1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir2.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_btree.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_alloc.h" 38 #include "xfs_rtalloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_error.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 #include "xfs_icache.h" 46 #include "xfs_cksum.h" 47 #include "xfs_buf_item.h" 48 49 50 #ifdef HAVE_PERCPU_SB 51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 56 #else 57 58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 60 #endif 61 62 static const struct { 63 short offset; 64 short type; /* 0 = integer 65 * 1 = binary / string (no translation) 66 */ 67 } xfs_sb_info[] = { 68 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 69 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 70 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 71 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 72 { offsetof(xfs_sb_t, sb_rextents), 0 }, 73 { offsetof(xfs_sb_t, sb_uuid), 1 }, 74 { offsetof(xfs_sb_t, sb_logstart), 0 }, 75 { offsetof(xfs_sb_t, sb_rootino), 0 }, 76 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 77 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 78 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 79 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_agcount), 0 }, 81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 83 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 84 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 85 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 86 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 87 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 88 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 89 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 90 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 91 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 92 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 93 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 94 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 95 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 96 { offsetof(xfs_sb_t, sb_icount), 0 }, 97 { offsetof(xfs_sb_t, sb_ifree), 0 }, 98 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 99 { offsetof(xfs_sb_t, sb_frextents), 0 }, 100 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 101 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 102 { offsetof(xfs_sb_t, sb_qflags), 0 }, 103 { offsetof(xfs_sb_t, sb_flags), 0 }, 104 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 106 { offsetof(xfs_sb_t, sb_unit), 0 }, 107 { offsetof(xfs_sb_t, sb_width), 0 }, 108 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 109 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 110 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 111 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 112 { offsetof(xfs_sb_t, sb_features2), 0 }, 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 114 { offsetof(xfs_sb_t, sb_features_compat), 0 }, 115 { offsetof(xfs_sb_t, sb_features_ro_compat), 0 }, 116 { offsetof(xfs_sb_t, sb_features_incompat), 0 }, 117 { offsetof(xfs_sb_t, sb_features_log_incompat), 0 }, 118 { offsetof(xfs_sb_t, sb_crc), 0 }, 119 { offsetof(xfs_sb_t, sb_pad), 0 }, 120 { offsetof(xfs_sb_t, sb_pquotino), 0 }, 121 { offsetof(xfs_sb_t, sb_lsn), 0 }, 122 { sizeof(xfs_sb_t), 0 } 123 }; 124 125 static DEFINE_MUTEX(xfs_uuid_table_mutex); 126 static int xfs_uuid_table_size; 127 static uuid_t *xfs_uuid_table; 128 129 /* 130 * See if the UUID is unique among mounted XFS filesystems. 131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 132 */ 133 STATIC int 134 xfs_uuid_mount( 135 struct xfs_mount *mp) 136 { 137 uuid_t *uuid = &mp->m_sb.sb_uuid; 138 int hole, i; 139 140 if (mp->m_flags & XFS_MOUNT_NOUUID) 141 return 0; 142 143 if (uuid_is_nil(uuid)) { 144 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 145 return XFS_ERROR(EINVAL); 146 } 147 148 mutex_lock(&xfs_uuid_table_mutex); 149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 150 if (uuid_is_nil(&xfs_uuid_table[i])) { 151 hole = i; 152 continue; 153 } 154 if (uuid_equal(uuid, &xfs_uuid_table[i])) 155 goto out_duplicate; 156 } 157 158 if (hole < 0) { 159 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 161 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 162 KM_SLEEP); 163 hole = xfs_uuid_table_size++; 164 } 165 xfs_uuid_table[hole] = *uuid; 166 mutex_unlock(&xfs_uuid_table_mutex); 167 168 return 0; 169 170 out_duplicate: 171 mutex_unlock(&xfs_uuid_table_mutex); 172 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 173 return XFS_ERROR(EINVAL); 174 } 175 176 STATIC void 177 xfs_uuid_unmount( 178 struct xfs_mount *mp) 179 { 180 uuid_t *uuid = &mp->m_sb.sb_uuid; 181 int i; 182 183 if (mp->m_flags & XFS_MOUNT_NOUUID) 184 return; 185 186 mutex_lock(&xfs_uuid_table_mutex); 187 for (i = 0; i < xfs_uuid_table_size; i++) { 188 if (uuid_is_nil(&xfs_uuid_table[i])) 189 continue; 190 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 191 continue; 192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 193 break; 194 } 195 ASSERT(i < xfs_uuid_table_size); 196 mutex_unlock(&xfs_uuid_table_mutex); 197 } 198 199 200 /* 201 * Reference counting access wrappers to the perag structures. 202 * Because we never free per-ag structures, the only thing we 203 * have to protect against changes is the tree structure itself. 204 */ 205 struct xfs_perag * 206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 207 { 208 struct xfs_perag *pag; 209 int ref = 0; 210 211 rcu_read_lock(); 212 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 213 if (pag) { 214 ASSERT(atomic_read(&pag->pag_ref) >= 0); 215 ref = atomic_inc_return(&pag->pag_ref); 216 } 217 rcu_read_unlock(); 218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 219 return pag; 220 } 221 222 /* 223 * search from @first to find the next perag with the given tag set. 224 */ 225 struct xfs_perag * 226 xfs_perag_get_tag( 227 struct xfs_mount *mp, 228 xfs_agnumber_t first, 229 int tag) 230 { 231 struct xfs_perag *pag; 232 int found; 233 int ref; 234 235 rcu_read_lock(); 236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 237 (void **)&pag, first, 1, tag); 238 if (found <= 0) { 239 rcu_read_unlock(); 240 return NULL; 241 } 242 ref = atomic_inc_return(&pag->pag_ref); 243 rcu_read_unlock(); 244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 245 return pag; 246 } 247 248 void 249 xfs_perag_put(struct xfs_perag *pag) 250 { 251 int ref; 252 253 ASSERT(atomic_read(&pag->pag_ref) > 0); 254 ref = atomic_dec_return(&pag->pag_ref); 255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 256 } 257 258 STATIC void 259 __xfs_free_perag( 260 struct rcu_head *head) 261 { 262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 263 264 ASSERT(atomic_read(&pag->pag_ref) == 0); 265 kmem_free(pag); 266 } 267 268 /* 269 * Free up the per-ag resources associated with the mount structure. 270 */ 271 STATIC void 272 xfs_free_perag( 273 xfs_mount_t *mp) 274 { 275 xfs_agnumber_t agno; 276 struct xfs_perag *pag; 277 278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 279 spin_lock(&mp->m_perag_lock); 280 pag = radix_tree_delete(&mp->m_perag_tree, agno); 281 spin_unlock(&mp->m_perag_lock); 282 ASSERT(pag); 283 ASSERT(atomic_read(&pag->pag_ref) == 0); 284 call_rcu(&pag->rcu_head, __xfs_free_perag); 285 } 286 } 287 288 /* 289 * Check size of device based on the (data/realtime) block count. 290 * Note: this check is used by the growfs code as well as mount. 291 */ 292 int 293 xfs_sb_validate_fsb_count( 294 xfs_sb_t *sbp, 295 __uint64_t nblocks) 296 { 297 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 298 ASSERT(sbp->sb_blocklog >= BBSHIFT); 299 300 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 301 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 302 return EFBIG; 303 #else /* Limited by UINT_MAX of sectors */ 304 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 305 return EFBIG; 306 #endif 307 return 0; 308 } 309 310 /* 311 * Check the validity of the SB found. 312 */ 313 STATIC int 314 xfs_mount_validate_sb( 315 xfs_mount_t *mp, 316 xfs_sb_t *sbp, 317 bool check_inprogress) 318 { 319 320 /* 321 * If the log device and data device have the 322 * same device number, the log is internal. 323 * Consequently, the sb_logstart should be non-zero. If 324 * we have a zero sb_logstart in this case, we may be trying to mount 325 * a volume filesystem in a non-volume manner. 326 */ 327 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 328 xfs_warn(mp, "bad magic number"); 329 return XFS_ERROR(EWRONGFS); 330 } 331 332 333 if (!xfs_sb_good_version(sbp)) { 334 xfs_warn(mp, "bad version"); 335 return XFS_ERROR(EWRONGFS); 336 } 337 338 /* 339 * Version 5 superblock feature mask validation. Reject combinations the 340 * kernel cannot support up front before checking anything else. 341 */ 342 if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) { 343 xfs_alert(mp, 344 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n" 345 "Use of these features in this kernel is at your own risk!"); 346 347 if (xfs_sb_has_compat_feature(sbp, 348 XFS_SB_FEAT_COMPAT_UNKNOWN)) { 349 xfs_warn(mp, 350 "Superblock has unknown compatible features (0x%x) enabled.\n" 351 "Using a more recent kernel is recommended.", 352 (sbp->sb_features_compat & 353 XFS_SB_FEAT_COMPAT_UNKNOWN)); 354 } 355 356 if (xfs_sb_has_ro_compat_feature(sbp, 357 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 358 xfs_alert(mp, 359 "Superblock has unknown read-only compatible features (0x%x) enabled.", 360 (sbp->sb_features_ro_compat & 361 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 362 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 363 xfs_warn(mp, 364 "Attempted to mount read-only compatible filesystem read-write.