xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision e9246c87)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45 #include "xfs_sysfs.h"
46 
47 
48 #ifdef HAVE_PERCPU_SB
49 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
50 						int);
51 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
54 #else
55 
56 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
57 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
58 #endif
59 
60 static DEFINE_MUTEX(xfs_uuid_table_mutex);
61 static int xfs_uuid_table_size;
62 static uuid_t *xfs_uuid_table;
63 
64 /*
65  * See if the UUID is unique among mounted XFS filesystems.
66  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67  */
68 STATIC int
69 xfs_uuid_mount(
70 	struct xfs_mount	*mp)
71 {
72 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
73 	int			hole, i;
74 
75 	if (mp->m_flags & XFS_MOUNT_NOUUID)
76 		return 0;
77 
78 	if (uuid_is_nil(uuid)) {
79 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80 		return -EINVAL;
81 	}
82 
83 	mutex_lock(&xfs_uuid_table_mutex);
84 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 		if (uuid_is_nil(&xfs_uuid_table[i])) {
86 			hole = i;
87 			continue;
88 		}
89 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 			goto out_duplicate;
91 	}
92 
93 	if (hole < 0) {
94 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
97 			KM_SLEEP);
98 		hole = xfs_uuid_table_size++;
99 	}
100 	xfs_uuid_table[hole] = *uuid;
101 	mutex_unlock(&xfs_uuid_table_mutex);
102 
103 	return 0;
104 
105  out_duplicate:
106 	mutex_unlock(&xfs_uuid_table_mutex);
107 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
108 	return -EINVAL;
109 }
110 
111 STATIC void
112 xfs_uuid_unmount(
113 	struct xfs_mount	*mp)
114 {
115 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
116 	int			i;
117 
118 	if (mp->m_flags & XFS_MOUNT_NOUUID)
119 		return;
120 
121 	mutex_lock(&xfs_uuid_table_mutex);
122 	for (i = 0; i < xfs_uuid_table_size; i++) {
123 		if (uuid_is_nil(&xfs_uuid_table[i]))
124 			continue;
125 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126 			continue;
127 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128 		break;
129 	}
130 	ASSERT(i < xfs_uuid_table_size);
131 	mutex_unlock(&xfs_uuid_table_mutex);
132 }
133 
134 
135 STATIC void
136 __xfs_free_perag(
137 	struct rcu_head	*head)
138 {
139 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140 
141 	ASSERT(atomic_read(&pag->pag_ref) == 0);
142 	kmem_free(pag);
143 }
144 
145 /*
146  * Free up the per-ag resources associated with the mount structure.
147  */
148 STATIC void
149 xfs_free_perag(
150 	xfs_mount_t	*mp)
151 {
152 	xfs_agnumber_t	agno;
153 	struct xfs_perag *pag;
154 
155 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 		spin_lock(&mp->m_perag_lock);
157 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 		spin_unlock(&mp->m_perag_lock);
159 		ASSERT(pag);
160 		ASSERT(atomic_read(&pag->pag_ref) == 0);
161 		call_rcu(&pag->rcu_head, __xfs_free_perag);
162 	}
163 }
164 
165 /*
166  * Check size of device based on the (data/realtime) block count.
167  * Note: this check is used by the growfs code as well as mount.
168  */
169 int
170 xfs_sb_validate_fsb_count(
171 	xfs_sb_t	*sbp,
172 	__uint64_t	nblocks)
173 {
174 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
175 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
176 
177 	/* Limited by ULONG_MAX of page cache index */
178 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
179 		return -EFBIG;
180 	return 0;
181 }
182 
183 int
184 xfs_initialize_perag(
185 	xfs_mount_t	*mp,
186 	xfs_agnumber_t	agcount,
187 	xfs_agnumber_t	*maxagi)
188 {
189 	xfs_agnumber_t	index;
190 	xfs_agnumber_t	first_initialised = 0;
191 	xfs_perag_t	*pag;
192 	xfs_agino_t	agino;
193 	xfs_ino_t	ino;
194 	xfs_sb_t	*sbp = &mp->m_sb;
195 	int		error = -ENOMEM;
196 
197 	/*
198 	 * Walk the current per-ag tree so we don't try to initialise AGs
199 	 * that already exist (growfs case). Allocate and insert all the
200 	 * AGs we don't find ready for initialisation.
201 	 */
202 	for (index = 0; index < agcount; index++) {
203 		pag = xfs_perag_get(mp, index);
204 		if (pag) {
205 			xfs_perag_put(pag);
206 			continue;
207 		}
208 		if (!first_initialised)
209 			first_initialised = index;
210 
211 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 		if (!pag)
213 			goto out_unwind;
214 		pag->pag_agno = index;
215 		pag->pag_mount = mp;
216 		spin_lock_init(&pag->pag_ici_lock);
217 		mutex_init(&pag->pag_ici_reclaim_lock);
218 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 		spin_lock_init(&pag->pag_buf_lock);
220 		pag->pag_buf_tree = RB_ROOT;
221 
222 		if (radix_tree_preload(GFP_NOFS))
223 			goto out_unwind;
224 
225 		spin_lock(&mp->m_perag_lock);
226 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
227 			BUG();
228 			spin_unlock(&mp->m_perag_lock);
229 			radix_tree_preload_end();
230 			error = -EEXIST;
231 			goto out_unwind;
232 		}
233 		spin_unlock(&mp->m_perag_lock);
234 		radix_tree_preload_end();
235 	}
236 
237 	/*
238 	 * If we mount with the inode64 option, or no inode overflows
239 	 * the legacy 32-bit address space clear the inode32 option.
240 	 */
241 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
242 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
243 
244 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
245 		mp->m_flags |= XFS_MOUNT_32BITINODES;
246 	else
247 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
248 
249 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
250 		index = xfs_set_inode32(mp, agcount);
251 	else
252 		index = xfs_set_inode64(mp, agcount);
253 
254 	if (maxagi)
255 		*maxagi = index;
256 	return 0;
257 
258 out_unwind:
259 	kmem_free(pag);
260 	for (; index > first_initialised; index--) {
261 		pag = radix_tree_delete(&mp->m_perag_tree, index);
262 		kmem_free(pag);
263 	}
264 	return error;
265 }
266 
267 /*
268  * xfs_readsb
269  *
270  * Does the initial read of the superblock.
271  */
272 int
273 xfs_readsb(
274 	struct xfs_mount *mp,
275 	int		flags)
276 {
277 	unsigned int	sector_size;
278 	struct xfs_buf	*bp;
279 	struct xfs_sb	*sbp = &mp->m_sb;
280 	int		error;
281 	int		loud = !(flags & XFS_MFSI_QUIET);
282 	const struct xfs_buf_ops *buf_ops;
283 
284 	ASSERT(mp->m_sb_bp == NULL);
285 	ASSERT(mp->m_ddev_targp != NULL);
286 
287 	/*
288 	 * For the initial read, we must guess at the sector
289 	 * size based on the block device.  It's enough to
290 	 * get the sb_sectsize out of the superblock and
291 	 * then reread with the proper length.
292 	 * We don't verify it yet, because it may not be complete.
293 	 */
294 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 	buf_ops = NULL;
296 
297 	/*
298 	 * Allocate a (locked) buffer to hold the superblock.
299 	 * This will be kept around at all times to optimize
300 	 * access to the superblock.
301 	 */
302 reread:
303 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
304 				   BTOBB(sector_size), 0, &bp, buf_ops);
305 	if (error) {
306 		if (loud)
307 			xfs_warn(mp, "SB validate failed with error %d.", error);
308 		/* bad CRC means corrupted metadata */
309 		if (error == -EFSBADCRC)
310 			error = -EFSCORRUPTED;
311 		return error;
312 	}
313 
314 	/*
315 	 * Initialize the mount structure from the superblock.
