xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision ee89bd6b)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 #include "xfs_icache.h"
46 #include "xfs_cksum.h"
47 #include "xfs_buf_item.h"
48 
49 
50 #ifdef HAVE_PERCPU_SB
51 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 						int);
55 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
57 
58 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
60 #endif
61 
62 static const struct {
63 	short offset;
64 	short type;	/* 0 = integer
65 			 * 1 = binary / string (no translation)
66 			 */
67 } xfs_sb_info[] = {
68     { offsetof(xfs_sb_t, sb_magicnum),   0 },
69     { offsetof(xfs_sb_t, sb_blocksize),  0 },
70     { offsetof(xfs_sb_t, sb_dblocks),    0 },
71     { offsetof(xfs_sb_t, sb_rblocks),    0 },
72     { offsetof(xfs_sb_t, sb_rextents),   0 },
73     { offsetof(xfs_sb_t, sb_uuid),       1 },
74     { offsetof(xfs_sb_t, sb_logstart),   0 },
75     { offsetof(xfs_sb_t, sb_rootino),    0 },
76     { offsetof(xfs_sb_t, sb_rbmino),     0 },
77     { offsetof(xfs_sb_t, sb_rsumino),    0 },
78     { offsetof(xfs_sb_t, sb_rextsize),   0 },
79     { offsetof(xfs_sb_t, sb_agblocks),   0 },
80     { offsetof(xfs_sb_t, sb_agcount),    0 },
81     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
82     { offsetof(xfs_sb_t, sb_logblocks),  0 },
83     { offsetof(xfs_sb_t, sb_versionnum), 0 },
84     { offsetof(xfs_sb_t, sb_sectsize),   0 },
85     { offsetof(xfs_sb_t, sb_inodesize),  0 },
86     { offsetof(xfs_sb_t, sb_inopblock),  0 },
87     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
88     { offsetof(xfs_sb_t, sb_blocklog),   0 },
89     { offsetof(xfs_sb_t, sb_sectlog),    0 },
90     { offsetof(xfs_sb_t, sb_inodelog),   0 },
91     { offsetof(xfs_sb_t, sb_inopblog),   0 },
92     { offsetof(xfs_sb_t, sb_agblklog),   0 },
93     { offsetof(xfs_sb_t, sb_rextslog),   0 },
94     { offsetof(xfs_sb_t, sb_inprogress), 0 },
95     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
96     { offsetof(xfs_sb_t, sb_icount),     0 },
97     { offsetof(xfs_sb_t, sb_ifree),      0 },
98     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
99     { offsetof(xfs_sb_t, sb_frextents),  0 },
100     { offsetof(xfs_sb_t, sb_uquotino),   0 },
101     { offsetof(xfs_sb_t, sb_gquotino),   0 },
102     { offsetof(xfs_sb_t, sb_qflags),     0 },
103     { offsetof(xfs_sb_t, sb_flags),      0 },
104     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
105     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106     { offsetof(xfs_sb_t, sb_unit),	 0 },
107     { offsetof(xfs_sb_t, sb_width),	 0 },
108     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
109     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110     { offsetof(xfs_sb_t, sb_logsectsize),0 },
111     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
112     { offsetof(xfs_sb_t, sb_features2),	 0 },
113     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114     { offsetof(xfs_sb_t, sb_features_compat), 0 },
115     { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
116     { offsetof(xfs_sb_t, sb_features_incompat), 0 },
117     { offsetof(xfs_sb_t, sb_features_log_incompat), 0 },
118     { offsetof(xfs_sb_t, sb_crc),	 0 },
119     { offsetof(xfs_sb_t, sb_pad),	 0 },
120     { offsetof(xfs_sb_t, sb_pquotino),	 0 },
121     { offsetof(xfs_sb_t, sb_lsn),	 0 },
122     { sizeof(xfs_sb_t),			 0 }
123 };
124 
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128 
129 /*
130  * See if the UUID is unique among mounted XFS filesystems.
131  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132  */
133 STATIC int
134 xfs_uuid_mount(
135 	struct xfs_mount	*mp)
136 {
137 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
138 	int			hole, i;
139 
140 	if (mp->m_flags & XFS_MOUNT_NOUUID)
141 		return 0;
142 
143 	if (uuid_is_nil(uuid)) {
144 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
145 		return XFS_ERROR(EINVAL);
146 	}
147 
148 	mutex_lock(&xfs_uuid_table_mutex);
149 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 		if (uuid_is_nil(&xfs_uuid_table[i])) {
151 			hole = i;
152 			continue;
153 		}
154 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 			goto out_duplicate;
156 	}
157 
158 	if (hole < 0) {
159 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
162 			KM_SLEEP);
163 		hole = xfs_uuid_table_size++;
164 	}
165 	xfs_uuid_table[hole] = *uuid;
166 	mutex_unlock(&xfs_uuid_table_mutex);
167 
168 	return 0;
169 
170  out_duplicate:
171 	mutex_unlock(&xfs_uuid_table_mutex);
172 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
173 	return XFS_ERROR(EINVAL);
174 }
175 
176 STATIC void
177 xfs_uuid_unmount(
178 	struct xfs_mount	*mp)
179 {
180 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
181 	int			i;
182 
183 	if (mp->m_flags & XFS_MOUNT_NOUUID)
184 		return;
185 
186 	mutex_lock(&xfs_uuid_table_mutex);
187 	for (i = 0; i < xfs_uuid_table_size; i++) {
188 		if (uuid_is_nil(&xfs_uuid_table[i]))
189 			continue;
190 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 			continue;
192 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 		break;
194 	}
195 	ASSERT(i < xfs_uuid_table_size);
196 	mutex_unlock(&xfs_uuid_table_mutex);
197 }
198 
199 
200 /*
201  * Reference counting access wrappers to the perag structures.
202  * Because we never free per-ag structures, the only thing we
203  * have to protect against changes is the tree structure itself.
204  */
205 struct xfs_perag *
206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
207 {
208 	struct xfs_perag	*pag;
209 	int			ref = 0;
210 
211 	rcu_read_lock();
212 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 	if (pag) {
214 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
215 		ref = atomic_inc_return(&pag->pag_ref);
216 	}
217 	rcu_read_unlock();
218 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 	return pag;
220 }
221 
222 /*
223  * search from @first to find the next perag with the given tag set.
224  */
225 struct xfs_perag *
226 xfs_perag_get_tag(
227 	struct xfs_mount	*mp,
228 	xfs_agnumber_t		first,
229 	int			tag)
230 {
231 	struct xfs_perag	*pag;
232 	int			found;
233 	int			ref;
234 
235 	rcu_read_lock();
236 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 					(void **)&pag, first, 1, tag);
238 	if (found <= 0) {
239 		rcu_read_unlock();
240 		return NULL;
241 	}
242 	ref = atomic_inc_return(&pag->pag_ref);
243 	rcu_read_unlock();
244 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 	return pag;
246 }
247 
248 void
249 xfs_perag_put(struct xfs_perag *pag)
250 {
251 	int	ref;
252 
253 	ASSERT(atomic_read(&pag->pag_ref) > 0);
254 	ref = atomic_dec_return(&pag->pag_ref);
255 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
256 }
257 
258 STATIC void
259 __xfs_free_perag(
260 	struct rcu_head	*head)
261 {
262 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
263 
264 	ASSERT(atomic_read(&pag->pag_ref) == 0);
265 	kmem_free(pag);
266 }
267 
268 /*
269  * Free up the per-ag resources associated with the mount structure.
270  */
271 STATIC void
272 xfs_free_perag(
273 	xfs_mount_t	*mp)
274 {
275 	xfs_agnumber_t	agno;
276 	struct xfs_perag *pag;
277 
278 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 		spin_lock(&mp->m_perag_lock);
280 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 		spin_unlock(&mp->m_perag_lock);
282 		ASSERT(pag);
283 		ASSERT(atomic_read(&pag->pag_ref) == 0);
284 		call_rcu(&pag->rcu_head, __xfs_free_perag);
285 	}
286 }
287 
288 /*
289  * Check size of device based on the (data/realtime) block count.
290  * Note: this check is used by the growfs code as well as mount.
291  */
292 int
293 xfs_sb_validate_fsb_count(
294 	xfs_sb_t	*sbp,
295 	__uint64_t	nblocks)
296 {
297 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
298 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
299 
300 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
301 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
302 		return EFBIG;
303 #else                  /* Limited by UINT_MAX of sectors */
304 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
305 		return EFBIG;
306 #endif
307 	return 0;
308 }
309 
310 /*
311  * Check the validity of the SB found.
312  */
313 STATIC int
314 xfs_mount_validate_sb(
315 	xfs_mount_t	*mp,
316 	xfs_sb_t	*sbp,
317 	bool		check_inprogress)
318 {
319 
320 	/*
321 	 * If the log device and data device have the
322 	 * same device number, the log is internal.
323 	 * Consequently, the sb_logstart should be non-zero.  If
324 	 * we have a zero sb_logstart in this case, we may be trying to mount
325 	 * a volume filesystem in a non-volume manner.
326 	 */
327 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
328 		xfs_warn(mp, "bad magic number");
329 		return XFS_ERROR(EWRONGFS);
330 	}
331 
332 
333 	if (!xfs_sb_good_version(sbp)) {
334 		xfs_warn(mp, "bad version");
335 		return XFS_ERROR(EWRONGFS);
336 	}
337 
338 	/*
339 	 * Version 5 superblock feature mask validation. Reject combinations the
340 	 * kernel cannot support up front before checking anything else.