\n" 365 "Filesystem can only be safely mounted read only."); 366 return XFS_ERROR(EINVAL); 367 } 368 } 369 if (xfs_sb_has_incompat_feature(sbp, 370 XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 371 xfs_warn(mp, 372 "Superblock has unknown incompatible features (0x%x) enabled.\n" 373 "Filesystem can not be safely mounted by this kernel.", 374 (sbp->sb_features_incompat & 375 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 376 return XFS_ERROR(EINVAL); 377 } 378 } 379 380 if (unlikely( 381 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 382 xfs_warn(mp, 383 "filesystem is marked as having an external log; " 384 "specify logdev on the mount command line."); 385 return XFS_ERROR(EINVAL); 386 } 387 388 if (unlikely( 389 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 390 xfs_warn(mp, 391 "filesystem is marked as having an internal log; " 392 "do not specify logdev on the mount command line."); 393 return XFS_ERROR(EINVAL); 394 } 395 396 /* 397 * More sanity checking. Most of these were stolen directly from 398 * xfs_repair. 399 */ 400 if (unlikely( 401 sbp->sb_agcount <= 0 || 402 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 403 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 404 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 405 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 406 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 407 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 408 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 409 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 410 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 411 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 412 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 413 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 414 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 415 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 416 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 417 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 418 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 419 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 420 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 421 sbp->sb_dblocks == 0 || 422 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 423 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) { 424 XFS_CORRUPTION_ERROR("SB sanity check failed", 425 XFS_ERRLEVEL_LOW, mp, sbp); 426 return XFS_ERROR(EFSCORRUPTED); 427 } 428 429 /* 430 * Until this is fixed only page-sized or smaller data blocks work. 431 */ 432 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 433 xfs_warn(mp, 434 "File system with blocksize %d bytes. " 435 "Only pagesize (%ld) or less will currently work.", 436 sbp->sb_blocksize, PAGE_SIZE); 437 return XFS_ERROR(ENOSYS); 438 } 439 440 /* 441 * Currently only very few inode sizes are supported. 442 */ 443 switch (sbp->sb_inodesize) { 444 case 256: 445 case 512: 446 case 1024: 447 case 2048: 448 break; 449 default: 450 xfs_warn(mp, "inode size of %d bytes not supported", 451 sbp->sb_inodesize); 452 return XFS_ERROR(ENOSYS); 453 } 454 455 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 456 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 457 xfs_warn(mp, 458 "file system too large to be mounted on this system."); 459 return XFS_ERROR(EFBIG); 460 } 461 462 if (check_inprogress && sbp->sb_inprogress) { 463 xfs_warn(mp, "Offline file system operation in progress!"); 464 return XFS_ERROR(EFSCORRUPTED); 465 } 466 467 /* 468 * Version 1 directory format has never worked on Linux. 469 */ 470 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 471 xfs_warn(mp, "file system using version 1 directory format"); 472 return XFS_ERROR(ENOSYS); 473 } 474 475 return 0; 476 } 477 478 int 479 xfs_initialize_perag( 480 xfs_mount_t *mp, 481 xfs_agnumber_t agcount, 482 xfs_agnumber_t *maxagi) 483 { 484 xfs_agnumber_t index; 485 xfs_agnumber_t first_initialised = 0; 486 xfs_perag_t *pag; 487 xfs_agino_t agino; 488 xfs_ino_t ino; 489 xfs_sb_t *sbp = &mp->m_sb; 490 int error = -ENOMEM; 491 492 /* 493 * Walk the current per-ag tree so we don't try to initialise AGs 494 * that already exist (growfs case). Allocate and insert all the 495 * AGs we don't find ready for initialisation. 496 */ 497 for (index = 0; index < agcount; index++) { 498 pag = xfs_perag_get(mp, index); 499 if (pag) { 500 xfs_perag_put(pag); 501 continue; 502 } 503 if (!first_initialised) 504 first_initialised = index; 505 506 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 507 if (!pag) 508 goto out_unwind; 509 pag->pag_agno = index; 510 pag->pag_mount = mp; 511 spin_lock_init(&pag->pag_ici_lock); 512 mutex_init(&pag->pag_ici_reclaim_lock); 513 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 514 spin_lock_init(&pag->pag_buf_lock); 515 pag->pag_buf_tree = RB_ROOT; 516 517 if (radix_tree_preload(GFP_NOFS)) 518 goto out_unwind; 519 520 spin_lock(&mp->m_perag_lock); 521 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 522 BUG(); 523 spin_unlock(&mp->m_perag_lock); 524 radix_tree_preload_end(); 525 error = -EEXIST; 526 goto out_unwind; 527 } 528 spin_unlock(&mp->m_perag_lock); 529 radix_tree_preload_end(); 530 } 531 532 /* 533 * If we mount with the inode64 option, or no inode overflows 534 * the legacy 32-bit address space clear the inode32 option. 535 */ 536 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 537 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 538 539 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 540 mp->m_flags |= XFS_MOUNT_32BITINODES; 541 else 542 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 543 544 if (mp->m_flags & XFS_MOUNT_32BITINODES) 545 index = xfs_set_inode32(mp); 546 else 547 index = xfs_set_inode64(mp); 548 549 if (maxagi) 550 *maxagi = index; 551 return 0; 552 553 out_unwind: 554 kmem_free(pag); 555 for (; index > first_initialised; index--) { 556 pag = radix_tree_delete(&mp->m_perag_tree, index); 557 kmem_free(pag); 558 } 559 return error; 560 } 561 562 void 563 xfs_sb_from_disk( 564 struct xfs_sb *to, 565 xfs_dsb_t *from) 566 { 567 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 568 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 569 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 570 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 571 to->sb_rextents = be64_to_cpu(from->sb_rextents); 572 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 573 to->sb_logstart = be64_to_cpu(from->sb_logstart); 574 to->sb_rootino = be64_to_cpu(from->sb_rootino); 575 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 576 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 577 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 578 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 579 to->sb_agcount = be32_to_cpu(from->sb_agcount); 580 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 581 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 582 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 583 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 584 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 585 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 586 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 587 to->sb_blocklog = from->sb_blocklog; 588 to->sb_sectlog = from->sb_sectlog; 589 to->sb_inodelog = from->sb_inodelog; 590 to->sb_inopblog = from->sb_inopblog; 591 to->sb_agblklog = from->sb_agblklog; 592 to->sb_rextslog = from->sb_rextslog; 593 to->sb_inprogress = from->sb_inprogress; 594 to->sb_imax_pct = from->sb_imax_pct; 595 to->sb_icount = be64_to_cpu(from->sb_icount); 596 to->sb_ifree = be64_to_cpu(from->sb_ifree); 597 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 598 to->sb_frextents = be64_to_cpu(from->sb_frextents); 599 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 600 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 601 to->sb_qflags = be16_to_cpu(from->sb_qflags); 602 to->sb_flags = from->sb_flags; 603 to->sb_shared_vn = from->sb_shared_vn; 604 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 605 to->sb_unit = be32_to_cpu(from->sb_unit); 606 to->sb_width = be32_to_cpu(from->sb_width); 607 to->sb_dirblklog = from->sb_dirblklog; 608 to->sb_logsectlog = from->sb_logsectlog; 609 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 610 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 611 to->sb_features2 = be32_to_cpu(from->sb_features2); 612 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 613 to->sb_features_compat = be32_to_cpu(from->sb_features_compat); 614 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); 615 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); 616 to->sb_features_log_incompat = 617 be32_to_cpu(from->sb_features_log_incompat); 618 to->sb_pad = 0; 619 to->sb_pquotino = be64_to_cpu(from->sb_pquotino); 620 to->sb_lsn = be64_to_cpu(from->sb_lsn); 621 } 622 623 /* 624 * Copy in core superblock to ondisk one. 625 * 626 * The fields argument is mask of superblock fields to copy. 627 */ 628 void 629 xfs_sb_to_disk( 630 xfs_dsb_t *to, 631 xfs_sb_t *from, 632 __int64_t fields) 633 { 634 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 635 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 636 xfs_sb_field_t f; 637 int first; 638 int size; 639 640 ASSERT(fields); 641 if (!fields) 642 return; 643 644 while (fields) { 645 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 646 first = xfs_sb_info[f].offset; 647 size = xfs_sb_info[f + 1].offset - first; 648 649 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 650 651 if (size == 1 || xfs_sb_info[f].type == 1) { 652 memcpy(to_ptr + first, from_ptr + first, size); 653 } else { 654 switch (size) { 655 case 2: 656 *(__be16 *)(to_ptr + first) = 657 cpu_to_be16(*(__u16 *)(from_ptr + first)); 658 break; 659 case 4: 660 *(__be32 *)(to_ptr + first) = 661 cpu_to_be32(*(__u32 *)(from_ptr + first)); 662 break; 663 case 8: 664 *(__be64 *)(to_ptr + first) = 665 cpu_to_be64(*(__u64 *)(from_ptr + first)); 666 break; 667 default: 668 ASSERT(0); 669 } 670 } 671 672 fields &= ~(1LL << f); 673 } 674 } 675 676 static int 677 xfs_sb_verify( 678 struct xfs_buf *bp) 679 { 680 struct xfs_mount *mp = bp->b_target->bt_mount; 681 struct xfs_sb sb; 682 683 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp)); 684 685 /* 686 * Only check the in progress field for the primary superblock as 687 * mkfs.xfs doesn't clear it from secondary superblocks. 