xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision f3a8b664)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 
49 
50 static DEFINE_MUTEX(xfs_uuid_table_mutex);
51 static int xfs_uuid_table_size;
52 static uuid_t *xfs_uuid_table;
53 
54 void
55 xfs_uuid_table_free(void)
56 {
57 	if (xfs_uuid_table_size == 0)
58 		return;
59 	kmem_free(xfs_uuid_table);
60 	xfs_uuid_table = NULL;
61 	xfs_uuid_table_size = 0;
62 }
63 
64 /*
65  * See if the UUID is unique among mounted XFS filesystems.
66  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67  */
68 STATIC int
69 xfs_uuid_mount(
70 	struct xfs_mount	*mp)
71 {
72 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
73 	int			hole, i;
74 
75 	if (mp->m_flags & XFS_MOUNT_NOUUID)
76 		return 0;
77 
78 	if (uuid_is_nil(uuid)) {
79 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80 		return -EINVAL;
81 	}
82 
83 	mutex_lock(&xfs_uuid_table_mutex);
84 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 		if (uuid_is_nil(&xfs_uuid_table[i])) {
86 			hole = i;
87 			continue;
88 		}
89 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 			goto out_duplicate;
91 	}
92 
93 	if (hole < 0) {
94 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 			KM_SLEEP);
97 		hole = xfs_uuid_table_size++;
98 	}
99 	xfs_uuid_table[hole] = *uuid;
100 	mutex_unlock(&xfs_uuid_table_mutex);
101 
102 	return 0;
103 
104  out_duplicate:
105 	mutex_unlock(&xfs_uuid_table_mutex);
106 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 	return -EINVAL;
108 }
109 
110 STATIC void
111 xfs_uuid_unmount(
112 	struct xfs_mount	*mp)
113 {
114 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
115 	int			i;
116 
117 	if (mp->m_flags & XFS_MOUNT_NOUUID)
118 		return;
119 
120 	mutex_lock(&xfs_uuid_table_mutex);
121 	for (i = 0; i < xfs_uuid_table_size; i++) {
122 		if (uuid_is_nil(&xfs_uuid_table[i]))
123 			continue;
124 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 			continue;
126 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 		break;
128 	}
129 	ASSERT(i < xfs_uuid_table_size);
130 	mutex_unlock(&xfs_uuid_table_mutex);
131 }
132 
133 
134 STATIC void
135 __xfs_free_perag(
136 	struct rcu_head	*head)
137 {
138 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139 
140 	ASSERT(atomic_read(&pag->pag_ref) == 0);
141 	kmem_free(pag);
142 }
143 
144 /*
145  * Free up the per-ag resources associated with the mount structure.
146  */
147 STATIC void
148 xfs_free_perag(
149 	xfs_mount_t	*mp)
150 {
151 	xfs_agnumber_t	agno;
152 	struct xfs_perag *pag;
153 
154 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 		spin_lock(&mp->m_perag_lock);
156 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 		spin_unlock(&mp->m_perag_lock);
158 		ASSERT(pag);
159 		ASSERT(atomic_read(&pag->pag_ref) == 0);
160 		call_rcu(&pag->rcu_head, __xfs_free_perag);
161 	}
162 }
163 
164 /*
165  * Check size of device based on the (data/realtime) block count.
166  * Note: this check is used by the growfs code as well as mount.
167  */
168 int
169 xfs_sb_validate_fsb_count(
170 	xfs_sb_t	*sbp,
171 	__uint64_t	nblocks)
172 {
173 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
175 
176 	/* Limited by ULONG_MAX of page cache index */
177 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 		return -EFBIG;
179 	return 0;
180 }
181 
182 int
183 xfs_initialize_perag(
184 	xfs_mount_t	*mp,
185 	xfs_agnumber_t	agcount,
186 	xfs_agnumber_t	*maxagi)
187 {
188 	xfs_agnumber_t	index;
189 	xfs_agnumber_t	first_initialised = 0;
190 	xfs_perag_t	*pag;
191 	int		error = -ENOMEM;
192 
193 	/*
194 	 * Walk the current per-ag tree so we don't try to initialise AGs
195 	 * that already exist (growfs case). Allocate and insert all the
196 	 * AGs we don't find ready for initialisation.
197 	 */
198 	for (index = 0; index < agcount; index++) {
199 		pag = xfs_perag_get(mp, index);
200 		if (pag) {
201 			xfs_perag_put(pag);
202 			continue;
203 		}
204 		if (!first_initialised)
205 			first_initialised = index;
206 
207 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 		if (!pag)
209 			goto out_unwind;
210 		pag->pag_agno = index;
211 		pag->pag_mount = mp;
212 		spin_lock_init(&pag->pag_ici_lock);
213 		mutex_init(&pag->pag_ici_reclaim_lock);
214 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 		spin_lock_init(&pag->pag_buf_lock);
216 		pag->pag_buf_tree = RB_ROOT;
217 
218 		if (radix_tree_preload(GFP_NOFS))
219 			goto out_unwind;
220 
221 		spin_lock(&mp->m_perag_lock);
222 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
223 			BUG();
224 			spin_unlock(&mp->m_perag_lock);
225 			radix_tree_preload_end();
226 			error = -EEXIST;
227 			goto out_unwind;
228 		}
229 		spin_unlock(&mp->m_perag_lock);
230 		radix_tree_preload_end();
231 	}
232 
233 	index = xfs_set_inode_alloc(mp, agcount);
234 
235 	if (maxagi)
236 		*maxagi = index;
237 
238 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
239 	return 0;
240 
241 out_unwind:
242 	kmem_free(pag);
243 	for (; index > first_initialised; index--) {
244 		pag = radix_tree_delete(&mp->m_perag_tree, index);
245 		kmem_free(pag);
246 	}
247 	return error;
248 }
249 
250 /*
251  * xfs_readsb
252  *
253  * Does the initial read of the superblock.
