1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_sysfs.h" 45 #include "xfs_rmap_btree.h" 46 #include "xfs_refcount_btree.h" 47 #include "xfs_reflink.h" 48 #include "xfs_extent_busy.h" 49 50 51 static DEFINE_MUTEX(xfs_uuid_table_mutex); 52 static int xfs_uuid_table_size; 53 static uuid_t *xfs_uuid_table; 54 55 void 56 xfs_uuid_table_free(void) 57 { 58 if (xfs_uuid_table_size == 0) 59 return; 60 kmem_free(xfs_uuid_table); 61 xfs_uuid_table = NULL; 62 xfs_uuid_table_size = 0; 63 } 64 65 /* 66 * See if the UUID is unique among mounted XFS filesystems. 67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 68 */ 69 STATIC int 70 xfs_uuid_mount( 71 struct xfs_mount *mp) 72 { 73 uuid_t *uuid = &mp->m_sb.sb_uuid; 74 int hole, i; 75 76 /* Publish UUID in struct super_block */ 77 uuid_copy(&mp->m_super->s_uuid, uuid); 78 79 if (mp->m_flags & XFS_MOUNT_NOUUID) 80 return 0; 81 82 if (uuid_is_null(uuid)) { 83 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 84 return -EINVAL; 85 } 86 87 mutex_lock(&xfs_uuid_table_mutex); 88 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 89 if (uuid_is_null(&xfs_uuid_table[i])) { 90 hole = i; 91 continue; 92 } 93 if (uuid_equal(uuid, &xfs_uuid_table[i])) 94 goto out_duplicate; 95 } 96 97 if (hole < 0) { 98 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 99 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 100 KM_SLEEP); 101 hole = xfs_uuid_table_size++; 102 } 103 xfs_uuid_table[hole] = *uuid; 104 mutex_unlock(&xfs_uuid_table_mutex); 105 106 return 0; 107 108 out_duplicate: 109 mutex_unlock(&xfs_uuid_table_mutex); 110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 111 return -EINVAL; 112 } 113 114 STATIC void 115 xfs_uuid_unmount( 116 struct xfs_mount *mp) 117 { 118 uuid_t *uuid = &mp->m_sb.sb_uuid; 119 int i; 120 121 if (mp->m_flags & XFS_MOUNT_NOUUID) 122 return; 123 124 mutex_lock(&xfs_uuid_table_mutex); 125 for (i = 0; i < xfs_uuid_table_size; i++) { 126 if (uuid_is_null(&xfs_uuid_table[i])) 127 continue; 128 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 129 continue; 130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 131 break; 132 } 133 ASSERT(i < xfs_uuid_table_size); 134 mutex_unlock(&xfs_uuid_table_mutex); 135 } 136 137 138 STATIC void 139 __xfs_free_perag( 140 struct rcu_head *head) 141 { 142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 143 144 ASSERT(atomic_read(&pag->pag_ref) == 0); 145 kmem_free(pag); 146 } 147 148 /* 149 * Free up the per-ag resources associated with the mount structure. 150 */ 151 STATIC void 152 xfs_free_perag( 153 xfs_mount_t *mp) 154 { 155 xfs_agnumber_t agno; 156 struct xfs_perag *pag; 157 158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 159 spin_lock(&mp->m_perag_lock); 160 pag = radix_tree_delete(&mp->m_perag_tree, agno); 161 spin_unlock(&mp->m_perag_lock); 162 ASSERT(pag); 163 ASSERT(atomic_read(&pag->pag_ref) == 0); 164 xfs_buf_hash_destroy(pag); 165 mutex_destroy(&pag->pag_ici_reclaim_lock); 166 call_rcu(&pag->rcu_head, __xfs_free_perag); 167 } 168 } 169 170 /* 171 * Check size of device based on the (data/realtime) block count. 172 * Note: this check is used by the growfs code as well as mount. 173 */ 174 int 175 xfs_sb_validate_fsb_count( 176 xfs_sb_t *sbp, 177 uint64_t nblocks) 178 { 179 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 180 ASSERT(sbp->sb_blocklog >= BBSHIFT); 181 182 /* Limited by ULONG_MAX of page cache index */ 183 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 184 return -EFBIG; 185 return 0; 186 } 187 188 int 189 xfs_initialize_perag( 190 xfs_mount_t *mp, 191 xfs_agnumber_t agcount, 192 xfs_agnumber_t *maxagi) 193 { 194 xfs_agnumber_t index; 195 xfs_agnumber_t first_initialised = NULLAGNUMBER; 196 xfs_perag_t *pag; 197 int error = -ENOMEM; 198 199 /* 200 * Walk the current per-ag tree so we don't try to initialise AGs 201 * that already exist (growfs case). Allocate and insert all the 202 * AGs we don't find ready for initialisation. 203 */ 204 for (index = 0; index < agcount; index++) { 205 pag = xfs_perag_get(mp, index); 206 if (pag) { 207 xfs_perag_put(pag); 208 continue; 209 } 210 211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 212 if (!pag) 213 goto out_unwind_new_pags; 214 pag->pag_agno = index; 215 pag->pag_mount = mp; 216 spin_lock_init(&pag->pag_ici_lock); 217 mutex_init(&pag->pag_ici_reclaim_lock); 218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 219 if (xfs_buf_hash_init(pag)) 220 goto out_free_pag; 221 init_waitqueue_head(&pag->pagb_wait); 222 223 if (radix_tree_preload(GFP_NOFS)) 224 goto out_hash_destroy; 225 226 spin_lock(&mp->m_perag_lock); 227 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 228 BUG(); 229 spin_unlock(&mp->m_perag_lock); 230 radix_tree_preload_end(); 231 error = -EEXIST; 232 goto out_hash_destroy; 233 } 234 spin_unlock(&mp->m_perag_lock); 235 radix_tree_preload_end(); 236 /* first new pag is fully