341 	 */
342 	if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
343 		xfs_alert(mp,
344 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
345 "Use of these features in this kernel is at your own risk!");
346 
347 		if (xfs_sb_has_compat_feature(sbp,
348 					XFS_SB_FEAT_COMPAT_UNKNOWN)) {
349 			xfs_warn(mp,
350 "Superblock has unknown compatible features (0x%x) enabled.\n"
351 "Using a more recent kernel is recommended.",
352 				(sbp->sb_features_compat &
353 						XFS_SB_FEAT_COMPAT_UNKNOWN));
354 		}
355 
356 		if (xfs_sb_has_ro_compat_feature(sbp,
357 					XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
358 			xfs_alert(mp,
359 "Superblock has unknown read-only compatible features (0x%x) enabled.",
360 				(sbp->sb_features_ro_compat &
361 						XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
362 			if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
363 				xfs_warn(mp,
364 "Attempted to mount read-only compatible filesystem read-write.\n"
365 "Filesystem can only be safely mounted read only.");
366 				return XFS_ERROR(EINVAL);
367 			}
368 		}
369 		if (xfs_sb_has_incompat_feature(sbp,
370 					XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
371 			xfs_warn(mp,
372 "Superblock has unknown incompatible features (0x%x) enabled.\n"
373 "Filesystem can not be safely mounted by this kernel.",
374 				(sbp->sb_features_incompat &
375 						XFS_SB_FEAT_INCOMPAT_UNKNOWN));
376 			return XFS_ERROR(EINVAL);
377 		}
378 	}
379 
380 	if (unlikely(
381 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
382 		xfs_warn(mp,
383 		"filesystem is marked as having an external log; "
384 		"specify logdev on the mount command line.");
385 		return XFS_ERROR(EINVAL);
386 	}
387 
388 	if (unlikely(
389 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
390 		xfs_warn(mp,
391 		"filesystem is marked as having an internal log; "
392 		"do not specify logdev on the mount command line.");
393 		return XFS_ERROR(EINVAL);
394 	}
395 
396 	/*
397 	 * More sanity checking.  Most of these were stolen directly from
398 	 * xfs_repair.
399 	 */
400 	if (unlikely(
401 	    sbp->sb_agcount <= 0					||
402 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
403 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
404 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
405 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
406 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
407 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
408 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
409 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
410 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
411 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
412 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
413 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
414 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
415 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
416 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
417 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
418 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
419 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
420 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
421 	    sbp->sb_dblocks == 0					||
422 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
423 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
424 		XFS_CORRUPTION_ERROR("SB sanity check failed",
425 				XFS_ERRLEVEL_LOW, mp, sbp);
426 		return XFS_ERROR(EFSCORRUPTED);
427 	}
428 
429 	/*
430 	 * Until this is fixed only page-sized or smaller data blocks work.
431 	 */
432 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
433 		xfs_warn(mp,
434 		"File system with blocksize %d bytes. "
435 		"Only pagesize (%ld) or less will currently work.",
436 				sbp->sb_blocksize, PAGE_SIZE);
437 		return XFS_ERROR(ENOSYS);
438 	}
439 
440 	/*
441 	 * Currently only very few inode sizes are supported.
442 	 */
443 	switch (sbp->sb_inodesize) {
444 	case 256:
445 	case 512:
446 	case 1024:
447 	case 2048:
448 		break;
449 	default:
450 		xfs_warn(mp, "inode size of %d bytes not supported",
451 				sbp->sb_inodesize);
452 		return XFS_ERROR(ENOSYS);
453 	}
454 
455 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
456 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
457 		xfs_warn(mp,
458 		"file system too large to be mounted on this system.");
459 		return XFS_ERROR(EFBIG);
460 	}
461 
462 	if (check_inprogress && sbp->sb_inprogress) {
463 		xfs_warn(mp, "Offline file system operation in progress!");
464 		return XFS_ERROR(EFSCORRUPTED);
465 	}
466 
467 	/*
468 	 * Version 1 directory format has never worked on Linux.
469 	 */
470 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
471 		xfs_warn(mp, "file system using version 1 directory format");
472 		return XFS_ERROR(ENOSYS);
473 	}
474 
475 	return 0;
476 }
477 
478 int
479 xfs_initialize_perag(
480 	xfs_mount_t	*mp,
481 	xfs_agnumber_t	agcount,
482 	xfs_agnumber_t	*maxagi)
483 {
484 	xfs_agnumber_t	index;
485 	xfs_agnumber_t	first_initialised = 0;
486 	xfs_perag_t	*pag;
487 	xfs_agino_t	agino;
488 	xfs_ino_t	ino;
489 	xfs_sb_t	*sbp = &mp->m_sb;
490 	int		error = -ENOMEM;
491 
492 	/*
493 	 * Walk the current per-ag tree so we don't try to initialise AGs
494 	 * that already exist (growfs case). Allocate and insert all the
495 	 * AGs we don't find ready for initialisation.
496 	 */
497 	for (index = 0; index < agcount; index++) {
498 		pag = xfs_perag_get(mp, index);
499 		if (pag) {
500 			xfs_perag_put(pag);
501 			continue;
502 		}
503 		if (!first_initialised)
504 			first_initialised = index;
505 
506 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
507 		if (!pag)
508 			goto out_unwind;
509 		pag->pag_agno = index;
510 		pag->pag_mount = mp;
511 		spin_lock_init(&pag->pag_ici_lock);
512 		mutex_init(&pag->pag_ici_reclaim_lock);
513 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
514 		spin_lock_init(&pag->pag_buf_lock);
515 		pag->pag_buf_tree = RB_ROOT;
516 
517 		if (radix_tree_preload(GFP_NOFS))
518 			goto out_unwind;
519 
520 		spin_lock(&mp->m_perag_lock);
521 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
522 			BUG();
523 			spin_unlock(&mp->m_perag_lock);
524 			radix_tree_preload_end();
525 			error = -EEXIST;
526 			goto out_unwind;
527 		}
528 		spin_unlock(&mp->m_perag_lock);
529 		radix_tree_preload_end();
530 	}
531 
532 	/*
533 	 * If we mount with the inode64 option, or no inode overflows
534 	 * the legacy 32-bit address space clear the inode32 option.
535 	 */
536 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
537 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
538 
539 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
540 		mp->m_flags |= XFS_MOUNT_32BITINODES;
541 	else
542 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
543 
544 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
545 		index = xfs_set_inode32(mp);
546 	else
547 		index = xfs_set_inode64(mp);
548 
549 	if (maxagi)
550 		*maxagi = index;
551 	return 0;
552 
553 out_unwind:
554 	kmem_free(pag);
555 	for (; index > first_initialised; index--) {
556 		pag = radix_tree_delete(&mp->m_perag_tree, index);
557 		kmem_free(pag);
558 	}
559 	return error;
560 }
561 
562 void
563 xfs_sb_from_disk(
564 	struct xfs_sb	*to,
565 	xfs_dsb_t	*from)
566 {
567 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
568 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
569 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
570 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
571 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
572 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
573 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
574 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
575 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
576 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
577 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
578 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
579 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
580 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
581 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
582 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
583 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
584 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
585 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
586 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
587 	to->sb_blocklog = from->sb_blocklog;
588 	to->sb_sectlog = from->sb_sectlog;
589 	to->sb_inodelog = from->sb_inodelog;
590 	to->sb_inopblog = from->sb_inopblog;
591 	to->sb_agblklog = from->sb_agblklog;
592 	to->sb_rextslog = from->sb_rextslog;
593 	to->sb_inprogress = from->sb_inprogress;
594 	to->sb_imax_pct = from->sb_imax_pct;
595 	to->sb_icount = be64_to_cpu(from->sb_icount);
596 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
597 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
598 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
599 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
600 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
601 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
602 	to->sb_flags = from->sb_flags;
603 	to->sb_shared_vn = from->sb_shared_vn;
604 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
605 	to->sb_unit = be32_to_cpu(from->sb_unit);
606 	to->sb_width = be32_to_cpu(from->sb_width);
607 	to->sb_dirblklog = from->sb_dirblklog;
608 	to->sb_logsectlog = from->sb_logsectlog;
609 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
610 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
611 	to->sb_features2 = be32_to_cpu(from->sb_features2);
612 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
613 	to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
614 	to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
615 	to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
616 	to->sb_features_log_incompat =
617 				be32_to_cpu(from->sb_features_log_incompat);
618 	to->sb_pad = 0;
619 	to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
620 	to->sb_lsn = be64_to_cpu(from->sb_lsn);
621 }
622 
623 /*
624  * Copy in core superblock to ondisk one.
625  *
626  * The fields argument is mask of superblock fields to copy.
627  */
628 void
629 xfs_sb_to_disk(
630 	xfs_dsb_t	*to,
631 	xfs_sb_t	*from,
632 	__int64_t	fields)
633 {
634 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
635 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
636 	xfs_sb_field_t	f;
637 	int		first;
638 	int		size;
639 
640 	ASSERT(fields);
641 	if (!fields)
642 		return;
643 
644 	while (fields) {
645 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
646 		first = xfs_sb_info[f].offset;
647 		size = xfs_sb_info[f + 1].offset - first;
648 
649 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
650 
651 		if (size == 1 || xfs_sb_info[f].type == 1) {
652 			memcpy(to_ptr + first, from_ptr + first, size);
653 		} else {
654 			switch (size) {
655 			case 2:
656 				*(__be16 *)(to_ptr + first) =
657 					cpu_to_be16(*(__u16 *)(from_ptr + first));
658 				break;
659 			case 4:
660 				*(__be32 *)(to_ptr + first) =
661 					cpu_to_be32(*(__u32 *)(from_ptr + first));
662 				break;
663 			case 8:
664 				*(__be64 *)(to_ptr + first) =
665 					cpu_to_be64(*(__u64 *)(from_ptr + first));
666 				break;
667 			default:
668 				ASSERT(0);
669 			}
670 		}
671 
672 		fields &= ~(1LL << f);
673 	}
674 }
675 
676 static int
677 xfs_sb_verify(
678 	struct xfs_buf	*bp)
679 {
680 	struct xfs_mount *mp = bp->b_target->bt_mount;
681 	struct xfs_sb	sb;
682 
683 	xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
684 
685 	/*
686 	 * Only check the in progress field for the primary superblock as
687 	 * mkfs.xfs doesn't clear it from secondary superblocks.
688 	 */
689 	return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR);
690 }
691 
692 /*
693  * If the superblock has the CRC feature bit set or the CRC field is non-null,
694  * check that the CRC is valid.  We check the CRC field is non-null because a
695  * single bit error could clear the feature bit and unused parts of the
696  * superblock are supposed to be zero. Hence a non-null crc field indicates that
697  * we've potentially lost a feature bit and we should check it anyway.
698  */
699 static void
700 xfs_sb_read_verify(
701 	struct xfs_buf	*bp)
702 {
703 	struct xfs_mount *mp = bp->b_target->bt_mount;
704 	struct xfs_dsb	*dsb = XFS_BUF_TO_SBP(bp);
705 	int		error;
706 
707 	/*
708 	 * open code the version check to avoid needing to convert the entire
709 	 * superblock from disk order just to check the version number
710 	 */
711 	if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
712 	    (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
713 						XFS_SB_VERSION_5) ||
714 	     dsb->sb_crc != 0)) {
715 
716 		if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
717 				      offsetof(struct xfs_sb, sb_crc))) {
718 			error = EFSCORRUPTED;
719 			goto out_error;
720 		}
721 	}
722 	error = xfs_sb_verify(bp);
723 
724 out_error:
725 	if (error) {
726 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
727 		xfs_buf_ioerror(bp, error);
728 	}
729 }
730 
731 /*
732  * We may be probed for a filesystem match, so we may not want to emit
733  * messages when the superblock buffer is not actually an XFS superblock.