254  */
255 int
256 xfs_readsb(
257 	struct xfs_mount *mp,
258 	int		flags)
259 {
260 	unsigned int	sector_size;
261 	struct xfs_buf	*bp;
262 	struct xfs_sb	*sbp = &mp->m_sb;
263 	int		error;
264 	int		loud = !(flags & XFS_MFSI_QUIET);
265 	const struct xfs_buf_ops *buf_ops;
266 
267 	ASSERT(mp->m_sb_bp == NULL);
268 	ASSERT(mp->m_ddev_targp != NULL);
269 
270 	/*
271 	 * For the initial read, we must guess at the sector
272 	 * size based on the block device.  It's enough to
273 	 * get the sb_sectsize out of the superblock and
274 	 * then reread with the proper length.
275 	 * We don't verify it yet, because it may not be complete.
276 	 */
277 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
278 	buf_ops = NULL;
279 
280 	/*
281 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
282 	 * around at all times to optimize access to the superblock. Therefore,
283 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
284 	 * elevated.
285 	 */
286 reread:
287 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
288 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
289 				      buf_ops);
290 	if (error) {
291 		if (loud)
292 			xfs_warn(mp, "SB validate failed with error %d.", error);
293 		/* bad CRC means corrupted metadata */
294 		if (error == -EFSBADCRC)
295 			error = -EFSCORRUPTED;
296 		return error;
297 	}
298 
299 	/*
300 	 * Initialize the mount structure from the superblock.
301 	 */
302 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
303 
304 	/*
305 	 * If we haven't validated the superblock, do so now before we try
306 	 * to check the sector size and reread the superblock appropriately.
307 	 */
308 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
309 		if (loud)
310 			xfs_warn(mp, "Invalid superblock magic number");
311 		error = -EINVAL;
312 		goto release_buf;
313 	}
314 
315 	/*
316 	 * We must be able to do sector-sized and sector-aligned IO.
317 	 */
318 	if (sector_size > sbp->sb_sectsize) {
319 		if (loud)
320 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
321 				sector_size, sbp->sb_sectsize);
322 		error = -ENOSYS;
323 		goto release_buf;
324 	}
325 
326 	if (buf_ops == NULL) {
327 		/*
328 		 * Re-read the superblock so the buffer is correctly sized,
329 		 * and properly verified.
330 		 */
331 		xfs_buf_relse(bp);
332 		sector_size = sbp->sb_sectsize;
333 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
334 		goto reread;
335 	}
336 
337 	xfs_reinit_percpu_counters(mp);
338 
339 	/* no need to be quiet anymore, so reset the buf ops */
340 	bp->b_ops = &xfs_sb_buf_ops;
341 
342 	mp->m_sb_bp = bp;
343 	xfs_buf_unlock(bp);
344 	return 0;
345 
346 release_buf:
347 	xfs_buf_relse(bp);
348 	return error;
349 }
350 
351 /*
352  * Update alignment values based on mount options and sb values
353  */
354 STATIC int
355 xfs_update_alignment(xfs_mount_t *mp)
356 {
357 	xfs_sb_t	*sbp = &(mp->m_sb);
358 
359 	if (mp->m_dalign) {
360 		/*
361 		 * If stripe unit and stripe width are not multiples
362 		 * of the fs blocksize turn off alignment.
363 		 */
364 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
365 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
366 			xfs_warn(mp,
367 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
368 				sbp->sb_blocksize);
369 			return -EINVAL;
370 		} else {
371 			/*
372 			 * Convert the stripe unit and width to FSBs.
373 			 */
374 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
375 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
376 				xfs_warn(mp,
377 			"alignment check failed: sunit/swidth vs. agsize(%d)",
378 					 sbp->sb_agblocks);
379 				return -EINVAL;
380 			} else if (mp->m_dalign) {
381 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
382 			} else {
383 				xfs_warn(mp,
384 			"alignment check failed: sunit(%d) less than bsize(%d)",
385 					 mp->m_dalign, sbp->sb_blocksize);
386 				return -EINVAL;
387 			}
388 		}
389 
390 		/*
391 		 * Update superblock with new values
392 		 * and log changes
393 		 */
394 		if (xfs_sb_version_hasdalign(sbp)) {
395 			if (sbp->sb_unit != mp->m_dalign) {
396 				sbp->sb_unit = mp->m_dalign;
397 				mp->m_update_sb = true;
398 			}
399 			if (sbp->sb_width != mp->m_swidth) {
400 				sbp->sb_width = mp->m_swidth;
401 				mp->m_update_sb = true;
402 			}
403 		} else {
404 			xfs_warn(mp,
405 	"cannot change alignment: superblock does not support data alignment");
406 			return -EINVAL;
407 		}
408 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
409 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
410 			mp->m_dalign = sbp->sb_unit;
411 			mp->m_swidth = sbp->sb_width;
412 	}
413 
414 	return 0;
415 }
416 
417 /*
418  * Set the maximum inode count for this filesystem
419  */
420 STATIC void
421 xfs_set_maxicount(xfs_mount_t *mp)
422 {
423 	xfs_sb_t	*sbp = &(mp->m_sb);
424 	__uint64_t	icount;
425 
426 	if (sbp->sb_imax_pct) {
427 		/*
428 		 * Make sure the maximum inode count is a multiple
429 		 * of the units we allocate inodes in.