initialized */ 237 if (first_initialised == NULLAGNUMBER) 238 first_initialised = index; 239 } 240 241 index = xfs_set_inode_alloc(mp, agcount); 242 243 if (maxagi) 244 *maxagi = index; 245 246 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 247 return 0; 248 249 out_hash_destroy: 250 xfs_buf_hash_destroy(pag); 251 out_free_pag: 252 mutex_destroy(&pag->pag_ici_reclaim_lock); 253 kmem_free(pag); 254 out_unwind_new_pags: 255 /* unwind any prior newly initialized pags */ 256 for (index = first_initialised; index < agcount; index++) { 257 pag = radix_tree_delete(&mp->m_perag_tree, index); 258 if (!pag) 259 break; 260 xfs_buf_hash_destroy(pag); 261 mutex_destroy(&pag->pag_ici_reclaim_lock); 262 kmem_free(pag); 263 } 264 return error; 265 } 266 267 /* 268 * xfs_readsb 269 * 270 * Does the initial read of the superblock. 271 */ 272 int 273 xfs_readsb( 274 struct xfs_mount *mp, 275 int flags) 276 { 277 unsigned int sector_size; 278 struct xfs_buf *bp; 279 struct xfs_sb *sbp = &mp->m_sb; 280 int error; 281 int loud = !(flags & XFS_MFSI_QUIET); 282 const struct xfs_buf_ops *buf_ops; 283 284 ASSERT(mp->m_sb_bp == NULL); 285 ASSERT(mp->m_ddev_targp != NULL); 286 287 /* 288 * For the initial read, we must guess at the sector 289 * size based on the block device. It's enough to 290 * get the sb_sectsize out of the superblock and 291 * then reread with the proper length. 292 * We don't verify it yet, because it may not be complete. 293 */ 294 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 295 buf_ops = NULL; 296 297 /* 298 * Allocate a (locked) buffer to hold the superblock. This will be kept 299 * around at all times to optimize access to the superblock. Therefore, 300 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 301 * elevated. 302 */ 303 reread: 304 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 305 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 306 buf_ops); 307 if (error) { 308 if (loud) 309 xfs_warn(mp, "SB validate failed with error %d.", error); 310 /* bad CRC means corrupted metadata */ 311 if (error == -EFSBADCRC) 312 error = -EFSCORRUPTED; 313 return error; 314 } 315 316 /* 317 * Initialize the mount structure from the superblock. 318 */ 319 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 320 321 /* 322 * If we haven't validated the superblock, do so now before we try 323 * to check the sector size and reread the superblock appropriately. 324 */ 325 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 326 if (loud) 327 xfs_warn(mp, "Invalid superblock magic number"); 328 error = -EINVAL; 329 goto release_buf; 330 } 331 332 /* 333 * We must be able to do sector-sized and sector-aligned IO. 334 */ 335 if (sector_size > sbp->sb_sectsize) { 336 if (loud) 337 xfs_warn(mp, "device supports %u byte sectors (not %u)", 338 sector_size, sbp->sb_sectsize); 339 error = -ENOSYS; 340 goto release_buf; 341 } 342 343 if (buf_ops == NULL) { 344 /* 345 * Re-read the superblock so the buffer is correctly sized, 346 * and properly verified. 347 */ 348 xfs_buf_relse(bp); 349 sector_size = sbp->sb_sectsize; 350 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 351 goto reread; 352 } 353 354 xfs_reinit_percpu_counters(mp); 355 356 /* no need to be quiet anymore, so reset the buf ops */ 357 bp->b_ops = &xfs_sb_buf_ops; 358 359 mp->m_sb_bp = bp; 360 xfs_buf_unlock(bp); 361 return 0; 362 363 release_buf: 364 xfs_buf_relse(bp); 365 return error; 366 } 367 368 /* 369 * Update alignment values based on mount options and sb values 370 */ 371 STATIC int 372 xfs_update_alignment(xfs_mount_t *mp) 373 { 374 xfs_sb_t *sbp = &(mp->m_sb); 375 376 if (mp->m_dalign) { 377 /* 378 * If stripe unit and stripe width are not multiples 379 * of the fs blocksize turn off alignment. 380 */ 381 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 382 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 383 xfs_warn(mp, 384 "alignment check failed: sunit/swidth vs. blocksize(%d)", 385 sbp->sb_blocksize); 386 return -EINVAL; 387 } else { 388 /* 389 * Convert the stripe unit and width to FSBs. 390 */ 391 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 392 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 393 xfs_warn(mp, 394 "alignment check failed: sunit/swidth vs. agsize(%d)", 395 sbp->sb_agblocks); 396 return -EINVAL; 397 } else if (mp->m_dalign) { 398 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 399 } else { 400 xfs_warn(mp, 401 "alignment check failed: sunit(%d) less than bsize(%d)", 402 mp->m_dalign, sbp->sb_blocksize); 403 return -EINVAL; 404 } 405 } 406 407 /* 408 * Update superblock with new values 409 * and log changes 410 */ 411 if (xfs_sb_version_hasdalign(sbp)) { 412 if (sbp->sb_unit != mp->m_dalign) { 413 sbp->sb_unit = mp->m_dalign; 414 mp->m_update_sb = true; 415 } 416 if (sbp->sb_width != mp->m_swidth) { 417 sbp->sb_width = mp->m_swidth; 418 mp->m_update_sb = true; 419 } 420 } else { 