688 */ 689 return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR); 690 } 691 692 /* 693 * If the superblock has the CRC feature bit set or the CRC field is non-null, 694 * check that the CRC is valid. We check the CRC field is non-null because a 695 * single bit error could clear the feature bit and unused parts of the 696 * superblock are supposed to be zero. Hence a non-null crc field indicates that 697 * we've potentially lost a feature bit and we should check it anyway. 698 */ 699 static void 700 xfs_sb_read_verify( 701 struct xfs_buf *bp) 702 { 703 struct xfs_mount *mp = bp->b_target->bt_mount; 704 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 705 int error; 706 707 /* 708 * open code the version check to avoid needing to convert the entire 709 * superblock from disk order just to check the version number 710 */ 711 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && 712 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == 713 XFS_SB_VERSION_5) || 714 dsb->sb_crc != 0)) { 715 716 if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize), 717 offsetof(struct xfs_sb, sb_crc))) { 718 error = EFSCORRUPTED; 719 goto out_error; 720 } 721 } 722 error = xfs_sb_verify(bp); 723 724 out_error: 725 if (error) { 726 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); 727 xfs_buf_ioerror(bp, error); 728 } 729 } 730 731 /* 732 * We may be probed for a filesystem match, so we may not want to emit 733 * messages when the superblock buffer is not actually an XFS superblock. 734 * If we find an XFS superblock, the run a normal, noisy mount because we are 735 * really going to mount it and want to know about errors. 736 */ 737 static void 738 xfs_sb_quiet_read_verify( 739 struct xfs_buf *bp) 740 { 741 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 742 743 744 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { 745 /* XFS filesystem, verify noisily! */ 746 xfs_sb_read_verify(bp); 747 return; 748 } 749 /* quietly fail */ 750 xfs_buf_ioerror(bp, EWRONGFS); 751 } 752 753 static void 754 xfs_sb_write_verify( 755 struct xfs_buf *bp) 756 { 757 struct xfs_mount *mp = bp->b_target->bt_mount; 758 struct xfs_buf_log_item *bip = bp->b_fspriv; 759 int error; 760 761 error = xfs_sb_verify(bp); 762 if (error) { 763 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); 764 xfs_buf_ioerror(bp, error); 765 return; 766 } 767 768 if (!xfs_sb_version_hascrc(&mp->m_sb)) 769 return; 770 771 if (bip) 772 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 773 774 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), 775 offsetof(struct xfs_sb, sb_crc)); 776 } 777 778 const struct xfs_buf_ops xfs_sb_buf_ops = { 779 .verify_read = xfs_sb_read_verify, 780 .verify_write = xfs_sb_write_verify, 781 }; 782 783 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { 784 .verify_read = xfs_sb_quiet_read_verify, 785 .verify_write = xfs_sb_write_verify, 786 }; 787 788 /* 789 * xfs_readsb 790 * 791 * Does the initial read of the superblock. 792 */ 793 int 794 xfs_readsb(xfs_mount_t *mp, int flags) 795 { 796 unsigned int sector_size; 797 struct xfs_buf *bp; 798 struct xfs_sb *sbp = &mp->m_sb; 799 int error; 800 int loud = !(flags & XFS_MFSI_QUIET); 801 802 ASSERT(mp->m_sb_bp == NULL); 803 ASSERT(mp->m_ddev_targp != NULL); 804 805 /* 806 * Allocate a (locked) buffer to hold the superblock. 807 * This will be kept around at all times to optimize 808 * access to the superblock. 809 */ 810 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 811 812 reread: 813 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 814 BTOBB(sector_size), 0, 815 loud ? &xfs_sb_buf_ops 816 : &xfs_sb_quiet_buf_ops); 817 if (!bp) { 818 if (loud) 819 xfs_warn(mp, "SB buffer read failed"); 820 return EIO; 821 } 822 if (bp->b_error) { 823 error = bp->b_error; 824 if (loud) 825 xfs_warn(mp, "SB validate failed with error %d.", error); 826 goto release_buf; 827 } 828 829 /* 830 * Initialize the mount structure from the superblock. 831 */ 832 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 833 834 /* 835 * We must be able to do sector-sized and sector-aligned IO. 836 */ 837 if (sector_size > sbp->sb_sectsize) { 838 if (loud) 839 xfs_warn(mp, "device supports %u byte sectors (not %u)", 840 sector_size, sbp->sb_sectsize); 841 error = ENOSYS; 842 goto release_buf; 843 } 844 845 /* 846 * If device sector size is smaller than the superblock size, 847 * re-read the superblock so the buffer is correctly sized. 848 */ 849 if (sector_size < sbp->sb_sectsize) { 850 xfs_buf_relse(bp); 851 sector_size = sbp->sb_sectsize; 852 goto reread; 853 } 854 855 /* Initialize per-cpu counters */ 856 xfs_icsb_reinit_counters(mp); 857 858 /* no need to be quiet anymore, so reset the buf ops */ 859 bp->b_ops = &xfs_sb_buf_ops; 860 861 mp->m_sb_bp = bp; 862 xfs_buf_unlock(bp); 863 return 0; 864 865 release_buf: 866 xfs_buf_relse(bp); 867 return error; 868 } 869 870 871 /* 872 * xfs_mount_common 873 * 874 * Mount initialization code establishing various mount 875 * fields from the superblock associated with the given 876 * mount structure 877 */ 878 STATIC void 879 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 880 { 881 mp->m_agfrotor = mp->m_agirotor = 0; 882 spin_lock_init(&mp->m_agirotor_lock); 883 mp->m_maxagi = mp->m_sb.sb_agcount; 884 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 885 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 886 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 887 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 888 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 889 mp->m_blockmask = sbp->sb_blocksize - 1; 890 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 891 mp->m_blockwmask = mp->m_blockwsize - 1; 892 893 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 894 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 895 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 896 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 897 898 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 899 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 900 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 901 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 902 903 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 904 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 905 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 906 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 907 908 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 909 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 910 sbp->sb_inopblock); 911 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 912 } 913 914 /* 915 * xfs_initialize_perag_data 916 * 917 * Read in each per-ag structure so we can count up the number of 918 * allocated inodes, free inodes and used filesystem blocks as this 919 * information is no longer persistent in the superblock. Once we have 920 * this information, write it into the in-core superblock structure. 921 */ 922 STATIC int 923 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 924 { 925 xfs_agnumber_t index; 926 xfs_perag_t *pag; 927 xfs_sb_t *sbp = &mp->m_sb; 928 uint64_t ifree = 0; 929 uint64_t ialloc = 0; 930 uint64_t bfree = 0; 931 uint64_t bfreelst = 0; 932 uint64_t btree = 0; 933 int error; 934 935 for (index = 0; index < agcount; index++) { 936 /* 937 * read the agf, then the agi. This gets us 938 * all the information we need and populates the 939 * per-ag structures for us. 940 */ 941 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 942 if (error) 943 return error; 944 945 error = xfs_ialloc_pagi_init(mp, NULL, index); 946 if (error) 947 return error; 948 pag = xfs_perag_get(mp, index); 949 ifree += pag->pagi_freecount; 950 ialloc += pag->pagi_count; 951 bfree += pag->pagf_freeblks; 952 bfreelst += pag->pagf_flcount; 953 btree += pag->pagf_btreeblks; 954 xfs_perag_put(pag); 955 } 956 /* 957 * Overwrite incore superblock counters with just-read data 958 */ 959 spin_lock(&mp->m_sb_lock); 960 sbp->sb_ifree = ifree; 961 sbp->sb_icount = ialloc; 962 sbp->sb_fdblocks = bfree + bfreelst + btree; 963 spin_unlock(&mp->m_sb_lock); 964 965 /* Fixup the per-cpu counters as well. */ 966 xfs_icsb_reinit_counters(mp); 967 968 return 0; 969 } 970 971 /* 972 * Update alignment values based on mount options and sb values 973 */ 974 STATIC int 975 xfs_update_alignment(xfs_mount_t *mp) 976 { 977 xfs_sb_t *sbp = &(mp->m_sb); 978 979 if (mp->m_dalign) { 980 /* 981 * If stripe unit and stripe width are not multiples 982 * of the fs blocksize turn off alignment. 