430 		 */
431 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
432 		do_div(icount, 100);
433 		do_div(icount, mp->m_ialloc_blks);
434 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
435 				   sbp->sb_inopblog;
436 	} else {
437 		mp->m_maxicount = 0;
438 	}
439 }
440 
441 /*
442  * Set the default minimum read and write sizes unless
443  * already specified in a mount option.
444  * We use smaller I/O sizes when the file system
445  * is being used for NFS service (wsync mount option).
446  */
447 STATIC void
448 xfs_set_rw_sizes(xfs_mount_t *mp)
449 {
450 	xfs_sb_t	*sbp = &(mp->m_sb);
451 	int		readio_log, writeio_log;
452 
453 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
454 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
455 			readio_log = XFS_WSYNC_READIO_LOG;
456 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
457 		} else {
458 			readio_log = XFS_READIO_LOG_LARGE;
459 			writeio_log = XFS_WRITEIO_LOG_LARGE;
460 		}
461 	} else {
462 		readio_log = mp->m_readio_log;
463 		writeio_log = mp->m_writeio_log;
464 	}
465 
466 	if (sbp->sb_blocklog > readio_log) {
467 		mp->m_readio_log = sbp->sb_blocklog;
468 	} else {
469 		mp->m_readio_log = readio_log;
470 	}
471 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
472 	if (sbp->sb_blocklog > writeio_log) {
473 		mp->m_writeio_log = sbp->sb_blocklog;
474 	} else {
475 		mp->m_writeio_log = writeio_log;
476 	}
477 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
478 }
479 
480 /*
481  * precalculate the low space thresholds for dynamic speculative preallocation.
482  */
483 void
484 xfs_set_low_space_thresholds(
485 	struct xfs_mount	*mp)
486 {
487 	int i;
488 
489 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
490 		__uint64_t space = mp->m_sb.sb_dblocks;
491 
492 		do_div(space, 100);
493 		mp->m_low_space[i] = space * (i + 1);
494 	}
495 }
496 
497 
498 /*
499  * Set whether we're using inode alignment.
500  */
501 STATIC void
502 xfs_set_inoalignment(xfs_mount_t *mp)
503 {
504 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
505 	    mp->m_sb.sb_inoalignmt >=
506 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
507 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
508 	else
509 		mp->m_inoalign_mask = 0;
510 	/*
511 	 * If we are using stripe alignment, check whether
512 	 * the stripe unit is a multiple of the inode alignment
513 	 */
514 	if (mp->m_dalign && mp->m_inoalign_mask &&
515 	    !(mp->m_dalign & mp->m_inoalign_mask))
516 		mp->m_sinoalign = mp->m_dalign;
517 	else
518 		mp->m_sinoalign = 0;
519 }
520 
521 /*
522  * Check that the data (and log if separate) is an ok size.
523  */
524 STATIC int
525 xfs_check_sizes(
526 	struct xfs_mount *mp)
527 {
528 	struct xfs_buf	*bp;
529 	xfs_daddr_t	d;
530 	int		error;
531 
532 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
533 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
534 		xfs_warn(mp, "filesystem size mismatch detected");
535 		return -EFBIG;
536 	}
537 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
538 					d - XFS_FSS_TO_BB(mp, 1),
539 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
540 	if (error) {
541 		xfs_warn(mp, "last sector read failed");
542 		return error;
543 	}
544 	xfs_buf_relse(bp);
545 
546 	if (mp->m_logdev_targp == mp->m_ddev_targp)
547 		return 0;
548 
549 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
550 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
551 		xfs_warn(mp, "log size mismatch detected");
552 		return -EFBIG;
553 	}
554 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
555 					d - XFS_FSB_TO_BB(mp, 1),
556 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
557 	if (error) {
558 		xfs_warn(mp, "log device read failed");
559 		return error;
560 	}
561 	xfs_buf_relse(bp);
562 	return 0;
563 }
564 
565 /*
566  * Clear the quotaflags in memory and in the superblock.
567  */
568 int
569 xfs_mount_reset_sbqflags(
570 	struct xfs_mount	*mp)
571 {
572 	mp->m_qflags = 0;
573 
574 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
575 	if (mp->m_sb.sb_qflags == 0)
576 		return 0;
577 	spin_lock(&mp->m_sb_lock);
578 	mp->m_sb.sb_qflags = 0;
579 	spin_unlock(&mp->m_sb_lock);
580 
581 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
582 		return 0;
583 
584 	return xfs_sync_sb(mp, false);
585 }
586 
587 __uint64_t
588 xfs_default_resblks(xfs_mount_t *mp)
589 {
590 	__uint64_t resblks;
591 
592 	/*
593 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
594 	 * smaller.  This is intended to cover concurrent allocation
595 	 * transactions when we initially hit enospc. These each require a 4
596 	 * block reservation. Hence by default we cover roughly 2000 concurrent
597 	 * allocation reservations.
