1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 48 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 49 50 51 #ifdef HAVE_PERCPU_SB 52 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 53 int); 54 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 55 int); 56 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 57 int64_t, int); 58 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 59 60 #else 61 62 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 63 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 64 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 65 66 #endif 67 68 static const struct { 69 short offset; 70 short type; /* 0 = integer 71 * 1 = binary / string (no translation) 72 */ 73 } xfs_sb_info[] = { 74 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 75 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 76 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 77 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 78 { offsetof(xfs_sb_t, sb_rextents), 0 }, 79 { offsetof(xfs_sb_t, sb_uuid), 1 }, 80 { offsetof(xfs_sb_t, sb_logstart), 0 }, 81 { offsetof(xfs_sb_t, sb_rootino), 0 }, 82 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 83 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 84 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 85 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 86 { offsetof(xfs_sb_t, sb_agcount), 0 }, 87 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 88 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 89 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 90 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 91 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 92 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 93 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 94 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 95 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 96 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 97 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 98 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 99 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 100 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 101 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 102 { offsetof(xfs_sb_t, sb_icount), 0 }, 103 { offsetof(xfs_sb_t, sb_ifree), 0 }, 104 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 105 { offsetof(xfs_sb_t, sb_frextents), 0 }, 106 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 107 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 108 { offsetof(xfs_sb_t, sb_qflags), 0 }, 109 { offsetof(xfs_sb_t, sb_flags), 0 }, 110 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 111 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 112 { offsetof(xfs_sb_t, sb_unit), 0 }, 113 { offsetof(xfs_sb_t, sb_width), 0 }, 114 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 115 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 116 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 117 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 118 { offsetof(xfs_sb_t, sb_features2), 0 }, 119 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 120 { sizeof(xfs_sb_t), 0 } 121 }; 122 123 static DEFINE_MUTEX(xfs_uuid_table_mutex); 124 static int xfs_uuid_table_size; 125 static uuid_t *xfs_uuid_table; 126 127 /* 128 * See if the UUID is unique among mounted XFS filesystems. 129 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 130 */ 131 STATIC int 132 xfs_uuid_mount( 133 struct xfs_mount *mp) 134 { 135 uuid_t *uuid = &mp->m_sb.sb_uuid; 136 int hole, i; 137 138 if (mp->m_flags & XFS_MOUNT_NOUUID) 139 return 0; 140 141 if (uuid_is_nil(uuid)) { 142 cmn_err(CE_WARN, 143 "XFS: Filesystem %s has nil UUID - can't mount", 144 mp->m_fsname); 145 return XFS_ERROR(EINVAL); 146 } 147 148 mutex_lock(&xfs_uuid_table_mutex); 149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 150 if (uuid_is_nil(&xfs_uuid_table[i])) { 151 hole = i; 152 continue; 153 } 154 if (uuid_equal(uuid, &xfs_uuid_table[i])) 155 goto out_duplicate; 156 } 157 158 if (hole < 0) { 159 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 161 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 162 KM_SLEEP); 163 hole = xfs_uuid_table_size++; 164 } 165 xfs_uuid_table[hole] = *uuid; 166 mutex_unlock(&xfs_uuid_table_mutex); 167 168 return 0; 169 170 out_duplicate: 171 mutex_unlock(&xfs_uuid_table_mutex); 172 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", 173 mp->m_fsname); 174 return XFS_ERROR(EINVAL); 175 } 176 177 STATIC void 178 xfs_uuid_unmount( 179 struct xfs_mount *mp) 180 { 181 uuid_t *uuid = &mp->m_sb.sb_uuid; 182 int i; 183 184 if (mp->m_flags & XFS_MOUNT_NOUUID) 185 return; 186 187 mutex_lock(&xfs_uuid_table_mutex); 188 for (i = 0; i < xfs_uuid_table_size; i++) { 189 if (uuid_is_nil(&xfs_uuid_table[i])) 190 continue; 191 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 192 continue; 193 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 194 break; 195 } 196 ASSERT(i < xfs_uuid_table_size); 197 mutex_unlock(&xfs_uuid_table_mutex); 198 } 199 200 201 /* 202 * Free up the resources associated with a mount structure. Assume that 203 * the structure was initially zeroed, so we can tell which fields got 204 * initialized. 205 */ 206 STATIC void 207 xfs_free_perag( 208 xfs_mount_t *mp) 209 { 210 if (mp->m_perag) { 211 int agno; 212 213 for (agno = 0; agno < mp->m_maxagi; agno++) 214 if (mp->m_perag[agno].pagb_list) 215 kmem_free(mp->m_perag[agno].pagb_list); 216 kmem_free(mp->m_perag); 217 } 218 } 219 220 /* 221 * Check size of device based on the (data/realtime) block count. 222 * Note: this check is used by the growfs code as well as mount. 223 */ 224 int 225 xfs_sb_validate_fsb_count( 226 xfs_sb_t *sbp, 227 __uint64_t nblocks) 228 { 229 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 230 ASSERT(sbp->sb_blocklog >= BBSHIFT); 231 232 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 233 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 234 return E2BIG; 235 #else /* Limited by UINT_MAX of sectors */ 236 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 237 return E2BIG; 238 #endif 239 return 0; 240 } 241 242 /* 243 * Check the validity of the SB found. 244 */ 245 STATIC int 246 xfs_mount_validate_sb( 247 xfs_mount_t *mp, 248 xfs_sb_t *sbp, 249 int flags) 250 { 251 /* 252 * If the log device and data device have the 253 * same device number, the log is internal. 254 * Consequently, the sb_logstart should be non-zero. If 255 * we have a zero sb_logstart in this case, we may be trying to mount 256 * a volume filesystem in a non-volume manner. 257 */ 258 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 259 xfs_fs_mount_cmn_err(flags, "bad magic number"); 260 return XFS_ERROR(EWRONGFS); 261 } 262 263 if (!xfs_sb_good_version(sbp)) { 264 xfs_fs_mount_cmn_err(flags, "bad version"); 265 return XFS_ERROR(EWRONGFS); 266 } 267 268 if (unlikely( 269 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 270 xfs_fs_mount_cmn_err(flags, 271 "filesystem is marked as having an external log; " 272 "specify logdev on the\nmount command line."); 273 return XFS_ERROR(EINVAL); 274 } 275 276 if (unlikely( 277 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 278 xfs_fs_mount_cmn_err(flags, 279 "filesystem is marked as having an internal log; " 280 "do not specify logdev on\nthe mount command line."); 281 return XFS_ERROR(EINVAL); 282 } 283 284 /* 285 * More sanity checking. These were stolen directly from 286 * xfs_repair. 287 */ 288 if (unlikely( 289 sbp->sb_agcount <= 0 || 290 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 291 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 292 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 293 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 294 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 295 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 296 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 297 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 298 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 299 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 300 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 301 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 302 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 303 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 304 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 305 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 306 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 307 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 308 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 309 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 310 return XFS_ERROR(EFSCORRUPTED); 311 } 312 313 /* 314 * Sanity check AG count, size fields against data size field 315 */ 316 if (unlikely( 317 sbp->sb_dblocks == 0 || 318 sbp->sb_dblocks > 319 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 320 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 321 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 322 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 323 return XFS_ERROR(EFSCORRUPTED); 324 } 325 326 /* 327 * Until this is fixed only page-sized or smaller data blocks work. 328 */ 329 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 330 xfs_fs_mount_cmn_err(flags, 331 "file system with blocksize %d bytes", 332 sbp->sb_blocksize); 333 xfs_fs_mount_cmn_err(flags, 334 "only pagesize (%ld) or less will currently work.", 335 PAGE_SIZE); 336 return XFS_ERROR(ENOSYS); 337 } 338 339 /* 340 * Currently only very few inode sizes are supported. 