warn(mp,
324 "cannot change alignment: superblock does not support data alignment");
325 		return -EINVAL;
326 	}
327 
328 	return 0;
329 }
330 
331 /* Update alignment values based on mount options and sb values. */
332 STATIC int
333 xfs_update_alignment(
334 	struct xfs_mount	*mp)
335 {
336 	struct xfs_sb		*sbp = &mp->m_sb;
337 
338 	if (mp->m_dalign) {
339 		bool		update_sb;
340 		int		error;
341 
342 		if (sbp->sb_unit == mp->m_dalign &&
343 		    sbp->sb_width == mp->m_swidth)
344 			return 0;
345 
346 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
347 		if (error || !update_sb)
348 			return error;
349 
350 		sbp->sb_unit = mp->m_dalign;
351 		sbp->sb_width = mp->m_swidth;
352 		mp->m_update_sb = true;
353 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
354 		mp->m_dalign = sbp->sb_unit;
355 		mp->m_swidth = sbp->sb_width;
356 	}
357 
358 	return 0;
359 }
360 
361 /*
362  * precalculate the low space thresholds for dynamic speculative preallocation.
363  */
364 void
365 xfs_set_low_space_thresholds(
366 	struct xfs_mount	*mp)
367 {
368 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
369 	uint64_t		rtexts = mp->m_sb.sb_rextents;
370 	int			i;
371 
372 	do_div(dblocks, 100);
373 	do_div(rtexts, 100);
374 
375 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
376 		mp->m_low_space[i] = dblocks * (i + 1);
377 		mp->m_low_rtexts[i] = rtexts * (i + 1);
378 	}
379 }
380 
381 /*
382  * Check that the data (and log if separate) is an ok size.
383  */
384 STATIC int
385 xfs_check_sizes(
386 	struct xfs_mount *mp)
387 {
388 	struct xfs_buf	*bp;
389 	xfs_daddr_t	d;
390 	int		error;
391 
392 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
393 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
394 		xfs_warn(mp, "filesystem size mismatch detected");
395 		return -EFBIG;
396 	}
397 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
398 					d - XFS_FSS_TO_BB(mp, 1),
399 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
400 	if (error) {
401 		xfs_warn(mp, "last sector read failed");
402 		return error;
403 	}
404 	xfs_buf_relse(bp);
405 
406 	if (mp->m_logdev_targp == mp->m_ddev_targp)
407 		return 0;
408 
409 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
410 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
411 		xfs_warn(mp, "log size mismatch detected");
412 		return -EFBIG;
413 	}
414 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
415 					d - XFS_FSB_TO_BB(mp, 1),
416 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
417 	if (error) {
418 		xfs_warn(mp, "log device read failed");
419 		return error;
420 	}
421 	xfs_buf_relse(bp);
422 	return 0;
423 }
424 
425 /*
426  * Clear the quotaflags in memory and in the superblock.
427  */
428 int
429 xfs_mount_reset_sbqflags(
430 	struct xfs_mount	*mp)
431 {
432 	mp->m_qflags = 0;
433 
434 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
435 	if (mp->m_sb.sb_qflags == 0)
436 		return 0;
437 	spin_lock(&mp->m_sb_lock);
438 	mp->m_sb.sb_qflags = 0;
439 	spin_unlock(&mp->m_sb_lock);
440 
441 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
442 		return 0;
443 
444 	return xfs_sync_sb(mp, false);
445 }
446 
447 uint64_t
448 xfs_default_resblks(xfs_mount_t *mp)
449 {
450 	uint64_t resblks;
451 
452 	/*
453 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
454 	 * smaller.  This is intended to cover concurrent allocation
455 	 * transactions when we initially hit enospc. These each require a 4
456 	 * block reservation. Hence by default we cover roughly 2000 concurrent
457 	 * allocation reservations.
458 	 */
459 	resblks = mp->m_sb.sb_dblocks;
460 	do_div(resblks, 20);
461 	resblks = min_t(uint64_t, resblks, 8192);
462 	return resblks;
463 }
464 
465 /* Ensure the summary counts are correct. */
466 STATIC int
467 xfs_check_summary_counts(
468 	struct xfs_mount	*mp)
469 {
470 	/*
471 	 * The AG0 superblock verifier rejects in-progress filesystems,
472 	 * so we should never see the flag set this far into mounting.