316 	 */
317 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
318 
319 	/*
320 	 * If we haven't validated the superblock, do so now before we try
321 	 * to check the sector size and reread the superblock appropriately.
322 	 */
323 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
324 		if (loud)
325 			xfs_warn(mp, "Invalid superblock magic number");
326 		error = -EINVAL;
327 		goto release_buf;
328 	}
329 
330 	/*
331 	 * We must be able to do sector-sized and sector-aligned IO.
332 	 */
333 	if (sector_size > sbp->sb_sectsize) {
334 		if (loud)
335 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
336 				sector_size, sbp->sb_sectsize);
337 		error = -ENOSYS;
338 		goto release_buf;
339 	}
340 
341 	if (buf_ops == NULL) {
342 		/*
343 		 * Re-read the superblock so the buffer is correctly sized,
344 		 * and properly verified.
345 		 */
346 		xfs_buf_relse(bp);
347 		sector_size = sbp->sb_sectsize;
348 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
349 		goto reread;
350 	}
351 
352 	/* Initialize per-cpu counters */
353 	xfs_icsb_reinit_counters(mp);
354 
355 	/* no need to be quiet anymore, so reset the buf ops */
356 	bp->b_ops = &xfs_sb_buf_ops;
357 
358 	mp->m_sb_bp = bp;
359 	xfs_buf_unlock(bp);
360 	return 0;
361 
362 release_buf:
363 	xfs_buf_relse(bp);
364 	return error;
365 }
366 
367 /*
368  * Update alignment values based on mount options and sb values
369  */
370 STATIC int
371 xfs_update_alignment(xfs_mount_t *mp)
372 {
373 	xfs_sb_t	*sbp = &(mp->m_sb);
374 
375 	if (mp->m_dalign) {
376 		/*
377 		 * If stripe unit and stripe width are not multiples
378 		 * of the fs blocksize turn off alignment.
379 		 */
380 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
381 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
382 			xfs_warn(mp,
383 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
384 				sbp->sb_blocksize);
385 			return -EINVAL;
386 		} else {
387 			/*
388 			 * Convert the stripe unit and width to FSBs.
389 			 */
390 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
391 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
392 				xfs_warn(mp,
393 			"alignment check failed: sunit/swidth vs. agsize(%d)",
394 					 sbp->sb_agblocks);
395 				return -EINVAL;
396 			} else if (mp->m_dalign) {
397 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
398 			} else {
399 				xfs_warn(mp,
400 			"alignment check failed: sunit(%d) less than bsize(%d)",
401 					 mp->m_dalign, sbp->sb_blocksize);
402 				return -EINVAL;
403 			}
404 		}
405 
406 		/*
407 		 * Update superblock with new values
408 		 * and log changes
409 		 */
410 		if (xfs_sb_version_hasdalign(sbp)) {
411 			if (sbp->sb_unit != mp->m_dalign) {
412 				sbp->sb_unit = mp->m_dalign;
413 				mp->m_update_flags |= XFS_SB_UNIT;
414 			}
415 			if (sbp->sb_width != mp->m_swidth) {
416 				sbp->sb_width = mp->m_swidth;
417 				mp->m_update_flags |= XFS_SB_WIDTH;
418 			}
419 		} else {
420 			xfs_warn(mp,
421 	"cannot change alignment: superblock does not support data alignment");
422 			return -EINVAL;
423 		}
424 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
425 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
426 			mp->m_dalign = sbp->sb_unit;
427 			mp->m_swidth = sbp->sb_width;
428 	}
429 
430 	return 0;
431 }
432 
433 /*
434  * Set the maximum inode count for this filesystem
435  */
436 STATIC void
437 xfs_set_maxicount(xfs_mount_t *mp)
438 {
439 	xfs_sb_t	*sbp = &(mp->m_sb);
440 	__uint64_t	icount;
441 
442 	if (sbp->sb_imax_pct) {
443 		/*
444 		 * Make sure the maximum inode count is a multiple
445 		 * of the units we allocate inodes in.
446 		 */
447 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
448 		do_div(icount, 100);
449 		do_div(icount, mp->m_ialloc_blks);
450 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
451 				   sbp->sb_inopblog;
452 	} else {
453 		mp->m_maxicount = 0;
454 	}
455 }
456 
457 /*
458  * Set the default minimum read and write sizes unless
459  * already specified in a mount option.
460  * We use smaller I/O sizes when the file system
461  * is being used for NFS service (wsync mount option).
462  */
463 STATIC void
464 xfs_set_rw_sizes(xfs_mount_t *mp)
465 {
466 	xfs_sb_t	*sbp = &(mp->m_sb);
467 	int		readio_log, writeio_log;
468 
469 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
470 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
471 			readio_log = XFS_WSYNC_READIO_LOG;
472 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
473 		} else {
474 			readio_log = XFS_READIO_LOG_LARGE;
475 			writeio_log = XFS_WRITEIO_LOG_LARGE;
476 		}
477 	} else {
478 		readio_log = mp->m_readio_log;
479 		writeio_log = mp->m_writeio_log;
480 	}
481 
482 	if (sbp->sb_blocklog > readio_log) {
483 		mp->m_readio_log = sbp->sb_blocklog;
484 	} else {
485 		mp->m_readio_log = readio_log;
486 	}
487 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
488 	if (sbp->sb_blocklog > writeio_log) {
489 		mp->m_writeio_log = sbp->sb_blocklog;
490 	} else {
491 		mp->m_writeio_log = writeio_log;
492 	}
493 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
494 }
495 
496 /*
497  * precalculate the low space thresholds for dynamic speculative preallocation.
498  */
499 void
500 xfs_set_low_space_thresholds(
501 	struct xfs_mount	*mp)
502 {
503 	int i;
504 
505 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
506 		__uint64_t space = mp->m_sb.sb_dblocks;
507 
508 		do_div(space, 100);
509 		mp->m_low_space[i] = space * (i + 1);
510 	}
511 }
512 
513 
514 /*
515  * Set whether we're using inode alignment.
516  */
517 STATIC void
518 xfs_set_inoalignment(xfs_mount_t *mp)
519 {
520 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
521 	    mp->m_sb.sb_inoalignmt >=
522 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
523 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
524 	else
525 		mp->m_inoalign_mask = 0;
526 	/*
527 	 * If we are using stripe alignment, check whether
528 	 * the stripe unit is a multiple of the inode alignment
529 	 */
530 	if (mp->m_dalign && mp->m_inoalign_mask &&
531 	    !(mp->m_dalign & mp->m_inoalign_mask))
532 		mp->m_sinoalign = mp->m_dalign;
533 	else
534 		mp->m_sinoalign = 0;
535 }
536 
537 /*
538  * Check that the data (and log if separate) is an ok size.
539  */
540 STATIC int
541 xfs_check_sizes(
542 	struct xfs_mount *mp)
543 {
544 	struct xfs_buf	*bp;
545 	xfs_daddr_t	d;
546 	int		error;
547 
548 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
549 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
550 		xfs_warn(mp, "filesystem size mismatch detected");
551 		return -EFBIG;
552 	}
553 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
554 					d - XFS_FSS_TO_BB(mp, 1),
555 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
556 	if (error) {
557 		xfs_warn(mp, "last sector read failed");
558 		return error;
559 	}
560 	xfs_buf_relse(bp);
561 
562 	if (mp->m_logdev_targp == mp->m_ddev_targp)
563 		return 0;
564 
565 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
566 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
567 		xfs_warn(mp, "log size mismatch detected");
568 		return -EFBIG;
569 	}
570 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
571 					d - XFS_FSB_TO_BB(mp, 1),
572 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
573 	if (error) {
574 		xfs_warn(mp, "log device read failed");
575 		return error;
576 	}
577 	xfs_buf_relse(bp);
578 	return 0;
579 }
580 
581 /*
582  * Clear the quotaflags in memory and in the superblock.