341 */ 342 switch (sbp->sb_inodesize) { 343 case 256: 344 case 512: 345 case 1024: 346 case 2048: 347 break; 348 default: 349 xfs_fs_mount_cmn_err(flags, 350 "inode size of %d bytes not supported", 351 sbp->sb_inodesize); 352 return XFS_ERROR(ENOSYS); 353 } 354 355 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 356 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 357 xfs_fs_mount_cmn_err(flags, 358 "file system too large to be mounted on this system."); 359 return XFS_ERROR(E2BIG); 360 } 361 362 if (unlikely(sbp->sb_inprogress)) { 363 xfs_fs_mount_cmn_err(flags, "file system busy"); 364 return XFS_ERROR(EFSCORRUPTED); 365 } 366 367 /* 368 * Version 1 directory format has never worked on Linux. 369 */ 370 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 371 xfs_fs_mount_cmn_err(flags, 372 "file system using version 1 directory format"); 373 return XFS_ERROR(ENOSYS); 374 } 375 376 return 0; 377 } 378 379 STATIC void 380 xfs_initialize_perag_icache( 381 xfs_perag_t *pag) 382 { 383 if (!pag->pag_ici_init) { 384 rwlock_init(&pag->pag_ici_lock); 385 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 386 pag->pag_ici_init = 1; 387 } 388 } 389 390 xfs_agnumber_t 391 xfs_initialize_perag( 392 xfs_mount_t *mp, 393 xfs_agnumber_t agcount) 394 { 395 xfs_agnumber_t index, max_metadata; 396 xfs_perag_t *pag; 397 xfs_agino_t agino; 398 xfs_ino_t ino; 399 xfs_sb_t *sbp = &mp->m_sb; 400 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 401 402 /* Check to see if the filesystem can overflow 32 bit inodes */ 403 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 404 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 405 406 /* Clear the mount flag if no inode can overflow 32 bits 407 * on this filesystem, or if specifically requested.. 408 */ 409 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 410 mp->m_flags |= XFS_MOUNT_32BITINODES; 411 } else { 412 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 413 } 414 415 /* If we can overflow then setup the ag headers accordingly */ 416 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 417 /* Calculate how much should be reserved for inodes to 418 * meet the max inode percentage. 419 */ 420 if (mp->m_maxicount) { 421 __uint64_t icount; 422 423 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 424 do_div(icount, 100); 425 icount += sbp->sb_agblocks - 1; 426 do_div(icount, sbp->sb_agblocks); 427 max_metadata = icount; 428 } else { 429 max_metadata = agcount; 430 } 431 for (index = 0; index < agcount; index++) { 432 ino = XFS_AGINO_TO_INO(mp, index, agino); 433 if (ino > max_inum) { 434 index++; 435 break; 436 } 437 438 /* This ag is preferred for inodes */ 439 pag = &mp->m_perag[index]; 440 pag->pagi_inodeok = 1; 441 if (index < max_metadata) 442 pag->pagf_metadata = 1; 443 xfs_initialize_perag_icache(pag); 444 } 445 } else { 446 /* Setup default behavior for smaller filesystems */ 447 for (index = 0; index < agcount; index++) { 448 pag = &mp->m_perag[index]; 449 pag->pagi_inodeok = 1; 450 xfs_initialize_perag_icache(pag); 451 } 452 } 453 return index; 454 } 455 456 void 457 xfs_sb_from_disk( 458 xfs_sb_t *to, 459 xfs_dsb_t *from) 460 { 461 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 462 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 463 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 464 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 465 to->sb_rextents = be64_to_cpu(from->sb_rextents); 466 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 467 to->sb_logstart = be64_to_cpu(from->sb_logstart); 468 to->sb_rootino = be64_to_cpu(from->sb_rootino); 469 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 470 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 471 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 472 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 473 to->sb_agcount = be32_to_cpu(from->sb_agcount); 474 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 475 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 476 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 477 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 478 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 479 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 480 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 481 to->sb_blocklog = from->sb_blocklog; 482 to->sb_sectlog = from->sb_sectlog; 483 to->sb_inodelog = from->sb_inodelog; 484 to->sb_inopblog = from->sb_inopblog; 485 to->sb_agblklog = from->sb_agblklog; 486 to->sb_rextslog = from->sb_rextslog; 487 to->sb_inprogress = from->sb_inprogress; 488 to->sb_imax_pct = from->sb_imax_pct; 489 to->sb_icount = be64_to_cpu(from->sb_icount); 490 to->sb_ifree = be64_to_cpu(from->sb_ifree); 491 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 492 to->sb_frextents = be64_to_cpu(from->sb_frextents); 493 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 494 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 495 to->sb_qflags = be16_to_cpu(from->sb_qflags); 496 to->sb_flags = from->sb_flags; 497 to->sb_shared_vn = from->sb_shared_vn; 498 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 499 to->sb_unit = be32_to_cpu(from->sb_unit); 500 to->sb_width = be32_to_cpu(from->sb_width); 501 to->sb_dirblklog = from->sb_dirblklog; 502 to->sb_logsectlog = from->sb_logsectlog; 503 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 504 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 505 to->sb_features2 = be32_to_cpu(from->sb_features2); 506 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 507 } 508 509 /* 510 * Copy in core superblock to ondisk one. 511 * 512 * The fields argument is mask of superblock fields to copy. 513 */ 514 void 515 xfs_sb_to_disk( 516 xfs_dsb_t *to, 517 xfs_sb_t *from, 518 __int64_t fields) 519 { 520 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 521 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 522 xfs_sb_field_t f; 523 int first; 524 int size; 525 526 ASSERT(fields); 527 if (!fields) 528 return; 529 530 while (fields) { 531 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 532 first = xfs_sb_info[f].offset; 533 size = xfs_sb_info[f + 1].offset - first; 534 535 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 536 537 if (size == 1 || xfs_sb_info[f].type == 1) { 538 memcpy(to_ptr + first, from_ptr + first, size); 539 } else { 540 switch (size) { 541 case 2: 542 *(__be16 *)(to_ptr + first) = 543 cpu_to_be16(*(__u16 *)(from_ptr + first)); 544 break; 545 case 4: 546 *(__be32 *)(to_ptr + first) = 547 cpu_to_be32(*(__u32 *)(from_ptr + first)); 548 break; 549 case 8: 550 *(__be64 *)(to_ptr + first) = 551 cpu_to_be64(*(__u64 *)(from_ptr + first)); 552 break; 553 default: 554 ASSERT(0); 555 } 556 } 557 558 fields &= ~(1LL << f); 559 } 560 } 561 562 /* 563 * xfs_readsb 564 * 565 * Does the initial read of the superblock. 566 */ 567 int 568 xfs_readsb(xfs_mount_t *mp, int flags) 569 { 570 unsigned int sector_size; 571 unsigned int extra_flags; 572 xfs_buf_t *bp; 573 int error; 574 575 ASSERT(mp->m_sb_bp == NULL); 576 ASSERT(mp->m_ddev_targp != NULL); 577 578 /* 579 * Allocate a (locked) buffer to hold the superblock. 580 * This will be kept around at all times to optimize 581 * access to the superblock. 582 */ 583 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 584 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 585 586 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 587 BTOBB(sector_size), extra_flags); 588 if (!bp || XFS_BUF_ISERROR(bp)) { 589 xfs_fs_mount_cmn_err(flags, "SB read failed"); 590 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 591 goto fail; 592 } 593 ASSERT(XFS_BUF_ISBUSY(bp)); 594 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 595 596 /* 597 * Initialize the mount structure from the superblock. 598 * But first do some basic consistency checking. 599 */ 600 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 601 602 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 603 if (error) { 604 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 605 goto fail; 606 } 607 608 /* 609 * We must be able to do sector-sized and sector-aligned IO. 610 */ 611 if (sector_size > mp->m_sb.sb_sectsize) { 612 xfs_fs_mount_cmn_err(flags, 613 "device supports only %u byte sectors (not %u)", 614 sector_size, mp->m_sb.sb_sectsize); 615 error = ENOSYS; 616 goto fail; 617 } 618 619 /* 620 * If device sector size is smaller than the superblock size, 621 * re-read the superblock so the buffer is correctly sized. 