473 	 */
474 	if (mp->m_sb.sb_inprogress) {
475 		xfs_err(mp, "sb_inprogress set after log recovery??");
476 		WARN_ON(1);
477 		return -EFSCORRUPTED;
478 	}
479 
480 	/*
481 	 * Now the log is mounted, we know if it was an unclean shutdown or
482 	 * not. If it was, with the first phase of recovery has completed, we
483 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
484 	 * but they are recovered transactionally in the second recovery phase
485 	 * later.
486 	 *
487 	 * If the log was clean when we mounted, we can check the summary
488 	 * counters.  If any of them are obviously incorrect, we can recompute
489 	 * them from the AGF headers in the next step.
490 	 */
491 	if (xfs_is_clean(mp) &&
492 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
493 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
494 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
495 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
496 
497 	/*
498 	 * We can safely re-initialise incore superblock counters from the
499 	 * per-ag data. These may not be correct if the filesystem was not
500 	 * cleanly unmounted, so we waited for recovery to finish before doing
501 	 * this.
502 	 *
503 	 * If the filesystem was cleanly unmounted or the previous check did
504 	 * not flag anything weird, then we can trust the values in the
505 	 * superblock to be correct and we don't need to do anything here.
506 	 * Otherwise, recalculate the summary counters.
507 	 */
508 	if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) &&
509 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
510 		return 0;
511 
512 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
513 }
514 
515 /*
516  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
517  * internal inode structures can be sitting in the CIL and AIL at this point,
518  * so we need to unpin them, write them back and/or reclaim them before unmount
519  * can proceed.  In other words, callers are required to have inactivated all
520  * inodes.
521  *
522  * An inode cluster that has been freed can have its buffer still pinned in
523  * memory because the transaction is still sitting in a iclog. The stale inodes
524  * on that buffer will be pinned to the buffer until the transaction hits the
525  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
526  * may never see the pinned buffer, so nothing will push out the iclog and
527  * unpin the buffer.
528  *
529  * Hence we need to force the log to unpin everything first. However, log
530  * forces don't wait for the discards they issue to complete, so we have to
531  * explicitly wait for them to complete here as well.
532  *
533  * Then we can tell the world we are unmounting so that error handling knows
534  * that the filesystem is going away and we should error out anything that we
535  * have been retrying in the background.  This will prevent never-ending
536  * retries in AIL pushing from hanging the unmount.
537  *
538  * Finally, we can push the AIL to clean all the remaining dirty objects, then
539  * reclaim the remaining inodes that are still in memory at this point in time.
540  */
541 static void
542 xfs_unmount_flush_inodes(
543 	struct xfs_mount	*mp)
544 {
545 	xfs_log_force(mp, XFS_LOG_SYNC);
546 	xfs_extent_busy_wait_all(mp);
547 	flush_workqueue(xfs_discard_wq);
548 
549 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
550 
551 	xfs_ail_push_all_sync(mp->m_ail);
552 	xfs_inodegc_stop(mp);
553 	cancel_delayed_work_sync(&mp->m_reclaim_work);
554 	xfs_reclaim_inodes(mp);
555 	xfs_health_unmount(mp);
556 }
557 
558 static void
559 xfs_mount_setup_inode_geom(
560 	struct xfs_mount	*mp)
561 {
562 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
563 
564 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
565 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
566 
567 	xfs_ialloc_setup_geometry(mp);
568 }
569 
570 /*
571  * This function does the following on an initial mount of a file system:
572  *	- reads the superblock from disk and init the mount struct
573  *	- if we're a 32-bit kernel, do a size check on the superblock
574  *		so we don't mount terabyte filesystems
575  *	- init mount struct realtime fields
576  *	- allocate inode hash table for fs
577  *	- init directory manager
578  *	- perform recovery and init the log manager
579  */
580 int
581 xfs_mountfs(
582 	struct xfs_mount	*mp)
583 {
584 	struct xfs_sb		*sbp = &(mp->m_sb);
585 	struct xfs_inode	*rip;
586 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
587 	uint64_t		resblks;
588 	uint			quotamount = 0;
589 	uint			quotaflags = 0;
590 	int			error = 0;
591 
592 	xfs_sb_mount_common(mp, sbp);
593 
594 	/*
595 	 * Check for a mismatched features2 values.  Older kernels read & wrote
596 	 * into the wrong sb offset for sb_features2 on some platforms due to
597 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
598 	 * which made older superblock reading/writing routines swap it as a
599 	 * 64-bit value.