583  */
584 int
585 xfs_mount_reset_sbqflags(
586 	struct xfs_mount	*mp)
587 {
588 	int			error;
589 	struct xfs_trans	*tp;
590 
591 	mp->m_qflags = 0;
592 
593 	/*
594 	 * It is OK to look at sb_qflags here in mount path,
595 	 * without m_sb_lock.
596 	 */
597 	if (mp->m_sb.sb_qflags == 0)
598 		return 0;
599 	spin_lock(&mp->m_sb_lock);
600 	mp->m_sb.sb_qflags = 0;
601 	spin_unlock(&mp->m_sb_lock);
602 
603 	/*
604 	 * If the fs is readonly, let the incore superblock run
605 	 * with quotas off but don't flush the update out to disk
606 	 */
607 	if (mp->m_flags & XFS_MOUNT_RDONLY)
608 		return 0;
609 
610 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
611 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
612 	if (error) {
613 		xfs_trans_cancel(tp, 0);
614 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
615 		return error;
616 	}
617 
618 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
619 	return xfs_trans_commit(tp, 0);
620 }
621 
622 __uint64_t
623 xfs_default_resblks(xfs_mount_t *mp)
624 {
625 	__uint64_t resblks;
626 
627 	/*
628 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
629 	 * smaller.  This is intended to cover concurrent allocation
630 	 * transactions when we initially hit enospc. These each require a 4
631 	 * block reservation. Hence by default we cover roughly 2000 concurrent
632 	 * allocation reservations.
633 	 */
634 	resblks = mp->m_sb.sb_dblocks;
635 	do_div(resblks, 20);
636 	resblks = min_t(__uint64_t, resblks, 8192);
637 	return resblks;
638 }
639 
640 /*
641  * This function does the following on an initial mount of a file system:
642  *	- reads the superblock from disk and init the mount struct
643  *	- if we're a 32-bit kernel, do a size check on the superblock
644  *		so we don't mount terabyte filesystems
645  *	- init mount struct realtime fields
646  *	- allocate inode hash table for fs
647  *	- init directory manager
648  *	- perform recovery and init the log manager
649  */
650 int
651 xfs_mountfs(
652 	xfs_mount_t	*mp)
653 {
654 	xfs_sb_t	*sbp = &(mp->m_sb);
655 	xfs_inode_t	*rip;
656 	__uint64_t	resblks;
657 	uint		quotamount = 0;
658 	uint		quotaflags = 0;
659 	int		error = 0;
660 
661 	xfs_sb_mount_common(mp, sbp);
662 
663 	/*
664 	 * Check for a mismatched features2 values.  Older kernels
665 	 * read & wrote into the wrong sb offset for sb_features2
666 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
667 	 * when sb_features2 was added, which made older superblock
668 	 * reading/writing routines swap it as a 64-bit value.
669 	 *
670 	 * For backwards compatibility, we make both slots equal.
671 	 *
672 	 * If we detect a mismatched field, we OR the set bits into the
673 	 * existing features2 field in case it has already been modified; we
674 	 * don't want to lose any features.  We then update the bad location
675 	 * with the ORed value so that older kernels will see any features2
676 	 * flags, and mark the two fields as needing updates once the
677 	 * transaction subsystem is online.
678 	 */
679 	if (xfs_sb_has_mismatched_features2(sbp)) {
680 		xfs_warn(mp, "correcting sb_features alignment problem");
681 		sbp->sb_features2 |= sbp->sb_bad_features2;
682 		sbp->sb_bad_features2 = sbp->sb_features2;
683 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
684 
685 		/*
686 		 * Re-check for ATTR2 in case it was found in bad_features2
687 		 * slot.
688 		 */
689 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
690 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
691 			mp->m_flags |= XFS_MOUNT_ATTR2;
692 	}
693 
694 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
695 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
696 		xfs_sb_version_removeattr2(&mp->m_sb);
697 		mp->m_update_flags |= XFS_SB_FEATURES2;
698 
699 		/* update sb_versionnum for the clearing of the morebits */
700 		if (!sbp->sb_features2)
701 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
702 	}
703 
704 	/* always use v2 inodes by default now */
705 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
706 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
707 		mp->m_update_flags |= XFS_SB_VERSIONNUM;
708 	}
709 
710 	/*
711 	 * Check if sb_agblocks is aligned at stripe boundary
712 	 * If sb_agblocks is NOT aligned turn off m_dalign since
713 	 * allocator alignment is within an ag, therefore ag has
714 	 * to be aligned at stripe boundary.
715 	 */
716 	error = xfs_update_alignment(mp);
717 	if (error)
718 		goto out;
719 
720 	xfs_alloc_compute_maxlevels(mp);
721 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
722 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
723 	xfs_ialloc_compute_maxlevels(mp);
724 
725 	xfs_set_maxicount(mp);
726 
727 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
728 	if (error)
729 		goto out;
730 
731 	error = xfs_uuid_mount(mp);
732 	if (error)
733 		goto out_remove_sysfs;
734 
735 	/*
736 	 * Set the minimum read and write sizes
737 	 */
738 	xfs_set_rw_sizes(mp);
739 
740 	/* set the low space thresholds for dynamic preallocation */
741 	xfs_set_low_space_thresholds(mp);
742 
743 	/*
744 	 * Set the inode cluster size.
745 	 * This may still be overridden by the file system
746 	 * block size if it is larger than the chosen cluster size.
747 	 *
748 	 * For v5 filesystems, scale the cluster size with the inode size to
749 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
750 	 * has set the inode alignment value appropriately for larger cluster
751 	 * sizes.
752 	 */
753 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
754 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
755 		int	new_size = mp->m_inode_cluster_size;
756 
757 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
758 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
759 			mp->m_inode_cluster_size = new_size;
760 	}
761 
762 	/*
763 	 * Set inode alignment fields
764 	 */
765 	xfs_set_inoalignment(mp);
766 
767 	/*
768 	 * Check that the data (and log if separate) is an ok size.
769 	 */
770 	error = xfs_check_sizes(mp);
771 	if (error)
772 		goto out_remove_uuid;
773 
774 	/*
775 	 * Initialize realtime fields in the mount structure
776 	 */
777 	error = xfs_rtmount_init(mp);
778 	if (error) {
779 		xfs_warn(mp, "RT mount failed");
780 		goto out_remove_uuid;
781 	}
782 
783 	/*
784 	 *  Copies the low order bits of the timestamp and the randomly
785 	 *  set "sequence" number out of a UUID.
786 	 */
787 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
788 
789 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
790 
791 	error = xfs_da_mount(mp);
792 	if (error) {
793 		xfs_warn(mp, "Failed dir/attr init: %d", error);
794 		goto out_remove_uuid;
795 	}
796 
797 	/*
798 	 * Initialize the precomputed transaction reservations values.
799 	 */
800 	xfs_trans_init(mp);
801 
802 	/*
803 	 * Allocate and initialize the per-ag data.
804 	 */
805 	spin_lock_init(&mp->m_perag_lock);
806 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
807 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
808 	if (error) {
809 		xfs_warn(mp, "Failed per-ag init: %d", error);
810 		goto out_free_dir;
811 	}
812 
813 	if (!sbp->sb_logblocks) {
814 		xfs_warn(mp, "no log defined");
815 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
816 		error = -EFSCORRUPTED;
817 		goto out_free_perag;
818 	}
819 
820 	/*
821 	 * log's mount-time initialization. Perform 1st part recovery if needed
822 	 */
823 	error = xfs_log_mount(mp, mp->m_logdev_targp,
824 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
825 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
826 	if (error) {
827 		xfs_warn(mp, "log mount failed");
828 		goto out_fail_wait;
829 	}
830 
831 	/*
832 	 * Now the log is mounted, we know if it was an unclean shutdown or
833 	 * not. If it was, with the first phase of recovery has completed, we
834 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
835 	 * but they are recovered transactionally in the second recovery phase
836 	 * later.