734  * If we find an XFS superblock, the run a normal, noisy mount because we are
735  * really going to mount it and want to know about errors.
736  */
737 static void
738 xfs_sb_quiet_read_verify(
739 	struct xfs_buf	*bp)
740 {
741 	struct xfs_dsb	*dsb = XFS_BUF_TO_SBP(bp);
742 
743 
744 	if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
745 		/* XFS filesystem, verify noisily! */
746 		xfs_sb_read_verify(bp);
747 		return;
748 	}
749 	/* quietly fail */
750 	xfs_buf_ioerror(bp, EWRONGFS);
751 }
752 
753 static void
754 xfs_sb_write_verify(
755 	struct xfs_buf		*bp)
756 {
757 	struct xfs_mount	*mp = bp->b_target->bt_mount;
758 	struct xfs_buf_log_item	*bip = bp->b_fspriv;
759 	int			error;
760 
761 	error = xfs_sb_verify(bp);
762 	if (error) {
763 		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
764 		xfs_buf_ioerror(bp, error);
765 		return;
766 	}
767 
768 	if (!xfs_sb_version_hascrc(&mp->m_sb))
769 		return;
770 
771 	if (bip)
772 		XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
773 
774 	xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
775 			 offsetof(struct xfs_sb, sb_crc));
776 }
777 
778 const struct xfs_buf_ops xfs_sb_buf_ops = {
779 	.verify_read = xfs_sb_read_verify,
780 	.verify_write = xfs_sb_write_verify,
781 };
782 
783 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
784 	.verify_read = xfs_sb_quiet_read_verify,
785 	.verify_write = xfs_sb_write_verify,
786 };
787 
788 /*
789  * xfs_readsb
790  *
791  * Does the initial read of the superblock.
792  */
793 int
794 xfs_readsb(xfs_mount_t *mp, int flags)
795 {
796 	unsigned int	sector_size;
797 	struct xfs_buf	*bp;
798 	struct xfs_sb	*sbp = &mp->m_sb;
799 	int		error;
800 	int		loud = !(flags & XFS_MFSI_QUIET);
801 
802 	ASSERT(mp->m_sb_bp == NULL);
803 	ASSERT(mp->m_ddev_targp != NULL);
804 
805 	/*
806 	 * Allocate a (locked) buffer to hold the superblock.
807 	 * This will be kept around at all times to optimize
808 	 * access to the superblock.
809 	 */
810 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
811 
812 reread:
813 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
814 				   BTOBB(sector_size), 0,
815 				   loud ? &xfs_sb_buf_ops
816 				        : &xfs_sb_quiet_buf_ops);
817 	if (!bp) {
818 		if (loud)
819 			xfs_warn(mp, "SB buffer read failed");
820 		return EIO;
821 	}
822 	if (bp->b_error) {
823 		error = bp->b_error;
824 		if (loud)
825 			xfs_warn(mp, "SB validate failed with error %d.", error);
826 		goto release_buf;
827 	}
828 
829 	/*
830 	 * Initialize the mount structure from the superblock.
831 	 */
832 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
833 
834 	/*
835 	 * We must be able to do sector-sized and sector-aligned IO.
836 	 */
837 	if (sector_size > sbp->sb_sectsize) {
838 		if (loud)
839 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
840 				sector_size, sbp->sb_sectsize);
841 		error = ENOSYS;
842 		goto release_buf;
843 	}
844 
845 	/*
846 	 * If device sector size is smaller than the superblock size,
847 	 * re-read the superblock so the buffer is correctly sized.
848 	 */
849 	if (sector_size < sbp->sb_sectsize) {
850 		xfs_buf_relse(bp);
851 		sector_size = sbp->sb_sectsize;
852 		goto reread;
853 	}
854 
855 	/* Initialize per-cpu counters */
856 	xfs_icsb_reinit_counters(mp);
857 
858 	/* no need to be quiet anymore, so reset the buf ops */
859 	bp->b_ops = &xfs_sb_buf_ops;
860 
861 	mp->m_sb_bp = bp;
862 	xfs_buf_unlock(bp);
863 	return 0;
864 
865 release_buf:
866 	xfs_buf_relse(bp);
867 	return error;
868 }
869 
870 
871 /*
872  * xfs_mount_common
873  *
874  * Mount initialization code establishing various mount
875  * fields from the superblock associated with the given
876  * mount structure
877  */
878 STATIC void
879 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
880 {
881 	mp->m_agfrotor = mp->m_agirotor = 0;
882 	spin_lock_init(&mp->m_agirotor_lock);
883 	mp->m_maxagi = mp->m_sb.sb_agcount;
884 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
885 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
886 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
887 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
888 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
889 	mp->m_blockmask = sbp->sb_blocksize - 1;
890 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
891 	mp->m_blockwmask = mp->m_blockwsize - 1;
892 
893 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
894 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
895 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
896 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
897 
898 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
899 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
900 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
901 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
902 
903 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
904 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
905 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
906 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
907 
908 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
909 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
910 					sbp->sb_inopblock);
911 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
912 }
913 
914 /*
915  * xfs_initialize_perag_data
916  *
917  * Read in each per-ag structure so we can count up the number of
918  * allocated inodes, free inodes and used filesystem blocks as this
919  * information is no longer persistent in the superblock. Once we have
920  * this information, write it into the in-core superblock structure.
921  */
922 STATIC int
923 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
924 {
925 	xfs_agnumber_t	index;
926 	xfs_perag_t	*pag;
927 	xfs_sb_t	*sbp = &mp->m_sb;
928 	uint64_t	ifree = 0;
929 	uint64_t	ialloc = 0;
930 	uint64_t	bfree = 0;
931 	uint64_t	bfreelst = 0;
932 	uint64_t	btree = 0;
933 	int		error;
934 
935 	for (index = 0; index < agcount; index++) {
936 		/*
937 		 * read the agf, then the agi. This gets us
938 		 * all the information we need and populates the
939 		 * per-ag structures for us.
940 		 */
941 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
942 		if (error)
943 			return error;
944 
945 		error = xfs_ialloc_pagi_init(mp, NULL, index);
946 		if (error)
947 			return error;
948 		pag = xfs_perag_get(mp, index);
949 		ifree += pag->pagi_freecount;
950 		ialloc += pag->pagi_count;
951 		bfree += pag->pagf_freeblks;
952 		bfreelst += pag->pagf_flcount;
953 		btree += pag->pagf_btreeblks;
954 		xfs_perag_put(pag);
955 	}
956 	/*
957 	 * Overwrite incore superblock counters with just-read data
958 	 */
959 	spin_lock(&mp->m_sb_lock);
960 	sbp->sb_ifree = ifree;
961 	sbp->sb_icount = ialloc;
962 	sbp->sb_fdblocks = bfree + bfreelst + btree;
963 	spin_unlock(&mp->m_sb_lock);
964 
965 	/* Fixup the per-cpu counters as well. */
966 	xfs_icsb_reinit_counters(mp);
967 
968 	return 0;
969 }
970 
971 /*
972  * Update alignment values based on mount options and sb values
973  */
974 STATIC int
975 xfs_update_alignment(xfs_mount_t *mp)
976 {
977 	xfs_sb_t	*sbp = &(mp->m_sb);
978 
979 	if (mp->m_dalign) {
980 		/*
981 		 * If stripe unit and stripe width are not multiples
982 		 * of the fs blocksize turn off alignment.
983 		 */
984 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
985 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
986 			if (mp->m_flags & XFS_MOUNT_RETERR) {
987 				xfs_warn(mp, "alignment check failed: "
988 					 "(sunit/swidth vs. blocksize)");
989 				return XFS_ERROR(EINVAL);
990 			}
991 			mp->m_dalign = mp->m_swidth = 0;
992 		} else {
993 			/*
994 			 * Convert the stripe unit and width to FSBs.
995 			 */
996 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
997 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
998 				if (mp->m_flags & XFS_MOUNT_RETERR) {
999 					xfs_warn(mp, "alignment check failed: "
1000 						 "(sunit/swidth vs. ag size)");
1001 					return XFS_ERROR(EINVAL);
1002 				}
1003 				xfs_warn(mp,
1004 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
1005 		"incompatible with agsize(%d)",
1006 					mp->m_dalign, mp->m_swidth,
1007 					sbp->sb_agblocks);
1008 
1009 				mp->m_dalign = 0;
1010 				mp->m_swidth = 0;
1011 			} else if (mp->m_dalign) {
1012 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
1013 			} else {
1014 				if (mp->m_flags & XFS_MOUNT_RETERR) {
1015 					xfs_warn(mp, "alignment check failed: "
1016 						"sunit(%d) less than bsize(%d)",
1017 						mp->m_dalign,
1018 						mp->m_blockmask +1);
1019 					return XFS_ERROR(EINVAL);
1020 				}
1021 				mp->m_swidth = 0;
1022 			}
1023 		}
1024 
1025 		/*
1026 		 * Update superblock with new values
1027 		 * and log changes
1028 		 */
1029 		if (xfs_sb_version_hasdalign(sbp)) {
1030 			if (sbp->sb_unit != mp->m_dalign) {
1031 				sbp->sb_unit = mp->m_dalign;
1032 				mp->m_update_flags |= XFS_SB_UNIT;
1033 			}
1034 			if (sbp->sb_width != mp->m_swidth) {
1035 				sbp->sb_width = mp->m_swidth;
1036 				mp->m_update_flags |= XFS_SB_WIDTH;
1037 			}
1038 		}
1039 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
1040 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
1041 			mp->m_dalign = sbp->sb_unit;
1042 			mp->m_swidth = sbp->sb_width;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /*
1049  * Set the maximum inode count for this filesystem
1050  */
1051 STATIC void
1052 xfs_set_maxicount(xfs_mount_t *mp)
1053 {
1054 	xfs_sb_t	*sbp = &(mp->m_sb);
1055 	__uint64_t	icount;
1056 
1057 	if (sbp->sb_imax_pct) {
1058 		/*
1059 		 * Make sure the maximum inode count is a multiple
1060 		 * of the units we allocate inodes in.