600 	 *
601 	 * For backwards compatibility, we make both slots equal.
602 	 *
603 	 * If we detect a mismatched field, we OR the set bits into the existing
604 	 * features2 field in case it has already been modified; we don't want
605 	 * to lose any features.  We then update the bad location with the ORed
606 	 * value so that older kernels will see any features2 flags. The
607 	 * superblock writeback code ensures the new sb_features2 is copied to
608 	 * sb_bad_features2 before it is logged or written to disk.
609 	 */
610 	if (xfs_sb_has_mismatched_features2(sbp)) {
611 		xfs_warn(mp, "correcting sb_features alignment problem");
612 		sbp->sb_features2 |= sbp->sb_bad_features2;
613 		mp->m_update_sb = true;
614 	}
615 
616 
617 	/* always use v2 inodes by default now */
618 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
619 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
620 		mp->m_features |= XFS_FEAT_NLINK;
621 		mp->m_update_sb = true;
622 	}
623 
624 	/*
625 	 * If we were given new sunit/swidth options, do some basic validation
626 	 * checks and convert the incore dalign and swidth values to the
627 	 * same units (FSB) that everything else uses.  This /must/ happen
628 	 * before computing the inode geometry.
629 	 */
630 	error = xfs_validate_new_dalign(mp);
631 	if (error)
632 		goto out;
633 
634 	xfs_alloc_compute_maxlevels(mp);
635 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
636 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
637 	xfs_mount_setup_inode_geom(mp);
638 	xfs_rmapbt_compute_maxlevels(mp);
639 	xfs_refcountbt_compute_maxlevels(mp);
640 
641 	/*
642 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
643 	 * is NOT aligned turn off m_dalign since allocator alignment is within
644 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
645 	 * we must compute the free space and rmap btree geometry before doing
646 	 * this.
647 	 */
648 	error = xfs_update_alignment(mp);
649 	if (error)
650 		goto out;
651 
652 	/* enable fail_at_unmount as default */
653 	mp->m_fail_unmount = true;
654 
655 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
656 			       NULL, mp->m_super->s_id);
657 	if (error)
658 		goto out;
659 
660 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
661 			       &mp->m_kobj, "stats");
662 	if (error)
663 		goto out_remove_sysfs;
664 
665 	error = xfs_error_sysfs_init(mp);
666 	if (error)
667 		goto out_del_stats;
668 
669 	error = xfs_errortag_init(mp);
670 	if (error)
671 		goto out_remove_error_sysfs;
672 
673 	error = xfs_uuid_mount(mp);
674 	if (error)
675 		goto out_remove_errortag;
676 
677 	/*
678 	 * Update the preferred write size based on the information from the
679 	 * on-disk superblock.
680 	 */
681 	mp->m_allocsize_log =
682 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
683 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
684 
685 	/* set the low space thresholds for dynamic preallocation */
686 	xfs_set_low_space_thresholds(mp);
687 
688 	/*
689 	 * If enabled, sparse inode chunk alignment is expected to match the
690 	 * cluster size. Full inode chunk alignment must match the chunk size,
691 	 * but that is checked on sb read verification...
692 	 */
693 	if (xfs_has_sparseinodes(mp) &&
694 	    mp->m_sb.sb_spino_align !=
695 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
696 		xfs_warn(mp,
697 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
698 			 mp->m_sb.sb_spino_align,
699 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
700 		error = -EINVAL;
701 		goto out_remove_uuid;
702 	}
703 
704 	/*
705 	 * Check that the data (and log if separate) is an ok size.
706 	 */
707 	error = xfs_check_sizes(mp);
708 	if (error)
709 		goto out_remove_uuid;
710 
711 	/*
712 	 * Initialize realtime fields in the mount structure
713 	 */
714 	error = xfs_rtmount_init(mp);
715 	if (error) {
716 		xfs_warn(mp, "RT mount failed");
717 		goto out_remove_uuid;
718 	}
719 
720 	/*
721 	 *  Copies the low order bits of the timestamp and the randomly
722 	 *  set "sequence" number out of a UUID.