421 xfs_warn(mp, 422 "cannot change alignment: superblock does not support data alignment"); 423 return -EINVAL; 424 } 425 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 426 xfs_sb_version_hasdalign(&mp->m_sb)) { 427 mp->m_dalign = sbp->sb_unit; 428 mp->m_swidth = sbp->sb_width; 429 } 430 431 return 0; 432 } 433 434 /* 435 * Set the maximum inode count for this filesystem 436 */ 437 STATIC void 438 xfs_set_maxicount(xfs_mount_t *mp) 439 { 440 xfs_sb_t *sbp = &(mp->m_sb); 441 uint64_t icount; 442 443 if (sbp->sb_imax_pct) { 444 /* 445 * Make sure the maximum inode count is a multiple 446 * of the units we allocate inodes in. 447 */ 448 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 449 do_div(icount, 100); 450 do_div(icount, mp->m_ialloc_blks); 451 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 452 sbp->sb_inopblog; 453 } else { 454 mp->m_maxicount = 0; 455 } 456 } 457 458 /* 459 * Set the default minimum read and write sizes unless 460 * already specified in a mount option. 461 * We use smaller I/O sizes when the file system 462 * is being used for NFS service (wsync mount option). 463 */ 464 STATIC void 465 xfs_set_rw_sizes(xfs_mount_t *mp) 466 { 467 xfs_sb_t *sbp = &(mp->m_sb); 468 int readio_log, writeio_log; 469 470 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 471 if (mp->m_flags & XFS_MOUNT_WSYNC) { 472 readio_log = XFS_WSYNC_READIO_LOG; 473 writeio_log = XFS_WSYNC_WRITEIO_LOG; 474 } else { 475 readio_log = XFS_READIO_LOG_LARGE; 476 writeio_log = XFS_WRITEIO_LOG_LARGE; 477 } 478 } else { 479 readio_log = mp->m_readio_log; 480 writeio_log = mp->m_writeio_log; 481 } 482 483 if (sbp->sb_blocklog > readio_log) { 484 mp->m_readio_log = sbp->sb_blocklog; 485 } else { 486 mp->m_readio_log = readio_log; 487 } 488 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 489 if (sbp->sb_blocklog > writeio_log) { 490 mp->m_writeio_log = sbp->sb_blocklog; 491 } else { 492 mp->m_writeio_log = writeio_log; 493 } 494 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 495 } 496 497 /* 498 * precalculate the low space thresholds for dynamic speculative preallocation. 499 */ 500 void 501 xfs_set_low_space_thresholds( 502 struct xfs_mount *mp) 503 { 504 int i; 505 506 for (i = 0; i < XFS_LOWSP_MAX; i++) { 507 uint64_t space = mp->m_sb.sb_dblocks; 508 509 do_div(space, 100); 510 mp->m_low_space[i] = space * (i + 1); 511 } 512 } 513 514 515 /* 516 * Set whether we're using inode alignment. 517 */ 518 STATIC void 519 xfs_set_inoalignment(xfs_mount_t *mp) 520 { 521 if (xfs_sb_version_hasalign(&mp->m_sb) && 522 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 523 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 524 else 525 mp->m_inoalign_mask = 0; 526 /* 527 * If we are using stripe alignment, check whether 528 * the stripe unit is a multiple of the inode alignment 529 */ 530 if (mp->m_dalign && mp->m_inoalign_mask && 531 !(mp->m_dalign & mp->m_inoalign_mask)) 532 mp->m_sinoalign = mp->m_dalign; 533 else 534 mp->m_sinoalign = 0; 535 } 536 537 /* 538 * Check that the data (and log if separate) is an ok size. 539 */ 540 STATIC int 541 xfs_check_sizes( 542 struct xfs_mount *mp) 543 { 544 struct xfs_buf *bp; 545 xfs_daddr_t d; 546 int error; 547 548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 550 xfs_warn(mp, "filesystem size mismatch detected"); 551 return -EFBIG; 552 } 553 error = xfs_buf_read_uncached(mp->m_ddev_targp, 554 d - XFS_FSS_TO_BB(mp, 1), 555 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 556 if (error) { 557 xfs_warn(mp, "last sector read failed"); 558 return error; 559 } 560 xfs_buf_relse(bp); 561 562 if (mp->m_logdev_targp == mp->m_ddev_targp) 563 return 0; 564 565 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 566 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 567 xfs_warn(mp, "log size mismatch detected"); 568 return -EFBIG; 569 } 570 error = xfs_buf_read_uncached(mp->m_logdev_targp, 571 d - XFS_FSB_TO_BB(mp, 1), 572 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 573 if (error) { 574 xfs_warn(mp, "log device read failed"); 575 return error; 576 } 577 xfs_buf_relse(bp); 578 return 0; 579 } 580 581 /* 582 * Clear the quotaflags in memory and in the superblock. 583 */ 584 int 585 xfs_mount_reset_sbqflags( 586 struct xfs_mount *mp) 587 { 588 mp->m_qflags = 0; 589 590 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 591 if (mp->m_sb.sb_qflags == 0) 592 return 0; 593 spin_lock(&mp->m_sb_lock); 594 mp->m_sb.sb_qflags = 0; 595 spin_unlock(&mp->m_sb_lock); 596 597 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 598 return 0; 599 600 return xfs_sync_sb(mp, false); 601 } 602 603 uint64_t 604 xfs_default_resblks(xfs_mount_t *mp) 605 { 606 uint64_t resblks; 607 608 /* 609 * We default to 5% or 8192 fsbs of space reserved, whichever is 610 * smaller. This is intended to cover concurrent allocation 611 * transactions when we initially hit enospc. These each require a 4 612 * block reservation. Hence by default we cover roughly 2000 concurrent 613 * allocation reservations. 