xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision e1a3e724)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44 
45 
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49 
50 /*
51  * See if the UUID is unique among mounted XFS filesystems.
52  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53  */
54 STATIC int
55 xfs_uuid_mount(
56 	struct xfs_mount	*mp)
57 {
58 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59 	int			hole, i;
60 
61 	if (mp->m_flags & XFS_MOUNT_NOUUID)
62 		return 0;
63 
64 	if (uuid_is_nil(uuid)) {
65 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
66 		return -EINVAL;
67 	}
68 
69 	mutex_lock(&xfs_uuid_table_mutex);
70 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
71 		if (uuid_is_nil(&xfs_uuid_table[i])) {
72 			hole = i;
73 			continue;
74 		}
75 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
76 			goto out_duplicate;
77 	}
78 
79 	if (hole < 0) {
80 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
81 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
82 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
83 			KM_SLEEP);
84 		hole = xfs_uuid_table_size++;
85 	}
86 	xfs_uuid_table[hole] = *uuid;
87 	mutex_unlock(&xfs_uuid_table_mutex);
88 
89 	return 0;
90 
91  out_duplicate:
92 	mutex_unlock(&xfs_uuid_table_mutex);
93 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
94 	return -EINVAL;
95 }
96 
97 STATIC void
98 xfs_uuid_unmount(
99 	struct xfs_mount	*mp)
100 {
101 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
102 	int			i;
103 
104 	if (mp->m_flags & XFS_MOUNT_NOUUID)
105 		return;
106 
107 	mutex_lock(&xfs_uuid_table_mutex);
108 	for (i = 0; i < xfs_uuid_table_size; i++) {
109 		if (uuid_is_nil(&xfs_uuid_table[i]))
110 			continue;
111 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
112 			continue;
113 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
114 		break;
115 	}
116 	ASSERT(i < xfs_uuid_table_size);
117 	mutex_unlock(&xfs_uuid_table_mutex);
118 }
119 
120 
121 STATIC void
122 __xfs_free_perag(
123 	struct rcu_head	*head)
124 {
125 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
126 
127 	ASSERT(atomic_read(&pag->pag_ref) == 0);
128 	kmem_free(pag);
129 }
130 
131 /*
132  * Free up the per-ag resources associated with the mount structure.
133  */
134 STATIC void
135 xfs_free_perag(
136 	xfs_mount_t	*mp)
137 {
138 	xfs_agnumber_t	agno;
139 	struct xfs_perag *pag;
140 
141 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
142 		spin_lock(&mp->m_perag_lock);
143 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
144 		spin_unlock(&mp->m_perag_lock);
145 		ASSERT(pag);
146 		ASSERT(atomic_read(&pag->pag_ref) == 0);
147 		call_rcu(&pag->rcu_head, __xfs_free_perag);
148 	}
149 }
150 
151 /*
152  * Check size of device based on the (data/realtime) block count.
153  * Note: this check is used by the growfs code as well as mount.
154  */
155 int
156 xfs_sb_validate_fsb_count(
157 	xfs_sb_t	*sbp,
158 	__uint64_t	nblocks)
159 {
160 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
161 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
162 
163 	/* Limited by ULONG_MAX of page cache index */
164 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
165 		return -EFBIG;
166 	return 0;
167 }
168 
169 int
170 xfs_initialize_perag(
171 	xfs_mount_t	*mp,
172 	xfs_agnumber_t	agcount,
173 	xfs_agnumber_t	*maxagi)
174 {
175 	xfs_agnumber_t	index;
176 	xfs_agnumber_t	first_initialised = 0;
177 	xfs_perag_t	*pag;
178 	xfs_agino_t	agino;
179 	xfs_ino_t	ino;
180 	xfs_sb_t	*sbp = &mp->m_sb;
181 	int		error = -ENOMEM;
182 
183 	/*
184 	 * Walk the current per-ag tree so we don't try to initialise AGs
185 	 * that already exist (growfs case). Allocate and insert all the
186 	 * AGs we don't find ready for initialisation.
187 	 */
188 	for (index = 0; index < agcount; index++) {
189 		pag = xfs_perag_get(mp, index);
190 		if (pag) {
191 			xfs_perag_put(pag);
192 			continue;
193 		}
194 		if (!first_initialised)
195 			first_initialised = index;
196 
197 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 		if (!pag)
199 			goto out_unwind;
200 		pag->pag_agno = index;
201 		pag->pag_mount = mp;
202 		spin_lock_init(&pag->pag_ici_lock);
203 		mutex_init(&pag->pag_ici_reclaim_lock);
204 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 		spin_lock_init(&pag->pag_buf_lock);
206 		pag->pag_buf_tree = RB_ROOT;
207 
208 		if (radix_tree_preload(GFP_NOFS))
209 			goto out_unwind;
210 
211 		spin_lock(&mp->m_perag_lock);
212 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
213 			BUG();
214 			spin_unlock(&mp->m_perag_lock);
215 			radix_tree_preload_end();
216 			error = -EEXIST;
217 			goto out_unwind;
218 		}
219 		spin_unlock(&mp->m_perag_lock);
220 		radix_tree_preload_end();
221 	}
222 
223 	/*
224 	 * If we mount with the inode64 option, or no inode overflows
225 	 * the legacy 32-bit address space clear the inode32 option.
