xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision ecefa105)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 
38 static DEFINE_MUTEX(xfs_uuid_table_mutex);
39 static int xfs_uuid_table_size;
40 static uuid_t *xfs_uuid_table;
41 
42 void
43 xfs_uuid_table_free(void)
44 {
45 	if (xfs_uuid_table_size == 0)
46 		return;
47 	kmem_free(xfs_uuid_table);
48 	xfs_uuid_table = NULL;
49 	xfs_uuid_table_size = 0;
50 }
51 
52 /*
53  * See if the UUID is unique among mounted XFS filesystems.
54  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55  */
56 STATIC int
57 xfs_uuid_mount(
58 	struct xfs_mount	*mp)
59 {
60 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
61 	int			hole, i;
62 
63 	/* Publish UUID in struct super_block */
64 	uuid_copy(&mp->m_super->s_uuid, uuid);
65 
66 	if (xfs_has_nouuid(mp))
67 		return 0;
68 
69 	if (uuid_is_null(uuid)) {
70 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 		return -EINVAL;
72 	}
73 
74 	mutex_lock(&xfs_uuid_table_mutex);
75 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 		if (uuid_is_null(&xfs_uuid_table[i])) {
77 			hole = i;
78 			continue;
79 		}
80 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 			goto out_duplicate;
82 	}
83 
84 	if (hole < 0) {
85 		xfs_uuid_table = krealloc(xfs_uuid_table,
86 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 			GFP_KERNEL | __GFP_NOFAIL);
88 		hole = xfs_uuid_table_size++;
89 	}
90 	xfs_uuid_table[hole] = *uuid;
91 	mutex_unlock(&xfs_uuid_table_mutex);
92 
93 	return 0;
94 
95  out_duplicate:
96 	mutex_unlock(&xfs_uuid_table_mutex);
97 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 	return -EINVAL;
99 }
100 
101 STATIC void
102 xfs_uuid_unmount(
103 	struct xfs_mount	*mp)
104 {
105 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
106 	int			i;
107 
108 	if (xfs_has_nouuid(mp))
109 		return;
110 
111 	mutex_lock(&xfs_uuid_table_mutex);
112 	for (i = 0; i < xfs_uuid_table_size; i++) {
113 		if (uuid_is_null(&xfs_uuid_table[i]))
114 			continue;
115 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 			continue;
117 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 		break;
119 	}
120 	ASSERT(i < xfs_uuid_table_size);
121 	mutex_unlock(&xfs_uuid_table_mutex);
122 }
123 
124 /*
125  * Check size of device based on the (data/realtime) block count.
126  * Note: this check is used by the growfs code as well as mount.
127  */
128 int
129 xfs_sb_validate_fsb_count(
130 	xfs_sb_t	*sbp,
131 	uint64_t	nblocks)
132 {
133 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
135 
136 	/* Limited by ULONG_MAX of page cache index */
137 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 		return -EFBIG;
139 	return 0;
140 }
141 
142 /*
143  * xfs_readsb
144  *
145  * Does the initial read of the superblock.
146  */
147 int
148 xfs_readsb(
149 	struct xfs_mount *mp,
150 	int		flags)
151 {
152 	unsigned int	sector_size;
153 	struct xfs_buf	*bp;
154 	struct xfs_sb	*sbp = &mp->m_sb;
155 	int		error;
156 	int		loud = !(flags & XFS_MFSI_QUIET);
157 	const struct xfs_buf_ops *buf_ops;
158 
159 	ASSERT(mp->m_sb_bp == NULL);
160 	ASSERT(mp->m_ddev_targp != NULL);
161 
162 	/*
163 	 * For the initial read, we must guess at the sector
164 	 * size based on the block device.  It's enough to
165 	 * get the sb_sectsize out of the superblock and
166 	 * then reread with the proper length.
167 	 * We don't verify it yet, because it may not be complete.
168 	 */
169 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 	buf_ops = NULL;
171 
172 	/*
173 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 	 * around at all times to optimize access to the superblock. Therefore,
175 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 	 * elevated.
177 	 */
178 reread:
179 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 				      buf_ops);
182 	if (error) {
183 		if (loud)
184 			xfs_warn(mp, "SB validate failed with error %d.", error);
185 		/* bad CRC means corrupted metadata */
186 		if (error == -EFSBADCRC)
187 			error = -EFSCORRUPTED;
188 		return error;
189 	}
190 
191 	/*
192 	 * Initialize the mount structure from the superblock.
193 	 */
194 	xfs_sb_from_disk(sbp, bp->b_addr);
195 
196 	/*
197 	 * If we haven't validated the superblock, do so now before we try
198 	 * to check the sector size and reread the superblock appropriately.
199 	 */
200 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 		if (loud)
202 			xfs_warn(mp, "Invalid superblock magic number");
203 		error = -EINVAL;
204 		goto release_buf;
205 	}
206 
207 	/*
208 	 * We must be able to do sector-sized and sector-aligned IO.
209 	 */
210 	if (sector_size > sbp->sb_sectsize) {
211 		if (loud)
212 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 				sector_size, sbp->sb_sectsize);
214 		error = -ENOSYS;
215 		goto release_buf;
216 	}
217 
218 	if (buf_ops == NULL) {
219 		/*
220 		 * Re-read the superblock so the buffer is correctly sized,
221 		 * and properly verified.