614 */ 615 resblks = mp->m_sb.sb_dblocks; 616 do_div(resblks, 20); 617 resblks = min_t(uint64_t, resblks, 8192); 618 return resblks; 619 } 620 621 /* 622 * This function does the following on an initial mount of a file system: 623 * - reads the superblock from disk and init the mount struct 624 * - if we're a 32-bit kernel, do a size check on the superblock 625 * so we don't mount terabyte filesystems 626 * - init mount struct realtime fields 627 * - allocate inode hash table for fs 628 * - init directory manager 629 * - perform recovery and init the log manager 630 */ 631 int 632 xfs_mountfs( 633 struct xfs_mount *mp) 634 { 635 struct xfs_sb *sbp = &(mp->m_sb); 636 struct xfs_inode *rip; 637 uint64_t resblks; 638 uint quotamount = 0; 639 uint quotaflags = 0; 640 int error = 0; 641 642 xfs_sb_mount_common(mp, sbp); 643 644 /* 645 * Check for a mismatched features2 values. Older kernels read & wrote 646 * into the wrong sb offset for sb_features2 on some platforms due to 647 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 648 * which made older superblock reading/writing routines swap it as a 649 * 64-bit value. 650 * 651 * For backwards compatibility, we make both slots equal. 652 * 653 * If we detect a mismatched field, we OR the set bits into the existing 654 * features2 field in case it has already been modified; we don't want 655 * to lose any features. We then update the bad location with the ORed 656 * value so that older kernels will see any features2 flags. The 657 * superblock writeback code ensures the new sb_features2 is copied to 658 * sb_bad_features2 before it is logged or written to disk. 659 */ 660 if (xfs_sb_has_mismatched_features2(sbp)) { 661 xfs_warn(mp, "correcting sb_features alignment problem"); 662 sbp->sb_features2 |= sbp->sb_bad_features2; 663 mp->m_update_sb = true; 664 665 /* 666 * Re-check for ATTR2 in case it was found in bad_features2 667 * slot. 668 */ 669 if (xfs_sb_version_hasattr2(&mp->m_sb) && 670 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 671 mp->m_flags |= XFS_MOUNT_ATTR2; 672 } 673 674 if (xfs_sb_version_hasattr2(&mp->m_sb) && 675 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 676 xfs_sb_version_removeattr2(&mp->m_sb); 677 mp->m_update_sb = true; 678 679 /* update sb_versionnum for the clearing of the morebits */ 680 if (!sbp->sb_features2) 681 mp->m_update_sb = true; 682 } 683 684 /* always use v2 inodes by default now */ 685 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 686 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 687 mp->m_update_sb = true; 688 } 689 690 /* 691 * Check if sb_agblocks is aligned at stripe boundary 692 * If sb_agblocks is NOT aligned turn off m_dalign since 693 * allocator alignment is within an ag, therefore ag has 694 * to be aligned at stripe boundary. 695 */ 696 error = xfs_update_alignment(mp); 697 if (error) 698 goto out; 699 700 xfs_alloc_compute_maxlevels(mp); 701 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 702 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 703 xfs_ialloc_compute_maxlevels(mp); 704 xfs_rmapbt_compute_maxlevels(mp); 705 xfs_refcountbt_compute_maxlevels(mp); 706 707 xfs_set_maxicount(mp); 708 709 /* enable fail_at_unmount as default */ 710 mp->m_fail_unmount = true; 711 712 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 713 if (error) 714 goto out; 715 716 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 717 &mp->m_kobj, "stats"); 718 if (error) 719 goto out_remove_sysfs; 720 721 error = xfs_error_sysfs_init(mp); 722 if (error) 723 goto out_del_stats; 724 725 error = xfs_errortag_init(mp); 726 if (error) 727 goto out_remove_error_sysfs; 728 729 error = xfs_uuid_mount(mp); 730 if (error) 731 goto out_remove_errortag; 732 733 /* 734 * Set the minimum read and write sizes 735 */ 736 xfs_set_rw_sizes(mp); 737 738 /* set the low space thresholds for dynamic preallocation */ 739 xfs_set_low_space_thresholds(mp); 740 741 /* 742 * Set the inode cluster size. 743 * This may still be overridden by the file system 744 * block size if it is larger than the chosen cluster size. 745 * 746 * For v5 filesystems, scale the cluster size with the inode size to 747 * keep a constant ratio of inode per cluster buffer, but only if mkfs 748 * has set the inode alignment value appropriately for larger cluster 749 * sizes. 750 */ 751 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 752 if (xfs_sb_version_hascrc(&mp->m_sb)) { 753 int new_size = mp->m_inode_cluster_size; 754 755 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 756 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 757 mp->m_inode_cluster_size = new_size; 758 } 759 760 /* 761 * If enabled, sparse inode chunk alignment is expected to match the 762 * cluster size. Full inode chunk alignment must match the chunk size, 763 * but that is checked on sb read verification... 