226 	 */
227 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
228 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
229 
230 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
231 		mp->m_flags |= XFS_MOUNT_32BITINODES;
232 	else
233 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
234 
235 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
236 		index = xfs_set_inode32(mp, agcount);
237 	else
238 		index = xfs_set_inode64(mp, agcount);
239 
240 	if (maxagi)
241 		*maxagi = index;
242 	return 0;
243 
244 out_unwind:
245 	kmem_free(pag);
246 	for (; index > first_initialised; index--) {
247 		pag = radix_tree_delete(&mp->m_perag_tree, index);
248 		kmem_free(pag);
249 	}
250 	return error;
251 }
252 
253 /*
254  * xfs_readsb
255  *
256  * Does the initial read of the superblock.
257  */
258 int
259 xfs_readsb(
260 	struct xfs_mount *mp,
261 	int		flags)
262 {
263 	unsigned int	sector_size;
264 	struct xfs_buf	*bp;
265 	struct xfs_sb	*sbp = &mp->m_sb;
266 	int		error;
267 	int		loud = !(flags & XFS_MFSI_QUIET);
268 	const struct xfs_buf_ops *buf_ops;
269 
270 	ASSERT(mp->m_sb_bp == NULL);
271 	ASSERT(mp->m_ddev_targp != NULL);
272 
273 	/*
274 	 * For the initial read, we must guess at the sector
275 	 * size based on the block device.  It's enough to
276 	 * get the sb_sectsize out of the superblock and
277 	 * then reread with the proper length.
278 	 * We don't verify it yet, because it may not be complete.
279 	 */
280 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
281 	buf_ops = NULL;
282 
283 	/*
284 	 * Allocate a (locked) buffer to hold the superblock.
285 	 * This will be kept around at all times to optimize
286 	 * access to the superblock.
287 	 */
288 reread:
289 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
290 				   BTOBB(sector_size), 0, &bp, buf_ops);
291 	if (error) {
292 		if (loud)
293 			xfs_warn(mp, "SB validate failed with error %d.", error);
294 		/* bad CRC means corrupted metadata */
295 		if (error == -EFSBADCRC)
296 			error = -EFSCORRUPTED;
297 		return error;
298 	}
299 
300 	/*
301 	 * Initialize the mount structure from the superblock.
302 	 */
303 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
304 
305 	/*
306 	 * If we haven't validated the superblock, do so now before we try
307 	 * to check the sector size and reread the superblock appropriately.
308 	 */
309 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
310 		if (loud)
311 			xfs_warn(mp, "Invalid superblock magic number");
312 		error = -EINVAL;
313 		goto release_buf;
314 	}
315 
316 	/*
317 	 * We must be able to do sector-sized and sector-aligned IO.
318 	 */
319 	if (sector_size > sbp->sb_sectsize) {
320 		if (loud)
321 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
322 				sector_size, sbp->sb_sectsize);
323 		error = -ENOSYS;
324 		goto release_buf;
325 	}
326 
327 	if (buf_ops == NULL) {
328 		/*
329 		 * Re-read the superblock so the buffer is correctly sized,
330 		 * and properly verified.
331 		 */
332 		xfs_buf_relse(bp);
333 		sector_size = sbp->sb_sectsize;
334 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
335 		goto reread;
336 	}
337 
338 	xfs_reinit_percpu_counters(mp);
339 
340 	/* no need to be quiet anymore, so reset the buf ops */
341 	bp->b_ops = &xfs_sb_buf_ops;
342 
343 	mp->m_sb_bp = bp;
344 	xfs_buf_unlock(bp);
345 	return 0;
346 
347 release_buf:
348 	xfs_buf_relse(bp);
349 	return error;
350 }
351 
352 /*
353  * Update alignment values based on mount options and sb values
354  */
355 STATIC int
356 xfs_update_alignment(xfs_mount_t *mp)
357 {
358 	xfs_sb_t	*sbp = &(mp->m_sb);
359 
360 	if (mp->m_dalign) {
361 		/*
362 		 * If stripe unit and stripe width are not multiples
363 		 * of the fs blocksize turn off alignment.
364 		 */
365 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
366 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
367 			xfs_warn(mp,
368 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
369 				sbp->sb_blocksize);
370 			return -EINVAL;
371 		} else {
372 			/*
373 			 * Convert the stripe unit and width to FSBs.