723 	 */
724 	mp->m_fixedfsid[0] =
725 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
726 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
727 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
728 
729 	error = xfs_da_mount(mp);
730 	if (error) {
731 		xfs_warn(mp, "Failed dir/attr init: %d", error);
732 		goto out_remove_uuid;
733 	}
734 
735 	/*
736 	 * Initialize the precomputed transaction reservations values.
737 	 */
738 	xfs_trans_init(mp);
739 
740 	/*
741 	 * Allocate and initialize the per-ag data.
742 	 */
743 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
744 	if (error) {
745 		xfs_warn(mp, "Failed per-ag init: %d", error);
746 		goto out_free_dir;
747 	}
748 
749 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
750 		xfs_warn(mp, "no log defined");
751 		error = -EFSCORRUPTED;
752 		goto out_free_perag;
753 	}
754 
755 	error = xfs_inodegc_register_shrinker(mp);
756 	if (error)
757 		goto out_fail_wait;
758 
759 	/*
760 	 * Log's mount-time initialization. The first part of recovery can place
761 	 * some items on the AIL, to be handled when recovery is finished or
762 	 * cancelled.
763 	 */
764 	error = xfs_log_mount(mp, mp->m_logdev_targp,
765 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
766 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
767 	if (error) {
768 		xfs_warn(mp, "log mount failed");
769 		goto out_inodegc_shrinker;
770 	}
771 
772 	/* Make sure the summary counts are ok. */
773 	error = xfs_check_summary_counts(mp);
774 	if (error)
775 		goto out_log_dealloc;
776 
777 	/* Enable background inode inactivation workers. */
778 	xfs_inodegc_start(mp);
779 	xfs_blockgc_start(mp);
780 
781 	/*
782 	 * Now that we've recovered any pending superblock feature bit
783 	 * additions, we can finish setting up the attr2 behaviour for the
784 	 * mount. The noattr2 option overrides the superblock flag, so only
785 	 * check the superblock feature flag if the mount option is not set.
786 	 */
787 	if (xfs_has_noattr2(mp)) {
788 		mp->m_features &= ~XFS_FEAT_ATTR2;
789 	} else if (!xfs_has_attr2(mp) &&
790 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
791 		mp->m_features |= XFS_FEAT_ATTR2;
792 	}
793 
794 	/*
795 	 * Get and sanity-check the root inode.
796 	 * Save the pointer to it in the mount structure.
797 	 */
798 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
799 			 XFS_ILOCK_EXCL, &rip);
800 	if (error) {
801 		xfs_warn(mp,
802 			"Failed to read root inode 0x%llx, error %d",
803 			sbp->sb_rootino, -error);
804 		goto out_log_dealloc;
805 	}
806 
807 	ASSERT(rip != NULL);
808 
809 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
810 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
811 			(unsigned long long)rip->i_ino);
812 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
813 		error = -EFSCORRUPTED;
814 		goto out_rele_rip;
815 	}
816 	mp->m_rootip = rip;	/* save it */
817 
818 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
819 
820 	/*
821 	 * Initialize realtime inode pointers in the mount structure
822 	 */
823 	error = xfs_rtmount_inodes(mp);
824 	if (error) {
825 		/*
826 		 * Free up the root inode.
827 		 */
828 		xfs_warn(mp, "failed to read RT inodes");
829 		goto out_rele_rip;
830 	}
831 
832 	/*
833 	 * If this is a read-only mount defer the superblock updates until
834 	 * the next remount into writeable mode.  Otherwise we would never
835 	 * perform the update e.g. for the root filesystem.
836 	 */
837 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
838 		error = xfs_sync_sb(mp, false);
839 		if (error) {
840 			xfs_warn(mp, "failed to write sb changes");
841 			goto out_rtunmount;
842 		}
843 	}
844 
845 	/*
846 	 * Initialise the XFS quota management subsystem for this mount
847 	 */
848 	if (XFS_IS_QUOTA_ON(mp)) {
849 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
850 		if (error)
851 			goto out_rtunmount;
852 	} else {
853 		/*
854 		 * If a file system had quotas running earlier, but decided to
855 		 * mount without -o uquota/pquota/gquota options, revoke the
856 		 * quotachecked license.
857 		 */
858 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
859 			xfs_notice(mp, "resetting quota flags");
860 			error = xfs_mount_reset_sbqflags(mp);
861 			if (error)
862 				goto out_rtunmount;
863 		}
864 	}
865 
866 	/*
867 	 * Finish recovering the file system.  This part needed to be delayed
868 	 * until after the root and real-time bitmap inodes were consistently
869 	 * read in.  Temporarily create per-AG space reservations for metadata
870 	 * btree shape changes because space freeing transactions (for inode
871 	 * inactivation) require the per-AG reservation in lieu of reserving
872 	 * blocks.