622 */ 623 if (sector_size < mp->m_sb.sb_sectsize) { 624 XFS_BUF_UNMANAGE(bp); 625 xfs_buf_relse(bp); 626 sector_size = mp->m_sb.sb_sectsize; 627 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 628 BTOBB(sector_size), extra_flags); 629 if (!bp || XFS_BUF_ISERROR(bp)) { 630 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 631 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 632 goto fail; 633 } 634 ASSERT(XFS_BUF_ISBUSY(bp)); 635 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 636 } 637 638 /* Initialize per-cpu counters */ 639 xfs_icsb_reinit_counters(mp); 640 641 mp->m_sb_bp = bp; 642 xfs_buf_relse(bp); 643 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 644 return 0; 645 646 fail: 647 if (bp) { 648 XFS_BUF_UNMANAGE(bp); 649 xfs_buf_relse(bp); 650 } 651 return error; 652 } 653 654 655 /* 656 * xfs_mount_common 657 * 658 * Mount initialization code establishing various mount 659 * fields from the superblock associated with the given 660 * mount structure 661 */ 662 STATIC void 663 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 664 { 665 mp->m_agfrotor = mp->m_agirotor = 0; 666 spin_lock_init(&mp->m_agirotor_lock); 667 mp->m_maxagi = mp->m_sb.sb_agcount; 668 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 669 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 670 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 671 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 672 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 673 mp->m_blockmask = sbp->sb_blocksize - 1; 674 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 675 mp->m_blockwmask = mp->m_blockwsize - 1; 676 677 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 678 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 679 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 680 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 681 682 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 683 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 684 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 685 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 686 687 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 688 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 689 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 690 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 691 692 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 693 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 694 sbp->sb_inopblock); 695 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 696 } 697 698 /* 699 * xfs_initialize_perag_data 700 * 701 * Read in each per-ag structure so we can count up the number of 702 * allocated inodes, free inodes and used filesystem blocks as this 703 * information is no longer persistent in the superblock. Once we have 704 * this information, write it into the in-core superblock structure. 705 */ 706 STATIC int 707 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 708 { 709 xfs_agnumber_t index; 710 xfs_perag_t *pag; 711 xfs_sb_t *sbp = &mp->m_sb; 712 uint64_t ifree = 0; 713 uint64_t ialloc = 0; 714 uint64_t bfree = 0; 715 uint64_t bfreelst = 0; 716 uint64_t btree = 0; 717 int error; 718 719 for (index = 0; index < agcount; index++) { 720 /* 721 * read the agf, then the agi. This gets us 722 * all the information we need and populates the 723 * per-ag structures for us. 724 */ 725 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 726 if (error) 727 return error; 728 729 error = xfs_ialloc_pagi_init(mp, NULL, index); 730 if (error) 731 return error; 732 pag = &mp->m_perag[index]; 733 ifree += pag->pagi_freecount; 734 ialloc += pag->pagi_count; 735 bfree += pag->pagf_freeblks; 736 bfreelst += pag->pagf_flcount; 737 btree += pag->pagf_btreeblks; 738 } 739 /* 740 * Overwrite incore superblock counters with just-read data 741 */ 742 spin_lock(&mp->m_sb_lock); 743 sbp->sb_ifree = ifree; 744 sbp->sb_icount = ialloc; 745 sbp->sb_fdblocks = bfree + bfreelst + btree; 746 spin_unlock(&mp->m_sb_lock); 747 748 /* Fixup the per-cpu counters as well. */ 749 xfs_icsb_reinit_counters(mp); 750 751 return 0; 752 } 753 754 /* 755 * Update alignment values based on mount options and sb values 756 */ 757 STATIC int 758 xfs_update_alignment(xfs_mount_t *mp) 759 { 760 xfs_sb_t *sbp = &(mp->m_sb); 761 762 if (mp->m_dalign) { 763 /* 764 * If stripe unit and stripe width are not multiples 765 * of the fs blocksize turn off alignment. 766 */ 767 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 768 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 769 if (mp->m_flags & XFS_MOUNT_RETERR) { 770 cmn_err(CE_WARN, 771 "XFS: alignment check 1 failed"); 772 return XFS_ERROR(EINVAL); 773 } 774 mp->m_dalign = mp->m_swidth = 0; 775 } else { 776 /* 777 * Convert the stripe unit and width to FSBs. 778 */ 779 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 780 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 781 if (mp->m_flags & XFS_MOUNT_RETERR) { 782 return XFS_ERROR(EINVAL); 783 } 784 xfs_fs_cmn_err(CE_WARN, mp, 785 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 786 mp->m_dalign, mp->m_swidth, 787 sbp->sb_agblocks); 788 789 mp->m_dalign = 0; 790 mp->m_swidth = 0; 791 } else if (mp->m_dalign) { 792 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 793 } else { 794 if (mp->m_flags & XFS_MOUNT_RETERR) { 795 xfs_fs_cmn_err(CE_WARN, mp, 796 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 797 mp->m_dalign, 798 mp->m_blockmask +1); 799 return XFS_ERROR(EINVAL); 800 } 801 mp->m_swidth = 0; 802 } 803 } 804 805 /* 806 * Update superblock with new values 807 * and log changes 808 */ 809 if (xfs_sb_version_hasdalign(sbp)) { 810 if (sbp->sb_unit != mp->m_dalign) { 811 sbp->sb_unit = mp->m_dalign; 812 mp->m_update_flags |= XFS_SB_UNIT; 813 } 814 if (sbp->sb_width != mp->m_swidth) { 815 sbp->sb_width = mp->m_swidth; 816 mp->m_update_flags |= XFS_SB_WIDTH; 817 } 818 } 819 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 820 xfs_sb_version_hasdalign(&mp->m_sb)) { 821 mp->m_dalign = sbp->sb_unit; 822 mp->m_swidth = sbp->sb_width; 823 } 824 825 return 0; 826 } 827 828 /* 829 * Set the maximum inode count for this filesystem 830 */ 831 STATIC void 832 xfs_set_maxicount(xfs_mount_t *mp) 833 { 834 xfs_sb_t *sbp = &(mp->m_sb); 835 __uint64_t icount; 836 837 if (sbp->sb_imax_pct) { 838 /* 839 * Make sure the maximum inode count is a multiple 840 * of the units we allocate inodes in. 841 */ 842 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 843 do_div(icount, 100); 844 do_div(icount, mp->m_ialloc_blks); 845 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 846 sbp->sb_inopblog; 847 } else { 848 mp->m_maxicount = 0; 849 } 850 } 851 852 /* 853 * Set the default minimum read and write sizes unless 854 * already specified in a mount option. 855 * We use smaller I/O sizes when the file system 856 * is being used for NFS service (wsync mount option). 857 */ 858 STATIC void 859 xfs_set_rw_sizes(xfs_mount_t *mp) 860 { 861 xfs_sb_t *sbp = &(mp->m_sb); 862 int readio_log, writeio_log; 863 864 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 865 if (mp->m_flags & XFS_MOUNT_WSYNC) { 866 readio_log = XFS_WSYNC_READIO_LOG; 867 writeio_log = XFS_WSYNC_WRITEIO_LOG; 868 } else { 869 readio_log = XFS_READIO_LOG_LARGE; 870 writeio_log = XFS_WRITEIO_LOG_LARGE; 871 } 872 } else { 873 readio_log = mp->m_readio_log; 874 writeio_log = mp->m_writeio_log; 875 } 876 877 if (sbp->sb_blocklog > readio_log) { 878 mp->m_readio_log = sbp->sb_blocklog; 879 } else { 880 mp->m_readio_log = readio_log; 881 } 882 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 883 if (sbp->sb_blocklog > writeio_log) { 884 mp->m_writeio_log = sbp->sb_blocklog; 885 } else { 886 mp->m_writeio_log = writeio_log; 887 } 888 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 889 } 890 891 /* 892 * Set whether we're using inode alignment. 893 */ 894 STATIC void 895 xfs_set_inoalignment(xfs_mount_t *mp) 896 { 897 if (xfs_sb_version_hasalign(&mp->m_sb) && 898 mp->m_sb.sb_inoalignmt >= 899 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 900 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 901 else 902 mp->m_inoalign_mask = 0; 903 /* 904 * If we are using stripe alignment, check whether 905 * the stripe unit is a multiple of the inode alignment 906 */ 907 if (mp->m_dalign && mp->m_inoalign_mask && 908 !(mp->m_dalign & mp->m_inoalign_mask)) 909 mp->m_sinoalign = mp->m_dalign; 910 else 911 mp->m_sinoalign = 0; 912 } 913 914 /* 915 * Check that the data (and log if separate) are an ok size. 916 */ 917 STATIC int 918 xfs_check_sizes(xfs_mount_t *mp) 919 { 920 xfs_buf_t *bp; 921 xfs_daddr_t d; 922 int error; 923 924 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 925 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 926 cmn_err(CE_WARN, "XFS: size check 1 failed"); 927 return XFS_ERROR(E2BIG); 928 } 929 error = xfs_read_buf(mp, mp->m_ddev_targp, 930 d - XFS_FSS_TO_BB(mp, 1), 931 XFS_FSS_TO_BB(mp, 1), 0, &bp); 932 if (!error) { 933 xfs_buf_relse(bp); 934 } else { 935 cmn_err(CE_WARN, "XFS: size check 2 failed"); 936 if (error == ENOSPC) 937 error = XFS_ERROR(E2BIG); 938 return error; 939 } 940 941 if (mp->m_logdev_targp != mp->m_ddev_targp) { 942 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 943 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 944 cmn_err(CE_WARN, "XFS: size check 3 failed"); 945 return XFS_ERROR(E2BIG); 946 } 947 error = xfs_read_buf(mp, mp->m_logdev_targp, 948 d - XFS_FSB_TO_BB(mp, 1), 949 XFS_FSB_TO_BB(mp, 1), 0, &bp); 950 if (!error) { 951 xfs_buf_relse(bp); 952 } else { 953 cmn_err(CE_WARN, "XFS: size check 3 failed"); 954 if (error == ENOSPC) 955 error = XFS_ERROR(E2BIG); 956 return error; 957 } 958 } 959 return 0; 960 } 961 962 /* 963 * Clear the quotaflags in memory and in the superblock. 