374 			 */
375 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
376 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
377 				xfs_warn(mp,
378 			"alignment check failed: sunit/swidth vs. agsize(%d)",
379 					 sbp->sb_agblocks);
380 				return -EINVAL;
381 			} else if (mp->m_dalign) {
382 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
383 			} else {
384 				xfs_warn(mp,
385 			"alignment check failed: sunit(%d) less than bsize(%d)",
386 					 mp->m_dalign, sbp->sb_blocksize);
387 				return -EINVAL;
388 			}
389 		}
390 
391 		/*
392 		 * Update superblock with new values
393 		 * and log changes
394 		 */
395 		if (xfs_sb_version_hasdalign(sbp)) {
396 			if (sbp->sb_unit != mp->m_dalign) {
397 				sbp->sb_unit = mp->m_dalign;
398 				mp->m_update_sb = true;
399 			}
400 			if (sbp->sb_width != mp->m_swidth) {
401 				sbp->sb_width = mp->m_swidth;
402 				mp->m_update_sb = true;
403 			}
404 		} else {
405 			xfs_warn(mp,
406 	"cannot change alignment: superblock does not support data alignment");
407 			return -EINVAL;
408 		}
409 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
410 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
411 			mp->m_dalign = sbp->sb_unit;
412 			mp->m_swidth = sbp->sb_width;
413 	}
414 
415 	return 0;
416 }
417 
418 /*
419  * Set the maximum inode count for this filesystem
420  */
421 STATIC void
422 xfs_set_maxicount(xfs_mount_t *mp)
423 {
424 	xfs_sb_t	*sbp = &(mp->m_sb);
425 	__uint64_t	icount;
426 
427 	if (sbp->sb_imax_pct) {
428 		/*
429 		 * Make sure the maximum inode count is a multiple
430 		 * of the units we allocate inodes in.
431 		 */
432 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
433 		do_div(icount, 100);
434 		do_div(icount, mp->m_ialloc_blks);
435 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
436 				   sbp->sb_inopblog;
437 	} else {
438 		mp->m_maxicount = 0;
439 	}
440 }
441 
442 /*
443  * Set the default minimum read and write sizes unless
444  * already specified in a mount option.
445  * We use smaller I/O sizes when the file system
446  * is being used for NFS service (wsync mount option).
447  */
448 STATIC void
449 xfs_set_rw_sizes(xfs_mount_t *mp)
450 {
451 	xfs_sb_t	*sbp = &(mp->m_sb);
452 	int		readio_log, writeio_log;
453 
454 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
455 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
456 			readio_log = XFS_WSYNC_READIO_LOG;
457 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
458 		} else {
459 			readio_log = XFS_READIO_LOG_LARGE;
460 			writeio_log = XFS_WRITEIO_LOG_LARGE;
461 		}
462 	} else {
463 		readio_log = mp->m_readio_log;
464 		writeio_log = mp->m_writeio_log;
465 	}
466 
467 	if (sbp->sb_blocklog > readio_log) {
468 		mp->m_readio_log = sbp->sb_blocklog;
469 	} else {
470 		mp->m_readio_log = readio_log;
471 	}
472 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
473 	if (sbp->sb_blocklog > writeio_log) {
474 		mp->m_writeio_log = sbp->sb_blocklog;
475 	} else {
476 		mp->m_writeio_log = writeio_log;
477 	}
478 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
479 }
480 
481 /*
482  * precalculate the low space thresholds for dynamic speculative preallocation.
483  */
484 void
485 xfs_set_low_space_thresholds(
486 	struct xfs_mount	*mp)
487 {
488 	int i;
489 
490 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
491 		__uint64_t space = mp->m_sb.sb_dblocks;
492 
493 		do_div(space, 100);
494 		mp->m_low_space[i] = space * (i + 1);
495 	}
496 }
497 
498 
499 /*
500  * Set whether we're using inode alignment.
501  */
502 STATIC void
503 xfs_set_inoalignment(xfs_mount_t *mp)
504 {
505 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
506 	    mp->m_sb.sb_inoalignmt >=
507 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
508 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
509 	else
510 		mp->m_inoalign_mask = 0;
511 	/*
512 	 * If we are using stripe alignment, check whether
513 	 * the stripe unit is a multiple of the inode alignment
514 	 */
515 	if (mp->m_dalign && mp->m_inoalign_mask &&
516 	    !(mp->m_dalign & mp->m_inoalign_mask))
517 		mp->m_sinoalign = mp->m_dalign;
518 	else
519 		mp->m_sinoalign = 0;
520 }
521 
522 /*
523  * Check that the data (and log if separate) is an ok size.
524  */
525 STATIC int
526 xfs_check_sizes(
527 	struct xfs_mount *mp)
528 {
529 	struct xfs_buf	*bp;
530 	xfs_daddr_t	d;
531 	int		error;
532 
533 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
534 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
535 		xfs_warn(mp, "filesystem size mismatch detected");
536 		return -EFBIG;
537 	}
538 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
539 					d - XFS_FSS_TO_BB(mp, 1),
540 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
541 	if (error) {
542 		xfs_warn(mp, "last sector read failed");
543 		return error;
544 	}
545 	xfs_buf_relse(bp);
546 
547 	if (mp->m_logdev_targp == mp->m_ddev_targp)
548 		return 0;
549 
550 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
551 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
552 		xfs_warn(mp, "log size mismatch detected");
553 		return -EFBIG;
554 	}
555 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
556 					d - XFS_FSB_TO_BB(mp, 1),
557 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
558 	if (error) {
559 		xfs_warn(mp, "log device read failed");
560 		return error;
561 	}
562 	xfs_buf_relse(bp);
563 	return 0;
564 }
565 
566 /*
567  * Clear the quotaflags in memory and in the superblock.