983 */ 984 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 985 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 986 if (mp->m_flags & XFS_MOUNT_RETERR) { 987 xfs_warn(mp, "alignment check failed: " 988 "(sunit/swidth vs. blocksize)"); 989 return XFS_ERROR(EINVAL); 990 } 991 mp->m_dalign = mp->m_swidth = 0; 992 } else { 993 /* 994 * Convert the stripe unit and width to FSBs. 995 */ 996 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 997 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 998 if (mp->m_flags & XFS_MOUNT_RETERR) { 999 xfs_warn(mp, "alignment check failed: " 1000 "(sunit/swidth vs. ag size)"); 1001 return XFS_ERROR(EINVAL); 1002 } 1003 xfs_warn(mp, 1004 "stripe alignment turned off: sunit(%d)/swidth(%d) " 1005 "incompatible with agsize(%d)", 1006 mp->m_dalign, mp->m_swidth, 1007 sbp->sb_agblocks); 1008 1009 mp->m_dalign = 0; 1010 mp->m_swidth = 0; 1011 } else if (mp->m_dalign) { 1012 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 1013 } else { 1014 if (mp->m_flags & XFS_MOUNT_RETERR) { 1015 xfs_warn(mp, "alignment check failed: " 1016 "sunit(%d) less than bsize(%d)", 1017 mp->m_dalign, 1018 mp->m_blockmask +1); 1019 return XFS_ERROR(EINVAL); 1020 } 1021 mp->m_swidth = 0; 1022 } 1023 } 1024 1025 /* 1026 * Update superblock with new values 1027 * and log changes 1028 */ 1029 if (xfs_sb_version_hasdalign(sbp)) { 1030 if (sbp->sb_unit != mp->m_dalign) { 1031 sbp->sb_unit = mp->m_dalign; 1032 mp->m_update_flags |= XFS_SB_UNIT; 1033 } 1034 if (sbp->sb_width != mp->m_swidth) { 1035 sbp->sb_width = mp->m_swidth; 1036 mp->m_update_flags |= XFS_SB_WIDTH; 1037 } 1038 } 1039 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 1040 xfs_sb_version_hasdalign(&mp->m_sb)) { 1041 mp->m_dalign = sbp->sb_unit; 1042 mp->m_swidth = sbp->sb_width; 1043 } 1044 1045 return 0; 1046 } 1047 1048 /* 1049 * Set the maximum inode count for this filesystem 1050 */ 1051 STATIC void 1052 xfs_set_maxicount(xfs_mount_t *mp) 1053 { 1054 xfs_sb_t *sbp = &(mp->m_sb); 1055 __uint64_t icount; 1056 1057 if (sbp->sb_imax_pct) { 1058 /* 1059 * Make sure the maximum inode count is a multiple 1060 * of the units we allocate inodes in. 1061 */ 1062 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 1063 do_div(icount, 100); 1064 do_div(icount, mp->m_ialloc_blks); 1065 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 1066 sbp->sb_inopblog; 1067 } else { 1068 mp->m_maxicount = 0; 1069 } 1070 } 1071 1072 /* 1073 * Set the default minimum read and write sizes unless 1074 * already specified in a mount option. 1075 * We use smaller I/O sizes when the file system 1076 * is being used for NFS service (wsync mount option). 1077 */ 1078 STATIC void 1079 xfs_set_rw_sizes(xfs_mount_t *mp) 1080 { 1081 xfs_sb_t *sbp = &(mp->m_sb); 1082 int readio_log, writeio_log; 1083 1084 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 1085 if (mp->m_flags & XFS_MOUNT_WSYNC) { 1086 readio_log = XFS_WSYNC_READIO_LOG; 1087 writeio_log = XFS_WSYNC_WRITEIO_LOG; 1088 } else { 1089 readio_log = XFS_READIO_LOG_LARGE; 1090 writeio_log = XFS_WRITEIO_LOG_LARGE; 1091 } 1092 } else { 1093 readio_log = mp->m_readio_log; 1094 writeio_log = mp->m_writeio_log; 1095 } 1096 1097 if (sbp->sb_blocklog > readio_log) { 1098 mp->m_readio_log = sbp->sb_blocklog; 1099 } else { 1100 mp->m_readio_log = readio_log; 1101 } 1102 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 1103 if (sbp->sb_blocklog > writeio_log) { 1104 mp->m_writeio_log = sbp->sb_blocklog; 1105 } else { 1106 mp->m_writeio_log = writeio_log; 1107 } 1108 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 1109 } 1110 1111 /* 1112 * precalculate the low space thresholds for dynamic speculative preallocation. 1113 */ 1114 void 1115 xfs_set_low_space_thresholds( 1116 struct xfs_mount *mp) 1117 { 1118 int i; 1119 1120 for (i = 0; i < XFS_LOWSP_MAX; i++) { 1121 __uint64_t space = mp->m_sb.sb_dblocks; 1122 1123 do_div(space, 100); 1124 mp->m_low_space[i] = space * (i + 1); 1125 } 1126 } 1127 1128 1129 /* 1130 * Set whether we're using inode alignment. 1131 */ 1132 STATIC void 1133 xfs_set_inoalignment(xfs_mount_t *mp) 1134 { 1135 if (xfs_sb_version_hasalign(&mp->m_sb) && 1136 mp->m_sb.sb_inoalignmt >= 1137 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 1138 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 1139 else 1140 mp->m_inoalign_mask = 0; 1141 /* 1142 * If we are using stripe alignment, check whether 1143 * the stripe unit is a multiple of the inode alignment 1144 */ 1145 if (mp->m_dalign && mp->m_inoalign_mask && 1146 !(mp->m_dalign & mp->m_inoalign_mask)) 1147 mp->m_sinoalign = mp->m_dalign; 1148 else 1149 mp->m_sinoalign = 0; 1150 } 1151 1152 /* 1153 * Check that the data (and log if separate) are an ok size. 1154 */ 1155 STATIC int 1156 xfs_check_sizes(xfs_mount_t *mp) 1157 { 1158 xfs_buf_t *bp; 1159 xfs_daddr_t d; 1160 1161 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 1162 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 1163 xfs_warn(mp, "filesystem size mismatch detected"); 1164 return XFS_ERROR(EFBIG); 1165 } 1166 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 1167 d - XFS_FSS_TO_BB(mp, 1), 1168 XFS_FSS_TO_BB(mp, 1), 0, NULL); 1169 if (!bp) { 1170 xfs_warn(mp, "last sector read failed"); 1171 return EIO; 1172 } 1173 xfs_buf_relse(bp); 1174 1175 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1176 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1177 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1178 xfs_warn(mp, "log size mismatch detected"); 1179 return XFS_ERROR(EFBIG); 1180 } 1181 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 1182 d - XFS_FSB_TO_BB(mp, 1), 1183 XFS_FSB_TO_BB(mp, 1), 0, NULL); 1184 if (!bp) { 1185 xfs_warn(mp, "log device read failed"); 1186 return EIO; 1187 } 1188 xfs_buf_relse(bp); 1189 } 1190 return 0; 1191 } 1192 1193 /* 1194 * Clear the quotaflags in memory and in the superblock. 1195 */ 1196 int 1197 xfs_mount_reset_sbqflags( 1198 struct xfs_mount *mp) 1199 { 1200 int error; 1201 struct xfs_trans *tp; 1202 1203 mp->m_qflags = 0; 1204 1205 /* 1206 * It is OK to look at sb_qflags here in mount path, 1207 * without m_sb_lock. 1208 */ 1209 if (mp->m_sb.sb_qflags == 0) 1210 return 0; 1211 spin_lock(&mp->m_sb_lock); 1212 mp->m_sb.sb_qflags = 0; 1213 spin_unlock(&mp->m_sb_lock); 1214 1215 /* 1216 * If the fs is readonly, let the incore superblock run 1217 * with quotas off but don't flush the update out to disk 1218 */ 1219 if (mp->m_flags & XFS_MOUNT_RDONLY) 1220 return 0; 1221 1222 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1223 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp), 1224 0, 0, XFS_DEFAULT_LOG_COUNT); 1225 if (error) { 1226 xfs_trans_cancel(tp, 0); 1227 xfs_alert(mp, "%s: Superblock update failed!", __func__); 1228 return error; 1229 } 1230 1231 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1232 return xfs_trans_commit(tp, 0); 1233 } 1234 1235 __uint64_t 1236 xfs_default_resblks(xfs_mount_t *mp) 1237 { 1238 __uint64_t resblks; 1239 1240 /* 1241 * We default to 5% or 8192 fsbs of space reserved, whichever is 1242 * smaller. This is intended to cover concurrent allocation 1243 * transactions when we initially hit enospc. These each require a 4 1244 * block reservation. Hence by default we cover roughly 2000 concurrent 1245 * allocation reservations. 1246 */ 1247 resblks = mp->m_sb.sb_dblocks; 1248 do_div(resblks, 20); 1249 resblks = min_t(__uint64_t, resblks, 8192); 1250 return resblks; 1251 } 1252 1253 /* 1254 * This function does the following on an initial mount of a file system: 1255 * - reads the superblock from disk and init the mount struct 1256 * - if we're a 32-bit kernel, do a size check on the superblock 1257 * so we don't mount terabyte filesystems 1258 * - init mount struct realtime fields 1259 * - allocate inode hash table for fs 1260 * - init directory manager 1261 * - perform recovery and init the log manager 1262 */ 1263 int 1264 xfs_mountfs( 1265 xfs_mount_t *mp) 1266 { 1267 xfs_sb_t *sbp = &(mp->m_sb); 1268 xfs_inode_t *rip; 1269 __uint64_t resblks; 1270 uint quotamount = 0; 1271 uint quotaflags = 0; 1272 int error = 0; 1273 1274 xfs_mount_common(mp, sbp); 1275 1276 /* 1277 * Check for a mismatched features2 values. Older kernels 1278 * read & wrote into the wrong sb offset for sb_features2 1279 * on some platforms due to xfs_sb_t not being 64bit size aligned 1280 * when sb_features2 was added, which made older superblock 1281 * reading/writing routines swap it as a 64-bit value. 1282 * 1283 * For backwards compatibility, we make both slots equal. 1284 * 1285 * If we detect a mismatched field, we OR the set bits into the 1286 * existing features2 field in case it has already been modified; we 1287 * don't want to lose any features. We then update the bad location 1288 * with the ORed value so that older kernels will see any features2 1289 * flags, and mark the two fields as needing updates once the 1290 * transaction subsystem is online. 1291 */ 1292 if (xfs_sb_has_mismatched_features2(sbp)) { 1293 xfs_warn(mp, "correcting sb_features alignment problem"); 1294 sbp->sb_features2 |= sbp->sb_bad_features2; 1295 sbp->sb_bad_features2 = sbp->sb_features2; 1296 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1297 1298 /* 1299 * Re-check for ATTR2 in case it was found in bad_features2 1300 * slot. 1301 */ 1302 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1303 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1304 mp->m_flags |= XFS_MOUNT_ATTR2; 1305 } 1306 1307 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1308 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1309 xfs_sb_version_removeattr2(&mp->m_sb); 1310 mp->m_update_flags |= XFS_SB_FEATURES2; 1311 1312 /* update sb_versionnum for the clearing of the morebits */ 1313 if (!sbp->sb_features2) 1314 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1315 } 1316 1317 /* 1318 * Check if sb_agblocks is aligned at stripe boundary 1319 * If sb_agblocks is NOT aligned turn off m_dalign since 1320 * allocator alignment is within an ag, therefore ag has 1321 * to be aligned at stripe boundary. 