222 		 */
223 		xfs_buf_relse(bp);
224 		sector_size = sbp->sb_sectsize;
225 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 		goto reread;
227 	}
228 
229 	mp->m_features |= xfs_sb_version_to_features(sbp);
230 	xfs_reinit_percpu_counters(mp);
231 
232 	/* no need to be quiet anymore, so reset the buf ops */
233 	bp->b_ops = &xfs_sb_buf_ops;
234 
235 	mp->m_sb_bp = bp;
236 	xfs_buf_unlock(bp);
237 	return 0;
238 
239 release_buf:
240 	xfs_buf_relse(bp);
241 	return error;
242 }
243 
244 /*
245  * If the sunit/swidth change would move the precomputed root inode value, we
246  * must reject the ondisk change because repair will stumble over that.
247  * However, we allow the mount to proceed because we never rejected this
248  * combination before.  Returns true to update the sb, false otherwise.
249  */
250 static inline int
251 xfs_check_new_dalign(
252 	struct xfs_mount	*mp,
253 	int			new_dalign,
254 	bool			*update_sb)
255 {
256 	struct xfs_sb		*sbp = &mp->m_sb;
257 	xfs_ino_t		calc_ino;
258 
259 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261 
262 	if (sbp->sb_rootino == calc_ino) {
263 		*update_sb = true;
264 		return 0;
265 	}
266 
267 	xfs_warn(mp,
268 "Cannot change stripe alignment; would require moving root inode.");
269 
270 	/*
271 	 * XXX: Next time we add a new incompat feature, this should start
272 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
273 	 * that we're ignoring the administrator's instructions.
274 	 */
275 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 	*update_sb = false;
277 	return 0;
278 }
279 
280 /*
281  * If we were provided with new sunit/swidth values as mount options, make sure
282  * that they pass basic alignment and superblock feature checks, and convert
283  * them into the same units (FSB) that everything else expects.  This step
284  * /must/ be done before computing the inode geometry.
285  */
286 STATIC int
287 xfs_validate_new_dalign(
288 	struct xfs_mount	*mp)
289 {
290 	if (mp->m_dalign == 0)
291 		return 0;
292 
293 	/*
294 	 * If stripe unit and stripe width are not multiples
295 	 * of the fs blocksize turn off alignment.
296 	 */
297 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 		xfs_warn(mp,
300 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
301 			mp->m_sb.sb_blocksize);
302 		return -EINVAL;
303 	}
304 
305 	/*
306 	 * Convert the stripe unit and width to FSBs.
307 	 */
308 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
309 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 		xfs_warn(mp,
311 	"alignment check failed: sunit/swidth vs. agsize(%d)",
312 			mp->m_sb.sb_agblocks);
313 		return -EINVAL;
314 	}
315 
316 	if (!mp->m_dalign) {
317 		xfs_warn(mp,
318 	"alignment check failed: sunit(%d) less than bsize(%d)",
319 			mp->m_dalign, mp->m_sb.sb_blocksize);
320 		return -EINVAL;
321 	}
322 
323 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
324 
325 	if (!xfs_has_dalign(mp)) {
326 		xfs_warn(mp,
327 "cannot change alignment: superblock does not support data alignment");
328 		return -EINVAL;
329 	}
330 
331 	return 0;
332 }
333 
334 /* Update alignment values based on mount options and sb values. */
335 STATIC int
336 xfs_update_alignment(
337 	struct xfs_mount	*mp)
338 {
339 	struct xfs_sb		*sbp = &mp->m_sb;
340 
341 	if (mp->m_dalign) {
342 		bool		update_sb;
343 		int		error;
344 
345 		if (sbp->sb_unit == mp->m_dalign &&
346 		    sbp->sb_width == mp->m_swidth)
347 			return 0;
348 
349 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
350 		if (error || !update_sb)
351 			return error;
352 
353 		sbp->sb_unit = mp->m_dalign;
354 		sbp->sb_width = mp->m_swidth;
355 		mp->m_update_sb = true;
356 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
357 		mp->m_dalign = sbp->sb_unit;
358 		mp->m_swidth = sbp->sb_width;
359 	}
360 
361 	return 0;
362 }
363 
364 /*
365  * precalculate the low space thresholds for dynamic speculative preallocation.
366  */
367 void
368 xfs_set_low_space_thresholds(
369 	struct xfs_mount	*mp)
370 {
371 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
372 	uint64_t		rtexts = mp->m_sb.sb_rextents;
373 	int			i;
374 
375 	do_div(dblocks, 100);
376 	do_div(rtexts, 100);
377 
378 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
379 		mp->m_low_space[i] = dblocks * (i + 1);
380 		mp->m_low_rtexts[i] = rtexts * (i + 1);
381 	}
382 }
383 
384 /*
385  * Check that the data (and log if separate) is an ok size.
386  */
387 STATIC int
388 xfs_check_sizes(
389 	struct xfs_mount *mp)
390 {
391 	struct xfs_buf	*bp;
392 	xfs_daddr_t	d;
393 	int		error;
394 
395 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
396 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
397 		xfs_warn(mp, "filesystem size mismatch detected");
398 		return -EFBIG;
399 	}
400 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
401 					d - XFS_FSS_TO_BB(mp, 1),
402 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
403 	if (error) {
404 		xfs_warn(mp, "last sector read failed");
405 		return error;
406 	}
407 	xfs_buf_relse(bp);
408 
409 	if (mp->m_logdev_targp == mp->m_ddev_targp)
410 		return 0;
411 
412 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
413 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
414 		xfs_warn(mp, "log size mismatch detected");
415 		return -EFBIG;
416 	}
417 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
418 					d - XFS_FSB_TO_BB(mp, 1),
419 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
420 	if (error) {
421 		xfs_warn(mp, "log device read failed");
422 		return error;
423 	}
424 	xfs_buf_relse(bp);
425 	return 0;
426 }
427 
428 /*
429  * Clear the quotaflags in memory and in the superblock.