568  */
569 int
570 xfs_mount_reset_sbqflags(
571 	struct xfs_mount	*mp)
572 {
573 	mp->m_qflags = 0;
574 
575 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
576 	if (mp->m_sb.sb_qflags == 0)
577 		return 0;
578 	spin_lock(&mp->m_sb_lock);
579 	mp->m_sb.sb_qflags = 0;
580 	spin_unlock(&mp->m_sb_lock);
581 
582 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
583 		return 0;
584 
585 	return xfs_sync_sb(mp, false);
586 }
587 
588 __uint64_t
589 xfs_default_resblks(xfs_mount_t *mp)
590 {
591 	__uint64_t resblks;
592 
593 	/*
594 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
595 	 * smaller.  This is intended to cover concurrent allocation
596 	 * transactions when we initially hit enospc. These each require a 4
597 	 * block reservation. Hence by default we cover roughly 2000 concurrent
598 	 * allocation reservations.
599 	 */
600 	resblks = mp->m_sb.sb_dblocks;
601 	do_div(resblks, 20);
602 	resblks = min_t(__uint64_t, resblks, 8192);
603 	return resblks;
604 }
605 
606 /*
607  * This function does the following on an initial mount of a file system:
608  *	- reads the superblock from disk and init the mount struct
609  *	- if we're a 32-bit kernel, do a size check on the superblock
610  *		so we don't mount terabyte filesystems
611  *	- init mount struct realtime fields
612  *	- allocate inode hash table for fs
613  *	- init directory manager
614  *	- perform recovery and init the log manager
615  */
616 int
617 xfs_mountfs(
618 	struct xfs_mount	*mp)
619 {
620 	struct xfs_sb		*sbp = &(mp->m_sb);
621 	struct xfs_inode	*rip;
622 	__uint64_t		resblks;
623 	uint			quotamount = 0;
624 	uint			quotaflags = 0;
625 	int			error = 0;
626 
627 	xfs_sb_mount_common(mp, sbp);
628 
629 	/*
630 	 * Check for a mismatched features2 values.  Older kernels read & wrote
631 	 * into the wrong sb offset for sb_features2 on some platforms due to
632 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
633 	 * which made older superblock reading/writing routines swap it as a
634 	 * 64-bit value.
635 	 *
636 	 * For backwards compatibility, we make both slots equal.
637 	 *
638 	 * If we detect a mismatched field, we OR the set bits into the existing
639 	 * features2 field in case it has already been modified; we don't want
640 	 * to lose any features.  We then update the bad location with the ORed
641 	 * value so that older kernels will see any features2 flags. The
642 	 * superblock writeback code ensures the new sb_features2 is copied to
643 	 * sb_bad_features2 before it is logged or written to disk.
644 	 */
645 	if (xfs_sb_has_mismatched_features2(sbp)) {
646 		xfs_warn(mp, "correcting sb_features alignment problem");
647 		sbp->sb_features2 |= sbp->sb_bad_features2;
648 		mp->m_update_sb = true;
649 
650 		/*
651 		 * Re-check for ATTR2 in case it was found in bad_features2
652 		 * slot.
653 		 */
654 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
655 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
656 			mp->m_flags |= XFS_MOUNT_ATTR2;
657 	}
658 
659 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
660 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
661 		xfs_sb_version_removeattr2(&mp->m_sb);
662 		mp->m_update_sb = true;
663 
664 		/* update sb_versionnum for the clearing of the morebits */
665 		if (!sbp->sb_features2)
666 			mp->m_update_sb = true;
667 	}
668 
669 	/* always use v2 inodes by default now */
670 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
672 		mp->m_update_sb = true;
673 	}
674 
675 	/*
676 	 * Check if sb_agblocks is aligned at stripe boundary
677 	 * If sb_agblocks is NOT aligned turn off m_dalign since
678 	 * allocator alignment is within an ag, therefore ag has
679 	 * to be aligned at stripe boundary.
680 	 */
681 	error = xfs_update_alignment(mp);
682 	if (error)
683 		goto out;
684 
685 	xfs_alloc_compute_maxlevels(mp);
686 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
687 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
688 	xfs_ialloc_compute_maxlevels(mp);
689 
690 	xfs_set_maxicount(mp);
691 
692 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
693 	if (error)
694 		goto out;
695 
696 	error = xfs_uuid_mount(mp);
697 	if (error)
698 		goto out_remove_sysfs;
699 
700 	/*
701 	 * Set the minimum read and write sizes
702 	 */
703 	xfs_set_rw_sizes(mp);
704 
705 	/* set the low space thresholds for dynamic preallocation */
706 	xfs_set_low_space_thresholds(mp);
707 
708 	/*
709 	 * Set the inode cluster size.