837 	 *
838 	 * Hence we can safely re-initialise incore superblock counters from
839 	 * the per-ag data. These may not be correct if the filesystem was not
840 	 * cleanly unmounted, so we need to wait for recovery to finish before
841 	 * doing this.
842 	 *
843 	 * If the filesystem was cleanly unmounted, then we can trust the
844 	 * values in the superblock to be correct and we don't need to do
845 	 * anything here.
846 	 *
847 	 * If we are currently making the filesystem, the initialisation will
848 	 * fail as the perag data is in an undefined state.
849 	 */
850 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
851 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
852 	     !mp->m_sb.sb_inprogress) {
853 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
854 		if (error)
855 			goto out_log_dealloc;
856 	}
857 
858 	/*
859 	 * Get and sanity-check the root inode.
860 	 * Save the pointer to it in the mount structure.
861 	 */
862 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
863 	if (error) {
864 		xfs_warn(mp, "failed to read root inode");
865 		goto out_log_dealloc;
866 	}
867 
868 	ASSERT(rip != NULL);
869 
870 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
871 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
872 			(unsigned long long)rip->i_ino);
873 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
874 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
875 				 mp);
876 		error = -EFSCORRUPTED;
877 		goto out_rele_rip;
878 	}
879 	mp->m_rootip = rip;	/* save it */
880 
881 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
882 
883 	/*
884 	 * Initialize realtime inode pointers in the mount structure
885 	 */
886 	error = xfs_rtmount_inodes(mp);
887 	if (error) {
888 		/*
889 		 * Free up the root inode.
890 		 */
891 		xfs_warn(mp, "failed to read RT inodes");
892 		goto out_rele_rip;
893 	}
894 
895 	/*
896 	 * If this is a read-only mount defer the superblock updates until
897 	 * the next remount into writeable mode.  Otherwise we would never
898 	 * perform the update e.g. for the root filesystem.
899 	 */
900 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
901 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
902 		if (error) {
903 			xfs_warn(mp, "failed to write sb changes");
904 			goto out_rtunmount;
905 		}
906 	}
907 
908 	/*
909 	 * Initialise the XFS quota management subsystem for this mount
910 	 */
911 	if (XFS_IS_QUOTA_RUNNING(mp)) {
912 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
913 		if (error)
914 			goto out_rtunmount;
915 	} else {
916 		ASSERT(!XFS_IS_QUOTA_ON(mp));
917 
918 		/*
919 		 * If a file system had quotas running earlier, but decided to
920 		 * mount without -o uquota/pquota/gquota options, revoke the
921 		 * quotachecked license.
922 		 */
923 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
924 			xfs_notice(mp, "resetting quota flags");
925 			error = xfs_mount_reset_sbqflags(mp);
926 			if (error)
927 				goto out_rtunmount;
928 		}
929 	}
930 
931 	/*
932 	 * Finish recovering the file system.  This part needed to be
933 	 * delayed until after the root and real-time bitmap inodes
934 	 * were consistently read in.
935 	 */
936 	error = xfs_log_mount_finish(mp);
937 	if (error) {
938 		xfs_warn(mp, "log mount finish failed");
939 		goto out_rtunmount;
940 	}
941 
942 	/*
943 	 * Complete the quota initialisation, post-log-replay component.
944 	 */
945 	if (quotamount) {
946 		ASSERT(mp->m_qflags == 0);
947 		mp->m_qflags = quotaflags;
948 
949 		xfs_qm_mount_quotas(mp);
950 	}
951 
952 	/*
953 	 * Now we are mounted, reserve a small amount of unused space for
954 	 * privileged transactions. This is needed so that transaction
955 	 * space required for critical operations can dip into this pool
956 	 * when at ENOSPC. This is needed for operations like create with
957 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
958 	 * are not allowed to use this reserved space.
959 	 *
960 	 * This may drive us straight to ENOSPC on mount, but that implies
961 	 * we were already there on the last unmount. Warn if this occurs.
962 	 */
963 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
964 		resblks = xfs_default_resblks(mp);
965 		error = xfs_reserve_blocks(mp, &resblks, NULL);
966 		if (error)
967 			xfs_warn(mp,
968 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
969 	}
970 
971 	return 0;
972 
973  out_rtunmount:
974 	xfs_rtunmount_inodes(mp);
975  out_rele_rip:
976 	IRELE(rip);
977  out_log_dealloc:
978 	xfs_log_unmount(mp);
979  out_fail_wait:
980 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
981 		xfs_wait_buftarg(mp->m_logdev_targp);
982 	xfs_wait_buftarg(mp->m_ddev_targp);
983  out_free_perag:
984 	xfs_free_perag(mp);
985  out_free_dir:
986 	xfs_da_unmount(mp);
987  out_remove_uuid:
988 	xfs_uuid_unmount(mp);
989  out_remove_sysfs:
990 	xfs_sysfs_del(&mp->m_kobj);
991  out:
992 	return error;
993 }
994 
995 /*
996  * This flushes out the inodes,dquots and the superblock, unmounts the
997  * log and makes sure that incore structures are freed.
998  */
999 void
1000 xfs_unmountfs(
1001 	struct xfs_mount	*mp)
1002 {
1003 	__uint64_t		resblks;
1004 	int			error;
1005 
1006 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1007 
1008 	xfs_qm_unmount_quotas(mp);
1009 	xfs_rtunmount_inodes(mp);
1010 	IRELE(mp->m_rootip);
1011 
1012 	/*
1013 	 * We can potentially deadlock here if we have an inode cluster
1014 	 * that has been freed has its buffer still pinned in memory because
1015 	 * the transaction is still sitting in a iclog. The stale inodes
1016 	 * on that buffer will have their flush locks held until the
1017 	 * transaction hits the disk and the callbacks run. the inode
1018 	 * flush takes the flush lock unconditionally and with nothing to
1019 	 * push out the iclog we will never get that unlocked. hence we
1020 	 * need to force the log first.
1021 	 */
1022 	xfs_log_force(mp, XFS_LOG_SYNC);
1023 
1024 	/*
1025 	 * Flush all pending changes from the AIL.
1026 	 */
1027 	xfs_ail_push_all_sync(mp->m_ail);
1028 
1029 	/*
1030 	 * And reclaim all inodes.  At this point there should be no dirty
1031 	 * inodes and none should be pinned or locked, but use synchronous
1032 	 * reclaim just to be sure. We can stop background inode reclaim
1033 	 * here as well if it is still running.
1034 	 */
1035 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1036 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1037 
1038 	xfs_qm_unmount(mp);
1039 
1040 	/*
1041 	 * Unreserve any blocks we have so that when we unmount we don't account
1042 	 * the reserved free space as used. This is really only necessary for
1043 	 * lazy superblock counting because it trusts the incore superblock
1044 	 * counters to be absolutely correct on clean unmount.
1045 	 *
1046 	 * We don't bother correcting this elsewhere for lazy superblock
1047 	 * counting because on mount of an unclean filesystem we reconstruct the
1048 	 * correct counter value and this is irrelevant.
1049 	 *
1050 	 * For non-lazy counter filesystems, this doesn't matter at all because
1051 	 * we only every apply deltas to the superblock and hence the incore
1052 	 * value does not matter....