430  */
431 int
432 xfs_mount_reset_sbqflags(
433 	struct xfs_mount	*mp)
434 {
435 	mp->m_qflags = 0;
436 
437 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
438 	if (mp->m_sb.sb_qflags == 0)
439 		return 0;
440 	spin_lock(&mp->m_sb_lock);
441 	mp->m_sb.sb_qflags = 0;
442 	spin_unlock(&mp->m_sb_lock);
443 
444 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
445 		return 0;
446 
447 	return xfs_sync_sb(mp, false);
448 }
449 
450 uint64_t
451 xfs_default_resblks(xfs_mount_t *mp)
452 {
453 	uint64_t resblks;
454 
455 	/*
456 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
457 	 * smaller.  This is intended to cover concurrent allocation
458 	 * transactions when we initially hit enospc. These each require a 4
459 	 * block reservation. Hence by default we cover roughly 2000 concurrent
460 	 * allocation reservations.
461 	 */
462 	resblks = mp->m_sb.sb_dblocks;
463 	do_div(resblks, 20);
464 	resblks = min_t(uint64_t, resblks, 8192);
465 	return resblks;
466 }
467 
468 /* Ensure the summary counts are correct. */
469 STATIC int
470 xfs_check_summary_counts(
471 	struct xfs_mount	*mp)
472 {
473 	int			error = 0;
474 
475 	/*
476 	 * The AG0 superblock verifier rejects in-progress filesystems,
477 	 * so we should never see the flag set this far into mounting.
478 	 */
479 	if (mp->m_sb.sb_inprogress) {
480 		xfs_err(mp, "sb_inprogress set after log recovery??");
481 		WARN_ON(1);
482 		return -EFSCORRUPTED;
483 	}
484 
485 	/*
486 	 * Now the log is mounted, we know if it was an unclean shutdown or
487 	 * not. If it was, with the first phase of recovery has completed, we
488 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
489 	 * but they are recovered transactionally in the second recovery phase
490 	 * later.
491 	 *
492 	 * If the log was clean when we mounted, we can check the summary
493 	 * counters.  If any of them are obviously incorrect, we can recompute
494 	 * them from the AGF headers in the next step.
495 	 */
496 	if (xfs_is_clean(mp) &&
497 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
498 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
499 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
500 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
501 
502 	/*
503 	 * We can safely re-initialise incore superblock counters from the
504 	 * per-ag data. These may not be correct if the filesystem was not
505 	 * cleanly unmounted, so we waited for recovery to finish before doing
506 	 * this.
507 	 *
508 	 * If the filesystem was cleanly unmounted or the previous check did
509 	 * not flag anything weird, then we can trust the values in the
510 	 * superblock to be correct and we don't need to do anything here.
511 	 * Otherwise, recalculate the summary counters.
512 	 */
513 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
514 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
515 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 		if (error)
517 			return error;
518 	}
519 
520 	/*
521 	 * Older kernels misused sb_frextents to reflect both incore
522 	 * reservations made by running transactions and the actual count of
523 	 * free rt extents in the ondisk metadata.  Transactions committed
524 	 * during runtime can therefore contain a superblock update that
525 	 * undercounts the number of free rt extents tracked in the rt bitmap.
526 	 * A clean unmount record will have the correct frextents value since
527 	 * there can be no other transactions running at that point.
528 	 *
529 	 * If we're mounting the rt volume after recovering the log, recompute
530 	 * frextents from the rtbitmap file to fix the inconsistency.
531 	 */
532 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
533 		error = xfs_rtalloc_reinit_frextents(mp);
534 		if (error)
535 			return error;
536 	}
537 
538 	return 0;
539 }
540 
541 static void
542 xfs_unmount_check(
543 	struct xfs_mount	*mp)
544 {
545 	if (xfs_is_shutdown(mp))
546 		return;
547 
548 	if (percpu_counter_sum(&mp->m_ifree) >
549 			percpu_counter_sum(&mp->m_icount)) {
550 		xfs_alert(mp, "ifree/icount mismatch at unmount");
551 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
552 	}
553 }
554 
555 /*
556  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
557  * internal inode structures can be sitting in the CIL and AIL at this point,
558  * so we need to unpin them, write them back and/or reclaim them before unmount
559  * can proceed.  In other words, callers are required to have inactivated all
560  * inodes.
561  *
562  * An inode cluster that has been freed can have its buffer still pinned in
563  * memory because the transaction is still sitting in a iclog. The stale inodes
564  * on that buffer will be pinned to the buffer until the transaction hits the
565  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
566  * may never see the pinned buffer, so nothing will push out the iclog and
567  * unpin the buffer.
568  *
569  * Hence we need to force the log to unpin everything first. However, log
570  * forces don't wait for the discards they issue to complete, so we have to
571  * explicitly wait for them to complete here as well.
572  *
573  * Then we can tell the world we are unmounting so that error handling knows
574  * that the filesystem is going away and we should error out anything that we
575  * have been retrying in the background.  This will prevent never-ending
576  * retries in AIL pushing from hanging the unmount.
577  *
578  * Finally, we can push the AIL to clean all the remaining dirty objects, then
579  * reclaim the remaining inodes that are still in memory at this point in time.