710 	 * This may still be overridden by the file system
711 	 * block size if it is larger than the chosen cluster size.
712 	 *
713 	 * For v5 filesystems, scale the cluster size with the inode size to
714 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
715 	 * has set the inode alignment value appropriately for larger cluster
716 	 * sizes.
717 	 */
718 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
719 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
720 		int	new_size = mp->m_inode_cluster_size;
721 
722 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
723 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
724 			mp->m_inode_cluster_size = new_size;
725 	}
726 
727 	/*
728 	 * If enabled, sparse inode chunk alignment is expected to match the
729 	 * cluster size. Full inode chunk alignment must match the chunk size,
730 	 * but that is checked on sb read verification...
731 	 */
732 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
733 	    mp->m_sb.sb_spino_align !=
734 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
735 		xfs_warn(mp,
736 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
737 			 mp->m_sb.sb_spino_align,
738 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
739 		error = -EINVAL;
740 		goto out_remove_uuid;
741 	}
742 
743 	/*
744 	 * Set inode alignment fields
745 	 */
746 	xfs_set_inoalignment(mp);
747 
748 	/*
749 	 * Check that the data (and log if separate) is an ok size.
750 	 */
751 	error = xfs_check_sizes(mp);
752 	if (error)
753 		goto out_remove_uuid;
754 
755 	/*
756 	 * Initialize realtime fields in the mount structure
757 	 */
758 	error = xfs_rtmount_init(mp);
759 	if (error) {
760 		xfs_warn(mp, "RT mount failed");
761 		goto out_remove_uuid;
762 	}
763 
764 	/*
765 	 *  Copies the low order bits of the timestamp and the randomly
766 	 *  set "sequence" number out of a UUID.
767 	 */
768 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
769 
770 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
771 
772 	error = xfs_da_mount(mp);
773 	if (error) {
774 		xfs_warn(mp, "Failed dir/attr init: %d", error);
775 		goto out_remove_uuid;
776 	}
777 
778 	/*
779 	 * Initialize the precomputed transaction reservations values.
780 	 */
781 	xfs_trans_init(mp);
782 
783 	/*
784 	 * Allocate and initialize the per-ag data.
785 	 */
786 	spin_lock_init(&mp->m_perag_lock);
787 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
788 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
789 	if (error) {
790 		xfs_warn(mp, "Failed per-ag init: %d", error);
791 		goto out_free_dir;
792 	}
793 
794 	if (!sbp->sb_logblocks) {
795 		xfs_warn(mp, "no log defined");
796 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
797 		error = -EFSCORRUPTED;
798 		goto out_free_perag;
799 	}
800 
801 	/*
802 	 * Log's mount-time initialization. The first part of recovery can place
803 	 * some items on the AIL, to be handled when recovery is finished or
804 	 * cancelled.
805 	 */
806 	error = xfs_log_mount(mp, mp->m_logdev_targp,
807 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
808 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
809 	if (error) {
810 		xfs_warn(mp, "log mount failed");
811 		goto out_fail_wait;
812 	}
813 
814 	/*
815 	 * Now the log is mounted, we know if it was an unclean shutdown or
816 	 * not. If it was, with the first phase of recovery has completed, we
817 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
818 	 * but they are recovered transactionally in the second recovery phase
819 	 * later.
820 	 *
821 	 * Hence we can safely re-initialise incore superblock counters from
822 	 * the per-ag data. These may not be correct if the filesystem was not
823 	 * cleanly unmounted, so we need to wait for recovery to finish before
824 	 * doing this.
825 	 *
826 	 * If the filesystem was cleanly unmounted, then we can trust the
827 	 * values in the superblock to be correct and we don't need to do
828 	 * anything here.
829 	 *
830 	 * If we are currently making the filesystem, the initialisation will
831 	 * fail as the perag data is in an undefined state.
832 	 */
833 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
834 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
835 	     !mp->m_sb.sb_inprogress) {
836 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
837 		if (error)
838 			goto out_log_dealloc;
839 	}
840 
841 	/*
842 	 * Get and sanity-check the root inode.
843 	 * Save the pointer to it in the mount structure.
844 	 */
845 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
846 	if (error) {
847 		xfs_warn(mp, "failed to read root inode");
848 		goto out_log_dealloc;
849 	}
850 
851 	ASSERT(rip != NULL);
852 
853 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
854 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
855 			(unsigned long long)rip->i_ino);
856 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
857 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
858 				 mp);
859 		error = -EFSCORRUPTED;
860 		goto out_rele_rip;
861 	}
862 	mp->m_rootip = rip;	/* save it */
863 
864 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
865 
866 	/*
867 	 * Initialize realtime inode pointers in the mount structure
868 	 */
869 	error = xfs_rtmount_inodes(mp);
870 	if (error) {
871 		/*
872 		 * Free up the root inode.