1061 		 */
1062 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1063 		do_div(icount, 100);
1064 		do_div(icount, mp->m_ialloc_blks);
1065 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
1066 				   sbp->sb_inopblog;
1067 	} else {
1068 		mp->m_maxicount = 0;
1069 	}
1070 }
1071 
1072 /*
1073  * Set the default minimum read and write sizes unless
1074  * already specified in a mount option.
1075  * We use smaller I/O sizes when the file system
1076  * is being used for NFS service (wsync mount option).
1077  */
1078 STATIC void
1079 xfs_set_rw_sizes(xfs_mount_t *mp)
1080 {
1081 	xfs_sb_t	*sbp = &(mp->m_sb);
1082 	int		readio_log, writeio_log;
1083 
1084 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1085 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
1086 			readio_log = XFS_WSYNC_READIO_LOG;
1087 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
1088 		} else {
1089 			readio_log = XFS_READIO_LOG_LARGE;
1090 			writeio_log = XFS_WRITEIO_LOG_LARGE;
1091 		}
1092 	} else {
1093 		readio_log = mp->m_readio_log;
1094 		writeio_log = mp->m_writeio_log;
1095 	}
1096 
1097 	if (sbp->sb_blocklog > readio_log) {
1098 		mp->m_readio_log = sbp->sb_blocklog;
1099 	} else {
1100 		mp->m_readio_log = readio_log;
1101 	}
1102 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1103 	if (sbp->sb_blocklog > writeio_log) {
1104 		mp->m_writeio_log = sbp->sb_blocklog;
1105 	} else {
1106 		mp->m_writeio_log = writeio_log;
1107 	}
1108 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
1109 }
1110 
1111 /*
1112  * precalculate the low space thresholds for dynamic speculative preallocation.
1113  */
1114 void
1115 xfs_set_low_space_thresholds(
1116 	struct xfs_mount	*mp)
1117 {
1118 	int i;
1119 
1120 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
1121 		__uint64_t space = mp->m_sb.sb_dblocks;
1122 
1123 		do_div(space, 100);
1124 		mp->m_low_space[i] = space * (i + 1);
1125 	}
1126 }
1127 
1128 
1129 /*
1130  * Set whether we're using inode alignment.
1131  */
1132 STATIC void
1133 xfs_set_inoalignment(xfs_mount_t *mp)
1134 {
1135 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1136 	    mp->m_sb.sb_inoalignmt >=
1137 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1138 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1139 	else
1140 		mp->m_inoalign_mask = 0;
1141 	/*
1142 	 * If we are using stripe alignment, check whether
1143 	 * the stripe unit is a multiple of the inode alignment
1144 	 */
1145 	if (mp->m_dalign && mp->m_inoalign_mask &&
1146 	    !(mp->m_dalign & mp->m_inoalign_mask))
1147 		mp->m_sinoalign = mp->m_dalign;
1148 	else
1149 		mp->m_sinoalign = 0;
1150 }
1151 
1152 /*
1153  * Check that the data (and log if separate) are an ok size.
1154  */
1155 STATIC int
1156 xfs_check_sizes(xfs_mount_t *mp)
1157 {
1158 	xfs_buf_t	*bp;
1159 	xfs_daddr_t	d;
1160 
1161 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1162 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1163 		xfs_warn(mp, "filesystem size mismatch detected");
1164 		return XFS_ERROR(EFBIG);
1165 	}
1166 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1167 					d - XFS_FSS_TO_BB(mp, 1),
1168 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
1169 	if (!bp) {
1170 		xfs_warn(mp, "last sector read failed");
1171 		return EIO;
1172 	}
1173 	xfs_buf_relse(bp);
1174 
1175 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1176 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1177 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1178 			xfs_warn(mp, "log size mismatch detected");
1179 			return XFS_ERROR(EFBIG);
1180 		}
1181 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1182 					d - XFS_FSB_TO_BB(mp, 1),
1183 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
1184 		if (!bp) {
1185 			xfs_warn(mp, "log device read failed");
1186 			return EIO;
1187 		}
1188 		xfs_buf_relse(bp);
1189 	}
1190 	return 0;
1191 }
1192 
1193 /*
1194  * Clear the quotaflags in memory and in the superblock.
1195  */
1196 int
1197 xfs_mount_reset_sbqflags(
1198 	struct xfs_mount	*mp)
1199 {
1200 	int			error;
1201 	struct xfs_trans	*tp;
1202 
1203 	mp->m_qflags = 0;
1204 
1205 	/*
1206 	 * It is OK to look at sb_qflags here in mount path,
1207 	 * without m_sb_lock.
1208 	 */
1209 	if (mp->m_sb.sb_qflags == 0)
1210 		return 0;
1211 	spin_lock(&mp->m_sb_lock);
1212 	mp->m_sb.sb_qflags = 0;
1213 	spin_unlock(&mp->m_sb_lock);
1214 
1215 	/*
1216 	 * If the fs is readonly, let the incore superblock run
1217 	 * with quotas off but don't flush the update out to disk
1218 	 */
1219 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1220 		return 0;
1221 
1222 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1223 	error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1224 				  0, 0, XFS_DEFAULT_LOG_COUNT);
1225 	if (error) {
1226 		xfs_trans_cancel(tp, 0);
1227 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1228 		return error;
1229 	}
1230 
1231 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1232 	return xfs_trans_commit(tp, 0);
1233 }
1234 
1235 __uint64_t
1236 xfs_default_resblks(xfs_mount_t *mp)
1237 {
1238 	__uint64_t resblks;
1239 
1240 	/*
1241 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1242 	 * smaller.  This is intended to cover concurrent allocation
1243 	 * transactions when we initially hit enospc. These each require a 4
1244 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1245 	 * allocation reservations.
1246 	 */
1247 	resblks = mp->m_sb.sb_dblocks;
1248 	do_div(resblks, 20);
1249 	resblks = min_t(__uint64_t, resblks, 8192);
1250 	return resblks;
1251 }
1252 
1253 /*
1254  * This function does the following on an initial mount of a file system:
1255  *	- reads the superblock from disk and init the mount struct
1256  *	- if we're a 32-bit kernel, do a size check on the superblock
1257  *		so we don't mount terabyte filesystems
1258  *	- init mount struct realtime fields
1259  *	- allocate inode hash table for fs
1260  *	- init directory manager
1261  *	- perform recovery and init the log manager
1262  */
1263 int
1264 xfs_mountfs(
1265 	xfs_mount_t	*mp)
1266 {
1267 	xfs_sb_t	*sbp = &(mp->m_sb);
1268 	xfs_inode_t	*rip;
1269 	__uint64_t	resblks;
1270 	uint		quotamount = 0;
1271 	uint		quotaflags = 0;
1272 	int		error = 0;
1273 
1274 	xfs_mount_common(mp, sbp);
1275 
1276 	/*
1277 	 * Check for a mismatched features2 values.  Older kernels
1278 	 * read & wrote into the wrong sb offset for sb_features2
1279 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1280 	 * when sb_features2 was added, which made older superblock
1281 	 * reading/writing routines swap it as a 64-bit value.
1282 	 *
1283 	 * For backwards compatibility, we make both slots equal.
1284 	 *
1285 	 * If we detect a mismatched field, we OR the set bits into the
1286 	 * existing features2 field in case it has already been modified; we
1287 	 * don't want to lose any features.  We then update the bad location
1288 	 * with the ORed value so that older kernels will see any features2
1289 	 * flags, and mark the two fields as needing updates once the
1290 	 * transaction subsystem is online.
1291 	 */
1292 	if (xfs_sb_has_mismatched_features2(sbp)) {
1293 		xfs_warn(mp, "correcting sb_features alignment problem");
1294 		sbp->sb_features2 |= sbp->sb_bad_features2;
1295 		sbp->sb_bad_features2 = sbp->sb_features2;
1296 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1297 
1298 		/*
1299 		 * Re-check for ATTR2 in case it was found in bad_features2
1300 		 * slot.
1301 		 */
1302 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1303 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1304 			mp->m_flags |= XFS_MOUNT_ATTR2;
1305 	}
1306 
1307 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1308 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1309 		xfs_sb_version_removeattr2(&mp->m_sb);
1310 		mp->m_update_flags |= XFS_SB_FEATURES2;
1311 
1312 		/* update sb_versionnum for the clearing of the morebits */
1313 		if (!sbp->sb_features2)
1314 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1315 	}
1316 
1317 	/*
1318 	 * Check if sb_agblocks is aligned at stripe boundary
1319 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1320 	 * allocator alignment is within an ag, therefore ag has
1321 	 * to be aligned at stripe boundary.
1322 	 */
1323 	error = xfs_update_alignment(mp);
1324 	if (error)
1325 		goto out;
1326 
1327 	xfs_alloc_compute_maxlevels(mp);
1328 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1329 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1330 	xfs_ialloc_compute_maxlevels(mp);
1331 
1332 	xfs_set_maxicount(mp);
1333 
1334 	error = xfs_uuid_mount(mp);
1335 	if (error)
1336 		goto out;
1337 
1338 	/*
1339 	 * Set the minimum read and write sizes
1340 	 */
1341 	xfs_set_rw_sizes(mp);
1342 
1343 	/* set the low space thresholds for dynamic preallocation */
1344 	xfs_set_low_space_thresholds(mp);
1345 
1346 	/*
1347 	 * Set the inode cluster size.
1348 	 * This may still be overridden by the file system
1349 	 * block size if it is larger than the chosen cluster size.
1350 	 */
1351 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1352 
1353 	/*
1354 	 * Set inode alignment fields
1355 	 */
1356 	xfs_set_inoalignment(mp);
1357 
1358 	/*
1359 	 * Check that the data (and log if separate) are an ok size.
1360 	 */
1361 	error = xfs_check_sizes(mp);
1362 	if (error)
1363 		goto out_remove_uuid;
1364 
1365 	/*
1366 	 * Initialize realtime fields in the mount structure
1367 	 */
1368 	error = xfs_rtmount_init(mp);
1369 	if (error) {
1370 		xfs_warn(mp, "RT mount failed");
1371 		goto out_remove_uuid;
1372 	}
1373 
1374 	/*
1375 	 *  Copies the low order bits of the timestamp and the randomly
1376 	 *  set "sequence" number out of a UUID.