764 */ 765 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 766 mp->m_sb.sb_spino_align != 767 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 768 xfs_warn(mp, 769 "Sparse inode block alignment (%u) must match cluster size (%llu).", 770 mp->m_sb.sb_spino_align, 771 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 772 error = -EINVAL; 773 goto out_remove_uuid; 774 } 775 776 /* 777 * Set inode alignment fields 778 */ 779 xfs_set_inoalignment(mp); 780 781 /* 782 * Check that the data (and log if separate) is an ok size. 783 */ 784 error = xfs_check_sizes(mp); 785 if (error) 786 goto out_remove_uuid; 787 788 /* 789 * Initialize realtime fields in the mount structure 790 */ 791 error = xfs_rtmount_init(mp); 792 if (error) { 793 xfs_warn(mp, "RT mount failed"); 794 goto out_remove_uuid; 795 } 796 797 /* 798 * Copies the low order bits of the timestamp and the randomly 799 * set "sequence" number out of a UUID. 800 */ 801 mp->m_fixedfsid[0] = 802 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 803 get_unaligned_be16(&sbp->sb_uuid.b[4]); 804 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 805 806 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 807 808 error = xfs_da_mount(mp); 809 if (error) { 810 xfs_warn(mp, "Failed dir/attr init: %d", error); 811 goto out_remove_uuid; 812 } 813 814 /* 815 * Initialize the precomputed transaction reservations values. 816 */ 817 xfs_trans_init(mp); 818 819 /* 820 * Allocate and initialize the per-ag data. 821 */ 822 spin_lock_init(&mp->m_perag_lock); 823 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 824 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 825 if (error) { 826 xfs_warn(mp, "Failed per-ag init: %d", error); 827 goto out_free_dir; 828 } 829 830 if (!sbp->sb_logblocks) { 831 xfs_warn(mp, "no log defined"); 832 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 833 error = -EFSCORRUPTED; 834 goto out_free_perag; 835 } 836 837 /* 838 * Log's mount-time initialization. The first part of recovery can place 839 * some items on the AIL, to be handled when recovery is finished or 840 * cancelled. 841 */ 842 error = xfs_log_mount(mp, mp->m_logdev_targp, 843 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 844 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 845 if (error) { 846 xfs_warn(mp, "log mount failed"); 847 goto out_fail_wait; 848 } 849 850 /* 851 * Now the log is mounted, we know if it was an unclean shutdown or 852 * not. If it was, with the first phase of recovery has completed, we 853 * have consistent AG blocks on disk. We have not recovered EFIs yet, 854 * but they are recovered transactionally in the second recovery phase 855 * later. 856 * 857 * Hence we can safely re-initialise incore superblock counters from 858 * the per-ag data. These may not be correct if the filesystem was not 859 * cleanly unmounted, so we need to wait for recovery to finish before 860 * doing this. 861 * 862 * If the filesystem was cleanly unmounted, then we can trust the 863 * values in the superblock to be correct and we don't need to do 864 * anything here. 865 * 866 * If we are currently making the filesystem, the initialisation will 867 * fail as the perag data is in an undefined state. 868 */ 869 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 870 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 871 !mp->m_sb.sb_inprogress) { 872 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 873 if (error) 874 goto out_log_dealloc; 875 } 876 877 /* 878 * Get and sanity-check the root inode. 879 * Save the pointer to it in the mount structure. 880 */ 881 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 882 if (error) { 883 xfs_warn(mp, "failed to read root inode"); 884 goto out_log_dealloc; 885 } 886 887 ASSERT(rip != NULL); 888 889 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 890 xfs_warn(mp, "corrupted root inode %llu: not a directory", 891 (unsigned long long)rip->i_ino); 892 xfs_iunlock(rip, XFS_ILOCK_EXCL); 893 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 894 mp); 895 error = -EFSCORRUPTED; 896 goto out_rele_rip; 897 } 898 mp->m_rootip = rip; /* save it */ 899 900 xfs_iunlock(rip, XFS_ILOCK_EXCL); 901 902 /* 903 * Initialize realtime inode pointers in the mount structure 904 */ 905 error = xfs_rtmount_inodes(mp); 906 if (error) { 907 /* 908 * Free up the root inode. 909 */ 910 xfs_warn(mp, "failed to read RT inodes"); 911 goto out_rele_rip; 912 } 913 914 /* 915 * If this is a read-only mount defer the superblock updates until 916 * the next remount into writeable mode. Otherwise we would never 917 * perform the update e.g. for the root filesystem. 