598 	 */
599 	resblks = mp->m_sb.sb_dblocks;
600 	do_div(resblks, 20);
601 	resblks = min_t(__uint64_t, resblks, 8192);
602 	return resblks;
603 }
604 
605 /*
606  * This function does the following on an initial mount of a file system:
607  *	- reads the superblock from disk and init the mount struct
608  *	- if we're a 32-bit kernel, do a size check on the superblock
609  *		so we don't mount terabyte filesystems
610  *	- init mount struct realtime fields
611  *	- allocate inode hash table for fs
612  *	- init directory manager
613  *	- perform recovery and init the log manager
614  */
615 int
616 xfs_mountfs(
617 	struct xfs_mount	*mp)
618 {
619 	struct xfs_sb		*sbp = &(mp->m_sb);
620 	struct xfs_inode	*rip;
621 	__uint64_t		resblks;
622 	uint			quotamount = 0;
623 	uint			quotaflags = 0;
624 	int			error = 0;
625 
626 	xfs_sb_mount_common(mp, sbp);
627 
628 	/*
629 	 * Check for a mismatched features2 values.  Older kernels read & wrote
630 	 * into the wrong sb offset for sb_features2 on some platforms due to
631 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
632 	 * which made older superblock reading/writing routines swap it as a
633 	 * 64-bit value.
634 	 *
635 	 * For backwards compatibility, we make both slots equal.
636 	 *
637 	 * If we detect a mismatched field, we OR the set bits into the existing
638 	 * features2 field in case it has already been modified; we don't want
639 	 * to lose any features.  We then update the bad location with the ORed
640 	 * value so that older kernels will see any features2 flags. The
641 	 * superblock writeback code ensures the new sb_features2 is copied to
642 	 * sb_bad_features2 before it is logged or written to disk.
643 	 */
644 	if (xfs_sb_has_mismatched_features2(sbp)) {
645 		xfs_warn(mp, "correcting sb_features alignment problem");
646 		sbp->sb_features2 |= sbp->sb_bad_features2;
647 		mp->m_update_sb = true;
648 
649 		/*
650 		 * Re-check for ATTR2 in case it was found in bad_features2
651 		 * slot.
652 		 */
653 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
654 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
655 			mp->m_flags |= XFS_MOUNT_ATTR2;
656 	}
657 
658 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
659 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
660 		xfs_sb_version_removeattr2(&mp->m_sb);
661 		mp->m_update_sb = true;
662 
663 		/* update sb_versionnum for the clearing of the morebits */
664 		if (!sbp->sb_features2)
665 			mp->m_update_sb = true;
666 	}
667 
668 	/* always use v2 inodes by default now */
669 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
670 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
671 		mp->m_update_sb = true;
672 	}
673 
674 	/*
675 	 * Check if sb_agblocks is aligned at stripe boundary
676 	 * If sb_agblocks is NOT aligned turn off m_dalign since
677 	 * allocator alignment is within an ag, therefore ag has
678 	 * to be aligned at stripe boundary.
679 	 */
680 	error = xfs_update_alignment(mp);
681 	if (error)
682 		goto out;
683 
684 	xfs_alloc_compute_maxlevels(mp);
685 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
686 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
687 	xfs_ialloc_compute_maxlevels(mp);
688 	xfs_rmapbt_compute_maxlevels(mp);
689 	xfs_refcountbt_compute_maxlevels(mp);
690 
691 	xfs_set_maxicount(mp);
692 
693 	/* enable fail_at_unmount as default */
694 	mp->m_fail_unmount = 1;
695 
696 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
697 	if (error)
698 		goto out;
699 
700 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
701 			       &mp->m_kobj, "stats");
702 	if (error)
703 		goto out_remove_sysfs;
704 
705 	error = xfs_error_sysfs_init(mp);
706 	if (error)
707 		goto out_del_stats;
708 
709 
710 	error = xfs_uuid_mount(mp);
711 	if (error)
712 		goto out_remove_error_sysfs;
713 
714 	/*
715 	 * Set the minimum read and write sizes
716 	 */
717 	xfs_set_rw_sizes(mp);
718 
719 	/* set the low space thresholds for dynamic preallocation */
720 	xfs_set_low_space_thresholds(mp);
721 
722 	/*
723 	 * Set the inode cluster size.
724 	 * This may still be overridden by the file system
725 	 * block size if it is larger than the chosen cluster size.
726 	 *
727 	 * For v5 filesystems, scale the cluster size with the inode size to
728 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
729 	 * has set the inode alignment value appropriately for larger cluster
730 	 * sizes.
731 	 */
732 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
733 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
734 		int	new_size = mp->m_inode_cluster_size;
735 
736 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
737 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
738 			mp->m_inode_cluster_size = new_size;
739 	}
740 
741 	/*
742 	 * If enabled, sparse inode chunk alignment is expected to match the
743 	 * cluster size. Full inode chunk alignment must match the chunk size,
744 	 * but that is checked on sb read verification...