1377 	 */
1378 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1379 
1380 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1381 
1382 	xfs_dir_mount(mp);
1383 
1384 	/*
1385 	 * Initialize the attribute manager's entries.
1386 	 */
1387 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1388 
1389 	/*
1390 	 * Initialize the precomputed transaction reservations values.
1391 	 */
1392 	xfs_trans_init(mp);
1393 
1394 	/*
1395 	 * Allocate and initialize the per-ag data.
1396 	 */
1397 	spin_lock_init(&mp->m_perag_lock);
1398 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1399 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1400 	if (error) {
1401 		xfs_warn(mp, "Failed per-ag init: %d", error);
1402 		goto out_remove_uuid;
1403 	}
1404 
1405 	if (!sbp->sb_logblocks) {
1406 		xfs_warn(mp, "no log defined");
1407 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1408 		error = XFS_ERROR(EFSCORRUPTED);
1409 		goto out_free_perag;
1410 	}
1411 
1412 	/*
1413 	 * log's mount-time initialization. Perform 1st part recovery if needed
1414 	 */
1415 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1416 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1417 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1418 	if (error) {
1419 		xfs_warn(mp, "log mount failed");
1420 		goto out_fail_wait;
1421 	}
1422 
1423 	/*
1424 	 * Now the log is mounted, we know if it was an unclean shutdown or
1425 	 * not. If it was, with the first phase of recovery has completed, we
1426 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1427 	 * but they are recovered transactionally in the second recovery phase
1428 	 * later.
1429 	 *
1430 	 * Hence we can safely re-initialise incore superblock counters from
1431 	 * the per-ag data. These may not be correct if the filesystem was not
1432 	 * cleanly unmounted, so we need to wait for recovery to finish before
1433 	 * doing this.
1434 	 *
1435 	 * If the filesystem was cleanly unmounted, then we can trust the
1436 	 * values in the superblock to be correct and we don't need to do
1437 	 * anything here.
1438 	 *
1439 	 * If we are currently making the filesystem, the initialisation will
1440 	 * fail as the perag data is in an undefined state.
1441 	 */
1442 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1443 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1444 	     !mp->m_sb.sb_inprogress) {
1445 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1446 		if (error)
1447 			goto out_fail_wait;
1448 	}
1449 
1450 	/*
1451 	 * Get and sanity-check the root inode.
1452 	 * Save the pointer to it in the mount structure.
1453 	 */
1454 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1455 	if (error) {
1456 		xfs_warn(mp, "failed to read root inode");
1457 		goto out_log_dealloc;
1458 	}
1459 
1460 	ASSERT(rip != NULL);
1461 
1462 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1463 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1464 			(unsigned long long)rip->i_ino);
1465 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1466 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1467 				 mp);
1468 		error = XFS_ERROR(EFSCORRUPTED);
1469 		goto out_rele_rip;
1470 	}
1471 	mp->m_rootip = rip;	/* save it */
1472 
1473 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1474 
1475 	/*
1476 	 * Initialize realtime inode pointers in the mount structure
1477 	 */
1478 	error = xfs_rtmount_inodes(mp);
1479 	if (error) {
1480 		/*
1481 		 * Free up the root inode.
1482 		 */
1483 		xfs_warn(mp, "failed to read RT inodes");
1484 		goto out_rele_rip;
1485 	}
1486 
1487 	/*
1488 	 * If this is a read-only mount defer the superblock updates until
1489 	 * the next remount into writeable mode.  Otherwise we would never
1490 	 * perform the update e.g. for the root filesystem.
1491 	 */
1492 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1493 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1494 		if (error) {
1495 			xfs_warn(mp, "failed to write sb changes");
1496 			goto out_rtunmount;
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Initialise the XFS quota management subsystem for this mount
1502 	 */
1503 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1504 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1505 		if (error)
1506 			goto out_rtunmount;
1507 	} else {
1508 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1509 
1510 		/*
1511 		 * If a file system had quotas running earlier, but decided to
1512 		 * mount without -o uquota/pquota/gquota options, revoke the
1513 		 * quotachecked license.
1514 		 */
1515 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1516 			xfs_notice(mp, "resetting quota flags");
1517 			error = xfs_mount_reset_sbqflags(mp);
1518 			if (error)
1519 				return error;
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * Finish recovering the file system.  This part needed to be
1525 	 * delayed until after the root and real-time bitmap inodes
1526 	 * were consistently read in.
1527 	 */
1528 	error = xfs_log_mount_finish(mp);
1529 	if (error) {
1530 		xfs_warn(mp, "log mount finish failed");
1531 		goto out_rtunmount;
1532 	}
1533 
1534 	/*
1535 	 * Complete the quota initialisation, post-log-replay component.
1536 	 */
1537 	if (quotamount) {
1538 		ASSERT(mp->m_qflags == 0);
1539 		mp->m_qflags = quotaflags;
1540 
1541 		xfs_qm_mount_quotas(mp);
1542 	}
1543 
1544 	/*
1545 	 * Now we are mounted, reserve a small amount of unused space for
1546 	 * privileged transactions. This is needed so that transaction
1547 	 * space required for critical operations can dip into this pool
1548 	 * when at ENOSPC. This is needed for operations like create with
1549 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1550 	 * are not allowed to use this reserved space.
1551 	 *
1552 	 * This may drive us straight to ENOSPC on mount, but that implies
1553 	 * we were already there on the last unmount. Warn if this occurs.
1554 	 */
1555 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1556 		resblks = xfs_default_resblks(mp);
1557 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1558 		if (error)
1559 			xfs_warn(mp,
1560 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1561 	}
1562 
1563 	return 0;
1564 
1565  out_rtunmount:
1566 	xfs_rtunmount_inodes(mp);
1567  out_rele_rip:
1568 	IRELE(rip);
1569  out_log_dealloc:
1570 	xfs_log_unmount(mp);
1571  out_fail_wait:
1572 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1573 		xfs_wait_buftarg(mp->m_logdev_targp);
1574 	xfs_wait_buftarg(mp->m_ddev_targp);
1575  out_free_perag:
1576 	xfs_free_perag(mp);
1577  out_remove_uuid:
1578 	xfs_uuid_unmount(mp);
1579  out:
1580 	return error;
1581 }
1582 
1583 /*
1584  * This flushes out the inodes,dquots and the superblock, unmounts the
1585  * log and makes sure that incore structures are freed.
1586  */
1587 void
1588 xfs_unmountfs(
1589 	struct xfs_mount	*mp)
1590 {
1591 	__uint64_t		resblks;
1592 	int			error;
1593 
1594 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1595 
1596 	xfs_qm_unmount_quotas(mp);
1597 	xfs_rtunmount_inodes(mp);
1598 	IRELE(mp->m_rootip);
1599 
1600 	/*
1601 	 * We can potentially deadlock here if we have an inode cluster
1602 	 * that has been freed has its buffer still pinned in memory because
1603 	 * the transaction is still sitting in a iclog. The stale inodes
1604 	 * on that buffer will have their flush locks held until the
1605 	 * transaction hits the disk and the callbacks run. the inode
1606 	 * flush takes the flush lock unconditionally and with nothing to
1607 	 * push out the iclog we will never get that unlocked. hence we
1608 	 * need to force the log first.
1609 	 */
1610 	xfs_log_force(mp, XFS_LOG_SYNC);
1611 
1612 	/*
1613 	 * Flush all pending changes from the AIL.
1614 	 */
1615 	xfs_ail_push_all_sync(mp->m_ail);
1616 
1617 	/*
1618 	 * And reclaim all inodes.  At this point there should be no dirty
1619 	 * inodes and none should be pinned or locked, but use synchronous
1620 	 * reclaim just to be sure. We can stop background inode reclaim
1621 	 * here as well if it is still running.
1622 	 */
1623 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1624 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1625 
1626 	xfs_qm_unmount(mp);
1627 
1628 	/*
1629 	 * Unreserve any blocks we have so that when we unmount we don't account
1630 	 * the reserved free space as used. This is really only necessary for
1631 	 * lazy superblock counting because it trusts the incore superblock
1632 	 * counters to be absolutely correct on clean unmount.
1633 	 *
1634 	 * We don't bother correcting this elsewhere for lazy superblock
1635 	 * counting because on mount of an unclean filesystem we reconstruct the
1636 	 * correct counter value and this is irrelevant.
1637 	 *
1638 	 * For non-lazy counter filesystems, this doesn't matter at all because
1639 	 * we only every apply deltas to the superblock and hence the incore
1640 	 * value does not matter....
1641 	 */
1642 	resblks = 0;
1643 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1644 	if (error)
1645 		xfs_warn(mp, "Unable to free reserved block pool. "
1646 				"Freespace may not be correct on next mount.");
1647 
1648 	error = xfs_log_sbcount(mp);
1649 	if (error)
1650 		xfs_warn(mp, "Unable to update superblock counters. "
1651 				"Freespace may not be correct on next mount.");
1652 
1653 	xfs_log_unmount(mp);
1654 	xfs_uuid_unmount(mp);
1655 
1656 #if defined(DEBUG)
1657 	xfs_errortag_clearall(mp, 0);
1658 #endif
1659 	xfs_free_perag(mp);
1660 }
1661 
1662 int
1663 xfs_fs_writable(xfs_mount_t *mp)
1664 {
1665 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1666 		(mp->m_flags & XFS_MOUNT_RDONLY));
1667 }
1668 
1669 /*
1670  * xfs_log_sbcount
1671  *
1672  * Sync the superblock counters to disk.
1673  *
1674  * Note this code can be called during the process of freezing, so
1675  * we may need to use the transaction allocator which does not
1676  * block when the transaction subsystem is in its frozen state.
1677  */
1678 int
1679 xfs_log_sbcount(xfs_mount_t *mp)
1680 {
1681 	xfs_trans_t	*tp;
1682 	int		error;
1683 
1684 	if (!xfs_fs_writable(mp))
1685 		return 0;
1686 
1687 	xfs_icsb_sync_counters(mp, 0);
1688 
1689 	/*
1690 	 * we don't need to do this if we are updating the superblock
1691 	 * counters on every modification.
1692 	 */
1693 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1694 		return 0;
1695 
1696 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1697 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1698 				  XFS_DEFAULT_LOG_COUNT);
1699 	if (error) {
1700 		xfs_trans_cancel(tp, 0);
1701 		return error;
1702 	}
1703 
1704 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1705 	xfs_trans_set_sync(tp);
1706 	error = xfs_trans_commit(tp, 0);
1707 	return error;
1708 }
1709 
1710 /*
1711  * xfs_mod_sb() can be used to copy arbitrary changes to the
1712  * in-core superblock into the superblock buffer to be logged.