918 */ 919 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 920 error = xfs_sync_sb(mp, false); 921 if (error) { 922 xfs_warn(mp, "failed to write sb changes"); 923 goto out_rtunmount; 924 } 925 } 926 927 /* 928 * Initialise the XFS quota management subsystem for this mount 929 */ 930 if (XFS_IS_QUOTA_RUNNING(mp)) { 931 error = xfs_qm_newmount(mp, "amount, "aflags); 932 if (error) 933 goto out_rtunmount; 934 } else { 935 ASSERT(!XFS_IS_QUOTA_ON(mp)); 936 937 /* 938 * If a file system had quotas running earlier, but decided to 939 * mount without -o uquota/pquota/gquota options, revoke the 940 * quotachecked license. 941 */ 942 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 943 xfs_notice(mp, "resetting quota flags"); 944 error = xfs_mount_reset_sbqflags(mp); 945 if (error) 946 goto out_rtunmount; 947 } 948 } 949 950 /* 951 * Finish recovering the file system. This part needed to be delayed 952 * until after the root and real-time bitmap inodes were consistently 953 * read in. 954 */ 955 error = xfs_log_mount_finish(mp); 956 if (error) { 957 xfs_warn(mp, "log mount finish failed"); 958 goto out_rtunmount; 959 } 960 961 /* 962 * Now the log is fully replayed, we can transition to full read-only 963 * mode for read-only mounts. This will sync all the metadata and clean 964 * the log so that the recovery we just performed does not have to be 965 * replayed again on the next mount. 966 * 967 * We use the same quiesce mechanism as the rw->ro remount, as they are 968 * semantically identical operations. 969 */ 970 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 971 XFS_MOUNT_RDONLY) { 972 xfs_quiesce_attr(mp); 973 } 974 975 /* 976 * Complete the quota initialisation, post-log-replay component. 977 */ 978 if (quotamount) { 979 ASSERT(mp->m_qflags == 0); 980 mp->m_qflags = quotaflags; 981 982 xfs_qm_mount_quotas(mp); 983 } 984 985 /* 986 * Now we are mounted, reserve a small amount of unused space for 987 * privileged transactions. This is needed so that transaction 988 * space required for critical operations can dip into this pool 989 * when at ENOSPC. This is needed for operations like create with 990 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 991 * are not allowed to use this reserved space. 992 * 993 * This may drive us straight to ENOSPC on mount, but that implies 994 * we were already there on the last unmount. Warn if this occurs. 995 */ 996 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 997 resblks = xfs_default_resblks(mp); 998 error = xfs_reserve_blocks(mp, &resblks, NULL); 999 if (error) 1000 xfs_warn(mp, 1001 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1002 1003 /* Recover any CoW blocks that never got remapped. */ 1004 error = xfs_reflink_recover_cow(mp); 1005 if (error) { 1006 xfs_err(mp, 1007 "Error %d recovering leftover CoW allocations.", error); 1008 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1009 goto out_quota; 1010 } 1011 1012 /* Reserve AG blocks for future btree expansion. */ 1013 error = xfs_fs_reserve_ag_blocks(mp); 1014 if (error && error != -ENOSPC) 1015 goto out_agresv; 1016 } 1017 1018 return 0; 1019 1020 out_agresv: 1021 xfs_fs_unreserve_ag_blocks(mp); 1022 out_quota: 1023 xfs_qm_unmount_quotas(mp); 1024 out_rtunmount: 1025 xfs_rtunmount_inodes(mp); 1026 out_rele_rip: 1027 IRELE(rip); 1028 /* Clean out dquots that might be in memory after quotacheck. */ 1029 xfs_qm_unmount(mp); 1030 /* 1031 * Cancel all delayed reclaim work and reclaim the inodes directly. 1032 * We have to do this /after/ rtunmount and qm_unmount because those 1033 * two will have scheduled delayed reclaim for the rt/quota inodes. 1034 * 1035 * This is slightly different from the unmountfs call sequence 1036 * because we could be tearing down a partially set up mount. In 1037 * particular, if log_mount_finish fails we bail out without calling 1038 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1039 * quota inodes. 1040 */ 1041 cancel_delayed_work_sync(&mp->m_reclaim_work); 1042 xfs_reclaim_inodes(mp, SYNC_WAIT); 1043 out_log_dealloc: 1044 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1045 xfs_log_mount_cancel(mp); 1046 out_fail_wait: 1047 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1048 xfs_wait_buftarg(mp->m_logdev_targp); 1049 xfs_wait_buftarg(mp->m_ddev_targp); 1050 out_free_perag: 1051 xfs_free_perag(mp); 1052 out_free_dir: 1053 xfs_da_unmount(mp); 1054 out_remove_uuid: 1055 xfs_uuid_unmount(mp); 1056 out_remove_errortag: 1057 xfs_errortag_del(mp); 1058 out_remove_error_sysfs: 1059 xfs_error_sysfs_del(mp); 1060 out_del_stats: 1061 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1062 out_remove_sysfs: 1063 xfs_sysfs_del(&mp->m_kobj); 1064 out: 1065 return error; 1066 } 1067 1068 /* 1069 * This flushes out the inodes,dquots and the superblock, unmounts the 1070 * log and makes sure that incore structures are freed. 