745 	 */
746 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
747 	    mp->m_sb.sb_spino_align !=
748 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
749 		xfs_warn(mp,
750 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
751 			 mp->m_sb.sb_spino_align,
752 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
753 		error = -EINVAL;
754 		goto out_remove_uuid;
755 	}
756 
757 	/*
758 	 * Set inode alignment fields
759 	 */
760 	xfs_set_inoalignment(mp);
761 
762 	/*
763 	 * Check that the data (and log if separate) is an ok size.
764 	 */
765 	error = xfs_check_sizes(mp);
766 	if (error)
767 		goto out_remove_uuid;
768 
769 	/*
770 	 * Initialize realtime fields in the mount structure
771 	 */
772 	error = xfs_rtmount_init(mp);
773 	if (error) {
774 		xfs_warn(mp, "RT mount failed");
775 		goto out_remove_uuid;
776 	}
777 
778 	/*
779 	 *  Copies the low order bits of the timestamp and the randomly
780 	 *  set "sequence" number out of a UUID.
781 	 */
782 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
783 
784 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
785 
786 	error = xfs_da_mount(mp);
787 	if (error) {
788 		xfs_warn(mp, "Failed dir/attr init: %d", error);
789 		goto out_remove_uuid;
790 	}
791 
792 	/*
793 	 * Initialize the precomputed transaction reservations values.
794 	 */
795 	xfs_trans_init(mp);
796 
797 	/*
798 	 * Allocate and initialize the per-ag data.
799 	 */
800 	spin_lock_init(&mp->m_perag_lock);
801 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
802 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
803 	if (error) {
804 		xfs_warn(mp, "Failed per-ag init: %d", error);
805 		goto out_free_dir;
806 	}
807 
808 	if (!sbp->sb_logblocks) {
809 		xfs_warn(mp, "no log defined");
810 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
811 		error = -EFSCORRUPTED;
812 		goto out_free_perag;
813 	}
814 
815 	/*
816 	 * Log's mount-time initialization. The first part of recovery can place
817 	 * some items on the AIL, to be handled when recovery is finished or
818 	 * cancelled.
819 	 */
820 	error = xfs_log_mount(mp, mp->m_logdev_targp,
821 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
822 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
823 	if (error) {
824 		xfs_warn(mp, "log mount failed");
825 		goto out_fail_wait;
826 	}
827 
828 	/*
829 	 * Now the log is mounted, we know if it was an unclean shutdown or
830 	 * not. If it was, with the first phase of recovery has completed, we
831 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
832 	 * but they are recovered transactionally in the second recovery phase
833 	 * later.
834 	 *
835 	 * Hence we can safely re-initialise incore superblock counters from
836 	 * the per-ag data. These may not be correct if the filesystem was not
837 	 * cleanly unmounted, so we need to wait for recovery to finish before
838 	 * doing this.
839 	 *
840 	 * If the filesystem was cleanly unmounted, then we can trust the
841 	 * values in the superblock to be correct and we don't need to do
842 	 * anything here.
843 	 *
844 	 * If we are currently making the filesystem, the initialisation will
845 	 * fail as the perag data is in an undefined state.
846 	 */
847 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
848 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
849 	     !mp->m_sb.sb_inprogress) {
850 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
851 		if (error)
852 			goto out_log_dealloc;
853 	}
854 
855 	/*
856 	 * Get and sanity-check the root inode.
857 	 * Save the pointer to it in the mount structure.
858 	 */
859 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
860 	if (error) {
861 		xfs_warn(mp, "failed to read root inode");
862 		goto out_log_dealloc;
863 	}
864 
865 	ASSERT(rip != NULL);
866 
867 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
868 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
869 			(unsigned long long)rip->i_ino);
870 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
872 				 mp);
873 		error = -EFSCORRUPTED;
874 		goto out_rele_rip;
875 	}
876 	mp->m_rootip = rip;	/* save it */
877 
878 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
879 
880 	/*
881 	 * Initialize realtime inode pointers in the mount structure
882 	 */
883 	error = xfs_rtmount_inodes(mp);
884 	if (error) {
885 		/*
886 		 * Free up the root inode.
887 		 */
888 		xfs_warn(mp, "failed to read RT inodes");
889 		goto out_rele_rip;
890 	}
891 
892 	/*
893 	 * If this is a read-only mount defer the superblock updates until
894 	 * the next remount into writeable mode.  Otherwise we would never
895 	 * perform the update e.g. for the root filesystem.
896 	 */
897 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
898 		error = xfs_sync_sb(mp, false);
899 		if (error) {
900 			xfs_warn(mp, "failed to write sb changes");
901 			goto out_rtunmount;
902 		}
903 	}
904 
905 	/*
906 	 * Initialise the XFS quota management subsystem for this mount
907 	 */
908 	if (XFS_IS_QUOTA_RUNNING(mp)) {
909 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
910 		if (error)
911 			goto out_rtunmount;
912 	} else {
913 		ASSERT(!XFS_IS_QUOTA_ON(mp));
914 
915 		/*
916 		 * If a file system had quotas running earlier, but decided to
917 		 * mount without -o uquota/pquota/gquota options, revoke the
918 		 * quotachecked license.