580  */
581 static void
582 xfs_unmount_flush_inodes(
583 	struct xfs_mount	*mp)
584 {
585 	xfs_log_force(mp, XFS_LOG_SYNC);
586 	xfs_extent_busy_wait_all(mp);
587 	flush_workqueue(xfs_discard_wq);
588 
589 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
590 
591 	xfs_ail_push_all_sync(mp->m_ail);
592 	xfs_inodegc_stop(mp);
593 	cancel_delayed_work_sync(&mp->m_reclaim_work);
594 	xfs_reclaim_inodes(mp);
595 	xfs_health_unmount(mp);
596 }
597 
598 static void
599 xfs_mount_setup_inode_geom(
600 	struct xfs_mount	*mp)
601 {
602 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
603 
604 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
605 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
606 
607 	xfs_ialloc_setup_geometry(mp);
608 }
609 
610 /* Compute maximum possible height for per-AG btree types for this fs. */
611 static inline void
612 xfs_agbtree_compute_maxlevels(
613 	struct xfs_mount	*mp)
614 {
615 	unsigned int		levels;
616 
617 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
618 	levels = max(levels, mp->m_rmap_maxlevels);
619 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
620 }
621 
622 /*
623  * This function does the following on an initial mount of a file system:
624  *	- reads the superblock from disk and init the mount struct
625  *	- if we're a 32-bit kernel, do a size check on the superblock
626  *		so we don't mount terabyte filesystems
627  *	- init mount struct realtime fields
628  *	- allocate inode hash table for fs
629  *	- init directory manager
630  *	- perform recovery and init the log manager
631  */
632 int
633 xfs_mountfs(
634 	struct xfs_mount	*mp)
635 {
636 	struct xfs_sb		*sbp = &(mp->m_sb);
637 	struct xfs_inode	*rip;
638 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
639 	uint64_t		resblks;
640 	uint			quotamount = 0;
641 	uint			quotaflags = 0;
642 	int			error = 0;
643 
644 	xfs_sb_mount_common(mp, sbp);
645 
646 	/*
647 	 * Check for a mismatched features2 values.  Older kernels read & wrote
648 	 * into the wrong sb offset for sb_features2 on some platforms due to
649 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
650 	 * which made older superblock reading/writing routines swap it as a
651 	 * 64-bit value.
652 	 *
653 	 * For backwards compatibility, we make both slots equal.
654 	 *
655 	 * If we detect a mismatched field, we OR the set bits into the existing
656 	 * features2 field in case it has already been modified; we don't want
657 	 * to lose any features.  We then update the bad location with the ORed
658 	 * value so that older kernels will see any features2 flags. The
659 	 * superblock writeback code ensures the new sb_features2 is copied to
660 	 * sb_bad_features2 before it is logged or written to disk.
661 	 */
662 	if (xfs_sb_has_mismatched_features2(sbp)) {
663 		xfs_warn(mp, "correcting sb_features alignment problem");
664 		sbp->sb_features2 |= sbp->sb_bad_features2;
665 		mp->m_update_sb = true;
666 	}
667 
668 
669 	/* always use v2 inodes by default now */
670 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672 		mp->m_features |= XFS_FEAT_NLINK;
673 		mp->m_update_sb = true;
674 	}
675 
676 	/*
677 	 * If we were given new sunit/swidth options, do some basic validation
678 	 * checks and convert the incore dalign and swidth values to the
679 	 * same units (FSB) that everything else uses.  This /must/ happen
680 	 * before computing the inode geometry.
681 	 */
682 	error = xfs_validate_new_dalign(mp);
683 	if (error)
684 		goto out;
685 
686 	xfs_alloc_compute_maxlevels(mp);
687 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
688 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
689 	xfs_mount_setup_inode_geom(mp);
690 	xfs_rmapbt_compute_maxlevels(mp);
691 	xfs_refcountbt_compute_maxlevels(mp);
692 
693 	xfs_agbtree_compute_maxlevels(mp);
694 
695 	/*
696 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
697 	 * is NOT aligned turn off m_dalign since allocator alignment is within
698 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
699 	 * we must compute the free space and rmap btree geometry before doing
700 	 * this.
701 	 */
702 	error = xfs_update_alignment(mp);
703 	if (error)
704 		goto out;
705 
706 	/* enable fail_at_unmount as default */
707 	mp->m_fail_unmount = true;
708 
709 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
710 			       NULL, mp->m_super->s_id);
711 	if (error)
712 		goto out;
713 
714 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
715 			       &mp->m_kobj, "stats");
716 	if (error)
717 		goto out_remove_sysfs;
718 
719 	error = xfs_error_sysfs_init(mp);
720 	if (error)
721 		goto out_del_stats;
722 
723 	error = xfs_errortag_init(mp);
724 	if (error)
725 		goto out_remove_error_sysfs;
726 
727 	error = xfs_uuid_mount(mp);
728 	if (error)
729 		goto out_remove_errortag;
730 
731 	/*
732 	 * Update the preferred write size based on the information from the
733 	 * on-disk superblock.
734 	 */
735 	mp->m_allocsize_log =
736 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
737 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
738 
739 	/* set the low space thresholds for dynamic preallocation */
740 	xfs_set_low_space_thresholds(mp);
741 
742 	/*
743 	 * If enabled, sparse inode chunk alignment is expected to match the
744 	 * cluster size. Full inode chunk alignment must match the chunk size,
745 	 * but that is checked on sb read verification...
746 	 */
747 	if (xfs_has_sparseinodes(mp) &&
748 	    mp->m_sb.sb_spino_align !=
749 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
750 		xfs_warn(mp,
751 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
752 			 mp->m_sb.sb_spino_align,
753 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
754 		error = -EINVAL;
755 		goto out_remove_uuid;
756 	}
757 
758 	/*
759 	 * Check that the data (and log if separate) is an ok size.