1071 */ 1072 void 1073 xfs_unmountfs( 1074 struct xfs_mount *mp) 1075 { 1076 uint64_t resblks; 1077 int error; 1078 1079 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1080 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1081 1082 xfs_fs_unreserve_ag_blocks(mp); 1083 xfs_qm_unmount_quotas(mp); 1084 xfs_rtunmount_inodes(mp); 1085 IRELE(mp->m_rootip); 1086 1087 /* 1088 * We can potentially deadlock here if we have an inode cluster 1089 * that has been freed has its buffer still pinned in memory because 1090 * the transaction is still sitting in a iclog. The stale inodes 1091 * on that buffer will have their flush locks held until the 1092 * transaction hits the disk and the callbacks run. the inode 1093 * flush takes the flush lock unconditionally and with nothing to 1094 * push out the iclog we will never get that unlocked. hence we 1095 * need to force the log first. 1096 */ 1097 xfs_log_force(mp, XFS_LOG_SYNC); 1098 1099 /* 1100 * Wait for all busy extents to be freed, including completion of 1101 * any discard operation. 1102 */ 1103 xfs_extent_busy_wait_all(mp); 1104 flush_workqueue(xfs_discard_wq); 1105 1106 /* 1107 * We now need to tell the world we are unmounting. This will allow 1108 * us to detect that the filesystem is going away and we should error 1109 * out anything that we have been retrying in the background. This will 1110 * prevent neverending retries in AIL pushing from hanging the unmount. 1111 */ 1112 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1113 1114 /* 1115 * Flush all pending changes from the AIL. 1116 */ 1117 xfs_ail_push_all_sync(mp->m_ail); 1118 1119 /* 1120 * And reclaim all inodes. At this point there should be no dirty 1121 * inodes and none should be pinned or locked, but use synchronous 1122 * reclaim just to be sure. We can stop background inode reclaim 1123 * here as well if it is still running. 1124 */ 1125 cancel_delayed_work_sync(&mp->m_reclaim_work); 1126 xfs_reclaim_inodes(mp, SYNC_WAIT); 1127 1128 xfs_qm_unmount(mp); 1129 1130 /* 1131 * Unreserve any blocks we have so that when we unmount we don't account 1132 * the reserved free space as used. This is really only necessary for 1133 * lazy superblock counting because it trusts the incore superblock 1134 * counters to be absolutely correct on clean unmount. 1135 * 1136 * We don't bother correcting this elsewhere for lazy superblock 1137 * counting because on mount of an unclean filesystem we reconstruct the 1138 * correct counter value and this is irrelevant. 1139 * 1140 * For non-lazy counter filesystems, this doesn't matter at all because 1141 * we only every apply deltas to the superblock and hence the incore 1142 * value does not matter.... 1143 */ 1144 resblks = 0; 1145 error = xfs_reserve_blocks(mp, &resblks, NULL); 1146 if (error) 1147 xfs_warn(mp, "Unable to free reserved block pool. " 1148 "Freespace may not be correct on next mount."); 1149 1150 error = xfs_log_sbcount(mp); 1151 if (error) 1152 xfs_warn(mp, "Unable to update superblock counters. " 1153 "Freespace may not be correct on next mount."); 1154 1155 1156 xfs_log_unmount(mp); 1157 xfs_da_unmount(mp); 1158 xfs_uuid_unmount(mp); 1159 1160 #if defined(DEBUG) 1161 xfs_errortag_clearall(mp); 1162 #endif 1163 xfs_free_perag(mp); 1164 1165 xfs_errortag_del(mp); 1166 xfs_error_sysfs_del(mp); 1167 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1168 xfs_sysfs_del(&mp->m_kobj); 1169 } 1170 1171 /* 1172 * Determine whether modifications can proceed. The caller specifies the minimum 1173 * freeze level for which modifications should not be allowed. This allows 1174 * certain operations to proceed while the freeze sequence is in progress, if 1175 * necessary. 1176 */ 1177 bool 1178 xfs_fs_writable( 1179 struct xfs_mount *mp, 1180 int level) 1181 { 1182 ASSERT(level > SB_UNFROZEN); 1183 if ((mp->m_super->s_writers.frozen >= level) || 1184 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1185 return false; 1186 1187 return true; 1188 } 1189 1190 /* 1191 * xfs_log_sbcount 1192 * 1193 * Sync the superblock counters to disk. 1194 * 1195 * Note this code can be called during the process of freezing, so we use the 1196 * transaction allocator that does not block when the transaction subsystem is 1197 * in its frozen state. 1198 */ 1199 int 1200 xfs_log_sbcount(xfs_mount_t *mp) 1201 { 1202 /* allow this to proceed during the freeze sequence... */ 1203 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1204 return 0; 1205 1206 /* 1207 * we don't need to do this if we are updating the superblock 1208 * counters on every modification. 1209 */ 1210 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1211 return 0; 1212 1213 return xfs_sync_sb(mp, true); 1214 } 1215 1216 /* 1217 * Deltas for the inode count are +/-64, hence we use a large batch size 1218 * of 128 so we don't need to take the counter lock on every update. 