873 	 */
874 	error = xfs_fs_reserve_ag_blocks(mp);
875 	if (error && error == -ENOSPC)
876 		xfs_warn(mp,
877 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
878 	error = xfs_log_mount_finish(mp);
879 	xfs_fs_unreserve_ag_blocks(mp);
880 	if (error) {
881 		xfs_warn(mp, "log mount finish failed");
882 		goto out_rtunmount;
883 	}
884 
885 	/*
886 	 * Now the log is fully replayed, we can transition to full read-only
887 	 * mode for read-only mounts. This will sync all the metadata and clean
888 	 * the log so that the recovery we just performed does not have to be
889 	 * replayed again on the next mount.
890 	 *
891 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
892 	 * semantically identical operations.
893 	 */
894 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
895 		xfs_log_clean(mp);
896 
897 	/*
898 	 * Complete the quota initialisation, post-log-replay component.
899 	 */
900 	if (quotamount) {
901 		ASSERT(mp->m_qflags == 0);
902 		mp->m_qflags = quotaflags;
903 
904 		xfs_qm_mount_quotas(mp);
905 	}
906 
907 	/*
908 	 * Now we are mounted, reserve a small amount of unused space for
909 	 * privileged transactions. This is needed so that transaction
910 	 * space required for critical operations can dip into this pool
911 	 * when at ENOSPC. This is needed for operations like create with
912 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
913 	 * are not allowed to use this reserved space.
914 	 *
915 	 * This may drive us straight to ENOSPC on mount, but that implies
916 	 * we were already there on the last unmount. Warn if this occurs.
917 	 */
918 	if (!xfs_is_readonly(mp)) {
919 		resblks = xfs_default_resblks(mp);
920 		error = xfs_reserve_blocks(mp, &resblks, NULL);
921 		if (error)
922 			xfs_warn(mp,
923 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
924 
925 		/* Recover any CoW blocks that never got remapped. */
926 		error = xfs_reflink_recover_cow(mp);
927 		if (error) {
928 			xfs_err(mp,
929 	"Error %d recovering leftover CoW allocations.", error);
930 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
931 			goto out_quota;
932 		}
933 
934 		/* Reserve AG blocks for future btree expansion. */
935 		error = xfs_fs_reserve_ag_blocks(mp);
936 		if (error && error != -ENOSPC)
937 			goto out_agresv;
938 	}
939 
940 	return 0;
941 
942  out_agresv:
943 	xfs_fs_unreserve_ag_blocks(mp);
944  out_quota:
945 	xfs_qm_unmount_quotas(mp);
946  out_rtunmount:
947 	xfs_rtunmount_inodes(mp);
948  out_rele_rip:
949 	xfs_irele(rip);
950 	/* Clean out dquots that might be in memory after quotacheck. */
951 	xfs_qm_unmount(mp);
952 
953 	/*
954 	 * Inactivate all inodes that might still be in memory after a log
955 	 * intent recovery failure so that reclaim can free them.  Metadata
956 	 * inodes and the root directory shouldn't need inactivation, but the
957 	 * mount failed for some reason, so pull down all the state and flee.
958 	 */
959 	xfs_inodegc_flush(mp);
960 
961 	/*
962 	 * Flush all inode reclamation work and flush the log.
963 	 * We have to do this /after/ rtunmount and qm_unmount because those
964 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
965 	 *
966 	 * This is slightly different from the unmountfs call sequence
967 	 * because we could be tearing down a partially set up mount.  In
968 	 * particular, if log_mount_finish fails we bail out without calling
969 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
970 	 * quota inodes.