964 */ 965 int 966 xfs_mount_reset_sbqflags( 967 struct xfs_mount *mp) 968 { 969 int error; 970 struct xfs_trans *tp; 971 972 mp->m_qflags = 0; 973 974 /* 975 * It is OK to look at sb_qflags here in mount path, 976 * without m_sb_lock. 977 */ 978 if (mp->m_sb.sb_qflags == 0) 979 return 0; 980 spin_lock(&mp->m_sb_lock); 981 mp->m_sb.sb_qflags = 0; 982 spin_unlock(&mp->m_sb_lock); 983 984 /* 985 * If the fs is readonly, let the incore superblock run 986 * with quotas off but don't flush the update out to disk 987 */ 988 if (mp->m_flags & XFS_MOUNT_RDONLY) 989 return 0; 990 991 #ifdef QUOTADEBUG 992 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes"); 993 #endif 994 995 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 996 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 997 XFS_DEFAULT_LOG_COUNT); 998 if (error) { 999 xfs_trans_cancel(tp, 0); 1000 xfs_fs_cmn_err(CE_ALERT, mp, 1001 "xfs_mount_reset_sbqflags: Superblock update failed!"); 1002 return error; 1003 } 1004 1005 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1006 return xfs_trans_commit(tp, 0); 1007 } 1008 1009 /* 1010 * This function does the following on an initial mount of a file system: 1011 * - reads the superblock from disk and init the mount struct 1012 * - if we're a 32-bit kernel, do a size check on the superblock 1013 * so we don't mount terabyte filesystems 1014 * - init mount struct realtime fields 1015 * - allocate inode hash table for fs 1016 * - init directory manager 1017 * - perform recovery and init the log manager 1018 */ 1019 int 1020 xfs_mountfs( 1021 xfs_mount_t *mp) 1022 { 1023 xfs_sb_t *sbp = &(mp->m_sb); 1024 xfs_inode_t *rip; 1025 __uint64_t resblks; 1026 uint quotamount = 0; 1027 uint quotaflags = 0; 1028 int error = 0; 1029 1030 xfs_mount_common(mp, sbp); 1031 1032 /* 1033 * Check for a mismatched features2 values. Older kernels 1034 * read & wrote into the wrong sb offset for sb_features2 1035 * on some platforms due to xfs_sb_t not being 64bit size aligned 1036 * when sb_features2 was added, which made older superblock 1037 * reading/writing routines swap it as a 64-bit value. 1038 * 1039 * For backwards compatibility, we make both slots equal. 1040 * 1041 * If we detect a mismatched field, we OR the set bits into the 1042 * existing features2 field in case it has already been modified; we 1043 * don't want to lose any features. We then update the bad location 1044 * with the ORed value so that older kernels will see any features2 1045 * flags, and mark the two fields as needing updates once the 1046 * transaction subsystem is online. 1047 */ 1048 if (xfs_sb_has_mismatched_features2(sbp)) { 1049 cmn_err(CE_WARN, 1050 "XFS: correcting sb_features alignment problem"); 1051 sbp->sb_features2 |= sbp->sb_bad_features2; 1052 sbp->sb_bad_features2 = sbp->sb_features2; 1053 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1054 1055 /* 1056 * Re-check for ATTR2 in case it was found in bad_features2 1057 * slot. 1058 */ 1059 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1060 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1061 mp->m_flags |= XFS_MOUNT_ATTR2; 1062 } 1063 1064 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1065 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1066 xfs_sb_version_removeattr2(&mp->m_sb); 1067 mp->m_update_flags |= XFS_SB_FEATURES2; 1068 1069 /* update sb_versionnum for the clearing of the morebits */ 1070 if (!sbp->sb_features2) 1071 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1072 } 1073 1074 /* 1075 * Check if sb_agblocks is aligned at stripe boundary 1076 * If sb_agblocks is NOT aligned turn off m_dalign since 1077 * allocator alignment is within an ag, therefore ag has 1078 * to be aligned at stripe boundary. 1079 */ 1080 error = xfs_update_alignment(mp); 1081 if (error) 1082 goto out; 1083 1084 xfs_alloc_compute_maxlevels(mp); 1085 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1086 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1087 xfs_ialloc_compute_maxlevels(mp); 1088 1089 xfs_set_maxicount(mp); 1090 1091 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1092 1093 error = xfs_uuid_mount(mp); 1094 if (error) 1095 goto out; 1096 1097 /* 1098 * Set the minimum read and write sizes 1099 */ 1100 xfs_set_rw_sizes(mp); 1101 1102 /* 1103 * Set the inode cluster size. 1104 * This may still be overridden by the file system 1105 * block size if it is larger than the chosen cluster size. 1106 */ 1107 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1108 1109 /* 1110 * Set inode alignment fields 1111 */ 1112 xfs_set_inoalignment(mp); 1113 1114 /* 1115 * Check that the data (and log if separate) are an ok size. 1116 */ 1117 error = xfs_check_sizes(mp); 1118 if (error) 1119 goto out_remove_uuid; 1120 1121 /* 1122 * Initialize realtime fields in the mount structure 1123 */ 1124 error = xfs_rtmount_init(mp); 1125 if (error) { 1126 cmn_err(CE_WARN, "XFS: RT mount failed"); 1127 goto out_remove_uuid; 1128 } 1129 1130 /* 1131 * Copies the low order bits of the timestamp and the randomly 1132 * set "sequence" number out of a UUID. 1133 */ 1134 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1135 1136 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1137 1138 xfs_dir_mount(mp); 1139 1140 /* 1141 * Initialize the attribute manager's entries. 1142 */ 1143 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1144 1145 /* 1146 * Initialize the precomputed transaction reservations values. 1147 */ 1148 xfs_trans_init(mp); 1149 1150 /* 1151 * Allocate and initialize the per-ag data. 1152 */ 1153 init_rwsem(&mp->m_peraglock); 1154 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), 1155 KM_MAYFAIL); 1156 if (!mp->m_perag) 1157 goto out_remove_uuid; 1158 1159 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1160 1161 if (!sbp->sb_logblocks) { 1162 cmn_err(CE_WARN, "XFS: no log defined"); 1163 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1164 error = XFS_ERROR(EFSCORRUPTED); 1165 goto out_free_perag; 1166 } 1167 1168 /* 1169 * log's mount-time initialization. Perform 1st part recovery if needed 1170 */ 1171 error = xfs_log_mount(mp, mp->m_logdev_targp, 1172 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1173 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1174 if (error) { 1175 cmn_err(CE_WARN, "XFS: log mount failed"); 1176 goto out_free_perag; 1177 } 1178 1179 /* 1180 * Now the log is mounted, we know if it was an unclean shutdown or 1181 * not. If it was, with the first phase of recovery has completed, we 1182 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1183 * but they are recovered transactionally in the second recovery phase 1184 * later. 1185 * 1186 * Hence we can safely re-initialise incore superblock counters from 1187 * the per-ag data. These may not be correct if the filesystem was not 1188 * cleanly unmounted, so we need to wait for recovery to finish before 1189 * doing this. 1190 * 1191 * If the filesystem was cleanly unmounted, then we can trust the 1192 * values in the superblock to be correct and we don't need to do 1193 * anything here. 1194 * 1195 * If we are currently making the filesystem, the initialisation will 1196 * fail as the perag data is in an undefined state. 1197 */ 1198 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1199 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1200 !mp->m_sb.sb_inprogress) { 1201 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1202 if (error) 1203 goto out_free_perag; 1204 } 1205 1206 /* 1207 * Get and sanity-check the root inode. 1208 * Save the pointer to it in the mount structure. 1209 */ 1210 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1211 if (error) { 1212 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1213 goto out_log_dealloc; 1214 } 1215 1216 ASSERT(rip != NULL); 1217 1218 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1219 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1220 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1221 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1222 (unsigned long long)rip->i_ino); 1223 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1224 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1225 mp); 1226 error = XFS_ERROR(EFSCORRUPTED); 1227 goto out_rele_rip; 1228 } 1229 mp->m_rootip = rip; /* save it */ 1230 1231 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1232 1233 /* 1234 * Initialize realtime inode pointers in the mount structure 1235 */ 1236 error = xfs_rtmount_inodes(mp); 1237 if (error) { 1238 /* 1239 * Free up the root inode. 1240 */ 1241 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1242 goto out_rele_rip; 1243 } 1244 1245 /* 1246 * If this is a read-only mount defer the superblock updates until 1247 * the next remount into writeable mode. Otherwise we would never 1248 * perform the update e.g. for the root filesystem. 