1219 */ 1220 #define XFS_ICOUNT_BATCH 128 1221 int 1222 xfs_mod_icount( 1223 struct xfs_mount *mp, 1224 int64_t delta) 1225 { 1226 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1227 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1228 ASSERT(0); 1229 percpu_counter_add(&mp->m_icount, -delta); 1230 return -EINVAL; 1231 } 1232 return 0; 1233 } 1234 1235 int 1236 xfs_mod_ifree( 1237 struct xfs_mount *mp, 1238 int64_t delta) 1239 { 1240 percpu_counter_add(&mp->m_ifree, delta); 1241 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1242 ASSERT(0); 1243 percpu_counter_add(&mp->m_ifree, -delta); 1244 return -EINVAL; 1245 } 1246 return 0; 1247 } 1248 1249 /* 1250 * Deltas for the block count can vary from 1 to very large, but lock contention 1251 * only occurs on frequent small block count updates such as in the delayed 1252 * allocation path for buffered writes (page a time updates). Hence we set 1253 * a large batch count (1024) to minimise global counter updates except when 1254 * we get near to ENOSPC and we have to be very accurate with our updates. 1255 */ 1256 #define XFS_FDBLOCKS_BATCH 1024 1257 int 1258 xfs_mod_fdblocks( 1259 struct xfs_mount *mp, 1260 int64_t delta, 1261 bool rsvd) 1262 { 1263 int64_t lcounter; 1264 long long res_used; 1265 s32 batch; 1266 1267 if (delta > 0) { 1268 /* 1269 * If the reserve pool is depleted, put blocks back into it 1270 * first. Most of the time the pool is full. 1271 */ 1272 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1273 percpu_counter_add(&mp->m_fdblocks, delta); 1274 return 0; 1275 } 1276 1277 spin_lock(&mp->m_sb_lock); 1278 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1279 1280 if (res_used > delta) { 1281 mp->m_resblks_avail += delta; 1282 } else { 1283 delta -= res_used; 1284 mp->m_resblks_avail = mp->m_resblks; 1285 percpu_counter_add(&mp->m_fdblocks, delta); 1286 } 1287 spin_unlock(&mp->m_sb_lock); 1288 return 0; 1289 } 1290 1291 /* 1292 * Taking blocks away, need to be more accurate the closer we 1293 * are to zero. 1294 * 1295 * If the counter has a value of less than 2 * max batch size, 1296 * then make everything serialise as we are real close to 1297 * ENOSPC. 1298 */ 1299 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1300 XFS_FDBLOCKS_BATCH) < 0) 1301 batch = 1; 1302 else 1303 batch = XFS_FDBLOCKS_BATCH; 1304 1305 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1306 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1307 XFS_FDBLOCKS_BATCH) >= 0) { 1308 /* we had space! */ 1309 return 0; 1310 } 1311 1312 /* 1313 * lock up the sb for dipping into reserves before releasing the space 1314 * that took us to ENOSPC. 1315 */ 1316 spin_lock(&mp->m_sb_lock); 1317 percpu_counter_add(&mp->m_fdblocks, -delta); 1318 if (!rsvd) 1319 goto fdblocks_enospc; 1320 1321 lcounter = (long long)mp->m_resblks_avail + delta; 1322 if (lcounter >= 0) { 1323 mp->m_resblks_avail = lcounter; 1324 spin_unlock(&mp->m_sb_lock); 1325 return 0; 1326 } 1327 printk_once(KERN_WARNING 1328 "Filesystem \"%s\": reserve blocks depleted! " 1329 "Consider increasing reserve pool size.", 1330 mp->m_fsname); 1331 fdblocks_enospc: 1332 spin_unlock(&mp->m_sb_lock); 1333 return -ENOSPC; 1334 } 1335 1336 int 1337 xfs_mod_frextents( 1338 struct xfs_mount *mp, 1339 int64_t delta) 1340 { 1341 int64_t lcounter; 1342 int ret = 0; 1343 1344 spin_lock(&mp->m_sb_lock); 1345 lcounter = mp->m_sb.sb_frextents + delta; 1346 if (lcounter < 0) 1347 ret = -ENOSPC; 1348 else 1349 mp->m_sb.sb_frextents = lcounter; 1350 spin_unlock(&mp->m_sb_lock); 1351 return ret; 1352 } 1353 1354 /* 1355 * xfs_getsb() is called to obtain the buffer for the superblock. 1356 * The buffer is returned locked and read in from disk. 1357 * The buffer should be released with a call to xfs_brelse(). 1358 * 1359 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1360 * the superblock buffer if it can be locked without sleeping. 1361 * If it can't then we'll return NULL. 1362 */ 1363 struct xfs_buf * 1364 xfs_getsb( 1365 struct xfs_mount *mp, 1366 int flags) 1367 { 1368 struct xfs_buf *bp = mp->m_sb_bp; 1369 1370 if (!xfs_buf_trylock(bp)) { 1371 if (flags & XBF_TRYLOCK) 1372 return NULL; 1373 xfs_buf_lock(bp); 1374 } 1375 1376 xfs_buf_hold(bp); 1377 ASSERT(bp->b_flags & XBF_DONE); 1378 return bp; 1379 } 1380 1381 /* 1382 * Used to free the superblock along various error paths. 1383 */ 1384 void 1385 xfs_freesb( 1386 struct xfs_mount *mp) 1387 { 1388 struct xfs_buf *bp = mp->m_sb_bp; 1389 1390 xfs_buf_lock(bp); 1391 mp->m_sb_bp = NULL; 1392 xfs_buf_relse(bp); 1393 } 1394 1395 /* 1396 * If the underlying (data/log/rt) device is readonly, there are some 1397 * operations that cannot proceed. 1398 */ 1399 int 1400 xfs_dev_is_read_only( 1401 struct xfs_mount *mp, 1402 char *message) 1403 { 1404 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1405 xfs_readonly_buftarg(mp->m_logdev_targp) || 1406 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1407 xfs_notice(mp, "%s required on read-only device.", message); 1408 xfs_notice(mp, "write access unavailable, cannot proceed."); 1409 return -EROFS; 1410 } 1411 return 0; 1412 } 1413