873 		 */
874 		xfs_warn(mp, "failed to read RT inodes");
875 		goto out_rele_rip;
876 	}
877 
878 	/*
879 	 * If this is a read-only mount defer the superblock updates until
880 	 * the next remount into writeable mode.  Otherwise we would never
881 	 * perform the update e.g. for the root filesystem.
882 	 */
883 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
884 		error = xfs_sync_sb(mp, false);
885 		if (error) {
886 			xfs_warn(mp, "failed to write sb changes");
887 			goto out_rtunmount;
888 		}
889 	}
890 
891 	/*
892 	 * Initialise the XFS quota management subsystem for this mount
893 	 */
894 	if (XFS_IS_QUOTA_RUNNING(mp)) {
895 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
896 		if (error)
897 			goto out_rtunmount;
898 	} else {
899 		ASSERT(!XFS_IS_QUOTA_ON(mp));
900 
901 		/*
902 		 * If a file system had quotas running earlier, but decided to
903 		 * mount without -o uquota/pquota/gquota options, revoke the
904 		 * quotachecked license.
905 		 */
906 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
907 			xfs_notice(mp, "resetting quota flags");
908 			error = xfs_mount_reset_sbqflags(mp);
909 			if (error)
910 				goto out_rtunmount;
911 		}
912 	}
913 
914 	/*
915 	 * Finish recovering the file system.  This part needed to be delayed
916 	 * until after the root and real-time bitmap inodes were consistently
917 	 * read in.
918 	 */
919 	error = xfs_log_mount_finish(mp);
920 	if (error) {
921 		xfs_warn(mp, "log mount finish failed");
922 		goto out_rtunmount;
923 	}
924 
925 	/*
926 	 * Complete the quota initialisation, post-log-replay component.
927 	 */
928 	if (quotamount) {
929 		ASSERT(mp->m_qflags == 0);
930 		mp->m_qflags = quotaflags;
931 
932 		xfs_qm_mount_quotas(mp);
933 	}
934 
935 	/*
936 	 * Now we are mounted, reserve a small amount of unused space for
937 	 * privileged transactions. This is needed so that transaction
938 	 * space required for critical operations can dip into this pool
939 	 * when at ENOSPC. This is needed for operations like create with
940 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
941 	 * are not allowed to use this reserved space.
942 	 *
943 	 * This may drive us straight to ENOSPC on mount, but that implies
944 	 * we were already there on the last unmount. Warn if this occurs.
945 	 */
946 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
947 		resblks = xfs_default_resblks(mp);
948 		error = xfs_reserve_blocks(mp, &resblks, NULL);
949 		if (error)
950 			xfs_warn(mp,
951 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
952 	}
953 
954 	return 0;
955 
956  out_rtunmount:
957 	xfs_rtunmount_inodes(mp);
958  out_rele_rip:
959 	IRELE(rip);
960 	cancel_delayed_work_sync(&mp->m_reclaim_work);
961 	xfs_reclaim_inodes(mp, SYNC_WAIT);
962  out_log_dealloc:
963 	xfs_log_mount_cancel(mp);
964  out_fail_wait:
965 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
966 		xfs_wait_buftarg(mp->m_logdev_targp);
967 	xfs_wait_buftarg(mp->m_ddev_targp);
968  out_free_perag:
969 	xfs_free_perag(mp);
970  out_free_dir:
971 	xfs_da_unmount(mp);
972  out_remove_uuid:
973 	xfs_uuid_unmount(mp);
974  out_remove_sysfs:
975 	xfs_sysfs_del(&mp->m_kobj);
976  out:
977 	return error;
978 }
979 
980 /*
981  * This flushes out the inodes,dquots and the superblock, unmounts the
982  * log and makes sure that incore structures are freed.
983  */
984 void
985 xfs_unmountfs(
986 	struct xfs_mount	*mp)
987 {
988 	__uint64_t		resblks;
989 	int			error;
990 
991 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
992 
993 	xfs_qm_unmount_quotas(mp);
994 	xfs_rtunmount_inodes(mp);
995 	IRELE(mp->m_rootip);
996 
997 	/*
998 	 * We can potentially deadlock here if we have an inode cluster
999 	 * that has been freed has its buffer still pinned in memory because
1000 	 * the transaction is still sitting in a iclog. The stale inodes
1001 	 * on that buffer will have their flush locks held until the
1002 	 * transaction hits the disk and the callbacks run. the inode
1003 	 * flush takes the flush lock unconditionally and with nothing to
1004 	 * push out the iclog we will never get that unlocked. hence we
1005 	 * need to force the log first.
1006 	 */
1007 	xfs_log_force(mp, XFS_LOG_SYNC);
1008 
1009 	/*
1010 	 * Flush all pending changes from the AIL.