1713  * It does not provide the higher level of locking that is
1714  * needed to protect the in-core superblock from concurrent
1715  * access.
1716  */
1717 void
1718 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1719 {
1720 	xfs_buf_t	*bp;
1721 	int		first;
1722 	int		last;
1723 	xfs_mount_t	*mp;
1724 	xfs_sb_field_t	f;
1725 
1726 	ASSERT(fields);
1727 	if (!fields)
1728 		return;
1729 	mp = tp->t_mountp;
1730 	bp = xfs_trans_getsb(tp, mp, 0);
1731 	first = sizeof(xfs_sb_t);
1732 	last = 0;
1733 
1734 	/* translate/copy */
1735 
1736 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1737 
1738 	/* find modified range */
1739 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1740 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1741 	last = xfs_sb_info[f + 1].offset - 1;
1742 
1743 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1744 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1745 	first = xfs_sb_info[f].offset;
1746 
1747 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1748 	xfs_trans_log_buf(tp, bp, first, last);
1749 }
1750 
1751 
1752 /*
1753  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1754  * a delta to a specified field in the in-core superblock.  Simply
1755  * switch on the field indicated and apply the delta to that field.
1756  * Fields are not allowed to dip below zero, so if the delta would
1757  * do this do not apply it and return EINVAL.
1758  *
1759  * The m_sb_lock must be held when this routine is called.
1760  */
1761 STATIC int
1762 xfs_mod_incore_sb_unlocked(
1763 	xfs_mount_t	*mp,
1764 	xfs_sb_field_t	field,
1765 	int64_t		delta,
1766 	int		rsvd)
1767 {
1768 	int		scounter;	/* short counter for 32 bit fields */
1769 	long long	lcounter;	/* long counter for 64 bit fields */
1770 	long long	res_used, rem;
1771 
1772 	/*
1773 	 * With the in-core superblock spin lock held, switch
1774 	 * on the indicated field.  Apply the delta to the
1775 	 * proper field.  If the fields value would dip below
1776 	 * 0, then do not apply the delta and return EINVAL.
1777 	 */
1778 	switch (field) {
1779 	case XFS_SBS_ICOUNT:
1780 		lcounter = (long long)mp->m_sb.sb_icount;
1781 		lcounter += delta;
1782 		if (lcounter < 0) {
1783 			ASSERT(0);
1784 			return XFS_ERROR(EINVAL);
1785 		}
1786 		mp->m_sb.sb_icount = lcounter;
1787 		return 0;
1788 	case XFS_SBS_IFREE:
1789 		lcounter = (long long)mp->m_sb.sb_ifree;
1790 		lcounter += delta;
1791 		if (lcounter < 0) {
1792 			ASSERT(0);
1793 			return XFS_ERROR(EINVAL);
1794 		}
1795 		mp->m_sb.sb_ifree = lcounter;
1796 		return 0;
1797 	case XFS_SBS_FDBLOCKS:
1798 		lcounter = (long long)
1799 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1800 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1801 
1802 		if (delta > 0) {		/* Putting blocks back */
1803 			if (res_used > delta) {
1804 				mp->m_resblks_avail += delta;
1805 			} else {
1806 				rem = delta - res_used;
1807 				mp->m_resblks_avail = mp->m_resblks;
1808 				lcounter += rem;
1809 			}
1810 		} else {				/* Taking blocks away */
1811 			lcounter += delta;
1812 			if (lcounter >= 0) {
1813 				mp->m_sb.sb_fdblocks = lcounter +
1814 							XFS_ALLOC_SET_ASIDE(mp);
1815 				return 0;
1816 			}
1817 
1818 			/*
1819 			 * We are out of blocks, use any available reserved
1820 			 * blocks if were allowed to.
1821 			 */
1822 			if (!rsvd)
1823 				return XFS_ERROR(ENOSPC);
1824 
1825 			lcounter = (long long)mp->m_resblks_avail + delta;
1826 			if (lcounter >= 0) {
1827 				mp->m_resblks_avail = lcounter;
1828 				return 0;
1829 			}
1830 			printk_once(KERN_WARNING
1831 				"Filesystem \"%s\": reserve blocks depleted! "
1832 				"Consider increasing reserve pool size.",
1833 				mp->m_fsname);
1834 			return XFS_ERROR(ENOSPC);
1835 		}
1836 
1837 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1838 		return 0;
1839 	case XFS_SBS_FREXTENTS:
1840 		lcounter = (long long)mp->m_sb.sb_frextents;
1841 		lcounter += delta;
1842 		if (lcounter < 0) {
1843 			return XFS_ERROR(ENOSPC);
1844 		}
1845 		mp->m_sb.sb_frextents = lcounter;
1846 		return 0;
1847 	case XFS_SBS_DBLOCKS:
1848 		lcounter = (long long)mp->m_sb.sb_dblocks;
1849 		lcounter += delta;
1850 		if (lcounter < 0) {
1851 			ASSERT(0);
1852 			return XFS_ERROR(EINVAL);
1853 		}
1854 		mp->m_sb.sb_dblocks = lcounter;
1855 		return 0;
1856 	case XFS_SBS_AGCOUNT:
1857 		scounter = mp->m_sb.sb_agcount;
1858 		scounter += delta;
1859 		if (scounter < 0) {
1860 			ASSERT(0);
1861 			return XFS_ERROR(EINVAL);
1862 		}
1863 		mp->m_sb.sb_agcount = scounter;
1864 		return 0;
1865 	case XFS_SBS_IMAX_PCT:
1866 		scounter = mp->m_sb.sb_imax_pct;
1867 		scounter += delta;
1868 		if (scounter < 0) {
1869 			ASSERT(0);
1870 			return XFS_ERROR(EINVAL);
1871 		}
1872 		mp->m_sb.sb_imax_pct = scounter;
1873 		return 0;
1874 	case XFS_SBS_REXTSIZE:
1875 		scounter = mp->m_sb.sb_rextsize;
1876 		scounter += delta;
1877 		if (scounter < 0) {
1878 			ASSERT(0);
1879 			return XFS_ERROR(EINVAL);
1880 		}
1881 		mp->m_sb.sb_rextsize = scounter;
1882 		return 0;
1883 	case XFS_SBS_RBMBLOCKS:
1884 		scounter = mp->m_sb.sb_rbmblocks;
1885 		scounter += delta;
1886 		if (scounter < 0) {
1887 			ASSERT(0);
1888 			return XFS_ERROR(EINVAL);
1889 		}
1890 		mp->m_sb.sb_rbmblocks = scounter;
1891 		return 0;
1892 	case XFS_SBS_RBLOCKS:
1893 		lcounter = (long long)mp->m_sb.sb_rblocks;
1894 		lcounter += delta;
1895 		if (lcounter < 0) {
1896 			ASSERT(0);
1897 			return XFS_ERROR(EINVAL);
1898 		}
1899 		mp->m_sb.sb_rblocks = lcounter;
1900 		return 0;
1901 	case XFS_SBS_REXTENTS:
1902 		lcounter = (long long)mp->m_sb.sb_rextents;
1903 		lcounter += delta;
1904 		if (lcounter < 0) {
1905 			ASSERT(0);
1906 			return XFS_ERROR(EINVAL);
1907 		}
1908 		mp->m_sb.sb_rextents = lcounter;
1909 		return 0;
1910 	case XFS_SBS_REXTSLOG:
1911 		scounter = mp->m_sb.sb_rextslog;
1912 		scounter += delta;
1913 		if (scounter < 0) {
1914 			ASSERT(0);
1915 			return XFS_ERROR(EINVAL);
1916 		}
1917 		mp->m_sb.sb_rextslog = scounter;
1918 		return 0;
1919 	default:
1920 		ASSERT(0);
1921 		return XFS_ERROR(EINVAL);
1922 	}
1923 }
1924 
1925 /*
1926  * xfs_mod_incore_sb() is used to change a field in the in-core
1927  * superblock structure by the specified delta.  This modification
1928  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1929  * routine to do the work.
1930  */
1931 int
1932 xfs_mod_incore_sb(
1933 	struct xfs_mount	*mp,
1934 	xfs_sb_field_t		field,
1935 	int64_t			delta,
1936 	int			rsvd)
1937 {
1938 	int			status;
1939 
1940 #ifdef HAVE_PERCPU_SB
1941 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1942 #endif
1943 	spin_lock(&mp->m_sb_lock);
1944 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1945 	spin_unlock(&mp->m_sb_lock);
1946 
1947 	return status;
1948 }
1949 
1950 /*
1951  * Change more than one field in the in-core superblock structure at a time.
1952  *
1953  * The fields and changes to those fields are specified in the array of
1954  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1955  * will be applied or none of them will.  If any modified field dips below 0,
1956  * then all modifications will be backed out and EINVAL will be returned.
1957  *
1958  * Note that this function may not be used for the superblock values that
1959  * are tracked with the in-memory per-cpu counters - a direct call to
1960  * xfs_icsb_modify_counters is required for these.
1961  */
1962 int
1963 xfs_mod_incore_sb_batch(
1964 	struct xfs_mount	*mp,
1965 	xfs_mod_sb_t		*msb,
1966 	uint			nmsb,
1967 	int			rsvd)
1968 {
1969 	xfs_mod_sb_t		*msbp;
1970 	int			error = 0;
1971 
1972 	/*
1973 	 * Loop through the array of mod structures and apply each individually.
1974 	 * If any fail, then back out all those which have already been applied.
1975 	 * Do all of this within the scope of the m_sb_lock so that all of the
1976 	 * changes will be atomic.
1977 	 */
1978 	spin_lock(&mp->m_sb_lock);
1979 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1980 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1981 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1982 
1983 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1984 						   msbp->msb_delta, rsvd);
1985 		if (error)
1986 			goto unwind;
1987 	}
1988 	spin_unlock(&mp->m_sb_lock);
1989 	return 0;
1990 
1991 unwind:
1992 	while (--msbp >= msb) {
1993 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1994 						   -msbp->msb_delta, rsvd);
1995 		ASSERT(error == 0);
1996 	}
1997 	spin_unlock(&mp->m_sb_lock);
1998 	return error;
1999 }
2000 
2001 /*
2002  * xfs_getsb() is called to obtain the buffer for the superblock.