1322 */ 1323 error = xfs_update_alignment(mp); 1324 if (error) 1325 goto out; 1326 1327 xfs_alloc_compute_maxlevels(mp); 1328 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1329 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1330 xfs_ialloc_compute_maxlevels(mp); 1331 1332 xfs_set_maxicount(mp); 1333 1334 error = xfs_uuid_mount(mp); 1335 if (error) 1336 goto out; 1337 1338 /* 1339 * Set the minimum read and write sizes 1340 */ 1341 xfs_set_rw_sizes(mp); 1342 1343 /* set the low space thresholds for dynamic preallocation */ 1344 xfs_set_low_space_thresholds(mp); 1345 1346 /* 1347 * Set the inode cluster size. 1348 * This may still be overridden by the file system 1349 * block size if it is larger than the chosen cluster size. 1350 */ 1351 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1352 1353 /* 1354 * Set inode alignment fields 1355 */ 1356 xfs_set_inoalignment(mp); 1357 1358 /* 1359 * Check that the data (and log if separate) are an ok size. 1360 */ 1361 error = xfs_check_sizes(mp); 1362 if (error) 1363 goto out_remove_uuid; 1364 1365 /* 1366 * Initialize realtime fields in the mount structure 1367 */ 1368 error = xfs_rtmount_init(mp); 1369 if (error) { 1370 xfs_warn(mp, "RT mount failed"); 1371 goto out_remove_uuid; 1372 } 1373 1374 /* 1375 * Copies the low order bits of the timestamp and the randomly 1376 * set "sequence" number out of a UUID. 1377 */ 1378 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1379 1380 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1381 1382 xfs_dir_mount(mp); 1383 1384 /* 1385 * Initialize the attribute manager's entries. 1386 */ 1387 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1388 1389 /* 1390 * Initialize the precomputed transaction reservations values. 1391 */ 1392 xfs_trans_init(mp); 1393 1394 /* 1395 * Allocate and initialize the per-ag data. 1396 */ 1397 spin_lock_init(&mp->m_perag_lock); 1398 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1399 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1400 if (error) { 1401 xfs_warn(mp, "Failed per-ag init: %d", error); 1402 goto out_remove_uuid; 1403 } 1404 1405 if (!sbp->sb_logblocks) { 1406 xfs_warn(mp, "no log defined"); 1407 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1408 error = XFS_ERROR(EFSCORRUPTED); 1409 goto out_free_perag; 1410 } 1411 1412 /* 1413 * log's mount-time initialization. Perform 1st part recovery if needed 1414 */ 1415 error = xfs_log_mount(mp, mp->m_logdev_targp, 1416 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1417 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1418 if (error) { 1419 xfs_warn(mp, "log mount failed"); 1420 goto out_fail_wait; 1421 } 1422 1423 /* 1424 * Now the log is mounted, we know if it was an unclean shutdown or 1425 * not. If it was, with the first phase of recovery has completed, we 1426 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1427 * but they are recovered transactionally in the second recovery phase 1428 * later. 1429 * 1430 * Hence we can safely re-initialise incore superblock counters from 1431 * the per-ag data. These may not be correct if the filesystem was not 1432 * cleanly unmounted, so we need to wait for recovery to finish before 1433 * doing this. 1434 * 1435 * If the filesystem was cleanly unmounted, then we can trust the 1436 * values in the superblock to be correct and we don't need to do 1437 * anything here. 1438 * 1439 * If we are currently making the filesystem, the initialisation will 1440 * fail as the perag data is in an undefined state. 1441 */ 1442 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1443 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1444 !mp->m_sb.sb_inprogress) { 1445 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1446 if (error) 1447 goto out_fail_wait; 1448 } 1449 1450 /* 1451 * Get and sanity-check the root inode. 1452 * Save the pointer to it in the mount structure. 1453 */ 1454 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1455 if (error) { 1456 xfs_warn(mp, "failed to read root inode"); 1457 goto out_log_dealloc; 1458 } 1459 1460 ASSERT(rip != NULL); 1461 1462 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 1463 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1464 (unsigned long long)rip->i_ino); 1465 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1466 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1467 mp); 1468 error = XFS_ERROR(EFSCORRUPTED); 1469 goto out_rele_rip; 1470 } 1471 mp->m_rootip = rip; /* save it */ 1472 1473 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1474 1475 /* 1476 * Initialize realtime inode pointers in the mount structure 1477 */ 1478 error = xfs_rtmount_inodes(mp); 1479 if (error) { 1480 /* 1481 * Free up the root inode. 1482 */ 1483 xfs_warn(mp, "failed to read RT inodes"); 1484 goto out_rele_rip; 1485 } 1486 1487 /* 1488 * If this is a read-only mount defer the superblock updates until 1489 * the next remount into writeable mode. Otherwise we would never 1490 * perform the update e.g. for the root filesystem. 1491 */ 1492 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1493 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1494 if (error) { 1495 xfs_warn(mp, "failed to write sb changes"); 1496 goto out_rtunmount; 1497 } 1498 } 1499 1500 /* 1501 * Initialise the XFS quota management subsystem for this mount 1502 */ 1503 if (XFS_IS_QUOTA_RUNNING(mp)) { 1504 error = xfs_qm_newmount(mp, "amount, "aflags); 1505 if (error) 1506 goto out_rtunmount; 1507 } else { 1508 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1509 1510 /* 1511 * If a file system had quotas running earlier, but decided to 1512 * mount without -o uquota/pquota/gquota options, revoke the 1513 * quotachecked license. 1514 */ 1515 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1516 xfs_notice(mp, "resetting quota flags"); 1517 error = xfs_mount_reset_sbqflags(mp); 1518 if (error) 1519 return error; 1520 } 1521 } 1522 1523 /* 1524 * Finish recovering the file system. This part needed to be 1525 * delayed until after the root and real-time bitmap inodes 1526 * were consistently read in. 1527 */ 1528 error = xfs_log_mount_finish(mp); 1529 if (error) { 1530 xfs_warn(mp, "log mount finish failed"); 1531 goto out_rtunmount; 1532 } 1533 1534 /* 1535 * Complete the quota initialisation, post-log-replay component. 1536 */ 1537 if (quotamount) { 1538 ASSERT(mp->m_qflags == 0); 1539 mp->m_qflags = quotaflags; 1540 1541 xfs_qm_mount_quotas(mp); 1542 } 1543 1544 /* 1545 * Now we are mounted, reserve a small amount of unused space for 1546 * privileged transactions. This is needed so that transaction 1547 * space required for critical operations can dip into this pool 1548 * when at ENOSPC. This is needed for operations like create with 1549 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1550 * are not allowed to use this reserved space. 1551 * 1552 * This may drive us straight to ENOSPC on mount, but that implies 1553 * we were already there on the last unmount. Warn if this occurs. 1554 */ 1555 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1556 resblks = xfs_default_resblks(mp); 1557 error = xfs_reserve_blocks(mp, &resblks, NULL); 1558 if (error) 1559 xfs_warn(mp, 1560 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1561 } 1562 1563 return 0; 1564 1565 out_rtunmount: 1566 xfs_rtunmount_inodes(mp); 1567 out_rele_rip: 1568 IRELE(rip); 1569 out_log_dealloc: 1570 xfs_log_unmount(mp); 1571 out_fail_wait: 1572 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1573 xfs_wait_buftarg(mp->m_logdev_targp); 1574 xfs_wait_buftarg(mp->m_ddev_targp); 1575 out_free_perag: 1576 xfs_free_perag(mp); 1577 out_remove_uuid: 1578 xfs_uuid_unmount(mp); 1579 out: 1580 return error; 1581 } 1582 1583 /* 1584 * This flushes out the inodes,dquots and the superblock, unmounts the 1585 * log and makes sure that incore structures are freed. 1586 */ 1587 void 1588 xfs_unmountfs( 1589 struct xfs_mount *mp) 1590 { 1591 __uint64_t resblks; 1592 int error; 1593 1594 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1595 1596 xfs_qm_unmount_quotas(mp); 1597 xfs_rtunmount_inodes(mp); 1598 IRELE(mp->m_rootip); 1599 1600 /* 1601 * We can potentially deadlock here if we have an inode cluster 1602 * that has been freed has its buffer still pinned in memory because 1603 * the transaction is still sitting in a iclog. The stale inodes 1604 * on that buffer will have their flush locks held until the 1605 * transaction hits the disk and the callbacks run. the inode 1606 * flush takes the flush lock unconditionally and with nothing to 1607 * push out the iclog we will never get that unlocked. hence we 1608 * need to force the log first. 1609 */ 1610 xfs_log_force(mp, XFS_LOG_SYNC); 1611 1612 /* 1613 * Flush all pending changes from the AIL. 1614 */ 1615 xfs_ail_push_all_sync(mp->m_ail); 1616 1617 /* 1618 * And reclaim all inodes. At this point there should be no dirty 1619 * inodes and none should be pinned or locked, but use synchronous 1620 * reclaim just to be sure. We can stop background inode reclaim 1621 * here as well if it is still running. 1622 */ 1623 cancel_delayed_work_sync(&mp->m_reclaim_work); 1624 xfs_reclaim_inodes(mp, SYNC_WAIT); 1625 1626 xfs_qm_unmount(mp); 1627 1628 /* 1629 * Unreserve any blocks we have so that when we unmount we don't account 1630 * the reserved free space as used. This is really only necessary for 1631 * lazy superblock counting because it trusts the incore superblock 1632 * counters to be absolutely correct on clean unmount. 1633 * 1634 * We don't bother correcting this elsewhere for lazy superblock 1635 * counting because on mount of an unclean filesystem we reconstruct the 1636 * correct counter value and this is irrelevant. 1637 * 1638 * For non-lazy counter filesystems, this doesn't matter at all because 1639 * we only every apply deltas to the superblock and hence the incore 1640 * value does not matter.... 