971 	 */
972 	xfs_unmount_flush_inodes(mp);
973  out_log_dealloc:
974 	xfs_log_mount_cancel(mp);
975  out_inodegc_shrinker:
976 	unregister_shrinker(&mp->m_inodegc_shrinker);
977  out_fail_wait:
978 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
979 		xfs_buftarg_drain(mp->m_logdev_targp);
980 	xfs_buftarg_drain(mp->m_ddev_targp);
981  out_free_perag:
982 	xfs_free_perag(mp);
983  out_free_dir:
984 	xfs_da_unmount(mp);
985  out_remove_uuid:
986 	xfs_uuid_unmount(mp);
987  out_remove_errortag:
988 	xfs_errortag_del(mp);
989  out_remove_error_sysfs:
990 	xfs_error_sysfs_del(mp);
991  out_del_stats:
992 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
993  out_remove_sysfs:
994 	xfs_sysfs_del(&mp->m_kobj);
995  out:
996 	return error;
997 }
998 
999 /*
1000  * This flushes out the inodes,dquots and the superblock, unmounts the
1001  * log and makes sure that incore structures are freed.
1002  */
1003 void
1004 xfs_unmountfs(
1005 	struct xfs_mount	*mp)
1006 {
1007 	uint64_t		resblks;
1008 	int			error;
1009 
1010 	/*
1011 	 * Perform all on-disk metadata updates required to inactivate inodes
1012 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1013 	 * and discarding CoW fork preallocations can cause shape changes to
1014 	 * the free inode and refcount btrees, respectively, so we must finish
1015 	 * this before we discard the metadata space reservations.  Metadata
1016 	 * inodes and the root directory do not require inactivation.
1017 	 */
1018 	xfs_inodegc_flush(mp);
1019 
1020 	xfs_blockgc_stop(mp);
1021 	xfs_fs_unreserve_ag_blocks(mp);
1022 	xfs_qm_unmount_quotas(mp);
1023 	xfs_rtunmount_inodes(mp);
1024 	xfs_irele(mp->m_rootip);
1025 
1026 	xfs_unmount_flush_inodes(mp);
1027 
1028 	xfs_qm_unmount(mp);
1029 
1030 	/*
1031 	 * Unreserve any blocks we have so that when we unmount we don't account
1032 	 * the reserved free space as used. This is really only necessary for
1033 	 * lazy superblock counting because it trusts the incore superblock
1034 	 * counters to be absolutely correct on clean unmount.
1035 	 *
1036 	 * We don't bother correcting this elsewhere for lazy superblock
1037 	 * counting because on mount of an unclean filesystem we reconstruct the
1038 	 * correct counter value and this is irrelevant.
1039 	 *
1040 	 * For non-lazy counter filesystems, this doesn't matter at all because
1041 	 * we only every apply deltas to the superblock and hence the incore
1042 	 * value does not matter....
1043 	 */
1044 	resblks = 0;
1045 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1046 	if (error)
1047 		xfs_warn(mp, "Unable to free reserved block pool. "
1048 				"Freespace may not be correct on next mount.");
1049 
1050 	xfs_log_unmount(mp);
1051 	xfs_da_unmount(mp);
1052 	xfs_uuid_unmount(mp);
1053 
1054 #if defined(DEBUG)
1055 	xfs_errortag_clearall(mp);
1056 #endif
1057 	unregister_shrinker(&mp->m_inodegc_shrinker);
1058 	xfs_free_perag(mp);
1059 
1060 	xfs_errortag_del(mp);
1061 	xfs_error_sysfs_del(mp);
1062 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1063 	xfs_sysfs_del(&mp->m_kobj);
1064 }
1065 
1066 /*
1067  * Determine whether modifications can proceed. The caller specifies the minimum
1068  * freeze level for which modifications should not be allowed. This allows
1069  * certain operations to proceed while the freeze sequence is in progress, if
1070  * necessary.
1071  */
1072 bool
1073 xfs_fs_writable(
1074 	struct xfs_mount	*mp,
1075 	int			level)
1076 {
1077 	ASSERT(level > SB_UNFROZEN);
1078 	if ((mp->m_super->s_writers.frozen >= level) ||
1079 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1080 		return false;
1081 
1082 	return true;
1083 }
1084 
1085 int
1086 xfs_mod_fdblocks(
1087 	struct xfs_mount	*mp,
1088 	int64_t			delta,
1089 	bool			rsvd)
1090 {
1091 	int64_t			lcounter;
1092 	long long		res_used;
1093 	s32			batch;
1094 	uint64_t		set_aside;
1095 
1096 	if (delta > 0) {
1097 		/*
1098 		 * If the reserve pool is depleted, put blocks back into it
1099 		 * first. Most of the time the pool is full.