760 	 */
761 	error = xfs_check_sizes(mp);
762 	if (error)
763 		goto out_remove_uuid;
764 
765 	/*
766 	 * Initialize realtime fields in the mount structure
767 	 */
768 	error = xfs_rtmount_init(mp);
769 	if (error) {
770 		xfs_warn(mp, "RT mount failed");
771 		goto out_remove_uuid;
772 	}
773 
774 	/*
775 	 *  Copies the low order bits of the timestamp and the randomly
776 	 *  set "sequence" number out of a UUID.
777 	 */
778 	mp->m_fixedfsid[0] =
779 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
780 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
781 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
782 
783 	error = xfs_da_mount(mp);
784 	if (error) {
785 		xfs_warn(mp, "Failed dir/attr init: %d", error);
786 		goto out_remove_uuid;
787 	}
788 
789 	/*
790 	 * Initialize the precomputed transaction reservations values.
791 	 */
792 	xfs_trans_init(mp);
793 
794 	/*
795 	 * Allocate and initialize the per-ag data.
796 	 */
797 	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
798 			&mp->m_maxagi);
799 	if (error) {
800 		xfs_warn(mp, "Failed per-ag init: %d", error);
801 		goto out_free_dir;
802 	}
803 
804 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
805 		xfs_warn(mp, "no log defined");
806 		error = -EFSCORRUPTED;
807 		goto out_free_perag;
808 	}
809 
810 	error = xfs_inodegc_register_shrinker(mp);
811 	if (error)
812 		goto out_fail_wait;
813 
814 	/*
815 	 * Log's mount-time initialization. The first part of recovery can place
816 	 * some items on the AIL, to be handled when recovery is finished or
817 	 * cancelled.
818 	 */
819 	error = xfs_log_mount(mp, mp->m_logdev_targp,
820 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 	if (error) {
823 		xfs_warn(mp, "log mount failed");
824 		goto out_inodegc_shrinker;
825 	}
826 
827 	/* Enable background inode inactivation workers. */
828 	xfs_inodegc_start(mp);
829 	xfs_blockgc_start(mp);
830 
831 	/*
832 	 * Now that we've recovered any pending superblock feature bit
833 	 * additions, we can finish setting up the attr2 behaviour for the
834 	 * mount. The noattr2 option overrides the superblock flag, so only
835 	 * check the superblock feature flag if the mount option is not set.
836 	 */
837 	if (xfs_has_noattr2(mp)) {
838 		mp->m_features &= ~XFS_FEAT_ATTR2;
839 	} else if (!xfs_has_attr2(mp) &&
840 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
841 		mp->m_features |= XFS_FEAT_ATTR2;
842 	}
843 
844 	/*
845 	 * Get and sanity-check the root inode.
846 	 * Save the pointer to it in the mount structure.
847 	 */
848 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
849 			 XFS_ILOCK_EXCL, &rip);
850 	if (error) {
851 		xfs_warn(mp,
852 			"Failed to read root inode 0x%llx, error %d",
853 			sbp->sb_rootino, -error);
854 		goto out_log_dealloc;
855 	}
856 
857 	ASSERT(rip != NULL);
858 
859 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
860 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
861 			(unsigned long long)rip->i_ino);
862 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
863 		error = -EFSCORRUPTED;
864 		goto out_rele_rip;
865 	}
866 	mp->m_rootip = rip;	/* save it */
867 
868 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
869 
870 	/*
871 	 * Initialize realtime inode pointers in the mount structure
872 	 */
873 	error = xfs_rtmount_inodes(mp);
874 	if (error) {
875 		/*
876 		 * Free up the root inode.
877 		 */
878 		xfs_warn(mp, "failed to read RT inodes");
879 		goto out_rele_rip;
880 	}
881 
882 	/* Make sure the summary counts are ok. */
883 	error = xfs_check_summary_counts(mp);
884 	if (error)
885 		goto out_rtunmount;
886 
887 	/*
888 	 * If this is a read-only mount defer the superblock updates until
889 	 * the next remount into writeable mode.  Otherwise we would never
890 	 * perform the update e.g. for the root filesystem.
891 	 */
892 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
893 		error = xfs_sync_sb(mp, false);
894 		if (error) {
895 			xfs_warn(mp, "failed to write sb changes");
896 			goto out_rtunmount;
897 		}
898 	}
899 
900 	/*
901 	 * Initialise the XFS quota management subsystem for this mount
902 	 */
903 	if (XFS_IS_QUOTA_ON(mp)) {
904 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
905 		if (error)
906 			goto out_rtunmount;
907 	} else {
908 		/*
909 		 * If a file system had quotas running earlier, but decided to
910 		 * mount without -o uquota/pquota/gquota options, revoke the
911 		 * quotachecked license.
912 		 */
913 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
914 			xfs_notice(mp, "resetting quota flags");
915 			error = xfs_mount_reset_sbqflags(mp);
916 			if (error)
917 				goto out_rtunmount;
918 		}
919 	}
920 
921 	/*
922 	 * Finish recovering the file system.  This part needed to be delayed
923 	 * until after the root and real-time bitmap inodes were consistently
924 	 * read in.  Temporarily create per-AG space reservations for metadata
925 	 * btree shape changes because space freeing transactions (for inode
926 	 * inactivation) require the per-AG reservation in lieu of reserving
927 	 * blocks.