1249 */ 1250 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1251 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1252 if (error) { 1253 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1254 goto out_rtunmount; 1255 } 1256 } 1257 1258 /* 1259 * Initialise the XFS quota management subsystem for this mount 1260 */ 1261 if (XFS_IS_QUOTA_RUNNING(mp)) { 1262 error = xfs_qm_newmount(mp, "amount, "aflags); 1263 if (error) 1264 goto out_rtunmount; 1265 } else { 1266 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1267 1268 /* 1269 * If a file system had quotas running earlier, but decided to 1270 * mount without -o uquota/pquota/gquota options, revoke the 1271 * quotachecked license. 1272 */ 1273 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1274 cmn_err(CE_NOTE, 1275 "XFS: resetting qflags for filesystem %s", 1276 mp->m_fsname); 1277 1278 error = xfs_mount_reset_sbqflags(mp); 1279 if (error) 1280 return error; 1281 } 1282 } 1283 1284 /* 1285 * Finish recovering the file system. This part needed to be 1286 * delayed until after the root and real-time bitmap inodes 1287 * were consistently read in. 1288 */ 1289 error = xfs_log_mount_finish(mp); 1290 if (error) { 1291 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1292 goto out_rtunmount; 1293 } 1294 1295 /* 1296 * Complete the quota initialisation, post-log-replay component. 1297 */ 1298 if (quotamount) { 1299 ASSERT(mp->m_qflags == 0); 1300 mp->m_qflags = quotaflags; 1301 1302 xfs_qm_mount_quotas(mp); 1303 } 1304 1305 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 1306 if (XFS_IS_QUOTA_ON(mp)) 1307 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on"); 1308 else 1309 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on"); 1310 #endif 1311 1312 /* 1313 * Now we are mounted, reserve a small amount of unused space for 1314 * privileged transactions. This is needed so that transaction 1315 * space required for critical operations can dip into this pool 1316 * when at ENOSPC. This is needed for operations like create with 1317 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1318 * are not allowed to use this reserved space. 1319 * 1320 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1321 * This may drive us straight to ENOSPC on mount, but that implies 1322 * we were already there on the last unmount. Warn if this occurs. 1323 */ 1324 resblks = mp->m_sb.sb_dblocks; 1325 do_div(resblks, 20); 1326 resblks = min_t(__uint64_t, resblks, 1024); 1327 error = xfs_reserve_blocks(mp, &resblks, NULL); 1328 if (error) 1329 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1330 "Continuing without a reserve pool."); 1331 1332 return 0; 1333 1334 out_rtunmount: 1335 xfs_rtunmount_inodes(mp); 1336 out_rele_rip: 1337 IRELE(rip); 1338 out_log_dealloc: 1339 xfs_log_unmount(mp); 1340 out_free_perag: 1341 xfs_free_perag(mp); 1342 out_remove_uuid: 1343 xfs_uuid_unmount(mp); 1344 out: 1345 return error; 1346 } 1347 1348 /* 1349 * This flushes out the inodes,dquots and the superblock, unmounts the 1350 * log and makes sure that incore structures are freed. 1351 */ 1352 void 1353 xfs_unmountfs( 1354 struct xfs_mount *mp) 1355 { 1356 __uint64_t resblks; 1357 int error; 1358 1359 xfs_qm_unmount_quotas(mp); 1360 xfs_rtunmount_inodes(mp); 1361 IRELE(mp->m_rootip); 1362 1363 /* 1364 * We can potentially deadlock here if we have an inode cluster 1365 * that has been freed has its buffer still pinned in memory because 1366 * the transaction is still sitting in a iclog. The stale inodes 1367 * on that buffer will have their flush locks held until the 1368 * transaction hits the disk and the callbacks run. the inode 1369 * flush takes the flush lock unconditionally and with nothing to 1370 * push out the iclog we will never get that unlocked. hence we 1371 * need to force the log first. 1372 */ 1373 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1374 xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC); 1375 1376 xfs_qm_unmount(mp); 1377 1378 /* 1379 * Flush out the log synchronously so that we know for sure 1380 * that nothing is pinned. This is important because bflush() 1381 * will skip pinned buffers. 1382 */ 1383 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1384 1385 xfs_binval(mp->m_ddev_targp); 1386 if (mp->m_rtdev_targp) { 1387 xfs_binval(mp->m_rtdev_targp); 1388 } 1389 1390 /* 1391 * Unreserve any blocks we have so that when we unmount we don't account 1392 * the reserved free space as used. This is really only necessary for 1393 * lazy superblock counting because it trusts the incore superblock 1394 * counters to be absolutely correct on clean unmount. 1395 * 1396 * We don't bother correcting this elsewhere for lazy superblock 1397 * counting because on mount of an unclean filesystem we reconstruct the 1398 * correct counter value and this is irrelevant. 1399 * 1400 * For non-lazy counter filesystems, this doesn't matter at all because 1401 * we only every apply deltas to the superblock and hence the incore 1402 * value does not matter.... 1403 */ 1404 resblks = 0; 1405 error = xfs_reserve_blocks(mp, &resblks, NULL); 1406 if (error) 1407 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1408 "Freespace may not be correct on next mount."); 1409 1410 error = xfs_log_sbcount(mp, 1); 1411 if (error) 1412 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1413 "Freespace may not be correct on next mount."); 1414 xfs_unmountfs_writesb(mp); 1415 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1416 xfs_log_unmount_write(mp); 1417 xfs_log_unmount(mp); 1418 xfs_uuid_unmount(mp); 1419 1420 #if defined(DEBUG) 1421 xfs_errortag_clearall(mp, 0); 1422 #endif 1423 xfs_free_perag(mp); 1424 } 1425 1426 STATIC void 1427 xfs_unmountfs_wait(xfs_mount_t *mp) 1428 { 1429 if (mp->m_logdev_targp != mp->m_ddev_targp) 1430 xfs_wait_buftarg(mp->m_logdev_targp); 1431 if (mp->m_rtdev_targp) 1432 xfs_wait_buftarg(mp->m_rtdev_targp); 1433 xfs_wait_buftarg(mp->m_ddev_targp); 1434 } 1435 1436 int 1437 xfs_fs_writable(xfs_mount_t *mp) 1438 { 1439 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1440 (mp->m_flags & XFS_MOUNT_RDONLY)); 1441 } 1442 1443 /* 1444 * xfs_log_sbcount 1445 * 1446 * Called either periodically to keep the on disk superblock values 1447 * roughly up to date or from unmount to make sure the values are 1448 * correct on a clean unmount. 1449 * 1450 * Note this code can be called during the process of freezing, so 1451 * we may need to use the transaction allocator which does not not 1452 * block when the transaction subsystem is in its frozen state. 1453 */ 1454 int 1455 xfs_log_sbcount( 1456 xfs_mount_t *mp, 1457 uint sync) 1458 { 1459 xfs_trans_t *tp; 1460 int error; 1461 1462 if (!xfs_fs_writable(mp)) 1463 return 0; 1464 1465 xfs_icsb_sync_counters(mp, 0); 1466 1467 /* 1468 * we don't need to do this if we are updating the superblock 1469 * counters on every modification. 1470 */ 1471 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1472 return 0; 1473 1474 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); 1475 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1476 XFS_DEFAULT_LOG_COUNT); 1477 if (error) { 1478 xfs_trans_cancel(tp, 0); 1479 return error; 1480 } 1481 1482 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1483 if (sync) 1484 xfs_trans_set_sync(tp); 1485 error = xfs_trans_commit(tp, 0); 1486 return error; 1487 } 1488 1489 int 1490 xfs_unmountfs_writesb(xfs_mount_t *mp) 1491 { 1492 xfs_buf_t *sbp; 1493 int error = 0; 1494 1495 /* 1496 * skip superblock write if fs is read-only, or 1497 * if we are doing a forced umount. 1498 */ 1499 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1500 XFS_FORCED_SHUTDOWN(mp))) { 1501 1502 sbp = xfs_getsb(mp, 0); 1503 1504 XFS_BUF_UNDONE(sbp); 1505 XFS_BUF_UNREAD(sbp); 1506 XFS_BUF_UNDELAYWRITE(sbp); 1507 XFS_BUF_WRITE(sbp); 1508 XFS_BUF_UNASYNC(sbp); 1509 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1510 xfsbdstrat(mp, sbp); 1511 error = xfs_iowait(sbp); 1512 if (error) 1513 xfs_ioerror_alert("xfs_unmountfs_writesb", 1514 mp, sbp, XFS_BUF_ADDR(sbp)); 1515 xfs_buf_relse(sbp); 1516 } 1517 return error; 1518 } 1519 1520 /* 1521 * xfs_mod_sb() can be used to copy arbitrary changes to the 1522 * in-core superblock into the superblock buffer to be logged. 1523 * It does not provide the higher level of locking that is 1524 * needed to protect the in-core superblock from concurrent 1525 * access. 1526 */ 1527 void 1528 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1529 { 1530 xfs_buf_t *bp; 1531 int first; 1532 int last; 1533 xfs_mount_t *mp; 1534 xfs_sb_field_t f; 1535 1536 ASSERT(fields); 1537 if (!fields) 1538 return; 1539 mp = tp->t_mountp; 1540 bp = xfs_trans_getsb(tp, mp, 0); 1541 first = sizeof(xfs_sb_t); 1542 last = 0; 1543 1544 /* translate/copy */ 1545 1546 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1547 1548 /* find modified range */ 1549 1550 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1551 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1552 first = xfs_sb_info[f].offset; 1553 1554 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1555 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1556 last = xfs_sb_info[f + 1].offset - 1; 1557 1558 xfs_trans_log_buf(tp, bp, first, last); 1559 } 1560 1561 1562 /* 1563 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1564 * a delta to a specified field in the in-core superblock. Simply 1565 * switch on the field indicated and apply the delta to that field. 