919 		 */
920 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
921 			xfs_notice(mp, "resetting quota flags");
922 			error = xfs_mount_reset_sbqflags(mp);
923 			if (error)
924 				goto out_rtunmount;
925 		}
926 	}
927 
928 	/*
929 	 * During the second phase of log recovery, we need iget and
930 	 * iput to behave like they do for an active filesystem.
931 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
932 	 * of inodes before we're done replaying log items on those
933 	 * inodes.
934 	 */
935 	mp->m_super->s_flags |= MS_ACTIVE;
936 
937 	/*
938 	 * Finish recovering the file system.  This part needed to be delayed
939 	 * until after the root and real-time bitmap inodes were consistently
940 	 * read in.
941 	 */
942 	error = xfs_log_mount_finish(mp);
943 	if (error) {
944 		xfs_warn(mp, "log mount finish failed");
945 		goto out_rtunmount;
946 	}
947 
948 	/*
949 	 * Now the log is fully replayed, we can transition to full read-only
950 	 * mode for read-only mounts. This will sync all the metadata and clean
951 	 * the log so that the recovery we just performed does not have to be
952 	 * replayed again on the next mount.
953 	 *
954 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
955 	 * semantically identical operations.
956 	 */
957 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
958 							XFS_MOUNT_RDONLY) {
959 		xfs_quiesce_attr(mp);
960 	}
961 
962 	/*
963 	 * Complete the quota initialisation, post-log-replay component.
964 	 */
965 	if (quotamount) {
966 		ASSERT(mp->m_qflags == 0);
967 		mp->m_qflags = quotaflags;
968 
969 		xfs_qm_mount_quotas(mp);
970 	}
971 
972 	/*
973 	 * Now we are mounted, reserve a small amount of unused space for
974 	 * privileged transactions. This is needed so that transaction
975 	 * space required for critical operations can dip into this pool
976 	 * when at ENOSPC. This is needed for operations like create with
977 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
978 	 * are not allowed to use this reserved space.
979 	 *
980 	 * This may drive us straight to ENOSPC on mount, but that implies
981 	 * we were already there on the last unmount. Warn if this occurs.
982 	 */
983 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
984 		resblks = xfs_default_resblks(mp);
985 		error = xfs_reserve_blocks(mp, &resblks, NULL);
986 		if (error)
987 			xfs_warn(mp,
988 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
989 
990 		/* Recover any CoW blocks that never got remapped. */
991 		error = xfs_reflink_recover_cow(mp);
992 		if (error) {
993 			xfs_err(mp,
994 	"Error %d recovering leftover CoW allocations.", error);
995 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
996 			goto out_quota;
997 		}
998 
999 		/* Reserve AG blocks for future btree expansion. */
1000 		error = xfs_fs_reserve_ag_blocks(mp);
1001 		if (error && error != -ENOSPC)
1002 			goto out_agresv;
1003 	}
1004 
1005 	return 0;
1006 
1007  out_agresv:
1008 	xfs_fs_unreserve_ag_blocks(mp);
1009  out_quota:
1010 	xfs_qm_unmount_quotas(mp);
1011  out_rtunmount:
1012 	mp->m_super->s_flags &= ~MS_ACTIVE;
1013 	xfs_rtunmount_inodes(mp);
1014  out_rele_rip:
1015 	IRELE(rip);
1016 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1017 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1018  out_log_dealloc:
1019 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1020 	xfs_log_mount_cancel(mp);
1021  out_fail_wait:
1022 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1023 		xfs_wait_buftarg(mp->m_logdev_targp);
1024 	xfs_wait_buftarg(mp->m_ddev_targp);
1025  out_free_perag:
1026 	xfs_free_perag(mp);
1027  out_free_dir:
1028 	xfs_da_unmount(mp);
1029  out_remove_uuid:
1030 	xfs_uuid_unmount(mp);
1031  out_remove_error_sysfs:
1032 	xfs_error_sysfs_del(mp);
1033  out_del_stats:
1034 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1035  out_remove_sysfs:
1036 	xfs_sysfs_del(&mp->m_kobj);
1037  out:
1038 	return error;
1039 }
1040 
1041 /*
1042  * This flushes out the inodes,dquots and the superblock, unmounts the
1043  * log and makes sure that incore structures are freed.
1044  */
1045 void
1046 xfs_unmountfs(
1047 	struct xfs_mount	*mp)
1048 {
1049 	__uint64_t		resblks;
1050 	int			error;
1051 
1052 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1053 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1054 
1055 	xfs_fs_unreserve_ag_blocks(mp);
1056 	xfs_qm_unmount_quotas(mp);
1057 	xfs_rtunmount_inodes(mp);
1058 	IRELE(mp->m_rootip);
1059 
1060 	/*
1061 	 * We can potentially deadlock here if we have an inode cluster
1062 	 * that has been freed has its buffer still pinned in memory because
1063 	 * the transaction is still sitting in a iclog. The stale inodes
1064 	 * on that buffer will have their flush locks held until the
1065 	 * transaction hits the disk and the callbacks run. the inode
1066 	 * flush takes the flush lock unconditionally and with nothing to
1067 	 * push out the iclog we will never get that unlocked. hence we
1068 	 * need to force the log first.