928 	 */
929 	error = xfs_fs_reserve_ag_blocks(mp);
930 	if (error && error == -ENOSPC)
931 		xfs_warn(mp,
932 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
933 	error = xfs_log_mount_finish(mp);
934 	xfs_fs_unreserve_ag_blocks(mp);
935 	if (error) {
936 		xfs_warn(mp, "log mount finish failed");
937 		goto out_rtunmount;
938 	}
939 
940 	/*
941 	 * Now the log is fully replayed, we can transition to full read-only
942 	 * mode for read-only mounts. This will sync all the metadata and clean
943 	 * the log so that the recovery we just performed does not have to be
944 	 * replayed again on the next mount.
945 	 *
946 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
947 	 * semantically identical operations.
948 	 */
949 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
950 		xfs_log_clean(mp);
951 
952 	/*
953 	 * Complete the quota initialisation, post-log-replay component.
954 	 */
955 	if (quotamount) {
956 		ASSERT(mp->m_qflags == 0);
957 		mp->m_qflags = quotaflags;
958 
959 		xfs_qm_mount_quotas(mp);
960 	}
961 
962 	/*
963 	 * Now we are mounted, reserve a small amount of unused space for
964 	 * privileged transactions. This is needed so that transaction
965 	 * space required for critical operations can dip into this pool
966 	 * when at ENOSPC. This is needed for operations like create with
967 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 	 * are not allowed to use this reserved space.
969 	 *
970 	 * This may drive us straight to ENOSPC on mount, but that implies
971 	 * we were already there on the last unmount. Warn if this occurs.
972 	 */
973 	if (!xfs_is_readonly(mp)) {
974 		resblks = xfs_default_resblks(mp);
975 		error = xfs_reserve_blocks(mp, &resblks, NULL);
976 		if (error)
977 			xfs_warn(mp,
978 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
979 
980 		/* Reserve AG blocks for future btree expansion. */
981 		error = xfs_fs_reserve_ag_blocks(mp);
982 		if (error && error != -ENOSPC)
983 			goto out_agresv;
984 	}
985 
986 	return 0;
987 
988  out_agresv:
989 	xfs_fs_unreserve_ag_blocks(mp);
990 	xfs_qm_unmount_quotas(mp);
991  out_rtunmount:
992 	xfs_rtunmount_inodes(mp);
993  out_rele_rip:
994 	xfs_irele(rip);
995 	/* Clean out dquots that might be in memory after quotacheck. */
996 	xfs_qm_unmount(mp);
997 
998 	/*
999 	 * Inactivate all inodes that might still be in memory after a log
1000 	 * intent recovery failure so that reclaim can free them.  Metadata
1001 	 * inodes and the root directory shouldn't need inactivation, but the
1002 	 * mount failed for some reason, so pull down all the state and flee.
1003 	 */
1004 	xfs_inodegc_flush(mp);
1005 
1006 	/*
1007 	 * Flush all inode reclamation work and flush the log.
1008 	 * We have to do this /after/ rtunmount and qm_unmount because those
1009 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1010 	 *
1011 	 * This is slightly different from the unmountfs call sequence
1012 	 * because we could be tearing down a partially set up mount.  In
1013 	 * particular, if log_mount_finish fails we bail out without calling
1014 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1015 	 * quota inodes.
1016 	 */
1017 	xfs_unmount_flush_inodes(mp);
1018  out_log_dealloc:
1019 	xfs_log_mount_cancel(mp);
1020  out_inodegc_shrinker:
1021 	unregister_shrinker(&mp->m_inodegc_shrinker);
1022  out_fail_wait:
1023 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1024 		xfs_buftarg_drain(mp->m_logdev_targp);
1025 	xfs_buftarg_drain(mp->m_ddev_targp);
1026  out_free_perag:
1027 	xfs_free_perag(mp);
1028  out_free_dir:
1029 	xfs_da_unmount(mp);
1030  out_remove_uuid:
1031 	xfs_uuid_unmount(mp);
1032  out_remove_errortag:
1033 	xfs_errortag_del(mp);
1034  out_remove_error_sysfs:
1035 	xfs_error_sysfs_del(mp);
1036  out_del_stats:
1037 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1038  out_remove_sysfs:
1039 	xfs_sysfs_del(&mp->m_kobj);
1040  out:
1041 	return error;
1042 }
1043 
1044 /*
1045  * This flushes out the inodes,dquots and the superblock, unmounts the
1046  * log and makes sure that incore structures are freed.
1047  */
1048 void
1049 xfs_unmountfs(
1050 	struct xfs_mount	*mp)
1051 {
1052 	uint64_t		resblks;
1053 	int			error;
1054 
1055 	/*
1056 	 * Perform all on-disk metadata updates required to inactivate inodes
1057 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1058 	 * and discarding CoW fork preallocations can cause shape changes to
1059 	 * the free inode and refcount btrees, respectively, so we must finish
1060 	 * this before we discard the metadata space reservations.  Metadata
1061 	 * inodes and the root directory do not require inactivation.
1062 	 */
1063 	xfs_inodegc_flush(mp);
1064 
1065 	xfs_blockgc_stop(mp);
1066 	xfs_fs_unreserve_ag_blocks(mp);
1067 	xfs_qm_unmount_quotas(mp);
1068 	xfs_rtunmount_inodes(mp);
1069 	xfs_irele(mp->m_rootip);
1070 
1071 	xfs_unmount_flush_inodes(mp);
1072 
1073 	xfs_qm_unmount(mp);
1074 
1075 	/*
1076 	 * Unreserve any blocks we have so that when we unmount we don't account
1077 	 * the reserved free space as used. This is really only necessary for
1078 	 * lazy superblock counting because it trusts the incore superblock
1079 	 * counters to be absolutely correct on clean unmount.