1566 * Fields are not allowed to dip below zero, so if the delta would 1567 * do this do not apply it and return EINVAL. 1568 * 1569 * The m_sb_lock must be held when this routine is called. 1570 */ 1571 STATIC int 1572 xfs_mod_incore_sb_unlocked( 1573 xfs_mount_t *mp, 1574 xfs_sb_field_t field, 1575 int64_t delta, 1576 int rsvd) 1577 { 1578 int scounter; /* short counter for 32 bit fields */ 1579 long long lcounter; /* long counter for 64 bit fields */ 1580 long long res_used, rem; 1581 1582 /* 1583 * With the in-core superblock spin lock held, switch 1584 * on the indicated field. Apply the delta to the 1585 * proper field. If the fields value would dip below 1586 * 0, then do not apply the delta and return EINVAL. 1587 */ 1588 switch (field) { 1589 case XFS_SBS_ICOUNT: 1590 lcounter = (long long)mp->m_sb.sb_icount; 1591 lcounter += delta; 1592 if (lcounter < 0) { 1593 ASSERT(0); 1594 return XFS_ERROR(EINVAL); 1595 } 1596 mp->m_sb.sb_icount = lcounter; 1597 return 0; 1598 case XFS_SBS_IFREE: 1599 lcounter = (long long)mp->m_sb.sb_ifree; 1600 lcounter += delta; 1601 if (lcounter < 0) { 1602 ASSERT(0); 1603 return XFS_ERROR(EINVAL); 1604 } 1605 mp->m_sb.sb_ifree = lcounter; 1606 return 0; 1607 case XFS_SBS_FDBLOCKS: 1608 lcounter = (long long) 1609 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1610 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1611 1612 if (delta > 0) { /* Putting blocks back */ 1613 if (res_used > delta) { 1614 mp->m_resblks_avail += delta; 1615 } else { 1616 rem = delta - res_used; 1617 mp->m_resblks_avail = mp->m_resblks; 1618 lcounter += rem; 1619 } 1620 } else { /* Taking blocks away */ 1621 1622 lcounter += delta; 1623 1624 /* 1625 * If were out of blocks, use any available reserved blocks if 1626 * were allowed to. 1627 */ 1628 1629 if (lcounter < 0) { 1630 if (rsvd) { 1631 lcounter = (long long)mp->m_resblks_avail + delta; 1632 if (lcounter < 0) { 1633 return XFS_ERROR(ENOSPC); 1634 } 1635 mp->m_resblks_avail = lcounter; 1636 return 0; 1637 } else { /* not reserved */ 1638 return XFS_ERROR(ENOSPC); 1639 } 1640 } 1641 } 1642 1643 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1644 return 0; 1645 case XFS_SBS_FREXTENTS: 1646 lcounter = (long long)mp->m_sb.sb_frextents; 1647 lcounter += delta; 1648 if (lcounter < 0) { 1649 return XFS_ERROR(ENOSPC); 1650 } 1651 mp->m_sb.sb_frextents = lcounter; 1652 return 0; 1653 case XFS_SBS_DBLOCKS: 1654 lcounter = (long long)mp->m_sb.sb_dblocks; 1655 lcounter += delta; 1656 if (lcounter < 0) { 1657 ASSERT(0); 1658 return XFS_ERROR(EINVAL); 1659 } 1660 mp->m_sb.sb_dblocks = lcounter; 1661 return 0; 1662 case XFS_SBS_AGCOUNT: 1663 scounter = mp->m_sb.sb_agcount; 1664 scounter += delta; 1665 if (scounter < 0) { 1666 ASSERT(0); 1667 return XFS_ERROR(EINVAL); 1668 } 1669 mp->m_sb.sb_agcount = scounter; 1670 return 0; 1671 case XFS_SBS_IMAX_PCT: 1672 scounter = mp->m_sb.sb_imax_pct; 1673 scounter += delta; 1674 if (scounter < 0) { 1675 ASSERT(0); 1676 return XFS_ERROR(EINVAL); 1677 } 1678 mp->m_sb.sb_imax_pct = scounter; 1679 return 0; 1680 case XFS_SBS_REXTSIZE: 1681 scounter = mp->m_sb.sb_rextsize; 1682 scounter += delta; 1683 if (scounter < 0) { 1684 ASSERT(0); 1685 return XFS_ERROR(EINVAL); 1686 } 1687 mp->m_sb.sb_rextsize = scounter; 1688 return 0; 1689 case XFS_SBS_RBMBLOCKS: 1690 scounter = mp->m_sb.sb_rbmblocks; 1691 scounter += delta; 1692 if (scounter < 0) { 1693 ASSERT(0); 1694 return XFS_ERROR(EINVAL); 1695 } 1696 mp->m_sb.sb_rbmblocks = scounter; 1697 return 0; 1698 case XFS_SBS_RBLOCKS: 1699 lcounter = (long long)mp->m_sb.sb_rblocks; 1700 lcounter += delta; 1701 if (lcounter < 0) { 1702 ASSERT(0); 1703 return XFS_ERROR(EINVAL); 1704 } 1705 mp->m_sb.sb_rblocks = lcounter; 1706 return 0; 1707 case XFS_SBS_REXTENTS: 1708 lcounter = (long long)mp->m_sb.sb_rextents; 1709 lcounter += delta; 1710 if (lcounter < 0) { 1711 ASSERT(0); 1712 return XFS_ERROR(EINVAL); 1713 } 1714 mp->m_sb.sb_rextents = lcounter; 1715 return 0; 1716 case XFS_SBS_REXTSLOG: 1717 scounter = mp->m_sb.sb_rextslog; 1718 scounter += delta; 1719 if (scounter < 0) { 1720 ASSERT(0); 1721 return XFS_ERROR(EINVAL); 1722 } 1723 mp->m_sb.sb_rextslog = scounter; 1724 return 0; 1725 default: 1726 ASSERT(0); 1727 return XFS_ERROR(EINVAL); 1728 } 1729 } 1730 1731 /* 1732 * xfs_mod_incore_sb() is used to change a field in the in-core 1733 * superblock structure by the specified delta. This modification 1734 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1735 * routine to do the work. 1736 */ 1737 int 1738 xfs_mod_incore_sb( 1739 xfs_mount_t *mp, 1740 xfs_sb_field_t field, 1741 int64_t delta, 1742 int rsvd) 1743 { 1744 int status; 1745 1746 /* check for per-cpu counters */ 1747 switch (field) { 1748 #ifdef HAVE_PERCPU_SB 1749 case XFS_SBS_ICOUNT: 1750 case XFS_SBS_IFREE: 1751 case XFS_SBS_FDBLOCKS: 1752 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1753 status = xfs_icsb_modify_counters(mp, field, 1754 delta, rsvd); 1755 break; 1756 } 1757 /* FALLTHROUGH */ 1758 #endif 1759 default: 1760 spin_lock(&mp->m_sb_lock); 1761 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1762 spin_unlock(&mp->m_sb_lock); 1763 break; 1764 } 1765 1766 return status; 1767 } 1768 1769 /* 1770 * xfs_mod_incore_sb_batch() is used to change more than one field 1771 * in the in-core superblock structure at a time. This modification 1772 * is protected by a lock internal to this module. The fields and 1773 * changes to those fields are specified in the array of xfs_mod_sb 1774 * structures passed in. 1775 * 1776 * Either all of the specified deltas will be applied or none of 1777 * them will. If any modified field dips below 0, then all modifications 1778 * will be backed out and EINVAL will be returned. 1779 */ 1780 int 1781 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1782 { 1783 int status=0; 1784 xfs_mod_sb_t *msbp; 1785 1786 /* 1787 * Loop through the array of mod structures and apply each 1788 * individually. If any fail, then back out all those 1789 * which have already been applied. Do all of this within 1790 * the scope of the m_sb_lock so that all of the changes will 1791 * be atomic. 1792 */ 1793 spin_lock(&mp->m_sb_lock); 1794 msbp = &msb[0]; 1795 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1796 /* 1797 * Apply the delta at index n. If it fails, break 1798 * from the loop so we'll fall into the undo loop 1799 * below. 1800 */ 1801 switch (msbp->msb_field) { 1802 #ifdef HAVE_PERCPU_SB 1803 case XFS_SBS_ICOUNT: 1804 case XFS_SBS_IFREE: 1805 case XFS_SBS_FDBLOCKS: 1806 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1807 spin_unlock(&mp->m_sb_lock); 1808 status = xfs_icsb_modify_counters(mp, 1809 msbp->msb_field, 1810 msbp->msb_delta, rsvd); 1811 spin_lock(&mp->m_sb_lock); 1812 break; 1813 } 1814 /* FALLTHROUGH */ 1815 #endif 1816 default: 1817 status = xfs_mod_incore_sb_unlocked(mp, 1818 msbp->msb_field, 1819 msbp->msb_delta, rsvd); 1820 break; 1821 } 1822 1823 if (status != 0) { 1824 break; 1825 } 1826 } 1827 1828 /* 1829 * If we didn't complete the loop above, then back out 1830 * any changes made to the superblock. If you add code 1831 * between the loop above and here, make sure that you 1832 * preserve the value of status. Loop back until 1833 * we step below the beginning of the array. Make sure 1834 * we don't touch anything back there. 1835 */ 1836 if (status != 0) { 1837 msbp--; 1838 while (msbp >= msb) { 1839 switch (msbp->msb_field) { 1840 #ifdef HAVE_PERCPU_SB 1841 case XFS_SBS_ICOUNT: 1842 case XFS_SBS_IFREE: 1843 case XFS_SBS_FDBLOCKS: 1844 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1845 spin_unlock(&mp->m_sb_lock); 1846 status = xfs_icsb_modify_counters(mp, 1847 msbp->msb_field, 1848 -(msbp->msb_delta), 1849 rsvd); 1850 spin_lock(&mp->m_sb_lock); 1851 break; 1852 } 1853 /* FALLTHROUGH */ 1854 #endif 1855 default: 1856 status = xfs_mod_incore_sb_unlocked(mp, 1857 msbp->msb_field, 1858 -(msbp->msb_delta), 1859 rsvd); 1860 break; 1861 } 1862 ASSERT(status == 0); 1863 msbp--; 1864 } 1865 } 1866 spin_unlock(&mp->m_sb_lock); 1867 return status; 1868 } 1869 1870 /* 1871 * xfs_getsb() is called to obtain the buffer for the superblock. 1872 * The buffer is returned locked and read in from disk. 1873 * The buffer should be released with a call to xfs_brelse(). 1874 * 1875 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1876 * the superblock buffer if it can be locked without sleeping. 1877 * If it can't then we'll return NULL. 1878 */ 1879 xfs_buf_t * 1880 xfs_getsb( 1881 xfs_mount_t *mp, 1882 int flags) 1883 { 1884 xfs_buf_t *bp; 1885 1886 ASSERT(mp->m_sb_bp != NULL); 1887 bp = mp->m_sb_bp; 1888 if (flags & XFS_BUF_TRYLOCK) { 1889 if (!XFS_BUF_CPSEMA(bp)) { 1890 return NULL; 1891 } 1892 } else { 1893 XFS_BUF_PSEMA(bp, PRIBIO); 1894 } 1895 XFS_BUF_HOLD(bp); 1896 ASSERT(XFS_BUF_ISDONE(bp)); 1897 return bp; 1898 } 1899 1900 /* 1901 * Used to free the superblock along various error paths. 