1641 */ 1642 resblks = 0; 1643 error = xfs_reserve_blocks(mp, &resblks, NULL); 1644 if (error) 1645 xfs_warn(mp, "Unable to free reserved block pool. " 1646 "Freespace may not be correct on next mount."); 1647 1648 error = xfs_log_sbcount(mp); 1649 if (error) 1650 xfs_warn(mp, "Unable to update superblock counters. " 1651 "Freespace may not be correct on next mount."); 1652 1653 xfs_log_unmount(mp); 1654 xfs_uuid_unmount(mp); 1655 1656 #if defined(DEBUG) 1657 xfs_errortag_clearall(mp, 0); 1658 #endif 1659 xfs_free_perag(mp); 1660 } 1661 1662 int 1663 xfs_fs_writable(xfs_mount_t *mp) 1664 { 1665 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1666 (mp->m_flags & XFS_MOUNT_RDONLY)); 1667 } 1668 1669 /* 1670 * xfs_log_sbcount 1671 * 1672 * Sync the superblock counters to disk. 1673 * 1674 * Note this code can be called during the process of freezing, so 1675 * we may need to use the transaction allocator which does not 1676 * block when the transaction subsystem is in its frozen state. 1677 */ 1678 int 1679 xfs_log_sbcount(xfs_mount_t *mp) 1680 { 1681 xfs_trans_t *tp; 1682 int error; 1683 1684 if (!xfs_fs_writable(mp)) 1685 return 0; 1686 1687 xfs_icsb_sync_counters(mp, 0); 1688 1689 /* 1690 * we don't need to do this if we are updating the superblock 1691 * counters on every modification. 1692 */ 1693 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1694 return 0; 1695 1696 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1697 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0, 1698 XFS_DEFAULT_LOG_COUNT); 1699 if (error) { 1700 xfs_trans_cancel(tp, 0); 1701 return error; 1702 } 1703 1704 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1705 xfs_trans_set_sync(tp); 1706 error = xfs_trans_commit(tp, 0); 1707 return error; 1708 } 1709 1710 /* 1711 * xfs_mod_sb() can be used to copy arbitrary changes to the 1712 * in-core superblock into the superblock buffer to be logged. 1713 * It does not provide the higher level of locking that is 1714 * needed to protect the in-core superblock from concurrent 1715 * access. 1716 */ 1717 void 1718 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1719 { 1720 xfs_buf_t *bp; 1721 int first; 1722 int last; 1723 xfs_mount_t *mp; 1724 xfs_sb_field_t f; 1725 1726 ASSERT(fields); 1727 if (!fields) 1728 return; 1729 mp = tp->t_mountp; 1730 bp = xfs_trans_getsb(tp, mp, 0); 1731 first = sizeof(xfs_sb_t); 1732 last = 0; 1733 1734 /* translate/copy */ 1735 1736 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1737 1738 /* find modified range */ 1739 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1740 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1741 last = xfs_sb_info[f + 1].offset - 1; 1742 1743 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1744 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1745 first = xfs_sb_info[f].offset; 1746 1747 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 1748 xfs_trans_log_buf(tp, bp, first, last); 1749 } 1750 1751 1752 /* 1753 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1754 * a delta to a specified field in the in-core superblock. Simply 1755 * switch on the field indicated and apply the delta to that field. 1756 * Fields are not allowed to dip below zero, so if the delta would 1757 * do this do not apply it and return EINVAL. 1758 * 1759 * The m_sb_lock must be held when this routine is called. 1760 */ 1761 STATIC int 1762 xfs_mod_incore_sb_unlocked( 1763 xfs_mount_t *mp, 1764 xfs_sb_field_t field, 1765 int64_t delta, 1766 int rsvd) 1767 { 1768 int scounter; /* short counter for 32 bit fields */ 1769 long long lcounter; /* long counter for 64 bit fields */ 1770 long long res_used, rem; 1771 1772 /* 1773 * With the in-core superblock spin lock held, switch 1774 * on the indicated field. Apply the delta to the 1775 * proper field. If the fields value would dip below 1776 * 0, then do not apply the delta and return EINVAL. 1777 */ 1778 switch (field) { 1779 case XFS_SBS_ICOUNT: 1780 lcounter = (long long)mp->m_sb.sb_icount; 1781 lcounter += delta; 1782 if (lcounter < 0) { 1783 ASSERT(0); 1784 return XFS_ERROR(EINVAL); 1785 } 1786 mp->m_sb.sb_icount = lcounter; 1787 return 0; 1788 case XFS_SBS_IFREE: 1789 lcounter = (long long)mp->m_sb.sb_ifree; 1790 lcounter += delta; 1791 if (lcounter < 0) { 1792 ASSERT(0); 1793 return XFS_ERROR(EINVAL); 1794 } 1795 mp->m_sb.sb_ifree = lcounter; 1796 return 0; 1797 case XFS_SBS_FDBLOCKS: 1798 lcounter = (long long) 1799 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1800 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1801 1802 if (delta > 0) { /* Putting blocks back */ 1803 if (res_used > delta) { 1804 mp->m_resblks_avail += delta; 1805 } else { 1806 rem = delta - res_used; 1807 mp->m_resblks_avail = mp->m_resblks; 1808 lcounter += rem; 1809 } 1810 } else { /* Taking blocks away */ 1811 lcounter += delta; 1812 if (lcounter >= 0) { 1813 mp->m_sb.sb_fdblocks = lcounter + 1814 XFS_ALLOC_SET_ASIDE(mp); 1815 return 0; 1816 } 1817 1818 /* 1819 * We are out of blocks, use any available reserved 1820 * blocks if were allowed to. 1821 */ 1822 if (!rsvd) 1823 return XFS_ERROR(ENOSPC); 1824 1825 lcounter = (long long)mp->m_resblks_avail + delta; 1826 if (lcounter >= 0) { 1827 mp->m_resblks_avail = lcounter; 1828 return 0; 1829 } 1830 printk_once(KERN_WARNING 1831 "Filesystem \"%s\": reserve blocks depleted! " 1832 "Consider increasing reserve pool size.", 1833 mp->m_fsname); 1834 return XFS_ERROR(ENOSPC); 1835 } 1836 1837 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1838 return 0; 1839 case XFS_SBS_FREXTENTS: 1840 lcounter = (long long)mp->m_sb.sb_frextents; 1841 lcounter += delta; 1842 if (lcounter < 0) { 1843 return XFS_ERROR(ENOSPC); 1844 } 1845 mp->m_sb.sb_frextents = lcounter; 1846 return 0; 1847 case XFS_SBS_DBLOCKS: 1848 lcounter = (long long)mp->m_sb.sb_dblocks; 1849 lcounter += delta; 1850 if (lcounter < 0) { 1851 ASSERT(0); 1852 return XFS_ERROR(EINVAL); 1853 } 1854 mp->m_sb.sb_dblocks = lcounter; 1855 return 0; 1856 case XFS_SBS_AGCOUNT: 1857 scounter = mp->m_sb.sb_agcount; 1858 scounter += delta; 1859 if (scounter < 0) { 1860 ASSERT(0); 1861 return XFS_ERROR(EINVAL); 1862 } 1863 mp->m_sb.sb_agcount = scounter; 1864 return 0; 1865 case XFS_SBS_IMAX_PCT: 1866 scounter = mp->m_sb.sb_imax_pct; 1867 scounter += delta; 1868 if (scounter < 0) { 1869 ASSERT(0); 1870 return XFS_ERROR(EINVAL); 1871 } 1872 mp->m_sb.sb_imax_pct = scounter; 1873 return 0; 1874 case XFS_SBS_REXTSIZE: 1875 scounter = mp->m_sb.sb_rextsize; 1876 scounter += delta; 1877 if (scounter < 0) { 1878 ASSERT(0); 1879 return XFS_ERROR(EINVAL); 1880 } 1881 mp->m_sb.sb_rextsize = scounter; 1882 return 0; 1883 case XFS_SBS_RBMBLOCKS: 1884 scounter = mp->m_sb.sb_rbmblocks; 1885 scounter += delta; 1886 if (scounter < 0) { 1887 ASSERT(0); 1888 return XFS_ERROR(EINVAL); 1889 } 1890 mp->m_sb.sb_rbmblocks = scounter; 1891 return 0; 1892 case XFS_SBS_RBLOCKS: 1893 lcounter = (long long)mp->m_sb.sb_rblocks; 1894 lcounter += delta; 1895 if (lcounter < 0) { 1896 ASSERT(0); 1897 return XFS_ERROR(EINVAL); 1898 } 1899 mp->m_sb.sb_rblocks = lcounter; 1900 return 0; 1901 case XFS_SBS_REXTENTS: 1902 lcounter = (long long)mp->m_sb.sb_rextents; 1903 lcounter += delta; 1904 if (lcounter < 0) { 1905 ASSERT(0); 1906 return XFS_ERROR(EINVAL); 1907 } 1908 mp->m_sb.sb_rextents = lcounter; 1909 return 0; 1910 case XFS_SBS_REXTSLOG: 1911 scounter = mp->m_sb.sb_rextslog; 1912 scounter += delta; 1913 if (scounter < 0) { 1914 ASSERT(0); 1915 return XFS_ERROR(EINVAL); 1916 } 1917 mp->m_sb.sb_rextslog = scounter; 1918 return 0; 1919 default: 1920 ASSERT(0); 1921 return XFS_ERROR(EINVAL); 1922 } 1923 } 1924 1925 /* 1926 * xfs_mod_incore_sb() is used to change a field in the in-core 1927 * superblock structure by the specified delta. This modification 1928 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1929 * routine to do the work. 1930 */ 1931 int 1932 xfs_mod_incore_sb( 1933 struct xfs_mount *mp, 1934 xfs_sb_field_t field, 1935 int64_t delta, 1936 int rsvd) 1937 { 1938 int status; 1939 1940 #ifdef HAVE_PERCPU_SB 1941 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1942 #endif 1943 spin_lock(&mp->m_sb_lock); 1944 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1945 spin_unlock(&mp->m_sb_lock); 1946 1947 return status; 1948 } 1949 1950 /* 1951 * Change more than one field in the in-core superblock structure at a time. 1952 * 1953 * The fields and changes to those fields are specified in the array of 1954 * xfs_mod_sb structures passed in. Either all of the specified deltas 1955 * will be applied or none of them will. If any modified field dips below 0, 1956 * then all modifications will be backed out and EINVAL will be returned. 1957 * 1958 * Note that this function may not be used for the superblock values that 1959 * are tracked with the in-memory per-cpu counters - a direct call to 1960 * xfs_icsb_modify_counters is required for these. 1961 */ 1962 int 1963 xfs_mod_incore_sb_batch( 1964 struct xfs_mount *mp, 1965 xfs_mod_sb_t *msb, 1966 uint nmsb, 1967 int rsvd) 1968 { 1969 xfs_mod_sb_t *msbp; 1970 int error = 0; 1971 1972 /* 1973 * Loop through the array of mod structures and apply each individually. 1974 * If any fail, then back out all those which have already been applied. 1975 * Do all of this within the scope of the m_sb_lock so that all of the 1976 * changes will be atomic. 1977 */ 1978 spin_lock(&mp->m_sb_lock); 1979 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1980 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1981 msbp->msb_field > XFS_SBS_FDBLOCKS); 1982 1983 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1984 msbp->msb_delta, rsvd); 1985 if (error) 1986 goto unwind; 1987 } 1988 spin_unlock(&mp->m_sb_lock); 1989 return 0; 1990 1991 unwind: 1992 while (--msbp >= msb) { 1993 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1994 -msbp->msb_delta, rsvd); 1995 ASSERT(error == 0); 1996 } 1997 spin_unlock(&mp->m_sb_lock); 1998 return error; 1999 } 2000 2001 /* 2002 * xfs_getsb() is called to obtain the buffer for the superblock. 