1080 	 *
1081 	 * We don't bother correcting this elsewhere for lazy superblock
1082 	 * counting because on mount of an unclean filesystem we reconstruct the
1083 	 * correct counter value and this is irrelevant.
1084 	 *
1085 	 * For non-lazy counter filesystems, this doesn't matter at all because
1086 	 * we only every apply deltas to the superblock and hence the incore
1087 	 * value does not matter....
1088 	 */
1089 	resblks = 0;
1090 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1091 	if (error)
1092 		xfs_warn(mp, "Unable to free reserved block pool. "
1093 				"Freespace may not be correct on next mount.");
1094 	xfs_unmount_check(mp);
1095 
1096 	xfs_log_unmount(mp);
1097 	xfs_da_unmount(mp);
1098 	xfs_uuid_unmount(mp);
1099 
1100 #if defined(DEBUG)
1101 	xfs_errortag_clearall(mp);
1102 #endif
1103 	unregister_shrinker(&mp->m_inodegc_shrinker);
1104 	xfs_free_perag(mp);
1105 
1106 	xfs_errortag_del(mp);
1107 	xfs_error_sysfs_del(mp);
1108 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1109 	xfs_sysfs_del(&mp->m_kobj);
1110 }
1111 
1112 /*
1113  * Determine whether modifications can proceed. The caller specifies the minimum
1114  * freeze level for which modifications should not be allowed. This allows
1115  * certain operations to proceed while the freeze sequence is in progress, if
1116  * necessary.
1117  */
1118 bool
1119 xfs_fs_writable(
1120 	struct xfs_mount	*mp,
1121 	int			level)
1122 {
1123 	ASSERT(level > SB_UNFROZEN);
1124 	if ((mp->m_super->s_writers.frozen >= level) ||
1125 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1126 		return false;
1127 
1128 	return true;
1129 }
1130 
1131 /* Adjust m_fdblocks or m_frextents. */
1132 int
1133 xfs_mod_freecounter(
1134 	struct xfs_mount	*mp,
1135 	struct percpu_counter	*counter,
1136 	int64_t			delta,
1137 	bool			rsvd)
1138 {
1139 	int64_t			lcounter;
1140 	long long		res_used;
1141 	uint64_t		set_aside = 0;
1142 	s32			batch;
1143 	bool			has_resv_pool;
1144 
1145 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1146 	has_resv_pool = (counter == &mp->m_fdblocks);
1147 	if (rsvd)
1148 		ASSERT(has_resv_pool);
1149 
1150 	if (delta > 0) {
1151 		/*
1152 		 * If the reserve pool is depleted, put blocks back into it
1153 		 * first. Most of the time the pool is full.
1154 		 */
1155 		if (likely(!has_resv_pool ||
1156 			   mp->m_resblks == mp->m_resblks_avail)) {
1157 			percpu_counter_add(counter, delta);
1158 			return 0;
1159 		}
1160 
1161 		spin_lock(&mp->m_sb_lock);
1162 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1163 
1164 		if (res_used > delta) {
1165 			mp->m_resblks_avail += delta;
1166 		} else {
1167 			delta -= res_used;
1168 			mp->m_resblks_avail = mp->m_resblks;
1169 			percpu_counter_add(counter, delta);
1170 		}
1171 		spin_unlock(&mp->m_sb_lock);
1172 		return 0;
1173 	}
1174 
1175 	/*
1176 	 * Taking blocks away, need to be more accurate the closer we
1177 	 * are to zero.
1178 	 *
1179 	 * If the counter has a value of less than 2 * max batch size,
1180 	 * then make everything serialise as we are real close to
1181 	 * ENOSPC.
1182 	 */
1183 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1184 				     XFS_FDBLOCKS_BATCH) < 0)
1185 		batch = 1;
1186 	else
1187 		batch = XFS_FDBLOCKS_BATCH;
1188 
1189 	/*
1190 	 * Set aside allocbt blocks because these blocks are tracked as free
1191 	 * space but not available for allocation. Technically this means that a
1192 	 * single reservation cannot consume all remaining free space, but the
1193 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1194 	 * The tradeoff without this is that filesystems that maintain high
1195 	 * perag block reservations can over reserve physical block availability
1196 	 * and fail physical allocation, which leads to much more serious
1197 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1198 	 * slightly premature -ENOSPC.
1199 	 */
1200 	if (has_resv_pool)
1201 		set_aside = xfs_fdblocks_unavailable(mp);
1202 	percpu_counter_add_batch(counter, delta, batch);
1203 	if (__percpu_counter_compare(counter, set_aside,
1204 				     XFS_FDBLOCKS_BATCH) >= 0) {
1205 		/* we had space! */
1206 		return 0;
1207 	}
1208 
1209 	/*
1210 	 * lock up the sb for dipping into reserves before releasing the space
1211 	 * that took us to ENOSPC.
1212 	 */
1213 	spin_lock(&mp->m_sb_lock);
1214 	percpu_counter_add(counter, -delta);
1215 	if (!has_resv_pool || !rsvd)
1216 		goto fdblocks_enospc;
1217 
1218 	lcounter = (long long)mp->m_resblks_avail + delta;
1219 	if (lcounter >= 0) {
1220 		mp->m_resblks_avail = lcounter;
1221 		spin_unlock(&mp->m_sb_lock);
1222 		return 0;
1223 	}
1224 	xfs_warn_once(mp,
1225 "Reserve blocks depleted! Consider increasing reserve pool size.");
1226 
1227 fdblocks_enospc:
1228 	spin_unlock(&mp->m_sb_lock);
1229 	return -ENOSPC;
1230 }
1231 
1232 /*
1233  * Used to free the superblock along various error paths.