1100 		 */
1101 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1102 			percpu_counter_add(&mp->m_fdblocks, delta);
1103 			return 0;
1104 		}
1105 
1106 		spin_lock(&mp->m_sb_lock);
1107 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1108 
1109 		if (res_used > delta) {
1110 			mp->m_resblks_avail += delta;
1111 		} else {
1112 			delta -= res_used;
1113 			mp->m_resblks_avail = mp->m_resblks;
1114 			percpu_counter_add(&mp->m_fdblocks, delta);
1115 		}
1116 		spin_unlock(&mp->m_sb_lock);
1117 		return 0;
1118 	}
1119 
1120 	/*
1121 	 * Taking blocks away, need to be more accurate the closer we
1122 	 * are to zero.
1123 	 *
1124 	 * If the counter has a value of less than 2 * max batch size,
1125 	 * then make everything serialise as we are real close to
1126 	 * ENOSPC.
1127 	 */
1128 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1129 				     XFS_FDBLOCKS_BATCH) < 0)
1130 		batch = 1;
1131 	else
1132 		batch = XFS_FDBLOCKS_BATCH;
1133 
1134 	/*
1135 	 * Set aside allocbt blocks because these blocks are tracked as free
1136 	 * space but not available for allocation. Technically this means that a
1137 	 * single reservation cannot consume all remaining free space, but the
1138 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1139 	 * The tradeoff without this is that filesystems that maintain high
1140 	 * perag block reservations can over reserve physical block availability
1141 	 * and fail physical allocation, which leads to much more serious
1142 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1143 	 * slightly premature -ENOSPC.
1144 	 */
1145 	set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
1146 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1147 	if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
1148 				     XFS_FDBLOCKS_BATCH) >= 0) {
1149 		/* we had space! */
1150 		return 0;
1151 	}
1152 
1153 	/*
1154 	 * lock up the sb for dipping into reserves before releasing the space
1155 	 * that took us to ENOSPC.
1156 	 */
1157 	spin_lock(&mp->m_sb_lock);
1158 	percpu_counter_add(&mp->m_fdblocks, -delta);
1159 	if (!rsvd)
1160 		goto fdblocks_enospc;
1161 
1162 	lcounter = (long long)mp->m_resblks_avail + delta;
1163 	if (lcounter >= 0) {
1164 		mp->m_resblks_avail = lcounter;
1165 		spin_unlock(&mp->m_sb_lock);
1166 		return 0;
1167 	}
1168 	xfs_warn_once(mp,
1169 "Reserve blocks depleted! Consider increasing reserve pool size.");
1170 
1171 fdblocks_enospc:
1172 	spin_unlock(&mp->m_sb_lock);
1173 	return -ENOSPC;
1174 }
1175 
1176 int
1177 xfs_mod_frextents(
1178 	struct xfs_mount	*mp,
1179 	int64_t			delta)
1180 {
1181 	int64_t			lcounter;
1182 	int			ret = 0;
1183 
1184 	spin_lock(&mp->m_sb_lock);
1185 	lcounter = mp->m_sb.sb_frextents + delta;
1186 	if (lcounter < 0)
1187 		ret = -ENOSPC;
1188 	else
1189 		mp->m_sb.sb_frextents = lcounter;
1190 	spin_unlock(&mp->m_sb_lock);
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Used to free the superblock along various error paths.
1196  */
1197 void
1198 xfs_freesb(
1199 	struct xfs_mount	*mp)
1200 {
1201 	struct xfs_buf		*bp = mp->m_sb_bp;
1202 
1203 	xfs_buf_lock(bp);
1204 	mp->m_sb_bp = NULL;
1205 	xfs_buf_relse(bp);
1206 }
1207 
1208 /*
1209  * If the underlying (data/log/rt) device is readonly, there are some
1210  * operations that cannot proceed.
1211  */
1212 int
1213 xfs_dev_is_read_only(
1214 	struct xfs_mount	*mp,
1215 	char			*message)
1216 {
1217 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1218 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1219 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1220 		xfs_notice(mp, "%s required on read-only device.", message);
1221 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1222 		return -EROFS;
1223 	}
1224 	return 0;
1225 }
1226 
1227 /* Force the summary counters to be recalculated at next mount. */
1228 void
1229 xfs_force_summary_recalc(
1230 	struct xfs_mount	*mp)
1231 {
1232 	if (!xfs_has_lazysbcount(mp))
1233 		return;
1234 
1235 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1236 }
1237 
1238 /*
1239  * Enable a log incompat feature flag in the primary superblock.  The caller
1240  * cannot have any other transactions in progress.