1053 	 */
1054 	resblks = 0;
1055 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1056 	if (error)
1057 		xfs_warn(mp, "Unable to free reserved block pool. "
1058 				"Freespace may not be correct on next mount.");
1059 
1060 	error = xfs_log_sbcount(mp);
1061 	if (error)
1062 		xfs_warn(mp, "Unable to update superblock counters. "
1063 				"Freespace may not be correct on next mount.");
1064 
1065 	xfs_log_unmount(mp);
1066 	xfs_da_unmount(mp);
1067 	xfs_uuid_unmount(mp);
1068 
1069 #if defined(DEBUG)
1070 	xfs_errortag_clearall(mp, 0);
1071 #endif
1072 	xfs_free_perag(mp);
1073 
1074 	xfs_sysfs_del(&mp->m_kobj);
1075 }
1076 
1077 int
1078 xfs_fs_writable(xfs_mount_t *mp)
1079 {
1080 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1081 		(mp->m_flags & XFS_MOUNT_RDONLY));
1082 }
1083 
1084 /*
1085  * xfs_log_sbcount
1086  *
1087  * Sync the superblock counters to disk.
1088  *
1089  * Note this code can be called during the process of freezing, so
1090  * we may need to use the transaction allocator which does not
1091  * block when the transaction subsystem is in its frozen state.
1092  */
1093 int
1094 xfs_log_sbcount(xfs_mount_t *mp)
1095 {
1096 	xfs_trans_t	*tp;
1097 	int		error;
1098 
1099 	if (!xfs_fs_writable(mp))
1100 		return 0;
1101 
1102 	xfs_icsb_sync_counters(mp, 0);
1103 
1104 	/*
1105 	 * we don't need to do this if we are updating the superblock
1106 	 * counters on every modification.
1107 	 */
1108 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1109 		return 0;
1110 
1111 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1112 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1113 	if (error) {
1114 		xfs_trans_cancel(tp, 0);
1115 		return error;
1116 	}
1117 
1118 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1119 	xfs_trans_set_sync(tp);
1120 	error = xfs_trans_commit(tp, 0);
1121 	return error;
1122 }
1123 
1124 /*
1125  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1126  * a delta to a specified field in the in-core superblock.  Simply
1127  * switch on the field indicated and apply the delta to that field.
1128  * Fields are not allowed to dip below zero, so if the delta would
1129  * do this do not apply it and return EINVAL.
1130  *
1131  * The m_sb_lock must be held when this routine is called.
1132  */
1133 STATIC int
1134 xfs_mod_incore_sb_unlocked(
1135 	xfs_mount_t	*mp,
1136 	xfs_sb_field_t	field,
1137 	int64_t		delta,
1138 	int		rsvd)
1139 {
1140 	int		scounter;	/* short counter for 32 bit fields */
1141 	long long	lcounter;	/* long counter for 64 bit fields */
1142 	long long	res_used, rem;
1143 
1144 	/*
1145 	 * With the in-core superblock spin lock held, switch
1146 	 * on the indicated field.  Apply the delta to the
1147 	 * proper field.  If the fields value would dip below
1148 	 * 0, then do not apply the delta and return EINVAL.
1149 	 */
1150 	switch (field) {
1151 	case XFS_SBS_ICOUNT:
1152 		lcounter = (long long)mp->m_sb.sb_icount;
1153 		lcounter += delta;
1154 		if (lcounter < 0) {
1155 			ASSERT(0);
1156 			return -EINVAL;
1157 		}
1158 		mp->m_sb.sb_icount = lcounter;
1159 		return 0;
1160 	case XFS_SBS_IFREE:
1161 		lcounter = (long long)mp->m_sb.sb_ifree;
1162 		lcounter += delta;
1163 		if (lcounter < 0) {
1164 			ASSERT(0);
1165 			return -EINVAL;
1166 		}
1167 		mp->m_sb.sb_ifree = lcounter;
1168 		return 0;
1169 	case XFS_SBS_FDBLOCKS:
1170 		lcounter = (long long)
1171 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1172 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1173 
1174 		if (delta > 0) {		/* Putting blocks back */
1175 			if (res_used > delta) {
1176 				mp->m_resblks_avail += delta;
1177 			} else {
1178 				rem = delta - res_used;
1179 				mp->m_resblks_avail = mp->m_resblks;
1180 				lcounter += rem;
1181 			}
1182 		} else {				/* Taking blocks away */
1183 			lcounter += delta;
1184 			if (lcounter >= 0) {
1185 				mp->m_sb.sb_fdblocks = lcounter +
1186 							XFS_ALLOC_SET_ASIDE(mp);
1187 				return 0;
1188 			}
1189 
1190 			/*
1191 			 * We are out of blocks, use any available reserved
1192 			 * blocks if were allowed to.
1193 			 */
1194 			if (!rsvd)
1195 				return -ENOSPC;
1196 
1197 			lcounter = (long long)mp->m_resblks_avail + delta;
1198 			if (lcounter >= 0) {
1199 				mp->m_resblks_avail = lcounter;
1200 				return 0;
1201 			}
1202 			printk_once(KERN_WARNING
1203 				"Filesystem \"%s\": reserve blocks depleted! "
1204 				"Consider increasing reserve pool size.",
1205 				mp->m_fsname);
1206 			return -ENOSPC;
1207 		}
1208 
1209 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1210 		return 0;
1211 	case XFS_SBS_FREXTENTS:
1212 		lcounter = (long long)mp->m_sb.sb_frextents;
1213 		lcounter += delta;
1214 		if (lcounter < 0) {
1215 			return -ENOSPC;
1216 		}
1217 		mp->m_sb.sb_frextents = lcounter;
1218 		return 0;
1219 	case XFS_SBS_DBLOCKS:
1220 		lcounter = (long long)mp->m_sb.sb_dblocks;
1221 		lcounter += delta;
1222 		if (lcounter < 0) {
1223 			ASSERT(0);
1224 			return -EINVAL;
1225 		}
1226 		mp->m_sb.sb_dblocks = lcounter;
1227 		return 0;
1228 	case XFS_SBS_AGCOUNT:
1229 		scounter = mp->m_sb.sb_agcount;
1230 		scounter += delta;
1231 		if (scounter < 0) {
1232 			ASSERT(0);
1233 			return -EINVAL;
1234 		}
1235 		mp->m_sb.sb_agcount = scounter;
1236 		return 0;
1237 	case XFS_SBS_IMAX_PCT:
1238 		scounter = mp->m_sb.sb_imax_pct;
1239 		scounter += delta;
1240 		if (scounter < 0) {
1241 			ASSERT(0);
1242 			return -EINVAL;
1243 		}
1244 		mp->m_sb.sb_imax_pct = scounter;
1245 		return 0;
1246 	case XFS_SBS_REXTSIZE:
1247 		scounter = mp->m_sb.sb_rextsize;
1248 		scounter += delta;
1249 		if (scounter < 0) {
1250 			ASSERT(0);
1251 			return -EINVAL;
1252 		}
1253 		mp->m_sb.sb_rextsize = scounter;
1254 		return 0;
1255 	case XFS_SBS_RBMBLOCKS:
1256 		scounter = mp->m_sb.sb_rbmblocks;
1257 		scounter += delta;
1258 		if (scounter < 0) {
1259 			ASSERT(0);
1260 			return -EINVAL;
1261 		}
1262 		mp->m_sb.sb_rbmblocks = scounter;
1263 		return 0;
1264 	case XFS_SBS_RBLOCKS:
1265 		lcounter = (long long)mp->m_sb.sb_rblocks;
1266 		lcounter += delta;
1267 		if (lcounter < 0) {
1268 			ASSERT(0);
1269 			return -EINVAL;
1270 		}
1271 		mp->m_sb.sb_rblocks = lcounter;
1272 		return 0;
1273 	case XFS_SBS_REXTENTS:
1274 		lcounter = (long long)mp->m_sb.sb_rextents;
1275 		lcounter += delta;
1276 		if (lcounter < 0) {
1277 			ASSERT(0);
1278 			return -EINVAL;
1279 		}
1280 		mp->m_sb.sb_rextents = lcounter;
1281 		return 0;
1282 	case XFS_SBS_REXTSLOG:
1283 		scounter = mp->m_sb.sb_rextslog;
1284 		scounter += delta;
1285 		if (scounter < 0) {
1286 			ASSERT(0);
1287 			return -EINVAL;
1288 		}
1289 		mp->m_sb.sb_rextslog = scounter;
1290 		return 0;
1291 	default:
1292 		ASSERT(0);
1293 		return -EINVAL;
1294 	}
1295 }
1296 
1297 /*
1298  * xfs_mod_incore_sb() is used to change a field in the in-core
1299  * superblock structure by the specified delta.  This modification
1300  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1301  * routine to do the work.