2003  * The buffer is returned locked and read in from disk.
2004  * The buffer should be released with a call to xfs_brelse().
2005  *
2006  * If the flags parameter is BUF_TRYLOCK, then we'll only return
2007  * the superblock buffer if it can be locked without sleeping.
2008  * If it can't then we'll return NULL.
2009  */
2010 struct xfs_buf *
2011 xfs_getsb(
2012 	struct xfs_mount	*mp,
2013 	int			flags)
2014 {
2015 	struct xfs_buf		*bp = mp->m_sb_bp;
2016 
2017 	if (!xfs_buf_trylock(bp)) {
2018 		if (flags & XBF_TRYLOCK)
2019 			return NULL;
2020 		xfs_buf_lock(bp);
2021 	}
2022 
2023 	xfs_buf_hold(bp);
2024 	ASSERT(XFS_BUF_ISDONE(bp));
2025 	return bp;
2026 }
2027 
2028 /*
2029  * Used to free the superblock along various error paths.
2030  */
2031 void
2032 xfs_freesb(
2033 	struct xfs_mount	*mp)
2034 {
2035 	struct xfs_buf		*bp = mp->m_sb_bp;
2036 
2037 	xfs_buf_lock(bp);
2038 	mp->m_sb_bp = NULL;
2039 	xfs_buf_relse(bp);
2040 }
2041 
2042 /*
2043  * Used to log changes to the superblock unit and width fields which could
2044  * be altered by the mount options, as well as any potential sb_features2
2045  * fixup. Only the first superblock is updated.
2046  */
2047 int
2048 xfs_mount_log_sb(
2049 	xfs_mount_t	*mp,
2050 	__int64_t	fields)
2051 {
2052 	xfs_trans_t	*tp;
2053 	int		error;
2054 
2055 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
2056 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2057 			 XFS_SB_VERSIONNUM));
2058 
2059 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
2060 	error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2061 				  XFS_DEFAULT_LOG_COUNT);
2062 	if (error) {
2063 		xfs_trans_cancel(tp, 0);
2064 		return error;
2065 	}
2066 	xfs_mod_sb(tp, fields);
2067 	error = xfs_trans_commit(tp, 0);
2068 	return error;
2069 }
2070 
2071 /*
2072  * If the underlying (data/log/rt) device is readonly, there are some
2073  * operations that cannot proceed.
2074  */
2075 int
2076 xfs_dev_is_read_only(
2077 	struct xfs_mount	*mp,
2078 	char			*message)
2079 {
2080 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2081 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2082 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2083 		xfs_notice(mp, "%s required on read-only device.", message);
2084 		xfs_notice(mp, "write access unavailable, cannot proceed.");
2085 		return EROFS;
2086 	}
2087 	return 0;
2088 }
2089 
2090 #ifdef HAVE_PERCPU_SB
2091 /*
2092  * Per-cpu incore superblock counters
2093  *
2094  * Simple concept, difficult implementation
2095  *
2096  * Basically, replace the incore superblock counters with a distributed per cpu
2097  * counter for contended fields (e.g.  free block count).
2098  *
2099  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2100  * hence needs to be accurately read when we are running low on space. Hence
2101  * there is a method to enable and disable the per-cpu counters based on how
2102  * much "stuff" is available in them.
2103  *
2104  * Basically, a counter is enabled if there is enough free resource to justify
2105  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2106  * ENOSPC), then we disable the counters to synchronise all callers and
2107  * re-distribute the available resources.
2108  *
2109  * If, once we redistributed the available resources, we still get a failure,
2110  * we disable the per-cpu counter and go through the slow path.
2111  *
2112  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2113  * when we disable a per-cpu counter, we need to drain its resources back to
2114  * the global superblock. We do this after disabling the counter to prevent
2115  * more threads from queueing up on the counter.
2116  *
2117  * Essentially, this means that we still need a lock in the fast path to enable
2118  * synchronisation between the global counters and the per-cpu counters. This
2119  * is not a problem because the lock will be local to a CPU almost all the time
2120  * and have little contention except when we get to ENOSPC conditions.
2121  *
2122  * Basically, this lock becomes a barrier that enables us to lock out the fast
2123  * path while we do things like enabling and disabling counters and
2124  * synchronising the counters.
2125  *
2126  * Locking rules:
2127  *
2128  * 	1. m_sb_lock before picking up per-cpu locks
2129  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2130  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2131  * 	4. modifying per-cpu counters requires holding per-cpu lock
2132  * 	5. modifying global counters requires holding m_sb_lock
2133  *	6. enabling or disabling a counter requires holding the m_sb_lock
2134  *	   and _none_ of the per-cpu locks.
2135  *
2136  * Disabled counters are only ever re-enabled by a balance operation
2137  * that results in more free resources per CPU than a given threshold.
2138  * To ensure counters don't remain disabled, they are rebalanced when
2139  * the global resource goes above a higher threshold (i.e. some hysteresis
2140  * is present to prevent thrashing).
2141  */
2142 
2143 #ifdef CONFIG_HOTPLUG_CPU
2144 /*
2145  * hot-plug CPU notifier support.
2146  *
2147  * We need a notifier per filesystem as we need to be able to identify
2148  * the filesystem to balance the counters out. This is achieved by
2149  * having a notifier block embedded in the xfs_mount_t and doing pointer
2150  * magic to get the mount pointer from the notifier block address.
2151  */
2152 STATIC int
2153 xfs_icsb_cpu_notify(
2154 	struct notifier_block *nfb,
2155 	unsigned long action,
2156 	void *hcpu)
2157 {
2158 	xfs_icsb_cnts_t *cntp;
2159 	xfs_mount_t	*mp;
2160 
2161 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2162 	cntp = (xfs_icsb_cnts_t *)
2163 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2164 	switch (action) {
2165 	case CPU_UP_PREPARE:
2166 	case CPU_UP_PREPARE_FROZEN:
2167 		/* Easy Case - initialize the area and locks, and
2168 		 * then rebalance when online does everything else for us. */
2169 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2170 		break;
2171 	case CPU_ONLINE:
2172 	case CPU_ONLINE_FROZEN:
2173 		xfs_icsb_lock(mp);
2174 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2175 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2176 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2177 		xfs_icsb_unlock(mp);
2178 		break;
2179 	case CPU_DEAD:
2180 	case CPU_DEAD_FROZEN:
2181 		/* Disable all the counters, then fold the dead cpu's
2182 		 * count into the total on the global superblock and
2183 		 * re-enable the counters. */
2184 		xfs_icsb_lock(mp);
2185 		spin_lock(&mp->m_sb_lock);
2186 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2187 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2188 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2189 
2190 		mp->m_sb.sb_icount += cntp->icsb_icount;
2191 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2192 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2193 
2194 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2195 
2196 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2197 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2198 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2199 		spin_unlock(&mp->m_sb_lock);
2200 		xfs_icsb_unlock(mp);
2201 		break;
2202 	}
2203 
2204 	return NOTIFY_OK;
2205 }
2206 #endif /* CONFIG_HOTPLUG_CPU */
2207 
2208 int
2209 xfs_icsb_init_counters(
2210 	xfs_mount_t	*mp)
2211 {
2212 	xfs_icsb_cnts_t *cntp;
2213 	int		i;
2214 
2215 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2216 	if (mp->m_sb_cnts == NULL)
2217 		return -ENOMEM;
2218 
2219 #ifdef CONFIG_HOTPLUG_CPU
2220 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2221 	mp->m_icsb_notifier.priority = 0;
2222 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2223 #endif /* CONFIG_HOTPLUG_CPU */
2224 
2225 	for_each_online_cpu(i) {
2226 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2227 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2228 	}
2229 
2230 	mutex_init(&mp->m_icsb_mutex);
2231 
2232 	/*
2233 	 * start with all counters disabled so that the
2234 	 * initial balance kicks us off correctly
2235 	 */
2236 	mp->m_icsb_counters = -1;
2237 	return 0;
2238 }
2239 
2240 void
2241 xfs_icsb_reinit_counters(
2242 	xfs_mount_t	*mp)
2243 {
2244 	xfs_icsb_lock(mp);
2245 	/*
2246 	 * start with all counters disabled so that the
2247 	 * initial balance kicks us off correctly
2248 	 */
2249 	mp->m_icsb_counters = -1;
2250 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2251 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2252 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2253 	xfs_icsb_unlock(mp);
2254 }
2255 
2256 void
2257 xfs_icsb_destroy_counters(
2258 	xfs_mount_t	*mp)
2259 {
2260 	if (mp->m_sb_cnts) {
2261 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2262 		free_percpu(mp->m_sb_cnts);
2263 	}
2264 	mutex_destroy(&mp->m_icsb_mutex);
2265 }
2266 
2267 STATIC void
2268 xfs_icsb_lock_cntr(
2269 	xfs_icsb_cnts_t	*icsbp)
2270 {
2271 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2272 		ndelay(1000);
2273 	}
2274 }
2275 
2276 STATIC void
2277 xfs_icsb_unlock_cntr(
2278 	xfs_icsb_cnts_t	*icsbp)
2279 {
2280 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2281 }
2282 
2283 
2284 STATIC void
2285 xfs_icsb_lock_all_counters(
2286 	xfs_mount_t	*mp)
2287 {
2288 	xfs_icsb_cnts_t *cntp;
2289 	int		i;
2290 
2291 	for_each_online_cpu(i) {
2292 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2293 		xfs_icsb_lock_cntr(cntp);
2294 	}
2295 }
2296 
2297 STATIC void
2298 xfs_icsb_unlock_all_counters(
2299 	xfs_mount_t	*mp)
2300 {
2301 	xfs_icsb_cnts_t *cntp;
2302 	int		i;
2303 
2304 	for_each_online_cpu(i) {
2305 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2306 		xfs_icsb_unlock_cntr(cntp);
2307 	}
2308 }
2309 
2310 STATIC void
2311 xfs_icsb_count(
2312 	xfs_mount_t	*mp,
2313 	xfs_icsb_cnts_t	*cnt,
2314 	int		flags)
2315 {
2316 	xfs_icsb_cnts_t *cntp;
2317 	int		i;
2318 
2319 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2320 
2321 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2322 		xfs_icsb_lock_all_counters(mp);
2323 
2324 	for_each_online_cpu(i) {
2325 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2326 		cnt->icsb_icount += cntp->icsb_icount;
2327 		cnt->icsb_ifree += cntp->icsb_ifree;
2328 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2329 	}
2330 
2331 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2332 		xfs_icsb_unlock_all_counters(mp);
2333 }
2334 
2335 STATIC int
2336 xfs_icsb_counter_disabled(
2337 	xfs_mount_t	*mp,
2338 	xfs_sb_field_t	field)
2339 {
2340 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2341 	return test_bit(field, &mp->m_icsb_counters);
2342 }
2343 
2344 STATIC void
2345 xfs_icsb_disable_counter(
2346 	xfs_mount_t	*mp,
2347 	xfs_sb_field_t	field)
2348 {
2349 	xfs_icsb_cnts_t	cnt;
2350 
2351 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2352 
2353 	/*
2354 	 * If we are already disabled, then there is nothing to do
2355 	 * here. We check before locking all the counters to avoid
2356 	 * the expensive lock operation when being called in the
2357 	 * slow path and the counter is already disabled. This is
2358 	 * safe because the only time we set or clear this state is under
2359 	 * the m_icsb_mutex.