1011 	 */
1012 	xfs_ail_push_all_sync(mp->m_ail);
1013 
1014 	/*
1015 	 * And reclaim all inodes.  At this point there should be no dirty
1016 	 * inodes and none should be pinned or locked, but use synchronous
1017 	 * reclaim just to be sure. We can stop background inode reclaim
1018 	 * here as well if it is still running.
1019 	 */
1020 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1021 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1022 
1023 	xfs_qm_unmount(mp);
1024 
1025 	/*
1026 	 * Unreserve any blocks we have so that when we unmount we don't account
1027 	 * the reserved free space as used. This is really only necessary for
1028 	 * lazy superblock counting because it trusts the incore superblock
1029 	 * counters to be absolutely correct on clean unmount.
1030 	 *
1031 	 * We don't bother correcting this elsewhere for lazy superblock
1032 	 * counting because on mount of an unclean filesystem we reconstruct the
1033 	 * correct counter value and this is irrelevant.
1034 	 *
1035 	 * For non-lazy counter filesystems, this doesn't matter at all because
1036 	 * we only every apply deltas to the superblock and hence the incore
1037 	 * value does not matter....
1038 	 */
1039 	resblks = 0;
1040 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1041 	if (error)
1042 		xfs_warn(mp, "Unable to free reserved block pool. "
1043 				"Freespace may not be correct on next mount.");
1044 
1045 	error = xfs_log_sbcount(mp);
1046 	if (error)
1047 		xfs_warn(mp, "Unable to update superblock counters. "
1048 				"Freespace may not be correct on next mount.");
1049 
1050 	xfs_log_unmount(mp);
1051 	xfs_da_unmount(mp);
1052 	xfs_uuid_unmount(mp);
1053 
1054 #if defined(DEBUG)
1055 	xfs_errortag_clearall(mp, 0);
1056 #endif
1057 	xfs_free_perag(mp);
1058 
1059 	xfs_sysfs_del(&mp->m_kobj);
1060 }
1061 
1062 /*
1063  * Determine whether modifications can proceed. The caller specifies the minimum
1064  * freeze level for which modifications should not be allowed. This allows
1065  * certain operations to proceed while the freeze sequence is in progress, if
1066  * necessary.
1067  */
1068 bool
1069 xfs_fs_writable(
1070 	struct xfs_mount	*mp,
1071 	int			level)
1072 {
1073 	ASSERT(level > SB_UNFROZEN);
1074 	if ((mp->m_super->s_writers.frozen >= level) ||
1075 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1076 		return false;
1077 
1078 	return true;
1079 }
1080 
1081 /*
1082  * xfs_log_sbcount
1083  *
1084  * Sync the superblock counters to disk.
1085  *
1086  * Note this code can be called during the process of freezing, so we use the
1087  * transaction allocator that does not block when the transaction subsystem is
1088  * in its frozen state.
1089  */
1090 int
1091 xfs_log_sbcount(xfs_mount_t *mp)
1092 {
1093 	/* allow this to proceed during the freeze sequence... */
1094 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1095 		return 0;
1096 
1097 	/*
1098 	 * we don't need to do this if we are updating the superblock
1099 	 * counters on every modification.
1100 	 */
1101 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1102 		return 0;
1103 
1104 	return xfs_sync_sb(mp, true);
1105 }
1106 
1107 /*
1108  * Deltas for the inode count are +/-64, hence we use a large batch size
1109  * of 128 so we don't need to take the counter lock on every update.
1110  */
1111 #define XFS_ICOUNT_BATCH	128
1112 int
1113 xfs_mod_icount(
1114 	struct xfs_mount	*mp,
1115 	int64_t			delta)
1116 {
1117 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1118 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1119 		ASSERT(0);
1120 		percpu_counter_add(&mp->m_icount, -delta);
1121 		return -EINVAL;
1122 	}
1123 	return 0;
1124 }
1125 
1126 int
1127 xfs_mod_ifree(
1128 	struct xfs_mount	*mp,
1129 	int64_t			delta)
1130 {
1131 	percpu_counter_add(&mp->m_ifree, delta);
1132 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1133 		ASSERT(0);
1134 		percpu_counter_add(&mp->m_ifree, -delta);
1135 		return -EINVAL;
1136 	}
1137 	return 0;
1138 }
1139 
1140 /*
1141  * Deltas for the block count can vary from 1 to very large, but lock contention
1142  * only occurs on frequent small block count updates such as in the delayed
1143  * allocation path for buffered writes (page a time updates). Hence we set
1144  * a large batch count (1024) to minimise global counter updates except when
1145  * we get near to ENOSPC and we have to be very accurate with our updates.
1146  */
1147 #define XFS_FDBLOCKS_BATCH	1024
1148 int
1149 xfs_mod_fdblocks(
1150 	struct xfs_mount	*mp,
1151 	int64_t			delta,
1152 	bool			rsvd)
1153 {
1154 	int64_t			lcounter;
1155 	long long		res_used;
1156 	s32			batch;
1157 
1158 	if (delta > 0) {
1159 		/*
1160 		 * If the reserve pool is depleted, put blocks back into it
1161 		 * first. Most of the time the pool is full.