1302  */
1303 int
1304 xfs_mod_incore_sb(
1305 	struct xfs_mount	*mp,
1306 	xfs_sb_field_t		field,
1307 	int64_t			delta,
1308 	int			rsvd)
1309 {
1310 	int			status;
1311 
1312 #ifdef HAVE_PERCPU_SB
1313 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1314 #endif
1315 	spin_lock(&mp->m_sb_lock);
1316 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1317 	spin_unlock(&mp->m_sb_lock);
1318 
1319 	return status;
1320 }
1321 
1322 /*
1323  * Change more than one field in the in-core superblock structure at a time.
1324  *
1325  * The fields and changes to those fields are specified in the array of
1326  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1327  * will be applied or none of them will.  If any modified field dips below 0,
1328  * then all modifications will be backed out and EINVAL will be returned.
1329  *
1330  * Note that this function may not be used for the superblock values that
1331  * are tracked with the in-memory per-cpu counters - a direct call to
1332  * xfs_icsb_modify_counters is required for these.
1333  */
1334 int
1335 xfs_mod_incore_sb_batch(
1336 	struct xfs_mount	*mp,
1337 	xfs_mod_sb_t		*msb,
1338 	uint			nmsb,
1339 	int			rsvd)
1340 {
1341 	xfs_mod_sb_t		*msbp;
1342 	int			error = 0;
1343 
1344 	/*
1345 	 * Loop through the array of mod structures and apply each individually.
1346 	 * If any fail, then back out all those which have already been applied.
1347 	 * Do all of this within the scope of the m_sb_lock so that all of the
1348 	 * changes will be atomic.
1349 	 */
1350 	spin_lock(&mp->m_sb_lock);
1351 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1352 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1353 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1354 
1355 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1356 						   msbp->msb_delta, rsvd);
1357 		if (error)
1358 			goto unwind;
1359 	}
1360 	spin_unlock(&mp->m_sb_lock);
1361 	return 0;
1362 
1363 unwind:
1364 	while (--msbp >= msb) {
1365 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1366 						   -msbp->msb_delta, rsvd);
1367 		ASSERT(error == 0);
1368 	}
1369 	spin_unlock(&mp->m_sb_lock);
1370 	return error;
1371 }
1372 
1373 /*
1374  * xfs_getsb() is called to obtain the buffer for the superblock.
1375  * The buffer is returned locked and read in from disk.
1376  * The buffer should be released with a call to xfs_brelse().
1377  *
1378  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1379  * the superblock buffer if it can be locked without sleeping.
1380  * If it can't then we'll return NULL.
1381  */
1382 struct xfs_buf *
1383 xfs_getsb(
1384 	struct xfs_mount	*mp,
1385 	int			flags)
1386 {
1387 	struct xfs_buf		*bp = mp->m_sb_bp;
1388 
1389 	if (!xfs_buf_trylock(bp)) {
1390 		if (flags & XBF_TRYLOCK)
1391 			return NULL;
1392 		xfs_buf_lock(bp);
1393 	}
1394 
1395 	xfs_buf_hold(bp);
1396 	ASSERT(XFS_BUF_ISDONE(bp));
1397 	return bp;
1398 }
1399 
1400 /*
1401  * Used to free the superblock along various error paths.
1402  */
1403 void
1404 xfs_freesb(
1405 	struct xfs_mount	*mp)
1406 {
1407 	struct xfs_buf		*bp = mp->m_sb_bp;
1408 
1409 	xfs_buf_lock(bp);
1410 	mp->m_sb_bp = NULL;
1411 	xfs_buf_relse(bp);
1412 }
1413 
1414 /*
1415  * Used to log changes to the superblock unit and width fields which could
1416  * be altered by the mount options, as well as any potential sb_features2
1417  * fixup. Only the first superblock is updated.
1418  */
1419 int
1420 xfs_mount_log_sb(
1421 	xfs_mount_t	*mp,
1422 	__int64_t	fields)
1423 {
1424 	xfs_trans_t	*tp;
1425 	int		error;
1426 
1427 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1428 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1429 			 XFS_SB_VERSIONNUM));
1430 
1431 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1432 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1433 	if (error) {
1434 		xfs_trans_cancel(tp, 0);
1435 		return error;
1436 	}
1437 	xfs_mod_sb(tp, fields);
1438 	error = xfs_trans_commit(tp, 0);
1439 	return error;
1440 }
1441 
1442 /*
1443  * If the underlying (data/log/rt) device is readonly, there are some
1444  * operations that cannot proceed.
1445  */
1446 int
1447 xfs_dev_is_read_only(
1448 	struct xfs_mount	*mp,
1449 	char			*message)
1450 {
1451 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1452 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1453 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1454 		xfs_notice(mp, "%s required on read-only device.", message);
1455 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1456 		return -EROFS;
1457 	}
1458 	return 0;
1459 }
1460 
1461 #ifdef HAVE_PERCPU_SB
1462 /*
1463  * Per-cpu incore superblock counters
1464  *
1465  * Simple concept, difficult implementation
1466  *
1467  * Basically, replace the incore superblock counters with a distributed per cpu
1468  * counter for contended fields (e.g.  free block count).
1469  *
1470  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1471  * hence needs to be accurately read when we are running low on space. Hence
1472  * there is a method to enable and disable the per-cpu counters based on how
1473  * much "stuff" is available in them.
1474  *
1475  * Basically, a counter is enabled if there is enough free resource to justify
1476  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1477  * ENOSPC), then we disable the counters to synchronise all callers and
1478  * re-distribute the available resources.
1479  *
1480  * If, once we redistributed the available resources, we still get a failure,
1481  * we disable the per-cpu counter and go through the slow path.
1482  *
1483  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1484  * when we disable a per-cpu counter, we need to drain its resources back to
1485  * the global superblock. We do this after disabling the counter to prevent
1486  * more threads from queueing up on the counter.
1487  *
1488  * Essentially, this means that we still need a lock in the fast path to enable
1489  * synchronisation between the global counters and the per-cpu counters. This
1490  * is not a problem because the lock will be local to a CPU almost all the time
1491  * and have little contention except when we get to ENOSPC conditions.
1492  *
1493  * Basically, this lock becomes a barrier that enables us to lock out the fast
1494  * path while we do things like enabling and disabling counters and
1495  * synchronising the counters.
1496  *
1497  * Locking rules:
1498  *
1499  * 	1. m_sb_lock before picking up per-cpu locks
1500  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1501  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1502  * 	4. modifying per-cpu counters requires holding per-cpu lock
1503  * 	5. modifying global counters requires holding m_sb_lock
1504  *	6. enabling or disabling a counter requires holding the m_sb_lock
1505  *	   and _none_ of the per-cpu locks.
1506  *
1507  * Disabled counters are only ever re-enabled by a balance operation
1508  * that results in more free resources per CPU than a given threshold.
1509  * To ensure counters don't remain disabled, they are rebalanced when
1510  * the global resource goes above a higher threshold (i.e. some hysteresis
1511  * is present to prevent thrashing).
1512  */
1513 
1514 #ifdef CONFIG_HOTPLUG_CPU
1515 /*
1516  * hot-plug CPU notifier support.
1517  *
1518  * We need a notifier per filesystem as we need to be able to identify
1519  * the filesystem to balance the counters out. This is achieved by
1520  * having a notifier block embedded in the xfs_mount_t and doing pointer
1521  * magic to get the mount pointer from the notifier block address.