1902 */ 1903 void 1904 xfs_freesb( 1905 xfs_mount_t *mp) 1906 { 1907 xfs_buf_t *bp; 1908 1909 /* 1910 * Use xfs_getsb() so that the buffer will be locked 1911 * when we call xfs_buf_relse(). 1912 */ 1913 bp = xfs_getsb(mp, 0); 1914 XFS_BUF_UNMANAGE(bp); 1915 xfs_buf_relse(bp); 1916 mp->m_sb_bp = NULL; 1917 } 1918 1919 /* 1920 * Used to log changes to the superblock unit and width fields which could 1921 * be altered by the mount options, as well as any potential sb_features2 1922 * fixup. Only the first superblock is updated. 1923 */ 1924 int 1925 xfs_mount_log_sb( 1926 xfs_mount_t *mp, 1927 __int64_t fields) 1928 { 1929 xfs_trans_t *tp; 1930 int error; 1931 1932 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1933 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1934 XFS_SB_VERSIONNUM)); 1935 1936 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1937 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1938 XFS_DEFAULT_LOG_COUNT); 1939 if (error) { 1940 xfs_trans_cancel(tp, 0); 1941 return error; 1942 } 1943 xfs_mod_sb(tp, fields); 1944 error = xfs_trans_commit(tp, 0); 1945 return error; 1946 } 1947 1948 1949 #ifdef HAVE_PERCPU_SB 1950 /* 1951 * Per-cpu incore superblock counters 1952 * 1953 * Simple concept, difficult implementation 1954 * 1955 * Basically, replace the incore superblock counters with a distributed per cpu 1956 * counter for contended fields (e.g. free block count). 1957 * 1958 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1959 * hence needs to be accurately read when we are running low on space. Hence 1960 * there is a method to enable and disable the per-cpu counters based on how 1961 * much "stuff" is available in them. 1962 * 1963 * Basically, a counter is enabled if there is enough free resource to justify 1964 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1965 * ENOSPC), then we disable the counters to synchronise all callers and 1966 * re-distribute the available resources. 1967 * 1968 * If, once we redistributed the available resources, we still get a failure, 1969 * we disable the per-cpu counter and go through the slow path. 1970 * 1971 * The slow path is the current xfs_mod_incore_sb() function. This means that 1972 * when we disable a per-cpu counter, we need to drain its resources back to 1973 * the global superblock. We do this after disabling the counter to prevent 1974 * more threads from queueing up on the counter. 1975 * 1976 * Essentially, this means that we still need a lock in the fast path to enable 1977 * synchronisation between the global counters and the per-cpu counters. This 1978 * is not a problem because the lock will be local to a CPU almost all the time 1979 * and have little contention except when we get to ENOSPC conditions. 1980 * 1981 * Basically, this lock becomes a barrier that enables us to lock out the fast 1982 * path while we do things like enabling and disabling counters and 1983 * synchronising the counters. 1984 * 1985 * Locking rules: 1986 * 1987 * 1. m_sb_lock before picking up per-cpu locks 1988 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1989 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1990 * 4. modifying per-cpu counters requires holding per-cpu lock 1991 * 5. modifying global counters requires holding m_sb_lock 1992 * 6. enabling or disabling a counter requires holding the m_sb_lock 1993 * and _none_ of the per-cpu locks. 1994 * 1995 * Disabled counters are only ever re-enabled by a balance operation 1996 * that results in more free resources per CPU than a given threshold. 1997 * To ensure counters don't remain disabled, they are rebalanced when 1998 * the global resource goes above a higher threshold (i.e. some hysteresis 1999 * is present to prevent thrashing). 2000 */ 2001 2002 #ifdef CONFIG_HOTPLUG_CPU 2003 /* 2004 * hot-plug CPU notifier support. 2005 * 2006 * We need a notifier per filesystem as we need to be able to identify 2007 * the filesystem to balance the counters out. This is achieved by 2008 * having a notifier block embedded in the xfs_mount_t and doing pointer 2009 * magic to get the mount pointer from the notifier block address. 2010 */ 2011 STATIC int 2012 xfs_icsb_cpu_notify( 2013 struct notifier_block *nfb, 2014 unsigned long action, 2015 void *hcpu) 2016 { 2017 xfs_icsb_cnts_t *cntp; 2018 xfs_mount_t *mp; 2019 2020 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2021 cntp = (xfs_icsb_cnts_t *) 2022 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2023 switch (action) { 2024 case CPU_UP_PREPARE: 2025 case CPU_UP_PREPARE_FROZEN: 2026 /* Easy Case - initialize the area and locks, and 2027 * then rebalance when online does everything else for us. */ 2028 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2029 break; 2030 case CPU_ONLINE: 2031 case CPU_ONLINE_FROZEN: 2032 xfs_icsb_lock(mp); 2033 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2034 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2035 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2036 xfs_icsb_unlock(mp); 2037 break; 2038 case CPU_DEAD: 2039 case CPU_DEAD_FROZEN: 2040 /* Disable all the counters, then fold the dead cpu's 2041 * count into the total on the global superblock and 2042 * re-enable the counters. */ 2043 xfs_icsb_lock(mp); 2044 spin_lock(&mp->m_sb_lock); 2045 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2046 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2047 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2048 2049 mp->m_sb.sb_icount += cntp->icsb_icount; 2050 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2051 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2052 2053 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2054 2055 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2056 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2057 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2058 spin_unlock(&mp->m_sb_lock); 2059 xfs_icsb_unlock(mp); 2060 break; 2061 } 2062 2063 return NOTIFY_OK; 2064 } 2065 #endif /* CONFIG_HOTPLUG_CPU */ 2066 2067 int 2068 xfs_icsb_init_counters( 2069 xfs_mount_t *mp) 2070 { 2071 xfs_icsb_cnts_t *cntp; 2072 int i; 2073 2074 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2075 if (mp->m_sb_cnts == NULL) 2076 return -ENOMEM; 2077 2078 #ifdef CONFIG_HOTPLUG_CPU 2079 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2080 mp->m_icsb_notifier.priority = 0; 2081 register_hotcpu_notifier(&mp->m_icsb_notifier); 2082 #endif /* CONFIG_HOTPLUG_CPU */ 2083 2084 for_each_online_cpu(i) { 2085 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2086 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2087 } 2088 2089 mutex_init(&mp->m_icsb_mutex); 2090 2091 /* 2092 * start with all counters disabled so that the 2093 * initial balance kicks us off correctly 2094 */ 2095 mp->m_icsb_counters = -1; 2096 return 0; 2097 } 2098 2099 void 2100 xfs_icsb_reinit_counters( 2101 xfs_mount_t *mp) 2102 { 2103 xfs_icsb_lock(mp); 2104 /* 2105 * start with all counters disabled so that the 2106 * initial balance kicks us off correctly 2107 */ 2108 mp->m_icsb_counters = -1; 2109 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2110 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2111 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2112 xfs_icsb_unlock(mp); 2113 } 2114 2115 void 2116 xfs_icsb_destroy_counters( 2117 xfs_mount_t *mp) 2118 { 2119 if (mp->m_sb_cnts) { 2120 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2121 free_percpu(mp->m_sb_cnts); 2122 } 2123 mutex_destroy(&mp->m_icsb_mutex); 2124 } 2125 2126 STATIC_INLINE void 2127 xfs_icsb_lock_cntr( 2128 xfs_icsb_cnts_t *icsbp) 2129 { 2130 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2131 ndelay(1000); 2132 } 2133 } 2134 2135 STATIC_INLINE void 2136 xfs_icsb_unlock_cntr( 2137 xfs_icsb_cnts_t *icsbp) 2138 { 2139 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2140 } 2141 2142 2143 STATIC_INLINE void 2144 xfs_icsb_lock_all_counters( 2145 xfs_mount_t *mp) 2146 { 2147 xfs_icsb_cnts_t *cntp; 2148 int i; 2149 2150 for_each_online_cpu(i) { 2151 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2152 xfs_icsb_lock_cntr(cntp); 2153 } 2154 } 2155 2156 STATIC_INLINE void 2157 xfs_icsb_unlock_all_counters( 2158 xfs_mount_t *mp) 2159 { 2160 xfs_icsb_cnts_t *cntp; 2161 int i; 2162 2163 for_each_online_cpu(i) { 2164 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2165 xfs_icsb_unlock_cntr(cntp); 2166 } 2167 } 2168 2169 STATIC void 2170 xfs_icsb_count( 2171 xfs_mount_t *mp, 2172 xfs_icsb_cnts_t *cnt, 2173 int flags) 2174 { 2175 xfs_icsb_cnts_t *cntp; 2176 int i; 2177 2178 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2179 2180 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2181 xfs_icsb_lock_all_counters(mp); 2182 2183 for_each_online_cpu(i) { 2184 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2185 cnt->icsb_icount += cntp->icsb_icount; 2186 cnt->icsb_ifree += cntp->icsb_ifree; 2187 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2188 } 2189 2190 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2191 xfs_icsb_unlock_all_counters(mp); 2192 } 2193 2194 STATIC int 2195 xfs_icsb_counter_disabled( 2196 xfs_mount_t *mp, 2197 xfs_sb_field_t field) 2198 { 2199 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2200 return test_bit(field, &mp->m_icsb_counters); 2201 } 2202 2203 STATIC void 2204 xfs_icsb_disable_counter( 2205 xfs_mount_t *mp, 2206 xfs_sb_field_t field) 2207 { 2208 xfs_icsb_cnts_t cnt; 2209 2210 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2211 2212 /* 2213 * If we are already disabled, then there is nothing to do 2214 * here. We check before locking all the counters to avoid 2215 * the expensive lock operation when being called in the 2216 * slow path and the counter is already disabled. This is 2217 * safe because the only time we set or clear this state is under 2218 * the m_icsb_mutex. 