1234  */
1235 void
1236 xfs_freesb(
1237 	struct xfs_mount	*mp)
1238 {
1239 	struct xfs_buf		*bp = mp->m_sb_bp;
1240 
1241 	xfs_buf_lock(bp);
1242 	mp->m_sb_bp = NULL;
1243 	xfs_buf_relse(bp);
1244 }
1245 
1246 /*
1247  * If the underlying (data/log/rt) device is readonly, there are some
1248  * operations that cannot proceed.
1249  */
1250 int
1251 xfs_dev_is_read_only(
1252 	struct xfs_mount	*mp,
1253 	char			*message)
1254 {
1255 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1256 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1257 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1258 		xfs_notice(mp, "%s required on read-only device.", message);
1259 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1260 		return -EROFS;
1261 	}
1262 	return 0;
1263 }
1264 
1265 /* Force the summary counters to be recalculated at next mount. */
1266 void
1267 xfs_force_summary_recalc(
1268 	struct xfs_mount	*mp)
1269 {
1270 	if (!xfs_has_lazysbcount(mp))
1271 		return;
1272 
1273 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1274 }
1275 
1276 /*
1277  * Enable a log incompat feature flag in the primary superblock.  The caller
1278  * cannot have any other transactions in progress.
1279  */
1280 int
1281 xfs_add_incompat_log_feature(
1282 	struct xfs_mount	*mp,
1283 	uint32_t		feature)
1284 {
1285 	struct xfs_dsb		*dsb;
1286 	int			error;
1287 
1288 	ASSERT(hweight32(feature) == 1);
1289 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1290 
1291 	/*
1292 	 * Force the log to disk and kick the background AIL thread to reduce
1293 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1294 	 * the primary superblock buffer.  This isn't a data integrity
1295 	 * operation, so we don't need a synchronous push.
1296 	 */
1297 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1298 	if (error)
1299 		return error;
1300 	xfs_ail_push_all(mp->m_ail);
1301 
1302 	/*
1303 	 * Lock the primary superblock buffer to serialize all callers that
1304 	 * are trying to set feature bits.
1305 	 */
1306 	xfs_buf_lock(mp->m_sb_bp);
1307 	xfs_buf_hold(mp->m_sb_bp);
1308 
1309 	if (xfs_is_shutdown(mp)) {
1310 		error = -EIO;
1311 		goto rele;
1312 	}
1313 
1314 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1315 		goto rele;
1316 
1317 	/*
1318 	 * Write the primary superblock to disk immediately, because we need
1319 	 * the log_incompat bit to be set in the primary super now to protect
1320 	 * the log items that we're going to commit later.
1321 	 */
1322 	dsb = mp->m_sb_bp->b_addr;
1323 	xfs_sb_to_disk(dsb, &mp->m_sb);
1324 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1325 	error = xfs_bwrite(mp->m_sb_bp);
1326 	if (error)
1327 		goto shutdown;
1328 
1329 	/*
1330 	 * Add the feature bits to the incore superblock before we unlock the
1331 	 * buffer.
1332 	 */
1333 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1334 	xfs_buf_relse(mp->m_sb_bp);
1335 
1336 	/* Log the superblock to disk. */
1337 	return xfs_sync_sb(mp, false);
1338 shutdown:
1339 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1340 rele:
1341 	xfs_buf_relse(mp->m_sb_bp);
1342 	return error;
1343 }
1344 
1345 /*
1346  * Clear all the log incompat flags from the superblock.
1347  *
1348  * The caller cannot be in a transaction, must ensure that the log does not
1349  * contain any log items protected by any log incompat bit, and must ensure
1350  * that there are no other threads that depend on the state of the log incompat
1351  * feature flags in the primary super.
1352  *
1353  * Returns true if the superblock is dirty.
1354  */
1355 bool
1356 xfs_clear_incompat_log_features(
1357 	struct xfs_mount	*mp)
1358 {
1359 	bool			ret = false;
1360 
1361 	if (!xfs_has_crc(mp) ||
1362 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1363 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1364 	    xfs_is_shutdown(mp))
1365 		return false;
1366 
1367 	/*
1368 	 * Update the incore superblock.  We synchronize on the primary super
1369 	 * buffer lock to be consistent with the add function, though at least
1370 	 * in theory this shouldn't be necessary.
1371 	 */
1372 	xfs_buf_lock(mp->m_sb_bp);
1373 	xfs_buf_hold(mp->m_sb_bp);
1374 
1375 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1376 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1377 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1378 		ret = true;
1379 	}
1380 
1381 	xfs_buf_relse(mp->m_sb_bp);
1382 	return ret;
1383 }
1384 
1385 /*
1386  * Update the in-core delayed block counter.
1387  *
1388  * We prefer to update the counter without having to take a spinlock for every
1389  * counter update (i.e. batching).  Each change to delayed allocation
1390  * reservations can change can easily exceed the default percpu counter
1391  * batching, so we use a larger batch factor here.
1392  *
1393  * Note that we don't currently have any callers requiring fast summation
1394  * (e.g. percpu_counter_read) so we can use a big batch value here.
1395  */
1396 #define XFS_DELALLOC_BATCH	(4096)
1397 void
1398 xfs_mod_delalloc(
1399 	struct xfs_mount	*mp,
1400 	int64_t			delta)
1401 {
1402 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1403 			XFS_DELALLOC_BATCH);
1404 }
1405