1522  */
1523 STATIC int
1524 xfs_icsb_cpu_notify(
1525 	struct notifier_block *nfb,
1526 	unsigned long action,
1527 	void *hcpu)
1528 {
1529 	xfs_icsb_cnts_t *cntp;
1530 	xfs_mount_t	*mp;
1531 
1532 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1533 	cntp = (xfs_icsb_cnts_t *)
1534 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1535 	switch (action) {
1536 	case CPU_UP_PREPARE:
1537 	case CPU_UP_PREPARE_FROZEN:
1538 		/* Easy Case - initialize the area and locks, and
1539 		 * then rebalance when online does everything else for us. */
1540 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1541 		break;
1542 	case CPU_ONLINE:
1543 	case CPU_ONLINE_FROZEN:
1544 		xfs_icsb_lock(mp);
1545 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1546 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1547 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1548 		xfs_icsb_unlock(mp);
1549 		break;
1550 	case CPU_DEAD:
1551 	case CPU_DEAD_FROZEN:
1552 		/* Disable all the counters, then fold the dead cpu's
1553 		 * count into the total on the global superblock and
1554 		 * re-enable the counters. */
1555 		xfs_icsb_lock(mp);
1556 		spin_lock(&mp->m_sb_lock);
1557 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1558 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1559 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1560 
1561 		mp->m_sb.sb_icount += cntp->icsb_icount;
1562 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1563 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1564 
1565 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1566 
1567 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1568 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1569 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1570 		spin_unlock(&mp->m_sb_lock);
1571 		xfs_icsb_unlock(mp);
1572 		break;
1573 	}
1574 
1575 	return NOTIFY_OK;
1576 }
1577 #endif /* CONFIG_HOTPLUG_CPU */
1578 
1579 int
1580 xfs_icsb_init_counters(
1581 	xfs_mount_t	*mp)
1582 {
1583 	xfs_icsb_cnts_t *cntp;
1584 	int		i;
1585 
1586 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1587 	if (mp->m_sb_cnts == NULL)
1588 		return -ENOMEM;
1589 
1590 	for_each_online_cpu(i) {
1591 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1592 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1593 	}
1594 
1595 	mutex_init(&mp->m_icsb_mutex);
1596 
1597 	/*
1598 	 * start with all counters disabled so that the
1599 	 * initial balance kicks us off correctly
1600 	 */
1601 	mp->m_icsb_counters = -1;
1602 
1603 #ifdef CONFIG_HOTPLUG_CPU
1604 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1605 	mp->m_icsb_notifier.priority = 0;
1606 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1607 #endif /* CONFIG_HOTPLUG_CPU */
1608 
1609 	return 0;
1610 }
1611 
1612 void
1613 xfs_icsb_reinit_counters(
1614 	xfs_mount_t	*mp)
1615 {
1616 	xfs_icsb_lock(mp);
1617 	/*
1618 	 * start with all counters disabled so that the
1619 	 * initial balance kicks us off correctly
1620 	 */
1621 	mp->m_icsb_counters = -1;
1622 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1623 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1624 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1625 	xfs_icsb_unlock(mp);
1626 }
1627 
1628 void
1629 xfs_icsb_destroy_counters(
1630 	xfs_mount_t	*mp)
1631 {
1632 	if (mp->m_sb_cnts) {
1633 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1634 		free_percpu(mp->m_sb_cnts);
1635 	}
1636 	mutex_destroy(&mp->m_icsb_mutex);
1637 }
1638 
1639 STATIC void
1640 xfs_icsb_lock_cntr(
1641 	xfs_icsb_cnts_t	*icsbp)
1642 {
1643 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1644 		ndelay(1000);
1645 	}
1646 }
1647 
1648 STATIC void
1649 xfs_icsb_unlock_cntr(
1650 	xfs_icsb_cnts_t	*icsbp)
1651 {
1652 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1653 }
1654 
1655 
1656 STATIC void
1657 xfs_icsb_lock_all_counters(
1658 	xfs_mount_t	*mp)
1659 {
1660 	xfs_icsb_cnts_t *cntp;
1661 	int		i;
1662 
1663 	for_each_online_cpu(i) {
1664 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1665 		xfs_icsb_lock_cntr(cntp);
1666 	}
1667 }
1668 
1669 STATIC void
1670 xfs_icsb_unlock_all_counters(
1671 	xfs_mount_t	*mp)
1672 {
1673 	xfs_icsb_cnts_t *cntp;
1674 	int		i;
1675 
1676 	for_each_online_cpu(i) {
1677 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1678 		xfs_icsb_unlock_cntr(cntp);
1679 	}
1680 }
1681 
1682 STATIC void
1683 xfs_icsb_count(
1684 	xfs_mount_t	*mp,
1685 	xfs_icsb_cnts_t	*cnt,
1686 	int		flags)
1687 {
1688 	xfs_icsb_cnts_t *cntp;
1689 	int		i;
1690 
1691 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1692 
1693 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1694 		xfs_icsb_lock_all_counters(mp);
1695 
1696 	for_each_online_cpu(i) {
1697 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1698 		cnt->icsb_icount += cntp->icsb_icount;
1699 		cnt->icsb_ifree += cntp->icsb_ifree;
1700 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1701 	}
1702 
1703 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1704 		xfs_icsb_unlock_all_counters(mp);
1705 }
1706 
1707 STATIC int
1708 xfs_icsb_counter_disabled(
1709 	xfs_mount_t	*mp,
1710 	xfs_sb_field_t	field)
1711 {
1712 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1713 	return test_bit(field, &mp->m_icsb_counters);
1714 }
1715 
1716 STATIC void
1717 xfs_icsb_disable_counter(
1718 	xfs_mount_t	*mp,
1719 	xfs_sb_field_t	field)
1720 {
1721 	xfs_icsb_cnts_t	cnt;
1722 
1723 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1724 
1725 	/*
1726 	 * If we are already disabled, then there is nothing to do
1727 	 * here. We check before locking all the counters to avoid
1728 	 * the expensive lock operation when being called in the
1729 	 * slow path and the counter is already disabled. This is
1730 	 * safe because the only time we set or clear this state is under
1731 	 * the m_icsb_mutex.
1732 	 */
1733 	if (xfs_icsb_counter_disabled(mp, field))
1734 		return;
1735 
1736 	xfs_icsb_lock_all_counters(mp);
1737 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1738 		/* drain back to superblock */
1739 
1740 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1741 		switch(field) {
1742 		case XFS_SBS_ICOUNT:
1743 			mp->m_sb.sb_icount = cnt.icsb_icount;
1744 			break;
1745 		case XFS_SBS_IFREE:
1746 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1747 			break;
1748 		case XFS_SBS_FDBLOCKS:
1749 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1750 			break;
1751 		default:
1752 			BUG();
1753 		}
1754 	}
1755 
1756 	xfs_icsb_unlock_all_counters(mp);
1757 }
1758 
1759 STATIC void
1760 xfs_icsb_enable_counter(
1761 	xfs_mount_t	*mp,
1762 	xfs_sb_field_t	field,
1763 	uint64_t	count,
1764 	uint64_t	resid)
1765 {
1766 	xfs_icsb_cnts_t	*cntp;
1767 	int		i;
1768 
1769 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1770 
1771 	xfs_icsb_lock_all_counters(mp);
1772 	for_each_online_cpu(i) {
1773 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1774 		switch (field) {
1775 		case XFS_SBS_ICOUNT:
1776 			cntp->icsb_icount = count + resid;
1777 			break;
1778 		case XFS_SBS_IFREE:
1779 			cntp->icsb_ifree = count + resid;
1780 			break;
1781 		case XFS_SBS_FDBLOCKS:
1782 			cntp->icsb_fdblocks = count + resid;
1783 			break;
1784 		default:
1785 			BUG();
1786 			break;
1787 		}
1788 		resid = 0;
1789 	}
1790 	clear_bit(field, &mp->m_icsb_counters);
1791 	xfs_icsb_unlock_all_counters(mp);
1792 }
1793 
1794 void
1795 xfs_icsb_sync_counters_locked(
1796 	xfs_mount_t	*mp,
1797 	int		flags)
1798 {
1799 	xfs_icsb_cnts_t	cnt;
1800 
1801 	xfs_icsb_count(mp, &cnt, flags);
1802 
1803 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1804 		mp->m_sb.sb_icount = cnt.icsb_icount;
1805 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1806 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1807 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1808 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1809 }
1810 
1811 /*
1812  * Accurate update of per-cpu counters to incore superblock
1813  */
1814 void
1815 xfs_icsb_sync_counters(
1816 	xfs_mount_t	*mp,
1817 	int		flags)
1818 {
1819 	spin_lock(&mp->m_sb_lock);
1820 	xfs_icsb_sync_counters_locked(mp, flags);
1821 	spin_unlock(&mp->m_sb_lock);
1822 }
1823 
1824 /*
1825  * Balance and enable/disable counters as necessary.