2219 */ 2220 if (xfs_icsb_counter_disabled(mp, field)) 2221 return; 2222 2223 xfs_icsb_lock_all_counters(mp); 2224 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2225 /* drain back to superblock */ 2226 2227 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2228 switch(field) { 2229 case XFS_SBS_ICOUNT: 2230 mp->m_sb.sb_icount = cnt.icsb_icount; 2231 break; 2232 case XFS_SBS_IFREE: 2233 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2234 break; 2235 case XFS_SBS_FDBLOCKS: 2236 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2237 break; 2238 default: 2239 BUG(); 2240 } 2241 } 2242 2243 xfs_icsb_unlock_all_counters(mp); 2244 } 2245 2246 STATIC void 2247 xfs_icsb_enable_counter( 2248 xfs_mount_t *mp, 2249 xfs_sb_field_t field, 2250 uint64_t count, 2251 uint64_t resid) 2252 { 2253 xfs_icsb_cnts_t *cntp; 2254 int i; 2255 2256 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2257 2258 xfs_icsb_lock_all_counters(mp); 2259 for_each_online_cpu(i) { 2260 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2261 switch (field) { 2262 case XFS_SBS_ICOUNT: 2263 cntp->icsb_icount = count + resid; 2264 break; 2265 case XFS_SBS_IFREE: 2266 cntp->icsb_ifree = count + resid; 2267 break; 2268 case XFS_SBS_FDBLOCKS: 2269 cntp->icsb_fdblocks = count + resid; 2270 break; 2271 default: 2272 BUG(); 2273 break; 2274 } 2275 resid = 0; 2276 } 2277 clear_bit(field, &mp->m_icsb_counters); 2278 xfs_icsb_unlock_all_counters(mp); 2279 } 2280 2281 void 2282 xfs_icsb_sync_counters_locked( 2283 xfs_mount_t *mp, 2284 int flags) 2285 { 2286 xfs_icsb_cnts_t cnt; 2287 2288 xfs_icsb_count(mp, &cnt, flags); 2289 2290 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2291 mp->m_sb.sb_icount = cnt.icsb_icount; 2292 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2293 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2294 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2295 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2296 } 2297 2298 /* 2299 * Accurate update of per-cpu counters to incore superblock 2300 */ 2301 void 2302 xfs_icsb_sync_counters( 2303 xfs_mount_t *mp, 2304 int flags) 2305 { 2306 spin_lock(&mp->m_sb_lock); 2307 xfs_icsb_sync_counters_locked(mp, flags); 2308 spin_unlock(&mp->m_sb_lock); 2309 } 2310 2311 /* 2312 * Balance and enable/disable counters as necessary. 2313 * 2314 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2315 * chosen to be the same number as single on disk allocation chunk per CPU, and 2316 * free blocks is something far enough zero that we aren't going thrash when we 2317 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2318 * prevent looping endlessly when xfs_alloc_space asks for more than will 2319 * be distributed to a single CPU but each CPU has enough blocks to be 2320 * reenabled. 2321 * 2322 * Note that we can be called when counters are already disabled. 2323 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2324 * prevent locking every per-cpu counter needlessly. 2325 */ 2326 2327 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2328 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2329 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2330 STATIC void 2331 xfs_icsb_balance_counter_locked( 2332 xfs_mount_t *mp, 2333 xfs_sb_field_t field, 2334 int min_per_cpu) 2335 { 2336 uint64_t count, resid; 2337 int weight = num_online_cpus(); 2338 uint64_t min = (uint64_t)min_per_cpu; 2339 2340 /* disable counter and sync counter */ 2341 xfs_icsb_disable_counter(mp, field); 2342 2343 /* update counters - first CPU gets residual*/ 2344 switch (field) { 2345 case XFS_SBS_ICOUNT: 2346 count = mp->m_sb.sb_icount; 2347 resid = do_div(count, weight); 2348 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2349 return; 2350 break; 2351 case XFS_SBS_IFREE: 2352 count = mp->m_sb.sb_ifree; 2353 resid = do_div(count, weight); 2354 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2355 return; 2356 break; 2357 case XFS_SBS_FDBLOCKS: 2358 count = mp->m_sb.sb_fdblocks; 2359 resid = do_div(count, weight); 2360 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2361 return; 2362 break; 2363 default: 2364 BUG(); 2365 count = resid = 0; /* quiet, gcc */ 2366 break; 2367 } 2368 2369 xfs_icsb_enable_counter(mp, field, count, resid); 2370 } 2371 2372 STATIC void 2373 xfs_icsb_balance_counter( 2374 xfs_mount_t *mp, 2375 xfs_sb_field_t fields, 2376 int min_per_cpu) 2377 { 2378 spin_lock(&mp->m_sb_lock); 2379 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2380 spin_unlock(&mp->m_sb_lock); 2381 } 2382 2383 STATIC int 2384 xfs_icsb_modify_counters( 2385 xfs_mount_t *mp, 2386 xfs_sb_field_t field, 2387 int64_t delta, 2388 int rsvd) 2389 { 2390 xfs_icsb_cnts_t *icsbp; 2391 long long lcounter; /* long counter for 64 bit fields */ 2392 int cpu, ret = 0; 2393 2394 might_sleep(); 2395 again: 2396 cpu = get_cpu(); 2397 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); 2398 2399 /* 2400 * if the counter is disabled, go to slow path 2401 */ 2402 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2403 goto slow_path; 2404 xfs_icsb_lock_cntr(icsbp); 2405 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2406 xfs_icsb_unlock_cntr(icsbp); 2407 goto slow_path; 2408 } 2409 2410 switch (field) { 2411 case XFS_SBS_ICOUNT: 2412 lcounter = icsbp->icsb_icount; 2413 lcounter += delta; 2414 if (unlikely(lcounter < 0)) 2415 goto balance_counter; 2416 icsbp->icsb_icount = lcounter; 2417 break; 2418 2419 case XFS_SBS_IFREE: 2420 lcounter = icsbp->icsb_ifree; 2421 lcounter += delta; 2422 if (unlikely(lcounter < 0)) 2423 goto balance_counter; 2424 icsbp->icsb_ifree = lcounter; 2425 break; 2426 2427 case XFS_SBS_FDBLOCKS: 2428 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2429 2430 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2431 lcounter += delta; 2432 if (unlikely(lcounter < 0)) 2433 goto balance_counter; 2434 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2435 break; 2436 default: 2437 BUG(); 2438 break; 2439 } 2440 xfs_icsb_unlock_cntr(icsbp); 2441 put_cpu(); 2442 return 0; 2443 2444 slow_path: 2445 put_cpu(); 2446 2447 /* 2448 * serialise with a mutex so we don't burn lots of cpu on 2449 * the superblock lock. We still need to hold the superblock 2450 * lock, however, when we modify the global structures. 2451 */ 2452 xfs_icsb_lock(mp); 2453 2454 /* 2455 * Now running atomically. 2456 * 2457 * If the counter is enabled, someone has beaten us to rebalancing. 2458 * Drop the lock and try again in the fast path.... 2459 */ 2460 if (!(xfs_icsb_counter_disabled(mp, field))) { 2461 xfs_icsb_unlock(mp); 2462 goto again; 2463 } 2464 2465 /* 2466 * The counter is currently disabled. Because we are 2467 * running atomically here, we know a rebalance cannot 2468 * be in progress. Hence we can go straight to operating 2469 * on the global superblock. We do not call xfs_mod_incore_sb() 2470 * here even though we need to get the m_sb_lock. Doing so 2471 * will cause us to re-enter this function and deadlock. 2472 * Hence we get the m_sb_lock ourselves and then call 2473 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2474 * directly on the global counters. 2475 */ 2476 spin_lock(&mp->m_sb_lock); 2477 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2478 spin_unlock(&mp->m_sb_lock); 2479 2480 /* 2481 * Now that we've modified the global superblock, we 2482 * may be able to re-enable the distributed counters 2483 * (e.g. lots of space just got freed). After that 2484 * we are done. 2485 */ 2486 if (ret != ENOSPC) 2487 xfs_icsb_balance_counter(mp, field, 0); 2488 xfs_icsb_unlock(mp); 2489 return ret; 2490 2491 balance_counter: 2492 xfs_icsb_unlock_cntr(icsbp); 2493 put_cpu(); 2494 2495 /* 2496 * We may have multiple threads here if multiple per-cpu 2497 * counters run dry at the same time. This will mean we can 2498 * do more balances than strictly necessary but it is not 2499 * the common slowpath case. 2500 */ 2501 xfs_icsb_lock(mp); 2502 2503 /* 2504 * running atomically. 2505 * 2506 * This will leave the counter in the correct state for future 2507 * accesses. After the rebalance, we simply try again and our retry 2508 * will either succeed through the fast path or slow path without 2509 * another balance operation being required. 2510 */ 2511 xfs_icsb_balance_counter(mp, field, delta); 2512 xfs_icsb_unlock(mp); 2513 goto again; 2514 } 2515 2516 #endif 2517