1069 	 */
1070 	xfs_log_force(mp, XFS_LOG_SYNC);
1071 
1072 	/*
1073 	 * We now need to tell the world we are unmounting. This will allow
1074 	 * us to detect that the filesystem is going away and we should error
1075 	 * out anything that we have been retrying in the background. This will
1076 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1077 	 */
1078 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1079 
1080 	/*
1081 	 * Flush all pending changes from the AIL.
1082 	 */
1083 	xfs_ail_push_all_sync(mp->m_ail);
1084 
1085 	/*
1086 	 * And reclaim all inodes.  At this point there should be no dirty
1087 	 * inodes and none should be pinned or locked, but use synchronous
1088 	 * reclaim just to be sure. We can stop background inode reclaim
1089 	 * here as well if it is still running.
1090 	 */
1091 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1092 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1093 
1094 	xfs_qm_unmount(mp);
1095 
1096 	/*
1097 	 * Unreserve any blocks we have so that when we unmount we don't account
1098 	 * the reserved free space as used. This is really only necessary for
1099 	 * lazy superblock counting because it trusts the incore superblock
1100 	 * counters to be absolutely correct on clean unmount.
1101 	 *
1102 	 * We don't bother correcting this elsewhere for lazy superblock
1103 	 * counting because on mount of an unclean filesystem we reconstruct the
1104 	 * correct counter value and this is irrelevant.
1105 	 *
1106 	 * For non-lazy counter filesystems, this doesn't matter at all because
1107 	 * we only every apply deltas to the superblock and hence the incore
1108 	 * value does not matter....
1109 	 */
1110 	resblks = 0;
1111 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1112 	if (error)
1113 		xfs_warn(mp, "Unable to free reserved block pool. "
1114 				"Freespace may not be correct on next mount.");
1115 
1116 	error = xfs_log_sbcount(mp);
1117 	if (error)
1118 		xfs_warn(mp, "Unable to update superblock counters. "
1119 				"Freespace may not be correct on next mount.");
1120 
1121 
1122 	xfs_log_unmount(mp);
1123 	xfs_da_unmount(mp);
1124 	xfs_uuid_unmount(mp);
1125 
1126 #if defined(DEBUG)
1127 	xfs_errortag_clearall(mp, 0);
1128 #endif
1129 	xfs_free_perag(mp);
1130 
1131 	xfs_error_sysfs_del(mp);
1132 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1133 	xfs_sysfs_del(&mp->m_kobj);
1134 }
1135 
1136 /*
1137  * Determine whether modifications can proceed. The caller specifies the minimum
1138  * freeze level for which modifications should not be allowed. This allows
1139  * certain operations to proceed while the freeze sequence is in progress, if
1140  * necessary.
1141  */
1142 bool
1143 xfs_fs_writable(
1144 	struct xfs_mount	*mp,
1145 	int			level)
1146 {
1147 	ASSERT(level > SB_UNFROZEN);
1148 	if ((mp->m_super->s_writers.frozen >= level) ||
1149 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1150 		return false;
1151 
1152 	return true;
1153 }
1154 
1155 /*
1156  * xfs_log_sbcount
1157  *
1158  * Sync the superblock counters to disk.
1159  *
1160  * Note this code can be called during the process of freezing, so we use the
1161  * transaction allocator that does not block when the transaction subsystem is
1162  * in its frozen state.
1163  */
1164 int
1165 xfs_log_sbcount(xfs_mount_t *mp)
1166 {
1167 	/* allow this to proceed during the freeze sequence... */
1168 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1169 		return 0;
1170 
1171 	/*
1172 	 * we don't need to do this if we are updating the superblock
1173 	 * counters on every modification.
1174 	 */
1175 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1176 		return 0;
1177 
1178 	return xfs_sync_sb(mp, true);
1179 }
1180 
1181 /*
1182  * Deltas for the inode count are +/-64, hence we use a large batch size
1183  * of 128 so we don't need to take the counter lock on every update.
1184  */
1185 #define XFS_ICOUNT_BATCH	128
1186 int
1187 xfs_mod_icount(
1188 	struct xfs_mount	*mp,
1189 	int64_t			delta)
1190 {
1191 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1192 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1193 		ASSERT(0);
1194 		percpu_counter_add(&mp->m_icount, -delta);
1195 		return -EINVAL;
1196 	}
1197 	return 0;
1198 }
1199 
1200 int
1201 xfs_mod_ifree(
1202 	struct xfs_mount	*mp,
1203 	int64_t			delta)
1204 {
1205 	percpu_counter_add(&mp->m_ifree, delta);
1206 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1207 		ASSERT(0);
1208 		percpu_counter_add(&mp->m_ifree, -delta);
1209 		return -EINVAL;
1210 	}
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Deltas for the block count can vary from 1 to very large, but lock contention
1216  * only occurs on frequent small block count updates such as in the delayed
1217  * allocation path for buffered writes (page a time updates). Hence we set
1218  * a large batch count (1024) to minimise global counter updates except when
1219  * we get near to ENOSPC and we have to be very accurate with our updates.