1826  *
1827  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1828  * chosen to be the same number as single on disk allocation chunk per CPU, and
1829  * free blocks is something far enough zero that we aren't going thrash when we
1830  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1831  * prevent looping endlessly when xfs_alloc_space asks for more than will
1832  * be distributed to a single CPU but each CPU has enough blocks to be
1833  * reenabled.
1834  *
1835  * Note that we can be called when counters are already disabled.
1836  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1837  * prevent locking every per-cpu counter needlessly.
1838  */
1839 
1840 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1841 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1842 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1843 STATIC void
1844 xfs_icsb_balance_counter_locked(
1845 	xfs_mount_t	*mp,
1846 	xfs_sb_field_t  field,
1847 	int		min_per_cpu)
1848 {
1849 	uint64_t	count, resid;
1850 	int		weight = num_online_cpus();
1851 	uint64_t	min = (uint64_t)min_per_cpu;
1852 
1853 	/* disable counter and sync counter */
1854 	xfs_icsb_disable_counter(mp, field);
1855 
1856 	/* update counters  - first CPU gets residual*/
1857 	switch (field) {
1858 	case XFS_SBS_ICOUNT:
1859 		count = mp->m_sb.sb_icount;
1860 		resid = do_div(count, weight);
1861 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1862 			return;
1863 		break;
1864 	case XFS_SBS_IFREE:
1865 		count = mp->m_sb.sb_ifree;
1866 		resid = do_div(count, weight);
1867 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1868 			return;
1869 		break;
1870 	case XFS_SBS_FDBLOCKS:
1871 		count = mp->m_sb.sb_fdblocks;
1872 		resid = do_div(count, weight);
1873 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1874 			return;
1875 		break;
1876 	default:
1877 		BUG();
1878 		count = resid = 0;	/* quiet, gcc */
1879 		break;
1880 	}
1881 
1882 	xfs_icsb_enable_counter(mp, field, count, resid);
1883 }
1884 
1885 STATIC void
1886 xfs_icsb_balance_counter(
1887 	xfs_mount_t	*mp,
1888 	xfs_sb_field_t  fields,
1889 	int		min_per_cpu)
1890 {
1891 	spin_lock(&mp->m_sb_lock);
1892 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1893 	spin_unlock(&mp->m_sb_lock);
1894 }
1895 
1896 int
1897 xfs_icsb_modify_counters(
1898 	xfs_mount_t	*mp,
1899 	xfs_sb_field_t	field,
1900 	int64_t		delta,
1901 	int		rsvd)
1902 {
1903 	xfs_icsb_cnts_t	*icsbp;
1904 	long long	lcounter;	/* long counter for 64 bit fields */
1905 	int		ret = 0;
1906 
1907 	might_sleep();
1908 again:
1909 	preempt_disable();
1910 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1911 
1912 	/*
1913 	 * if the counter is disabled, go to slow path
1914 	 */
1915 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1916 		goto slow_path;
1917 	xfs_icsb_lock_cntr(icsbp);
1918 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1919 		xfs_icsb_unlock_cntr(icsbp);
1920 		goto slow_path;
1921 	}
1922 
1923 	switch (field) {
1924 	case XFS_SBS_ICOUNT:
1925 		lcounter = icsbp->icsb_icount;
1926 		lcounter += delta;
1927 		if (unlikely(lcounter < 0))
1928 			goto balance_counter;
1929 		icsbp->icsb_icount = lcounter;
1930 		break;
1931 
1932 	case XFS_SBS_IFREE:
1933 		lcounter = icsbp->icsb_ifree;
1934 		lcounter += delta;
1935 		if (unlikely(lcounter < 0))
1936 			goto balance_counter;
1937 		icsbp->icsb_ifree = lcounter;
1938 		break;
1939 
1940 	case XFS_SBS_FDBLOCKS:
1941 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1942 
1943 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1944 		lcounter += delta;
1945 		if (unlikely(lcounter < 0))
1946 			goto balance_counter;
1947 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1948 		break;
1949 	default:
1950 		BUG();
1951 		break;
1952 	}
1953 	xfs_icsb_unlock_cntr(icsbp);
1954 	preempt_enable();
1955 	return 0;
1956 
1957 slow_path:
1958 	preempt_enable();
1959 
1960 	/*
1961 	 * serialise with a mutex so we don't burn lots of cpu on
1962 	 * the superblock lock. We still need to hold the superblock
1963 	 * lock, however, when we modify the global structures.
1964 	 */
1965 	xfs_icsb_lock(mp);
1966 
1967 	/*
1968 	 * Now running atomically.
1969 	 *
1970 	 * If the counter is enabled, someone has beaten us to rebalancing.
1971 	 * Drop the lock and try again in the fast path....
1972 	 */
1973 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1974 		xfs_icsb_unlock(mp);
1975 		goto again;
1976 	}
1977 
1978 	/*
1979 	 * The counter is currently disabled. Because we are
1980 	 * running atomically here, we know a rebalance cannot
1981 	 * be in progress. Hence we can go straight to operating
1982 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1983 	 * here even though we need to get the m_sb_lock. Doing so
1984 	 * will cause us to re-enter this function and deadlock.
1985 	 * Hence we get the m_sb_lock ourselves and then call
1986 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1987 	 * directly on the global counters.
1988 	 */
1989 	spin_lock(&mp->m_sb_lock);
1990 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1991 	spin_unlock(&mp->m_sb_lock);
1992 
1993 	/*
1994 	 * Now that we've modified the global superblock, we
1995 	 * may be able to re-enable the distributed counters
1996 	 * (e.g. lots of space just got freed). After that
1997 	 * we are done.
1998 	 */
1999 	if (ret != -ENOSPC)
2000 		xfs_icsb_balance_counter(mp, field, 0);
2001 	xfs_icsb_unlock(mp);
2002 	return ret;
2003 
2004 balance_counter:
2005 	xfs_icsb_unlock_cntr(icsbp);
2006 	preempt_enable();
2007 
2008 	/*
2009 	 * We may have multiple threads here if multiple per-cpu
2010 	 * counters run dry at the same time. This will mean we can
2011 	 * do more balances than strictly necessary but it is not
2012 	 * the common slowpath case.
2013 	 */
2014 	xfs_icsb_lock(mp);
2015 
2016 	/*
2017 	 * running atomically.
2018 	 *
2019 	 * This will leave the counter in the correct state for future
2020 	 * accesses. After the rebalance, we simply try again and our retry
2021 	 * will either succeed through the fast path or slow path without
2022 	 * another balance operation being required.
2023 	 */
2024 	xfs_icsb_balance_counter(mp, field, delta);
2025 	xfs_icsb_unlock(mp);
2026 	goto again;
2027 }
2028 
2029 #endif
2030