1241  */
1242 int
1243 xfs_add_incompat_log_feature(
1244 	struct xfs_mount	*mp,
1245 	uint32_t		feature)
1246 {
1247 	struct xfs_dsb		*dsb;
1248 	int			error;
1249 
1250 	ASSERT(hweight32(feature) == 1);
1251 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1252 
1253 	/*
1254 	 * Force the log to disk and kick the background AIL thread to reduce
1255 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1256 	 * the primary superblock buffer.  This isn't a data integrity
1257 	 * operation, so we don't need a synchronous push.
1258 	 */
1259 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1260 	if (error)
1261 		return error;
1262 	xfs_ail_push_all(mp->m_ail);
1263 
1264 	/*
1265 	 * Lock the primary superblock buffer to serialize all callers that
1266 	 * are trying to set feature bits.
1267 	 */
1268 	xfs_buf_lock(mp->m_sb_bp);
1269 	xfs_buf_hold(mp->m_sb_bp);
1270 
1271 	if (xfs_is_shutdown(mp)) {
1272 		error = -EIO;
1273 		goto rele;
1274 	}
1275 
1276 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1277 		goto rele;
1278 
1279 	/*
1280 	 * Write the primary superblock to disk immediately, because we need
1281 	 * the log_incompat bit to be set in the primary super now to protect
1282 	 * the log items that we're going to commit later.
1283 	 */
1284 	dsb = mp->m_sb_bp->b_addr;
1285 	xfs_sb_to_disk(dsb, &mp->m_sb);
1286 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1287 	error = xfs_bwrite(mp->m_sb_bp);
1288 	if (error)
1289 		goto shutdown;
1290 
1291 	/*
1292 	 * Add the feature bits to the incore superblock before we unlock the
1293 	 * buffer.
1294 	 */
1295 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1296 	xfs_buf_relse(mp->m_sb_bp);
1297 
1298 	/* Log the superblock to disk. */
1299 	return xfs_sync_sb(mp, false);
1300 shutdown:
1301 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1302 rele:
1303 	xfs_buf_relse(mp->m_sb_bp);
1304 	return error;
1305 }
1306 
1307 /*
1308  * Clear all the log incompat flags from the superblock.
1309  *
1310  * The caller cannot be in a transaction, must ensure that the log does not
1311  * contain any log items protected by any log incompat bit, and must ensure
1312  * that there are no other threads that depend on the state of the log incompat
1313  * feature flags in the primary super.
1314  *
1315  * Returns true if the superblock is dirty.
1316  */
1317 bool
1318 xfs_clear_incompat_log_features(
1319 	struct xfs_mount	*mp)
1320 {
1321 	bool			ret = false;
1322 
1323 	if (!xfs_has_crc(mp) ||
1324 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1325 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1326 	    xfs_is_shutdown(mp))
1327 		return false;
1328 
1329 	/*
1330 	 * Update the incore superblock.  We synchronize on the primary super
1331 	 * buffer lock to be consistent with the add function, though at least
1332 	 * in theory this shouldn't be necessary.
1333 	 */
1334 	xfs_buf_lock(mp->m_sb_bp);
1335 	xfs_buf_hold(mp->m_sb_bp);
1336 
1337 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1338 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1339 		xfs_info(mp, "Clearing log incompat feature flags.");
1340 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1341 		ret = true;
1342 	}
1343 
1344 	xfs_buf_relse(mp->m_sb_bp);
1345 	return ret;
1346 }
1347 
1348 /*
1349  * Update the in-core delayed block counter.
1350  *
1351  * We prefer to update the counter without having to take a spinlock for every
1352  * counter update (i.e. batching).  Each change to delayed allocation
1353  * reservations can change can easily exceed the default percpu counter
1354  * batching, so we use a larger batch factor here.
1355  *
1356  * Note that we don't currently have any callers requiring fast summation
1357  * (e.g. percpu_counter_read) so we can use a big batch value here.
1358  */
1359 #define XFS_DELALLOC_BATCH	(4096)
1360 void
1361 xfs_mod_delalloc(
1362 	struct xfs_mount	*mp,
1363 	int64_t			delta)
1364 {
1365 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1366 			XFS_DELALLOC_BATCH);
1367 }
1368