2360 	 */
2361 	if (xfs_icsb_counter_disabled(mp, field))
2362 		return;
2363 
2364 	xfs_icsb_lock_all_counters(mp);
2365 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2366 		/* drain back to superblock */
2367 
2368 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2369 		switch(field) {
2370 		case XFS_SBS_ICOUNT:
2371 			mp->m_sb.sb_icount = cnt.icsb_icount;
2372 			break;
2373 		case XFS_SBS_IFREE:
2374 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2375 			break;
2376 		case XFS_SBS_FDBLOCKS:
2377 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2378 			break;
2379 		default:
2380 			BUG();
2381 		}
2382 	}
2383 
2384 	xfs_icsb_unlock_all_counters(mp);
2385 }
2386 
2387 STATIC void
2388 xfs_icsb_enable_counter(
2389 	xfs_mount_t	*mp,
2390 	xfs_sb_field_t	field,
2391 	uint64_t	count,
2392 	uint64_t	resid)
2393 {
2394 	xfs_icsb_cnts_t	*cntp;
2395 	int		i;
2396 
2397 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2398 
2399 	xfs_icsb_lock_all_counters(mp);
2400 	for_each_online_cpu(i) {
2401 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2402 		switch (field) {
2403 		case XFS_SBS_ICOUNT:
2404 			cntp->icsb_icount = count + resid;
2405 			break;
2406 		case XFS_SBS_IFREE:
2407 			cntp->icsb_ifree = count + resid;
2408 			break;
2409 		case XFS_SBS_FDBLOCKS:
2410 			cntp->icsb_fdblocks = count + resid;
2411 			break;
2412 		default:
2413 			BUG();
2414 			break;
2415 		}
2416 		resid = 0;
2417 	}
2418 	clear_bit(field, &mp->m_icsb_counters);
2419 	xfs_icsb_unlock_all_counters(mp);
2420 }
2421 
2422 void
2423 xfs_icsb_sync_counters_locked(
2424 	xfs_mount_t	*mp,
2425 	int		flags)
2426 {
2427 	xfs_icsb_cnts_t	cnt;
2428 
2429 	xfs_icsb_count(mp, &cnt, flags);
2430 
2431 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2432 		mp->m_sb.sb_icount = cnt.icsb_icount;
2433 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2434 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2435 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2436 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2437 }
2438 
2439 /*
2440  * Accurate update of per-cpu counters to incore superblock
2441  */
2442 void
2443 xfs_icsb_sync_counters(
2444 	xfs_mount_t	*mp,
2445 	int		flags)
2446 {
2447 	spin_lock(&mp->m_sb_lock);
2448 	xfs_icsb_sync_counters_locked(mp, flags);
2449 	spin_unlock(&mp->m_sb_lock);
2450 }
2451 
2452 /*
2453  * Balance and enable/disable counters as necessary.
2454  *
2455  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2456  * chosen to be the same number as single on disk allocation chunk per CPU, and
2457  * free blocks is something far enough zero that we aren't going thrash when we
2458  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2459  * prevent looping endlessly when xfs_alloc_space asks for more than will
2460  * be distributed to a single CPU but each CPU has enough blocks to be
2461  * reenabled.
2462  *
2463  * Note that we can be called when counters are already disabled.
2464  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2465  * prevent locking every per-cpu counter needlessly.
2466  */
2467 
2468 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2469 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2470 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2471 STATIC void
2472 xfs_icsb_balance_counter_locked(
2473 	xfs_mount_t	*mp,
2474 	xfs_sb_field_t  field,
2475 	int		min_per_cpu)
2476 {
2477 	uint64_t	count, resid;
2478 	int		weight = num_online_cpus();
2479 	uint64_t	min = (uint64_t)min_per_cpu;
2480 
2481 	/* disable counter and sync counter */
2482 	xfs_icsb_disable_counter(mp, field);
2483 
2484 	/* update counters  - first CPU gets residual*/
2485 	switch (field) {
2486 	case XFS_SBS_ICOUNT:
2487 		count = mp->m_sb.sb_icount;
2488 		resid = do_div(count, weight);
2489 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2490 			return;
2491 		break;
2492 	case XFS_SBS_IFREE:
2493 		count = mp->m_sb.sb_ifree;
2494 		resid = do_div(count, weight);
2495 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2496 			return;
2497 		break;
2498 	case XFS_SBS_FDBLOCKS:
2499 		count = mp->m_sb.sb_fdblocks;
2500 		resid = do_div(count, weight);
2501 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2502 			return;
2503 		break;
2504 	default:
2505 		BUG();
2506 		count = resid = 0;	/* quiet, gcc */
2507 		break;
2508 	}
2509 
2510 	xfs_icsb_enable_counter(mp, field, count, resid);
2511 }
2512 
2513 STATIC void
2514 xfs_icsb_balance_counter(
2515 	xfs_mount_t	*mp,
2516 	xfs_sb_field_t  fields,
2517 	int		min_per_cpu)
2518 {
2519 	spin_lock(&mp->m_sb_lock);
2520 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2521 	spin_unlock(&mp->m_sb_lock);
2522 }
2523 
2524 int
2525 xfs_icsb_modify_counters(
2526 	xfs_mount_t	*mp,
2527 	xfs_sb_field_t	field,
2528 	int64_t		delta,
2529 	int		rsvd)
2530 {
2531 	xfs_icsb_cnts_t	*icsbp;
2532 	long long	lcounter;	/* long counter for 64 bit fields */
2533 	int		ret = 0;
2534 
2535 	might_sleep();
2536 again:
2537 	preempt_disable();
2538 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2539 
2540 	/*
2541 	 * if the counter is disabled, go to slow path
2542 	 */
2543 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2544 		goto slow_path;
2545 	xfs_icsb_lock_cntr(icsbp);
2546 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2547 		xfs_icsb_unlock_cntr(icsbp);
2548 		goto slow_path;
2549 	}
2550 
2551 	switch (field) {
2552 	case XFS_SBS_ICOUNT:
2553 		lcounter = icsbp->icsb_icount;
2554 		lcounter += delta;
2555 		if (unlikely(lcounter < 0))
2556 			goto balance_counter;
2557 		icsbp->icsb_icount = lcounter;
2558 		break;
2559 
2560 	case XFS_SBS_IFREE:
2561 		lcounter = icsbp->icsb_ifree;
2562 		lcounter += delta;
2563 		if (unlikely(lcounter < 0))
2564 			goto balance_counter;
2565 		icsbp->icsb_ifree = lcounter;
2566 		break;
2567 
2568 	case XFS_SBS_FDBLOCKS:
2569 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2570 
2571 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2572 		lcounter += delta;
2573 		if (unlikely(lcounter < 0))
2574 			goto balance_counter;
2575 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2576 		break;
2577 	default:
2578 		BUG();
2579 		break;
2580 	}
2581 	xfs_icsb_unlock_cntr(icsbp);
2582 	preempt_enable();
2583 	return 0;
2584 
2585 slow_path:
2586 	preempt_enable();
2587 
2588 	/*
2589 	 * serialise with a mutex so we don't burn lots of cpu on
2590 	 * the superblock lock. We still need to hold the superblock
2591 	 * lock, however, when we modify the global structures.
2592 	 */
2593 	xfs_icsb_lock(mp);
2594 
2595 	/*
2596 	 * Now running atomically.
2597 	 *
2598 	 * If the counter is enabled, someone has beaten us to rebalancing.
2599 	 * Drop the lock and try again in the fast path....
2600 	 */
2601 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2602 		xfs_icsb_unlock(mp);
2603 		goto again;
2604 	}
2605 
2606 	/*
2607 	 * The counter is currently disabled. Because we are
2608 	 * running atomically here, we know a rebalance cannot
2609 	 * be in progress. Hence we can go straight to operating
2610 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2611 	 * here even though we need to get the m_sb_lock. Doing so
2612 	 * will cause us to re-enter this function and deadlock.
2613 	 * Hence we get the m_sb_lock ourselves and then call
2614 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2615 	 * directly on the global counters.
2616 	 */
2617 	spin_lock(&mp->m_sb_lock);
2618 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2619 	spin_unlock(&mp->m_sb_lock);
2620 
2621 	/*
2622 	 * Now that we've modified the global superblock, we
2623 	 * may be able to re-enable the distributed counters
2624 	 * (e.g. lots of space just got freed). After that
2625 	 * we are done.
2626 	 */
2627 	if (ret != ENOSPC)
2628 		xfs_icsb_balance_counter(mp, field, 0);
2629 	xfs_icsb_unlock(mp);
2630 	return ret;
2631 
2632 balance_counter:
2633 	xfs_icsb_unlock_cntr(icsbp);
2634 	preempt_enable();
2635 
2636 	/*
2637 	 * We may have multiple threads here if multiple per-cpu
2638 	 * counters run dry at the same time. This will mean we can
2639 	 * do more balances than strictly necessary but it is not
2640 	 * the common slowpath case.
2641 	 */
2642 	xfs_icsb_lock(mp);
2643 
2644 	/*
2645 	 * running atomically.
2646 	 *
2647 	 * This will leave the counter in the correct state for future
2648 	 * accesses. After the rebalance, we simply try again and our retry
2649 	 * will either succeed through the fast path or slow path without
2650 	 * another balance operation being required.
2651 	 */
2652 	xfs_icsb_balance_counter(mp, field, delta);
2653 	xfs_icsb_unlock(mp);
2654 	goto again;
2655 }
2656 
2657 #endif
2658