1162 		 */
1163 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1164 			percpu_counter_add(&mp->m_fdblocks, delta);
1165 			return 0;
1166 		}
1167 
1168 		spin_lock(&mp->m_sb_lock);
1169 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1170 
1171 		if (res_used > delta) {
1172 			mp->m_resblks_avail += delta;
1173 		} else {
1174 			delta -= res_used;
1175 			mp->m_resblks_avail = mp->m_resblks;
1176 			percpu_counter_add(&mp->m_fdblocks, delta);
1177 		}
1178 		spin_unlock(&mp->m_sb_lock);
1179 		return 0;
1180 	}
1181 
1182 	/*
1183 	 * Taking blocks away, need to be more accurate the closer we
1184 	 * are to zero.
1185 	 *
1186 	 * If the counter has a value of less than 2 * max batch size,
1187 	 * then make everything serialise as we are real close to
1188 	 * ENOSPC.
1189 	 */
1190 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1191 				     XFS_FDBLOCKS_BATCH) < 0)
1192 		batch = 1;
1193 	else
1194 		batch = XFS_FDBLOCKS_BATCH;
1195 
1196 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1197 	if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1198 				     XFS_FDBLOCKS_BATCH) >= 0) {
1199 		/* we had space! */
1200 		return 0;
1201 	}
1202 
1203 	/*
1204 	 * lock up the sb for dipping into reserves before releasing the space
1205 	 * that took us to ENOSPC.
1206 	 */
1207 	spin_lock(&mp->m_sb_lock);
1208 	percpu_counter_add(&mp->m_fdblocks, -delta);
1209 	if (!rsvd)
1210 		goto fdblocks_enospc;
1211 
1212 	lcounter = (long long)mp->m_resblks_avail + delta;
1213 	if (lcounter >= 0) {
1214 		mp->m_resblks_avail = lcounter;
1215 		spin_unlock(&mp->m_sb_lock);
1216 		return 0;
1217 	}
1218 	printk_once(KERN_WARNING
1219 		"Filesystem \"%s\": reserve blocks depleted! "
1220 		"Consider increasing reserve pool size.",
1221 		mp->m_fsname);
1222 fdblocks_enospc:
1223 	spin_unlock(&mp->m_sb_lock);
1224 	return -ENOSPC;
1225 }
1226 
1227 int
1228 xfs_mod_frextents(
1229 	struct xfs_mount	*mp,
1230 	int64_t			delta)
1231 {
1232 	int64_t			lcounter;
1233 	int			ret = 0;
1234 
1235 	spin_lock(&mp->m_sb_lock);
1236 	lcounter = mp->m_sb.sb_frextents + delta;
1237 	if (lcounter < 0)
1238 		ret = -ENOSPC;
1239 	else
1240 		mp->m_sb.sb_frextents = lcounter;
1241 	spin_unlock(&mp->m_sb_lock);
1242 	return ret;
1243 }
1244 
1245 /*
1246  * xfs_getsb() is called to obtain the buffer for the superblock.
1247  * The buffer is returned locked and read in from disk.
1248  * The buffer should be released with a call to xfs_brelse().
1249  *
1250  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1251  * the superblock buffer if it can be locked without sleeping.
1252  * If it can't then we'll return NULL.
1253  */
1254 struct xfs_buf *
1255 xfs_getsb(
1256 	struct xfs_mount	*mp,
1257 	int			flags)
1258 {
1259 	struct xfs_buf		*bp = mp->m_sb_bp;
1260 
1261 	if (!xfs_buf_trylock(bp)) {
1262 		if (flags & XBF_TRYLOCK)
1263 			return NULL;
1264 		xfs_buf_lock(bp);
1265 	}
1266 
1267 	xfs_buf_hold(bp);
1268 	ASSERT(XFS_BUF_ISDONE(bp));
1269 	return bp;
1270 }
1271 
1272 /*
1273  * Used to free the superblock along various error paths.
1274  */
1275 void
1276 xfs_freesb(
1277 	struct xfs_mount	*mp)
1278 {
1279 	struct xfs_buf		*bp = mp->m_sb_bp;
1280 
1281 	xfs_buf_lock(bp);
1282 	mp->m_sb_bp = NULL;
1283 	xfs_buf_relse(bp);
1284 }
1285 
1286 /*
1287  * If the underlying (data/log/rt) device is readonly, there are some
1288  * operations that cannot proceed.
1289  */
1290 int
1291 xfs_dev_is_read_only(
1292 	struct xfs_mount	*mp,
1293 	char			*message)
1294 {
1295 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1296 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1297 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1298 		xfs_notice(mp, "%s required on read-only device.", message);
1299 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1300 		return -EROFS;
1301 	}
1302 	return 0;
1303 }
1304