2003 * The buffer is returned locked and read in from disk. 2004 * The buffer should be released with a call to xfs_brelse(). 2005 * 2006 * If the flags parameter is BUF_TRYLOCK, then we'll only return 2007 * the superblock buffer if it can be locked without sleeping. 2008 * If it can't then we'll return NULL. 2009 */ 2010 struct xfs_buf * 2011 xfs_getsb( 2012 struct xfs_mount *mp, 2013 int flags) 2014 { 2015 struct xfs_buf *bp = mp->m_sb_bp; 2016 2017 if (!xfs_buf_trylock(bp)) { 2018 if (flags & XBF_TRYLOCK) 2019 return NULL; 2020 xfs_buf_lock(bp); 2021 } 2022 2023 xfs_buf_hold(bp); 2024 ASSERT(XFS_BUF_ISDONE(bp)); 2025 return bp; 2026 } 2027 2028 /* 2029 * Used to free the superblock along various error paths. 2030 */ 2031 void 2032 xfs_freesb( 2033 struct xfs_mount *mp) 2034 { 2035 struct xfs_buf *bp = mp->m_sb_bp; 2036 2037 xfs_buf_lock(bp); 2038 mp->m_sb_bp = NULL; 2039 xfs_buf_relse(bp); 2040 } 2041 2042 /* 2043 * Used to log changes to the superblock unit and width fields which could 2044 * be altered by the mount options, as well as any potential sb_features2 2045 * fixup. Only the first superblock is updated. 2046 */ 2047 int 2048 xfs_mount_log_sb( 2049 xfs_mount_t *mp, 2050 __int64_t fields) 2051 { 2052 xfs_trans_t *tp; 2053 int error; 2054 2055 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 2056 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 2057 XFS_SB_VERSIONNUM)); 2058 2059 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 2060 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0, 2061 XFS_DEFAULT_LOG_COUNT); 2062 if (error) { 2063 xfs_trans_cancel(tp, 0); 2064 return error; 2065 } 2066 xfs_mod_sb(tp, fields); 2067 error = xfs_trans_commit(tp, 0); 2068 return error; 2069 } 2070 2071 /* 2072 * If the underlying (data/log/rt) device is readonly, there are some 2073 * operations that cannot proceed. 2074 */ 2075 int 2076 xfs_dev_is_read_only( 2077 struct xfs_mount *mp, 2078 char *message) 2079 { 2080 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 2081 xfs_readonly_buftarg(mp->m_logdev_targp) || 2082 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 2083 xfs_notice(mp, "%s required on read-only device.", message); 2084 xfs_notice(mp, "write access unavailable, cannot proceed."); 2085 return EROFS; 2086 } 2087 return 0; 2088 } 2089 2090 #ifdef HAVE_PERCPU_SB 2091 /* 2092 * Per-cpu incore superblock counters 2093 * 2094 * Simple concept, difficult implementation 2095 * 2096 * Basically, replace the incore superblock counters with a distributed per cpu 2097 * counter for contended fields (e.g. free block count). 2098 * 2099 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 2100 * hence needs to be accurately read when we are running low on space. Hence 2101 * there is a method to enable and disable the per-cpu counters based on how 2102 * much "stuff" is available in them. 2103 * 2104 * Basically, a counter is enabled if there is enough free resource to justify 2105 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 2106 * ENOSPC), then we disable the counters to synchronise all callers and 2107 * re-distribute the available resources. 2108 * 2109 * If, once we redistributed the available resources, we still get a failure, 2110 * we disable the per-cpu counter and go through the slow path. 2111 * 2112 * The slow path is the current xfs_mod_incore_sb() function. This means that 2113 * when we disable a per-cpu counter, we need to drain its resources back to 2114 * the global superblock. We do this after disabling the counter to prevent 2115 * more threads from queueing up on the counter. 2116 * 2117 * Essentially, this means that we still need a lock in the fast path to enable 2118 * synchronisation between the global counters and the per-cpu counters. This 2119 * is not a problem because the lock will be local to a CPU almost all the time 2120 * and have little contention except when we get to ENOSPC conditions. 2121 * 2122 * Basically, this lock becomes a barrier that enables us to lock out the fast 2123 * path while we do things like enabling and disabling counters and 2124 * synchronising the counters. 2125 * 2126 * Locking rules: 2127 * 2128 * 1. m_sb_lock before picking up per-cpu locks 2129 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2130 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2131 * 4. modifying per-cpu counters requires holding per-cpu lock 2132 * 5. modifying global counters requires holding m_sb_lock 2133 * 6. enabling or disabling a counter requires holding the m_sb_lock 2134 * and _none_ of the per-cpu locks. 2135 * 2136 * Disabled counters are only ever re-enabled by a balance operation 2137 * that results in more free resources per CPU than a given threshold. 2138 * To ensure counters don't remain disabled, they are rebalanced when 2139 * the global resource goes above a higher threshold (i.e. some hysteresis 2140 * is present to prevent thrashing). 2141 */ 2142 2143 #ifdef CONFIG_HOTPLUG_CPU 2144 /* 2145 * hot-plug CPU notifier support. 2146 * 2147 * We need a notifier per filesystem as we need to be able to identify 2148 * the filesystem to balance the counters out. This is achieved by 2149 * having a notifier block embedded in the xfs_mount_t and doing pointer 2150 * magic to get the mount pointer from the notifier block address. 2151 */ 2152 STATIC int 2153 xfs_icsb_cpu_notify( 2154 struct notifier_block *nfb, 2155 unsigned long action, 2156 void *hcpu) 2157 { 2158 xfs_icsb_cnts_t *cntp; 2159 xfs_mount_t *mp; 2160 2161 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2162 cntp = (xfs_icsb_cnts_t *) 2163 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2164 switch (action) { 2165 case CPU_UP_PREPARE: 2166 case CPU_UP_PREPARE_FROZEN: 2167 /* Easy Case - initialize the area and locks, and 2168 * then rebalance when online does everything else for us. */ 2169 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2170 break; 2171 case CPU_ONLINE: 2172 case CPU_ONLINE_FROZEN: 2173 xfs_icsb_lock(mp); 2174 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2175 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2176 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2177 xfs_icsb_unlock(mp); 2178 break; 2179 case CPU_DEAD: 2180 case CPU_DEAD_FROZEN: 2181 /* Disable all the counters, then fold the dead cpu's 2182 * count into the total on the global superblock and 2183 * re-enable the counters. */ 2184 xfs_icsb_lock(mp); 2185 spin_lock(&mp->m_sb_lock); 2186 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2187 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2188 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2189 2190 mp->m_sb.sb_icount += cntp->icsb_icount; 2191 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2192 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2193 2194 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2195 2196 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2197 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2198 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2199 spin_unlock(&mp->m_sb_lock); 2200 xfs_icsb_unlock(mp); 2201 break; 2202 } 2203 2204 return NOTIFY_OK; 2205 } 2206 #endif /* CONFIG_HOTPLUG_CPU */ 2207 2208 int 2209 xfs_icsb_init_counters( 2210 xfs_mount_t *mp) 2211 { 2212 xfs_icsb_cnts_t *cntp; 2213 int i; 2214 2215 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2216 if (mp->m_sb_cnts == NULL) 2217 return -ENOMEM; 2218 2219 #ifdef CONFIG_HOTPLUG_CPU 2220 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2221 mp->m_icsb_notifier.priority = 0; 2222 register_hotcpu_notifier(&mp->m_icsb_notifier); 2223 #endif /* CONFIG_HOTPLUG_CPU */ 2224 2225 for_each_online_cpu(i) { 2226 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2227 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2228 } 2229 2230 mutex_init(&mp->m_icsb_mutex); 2231 2232 /* 2233 * start with all counters disabled so that the 2234 * initial balance kicks us off correctly 2235 */ 2236 mp->m_icsb_counters = -1; 2237 return 0; 2238 } 2239 2240 void 2241 xfs_icsb_reinit_counters( 2242 xfs_mount_t *mp) 2243 { 2244 xfs_icsb_lock(mp); 2245 /* 2246 * start with all counters disabled so that the 2247 * initial balance kicks us off correctly 2248 */ 2249 mp->m_icsb_counters = -1; 2250 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2251 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2252 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2253 xfs_icsb_unlock(mp); 2254 } 2255 2256 void 2257 xfs_icsb_destroy_counters( 2258 xfs_mount_t *mp) 2259 { 2260 if (mp->m_sb_cnts) { 2261 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2262 free_percpu(mp->m_sb_cnts); 2263 } 2264 mutex_destroy(&mp->m_icsb_mutex); 2265 } 2266 2267 STATIC void 2268 xfs_icsb_lock_cntr( 2269 xfs_icsb_cnts_t *icsbp) 2270 { 2271 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2272 ndelay(1000); 2273 } 2274 } 2275 2276 STATIC void 2277 xfs_icsb_unlock_cntr( 2278 xfs_icsb_cnts_t *icsbp) 2279 { 2280 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2281 } 2282 2283 2284 STATIC void 2285 xfs_icsb_lock_all_counters( 2286 xfs_mount_t *mp) 2287 { 2288 xfs_icsb_cnts_t *cntp; 2289 int i; 2290 2291 for_each_online_cpu(i) { 2292 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2293 xfs_icsb_lock_cntr(cntp); 2294 } 2295 } 2296 2297 STATIC void 2298 xfs_icsb_unlock_all_counters( 2299 xfs_mount_t *mp) 2300 { 2301 xfs_icsb_cnts_t *cntp; 2302 int i; 2303 2304 for_each_online_cpu(i) { 2305 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2306 xfs_icsb_unlock_cntr(cntp); 2307 } 2308 } 2309 2310 STATIC void 2311 xfs_icsb_count( 2312 xfs_mount_t *mp, 2313 xfs_icsb_cnts_t *cnt, 2314 int flags) 2315 { 2316 xfs_icsb_cnts_t *cntp; 2317 int i; 2318 2319 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2320 2321 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2322 xfs_icsb_lock_all_counters(mp); 2323 2324 for_each_online_cpu(i) { 2325 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2326 cnt->icsb_icount += cntp->icsb_icount; 2327 cnt->icsb_ifree += cntp->icsb_ifree; 2328 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2329 } 2330 2331 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2332 xfs_icsb_unlock_all_counters(mp); 2333 } 2334 2335 STATIC int 2336 xfs_icsb_counter_disabled( 2337 xfs_mount_t *mp, 2338 xfs_sb_field_t field) 2339 { 2340 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2341 return test_bit(field, &mp->m_icsb_counters); 2342 } 2343 2344 STATIC void 2345 xfs_icsb_disable_counter( 2346 xfs_mount_t *mp, 2347 xfs_sb_field_t field) 2348 { 2349 xfs_icsb_cnts_t cnt; 2350 2351 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2352 2353 /* 2354 * If we are already disabled, then there is nothing to do 2355 * here. We check before locking all the counters to avoid 2356 * the expensive lock operation when being called in the 2357 * slow path and the counter is already disabled. This is 2358 * safe because the only time we set or clear this state is under 2359 * the m_icsb_mutex. 