1220  */
1221 #define XFS_FDBLOCKS_BATCH	1024
1222 int
1223 xfs_mod_fdblocks(
1224 	struct xfs_mount	*mp,
1225 	int64_t			delta,
1226 	bool			rsvd)
1227 {
1228 	int64_t			lcounter;
1229 	long long		res_used;
1230 	s32			batch;
1231 
1232 	if (delta > 0) {
1233 		/*
1234 		 * If the reserve pool is depleted, put blocks back into it
1235 		 * first. Most of the time the pool is full.
1236 		 */
1237 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1238 			percpu_counter_add(&mp->m_fdblocks, delta);
1239 			return 0;
1240 		}
1241 
1242 		spin_lock(&mp->m_sb_lock);
1243 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1244 
1245 		if (res_used > delta) {
1246 			mp->m_resblks_avail += delta;
1247 		} else {
1248 			delta -= res_used;
1249 			mp->m_resblks_avail = mp->m_resblks;
1250 			percpu_counter_add(&mp->m_fdblocks, delta);
1251 		}
1252 		spin_unlock(&mp->m_sb_lock);
1253 		return 0;
1254 	}
1255 
1256 	/*
1257 	 * Taking blocks away, need to be more accurate the closer we
1258 	 * are to zero.
1259 	 *
1260 	 * If the counter has a value of less than 2 * max batch size,
1261 	 * then make everything serialise as we are real close to
1262 	 * ENOSPC.
1263 	 */
1264 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1265 				     XFS_FDBLOCKS_BATCH) < 0)
1266 		batch = 1;
1267 	else
1268 		batch = XFS_FDBLOCKS_BATCH;
1269 
1270 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1271 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1272 				     XFS_FDBLOCKS_BATCH) >= 0) {
1273 		/* we had space! */
1274 		return 0;
1275 	}
1276 
1277 	/*
1278 	 * lock up the sb for dipping into reserves before releasing the space
1279 	 * that took us to ENOSPC.
1280 	 */
1281 	spin_lock(&mp->m_sb_lock);
1282 	percpu_counter_add(&mp->m_fdblocks, -delta);
1283 	if (!rsvd)
1284 		goto fdblocks_enospc;
1285 
1286 	lcounter = (long long)mp->m_resblks_avail + delta;
1287 	if (lcounter >= 0) {
1288 		mp->m_resblks_avail = lcounter;
1289 		spin_unlock(&mp->m_sb_lock);
1290 		return 0;
1291 	}
1292 	printk_once(KERN_WARNING
1293 		"Filesystem \"%s\": reserve blocks depleted! "
1294 		"Consider increasing reserve pool size.",
1295 		mp->m_fsname);
1296 fdblocks_enospc:
1297 	spin_unlock(&mp->m_sb_lock);
1298 	return -ENOSPC;
1299 }
1300 
1301 int
1302 xfs_mod_frextents(
1303 	struct xfs_mount	*mp,
1304 	int64_t			delta)
1305 {
1306 	int64_t			lcounter;
1307 	int			ret = 0;
1308 
1309 	spin_lock(&mp->m_sb_lock);
1310 	lcounter = mp->m_sb.sb_frextents + delta;
1311 	if (lcounter < 0)
1312 		ret = -ENOSPC;
1313 	else
1314 		mp->m_sb.sb_frextents = lcounter;
1315 	spin_unlock(&mp->m_sb_lock);
1316 	return ret;
1317 }
1318 
1319 /*
1320  * xfs_getsb() is called to obtain the buffer for the superblock.
1321  * The buffer is returned locked and read in from disk.
1322  * The buffer should be released with a call to xfs_brelse().
1323  *
1324  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1325  * the superblock buffer if it can be locked without sleeping.
1326  * If it can't then we'll return NULL.
1327  */
1328 struct xfs_buf *
1329 xfs_getsb(
1330 	struct xfs_mount	*mp,
1331 	int			flags)
1332 {
1333 	struct xfs_buf		*bp = mp->m_sb_bp;
1334 
1335 	if (!xfs_buf_trylock(bp)) {
1336 		if (flags & XBF_TRYLOCK)
1337 			return NULL;
1338 		xfs_buf_lock(bp);
1339 	}
1340 
1341 	xfs_buf_hold(bp);
1342 	ASSERT(bp->b_flags & XBF_DONE);
1343 	return bp;
1344 }
1345 
1346 /*
1347  * Used to free the superblock along various error paths.
1348  */
1349 void
1350 xfs_freesb(
1351 	struct xfs_mount	*mp)
1352 {
1353 	struct xfs_buf		*bp = mp->m_sb_bp;
1354 
1355 	xfs_buf_lock(bp);
1356 	mp->m_sb_bp = NULL;
1357 	xfs_buf_relse(bp);
1358 }
1359 
1360 /*
1361  * If the underlying (data/log/rt) device is readonly, there are some
1362  * operations that cannot proceed.
1363  */
1364 int
1365 xfs_dev_is_read_only(
1366 	struct xfs_mount	*mp,
1367 	char			*message)
1368 {
1369 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1370 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1371 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1372 		xfs_notice(mp, "%s required on read-only device.", message);
1373 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1374 		return -EROFS;
1375 	}
1376 	return 0;
1377 }
1378