2360 */ 2361 if (xfs_icsb_counter_disabled(mp, field)) 2362 return; 2363 2364 xfs_icsb_lock_all_counters(mp); 2365 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2366 /* drain back to superblock */ 2367 2368 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2369 switch(field) { 2370 case XFS_SBS_ICOUNT: 2371 mp->m_sb.sb_icount = cnt.icsb_icount; 2372 break; 2373 case XFS_SBS_IFREE: 2374 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2375 break; 2376 case XFS_SBS_FDBLOCKS: 2377 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2378 break; 2379 default: 2380 BUG(); 2381 } 2382 } 2383 2384 xfs_icsb_unlock_all_counters(mp); 2385 } 2386 2387 STATIC void 2388 xfs_icsb_enable_counter( 2389 xfs_mount_t *mp, 2390 xfs_sb_field_t field, 2391 uint64_t count, 2392 uint64_t resid) 2393 { 2394 xfs_icsb_cnts_t *cntp; 2395 int i; 2396 2397 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2398 2399 xfs_icsb_lock_all_counters(mp); 2400 for_each_online_cpu(i) { 2401 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2402 switch (field) { 2403 case XFS_SBS_ICOUNT: 2404 cntp->icsb_icount = count + resid; 2405 break; 2406 case XFS_SBS_IFREE: 2407 cntp->icsb_ifree = count + resid; 2408 break; 2409 case XFS_SBS_FDBLOCKS: 2410 cntp->icsb_fdblocks = count + resid; 2411 break; 2412 default: 2413 BUG(); 2414 break; 2415 } 2416 resid = 0; 2417 } 2418 clear_bit(field, &mp->m_icsb_counters); 2419 xfs_icsb_unlock_all_counters(mp); 2420 } 2421 2422 void 2423 xfs_icsb_sync_counters_locked( 2424 xfs_mount_t *mp, 2425 int flags) 2426 { 2427 xfs_icsb_cnts_t cnt; 2428 2429 xfs_icsb_count(mp, &cnt, flags); 2430 2431 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2432 mp->m_sb.sb_icount = cnt.icsb_icount; 2433 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2434 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2435 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2436 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2437 } 2438 2439 /* 2440 * Accurate update of per-cpu counters to incore superblock 2441 */ 2442 void 2443 xfs_icsb_sync_counters( 2444 xfs_mount_t *mp, 2445 int flags) 2446 { 2447 spin_lock(&mp->m_sb_lock); 2448 xfs_icsb_sync_counters_locked(mp, flags); 2449 spin_unlock(&mp->m_sb_lock); 2450 } 2451 2452 /* 2453 * Balance and enable/disable counters as necessary. 2454 * 2455 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2456 * chosen to be the same number as single on disk allocation chunk per CPU, and 2457 * free blocks is something far enough zero that we aren't going thrash when we 2458 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2459 * prevent looping endlessly when xfs_alloc_space asks for more than will 2460 * be distributed to a single CPU but each CPU has enough blocks to be 2461 * reenabled. 2462 * 2463 * Note that we can be called when counters are already disabled. 2464 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2465 * prevent locking every per-cpu counter needlessly. 2466 */ 2467 2468 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2469 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2470 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2471 STATIC void 2472 xfs_icsb_balance_counter_locked( 2473 xfs_mount_t *mp, 2474 xfs_sb_field_t field, 2475 int min_per_cpu) 2476 { 2477 uint64_t count, resid; 2478 int weight = num_online_cpus(); 2479 uint64_t min = (uint64_t)min_per_cpu; 2480 2481 /* disable counter and sync counter */ 2482 xfs_icsb_disable_counter(mp, field); 2483 2484 /* update counters - first CPU gets residual*/ 2485 switch (field) { 2486 case XFS_SBS_ICOUNT: 2487 count = mp->m_sb.sb_icount; 2488 resid = do_div(count, weight); 2489 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2490 return; 2491 break; 2492 case XFS_SBS_IFREE: 2493 count = mp->m_sb.sb_ifree; 2494 resid = do_div(count, weight); 2495 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2496 return; 2497 break; 2498 case XFS_SBS_FDBLOCKS: 2499 count = mp->m_sb.sb_fdblocks; 2500 resid = do_div(count, weight); 2501 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2502 return; 2503 break; 2504 default: 2505 BUG(); 2506 count = resid = 0; /* quiet, gcc */ 2507 break; 2508 } 2509 2510 xfs_icsb_enable_counter(mp, field, count, resid); 2511 } 2512 2513 STATIC void 2514 xfs_icsb_balance_counter( 2515 xfs_mount_t *mp, 2516 xfs_sb_field_t fields, 2517 int min_per_cpu) 2518 { 2519 spin_lock(&mp->m_sb_lock); 2520 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2521 spin_unlock(&mp->m_sb_lock); 2522 } 2523 2524 int 2525 xfs_icsb_modify_counters( 2526 xfs_mount_t *mp, 2527 xfs_sb_field_t field, 2528 int64_t delta, 2529 int rsvd) 2530 { 2531 xfs_icsb_cnts_t *icsbp; 2532 long long lcounter; /* long counter for 64 bit fields */ 2533 int ret = 0; 2534 2535 might_sleep(); 2536 again: 2537 preempt_disable(); 2538 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2539 2540 /* 2541 * if the counter is disabled, go to slow path 2542 */ 2543 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2544 goto slow_path; 2545 xfs_icsb_lock_cntr(icsbp); 2546 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2547 xfs_icsb_unlock_cntr(icsbp); 2548 goto slow_path; 2549 } 2550 2551 switch (field) { 2552 case XFS_SBS_ICOUNT: 2553 lcounter = icsbp->icsb_icount; 2554 lcounter += delta; 2555 if (unlikely(lcounter < 0)) 2556 goto balance_counter; 2557 icsbp->icsb_icount = lcounter; 2558 break; 2559 2560 case XFS_SBS_IFREE: 2561 lcounter = icsbp->icsb_ifree; 2562 lcounter += delta; 2563 if (unlikely(lcounter < 0)) 2564 goto balance_counter; 2565 icsbp->icsb_ifree = lcounter; 2566 break; 2567 2568 case XFS_SBS_FDBLOCKS: 2569 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2570 2571 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2572 lcounter += delta; 2573 if (unlikely(lcounter < 0)) 2574 goto balance_counter; 2575 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2576 break; 2577 default: 2578 BUG(); 2579 break; 2580 } 2581 xfs_icsb_unlock_cntr(icsbp); 2582 preempt_enable(); 2583 return 0; 2584 2585 slow_path: 2586 preempt_enable(); 2587 2588 /* 2589 * serialise with a mutex so we don't burn lots of cpu on 2590 * the superblock lock. We still need to hold the superblock 2591 * lock, however, when we modify the global structures. 2592 */ 2593 xfs_icsb_lock(mp); 2594 2595 /* 2596 * Now running atomically. 2597 * 2598 * If the counter is enabled, someone has beaten us to rebalancing. 2599 * Drop the lock and try again in the fast path.... 2600 */ 2601 if (!(xfs_icsb_counter_disabled(mp, field))) { 2602 xfs_icsb_unlock(mp); 2603 goto again; 2604 } 2605 2606 /* 2607 * The counter is currently disabled. Because we are 2608 * running atomically here, we know a rebalance cannot 2609 * be in progress. Hence we can go straight to operating 2610 * on the global superblock. We do not call xfs_mod_incore_sb() 2611 * here even though we need to get the m_sb_lock. Doing so 2612 * will cause us to re-enter this function and deadlock. 2613 * Hence we get the m_sb_lock ourselves and then call 2614 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2615 * directly on the global counters. 2616 */ 2617 spin_lock(&mp->m_sb_lock); 2618 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2619 spin_unlock(&mp->m_sb_lock); 2620 2621 /* 2622 * Now that we've modified the global superblock, we 2623 * may be able to re-enable the distributed counters 2624 * (e.g. lots of space just got freed). After that 2625 * we are done. 2626 */ 2627 if (ret != ENOSPC) 2628 xfs_icsb_balance_counter(mp, field, 0); 2629 xfs_icsb_unlock(mp); 2630 return ret; 2631 2632 balance_counter: 2633 xfs_icsb_unlock_cntr(icsbp); 2634 preempt_enable(); 2635 2636 /* 2637 * We may have multiple threads here if multiple per-cpu 2638 * counters run dry at the same time. This will mean we can 2639 * do more balances than strictly necessary but it is not 2640 * the common slowpath case. 2641 */ 2642 xfs_icsb_lock(mp); 2643 2644 /* 2645 * running atomically. 2646 * 2647 * This will leave the counter in the correct state for future 2648 * accesses. After the rebalance, we simply try again and our retry 2649 * will either succeed through the fast path or slow path without 2650 * another balance operation being required. 2651 */ 2652 xfs_icsb_balance_counter(mp, field, delta); 2653 xfs_icsb_unlock(mp); 2654 goto again; 2655 } 2656 2657 #endif 2658