1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 #include "xfs_trace.h" 35 #include "xfs_ag.h" 36 37 static DEFINE_MUTEX(xfs_uuid_table_mutex); 38 static int xfs_uuid_table_size; 39 static uuid_t *xfs_uuid_table; 40 41 void 42 xfs_uuid_table_free(void) 43 { 44 if (xfs_uuid_table_size == 0) 45 return; 46 kmem_free(xfs_uuid_table); 47 xfs_uuid_table = NULL; 48 xfs_uuid_table_size = 0; 49 } 50 51 /* 52 * See if the UUID is unique among mounted XFS filesystems. 53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 54 */ 55 STATIC int 56 xfs_uuid_mount( 57 struct xfs_mount *mp) 58 { 59 uuid_t *uuid = &mp->m_sb.sb_uuid; 60 int hole, i; 61 62 /* Publish UUID in struct super_block */ 63 uuid_copy(&mp->m_super->s_uuid, uuid); 64 65 if (xfs_has_nouuid(mp)) 66 return 0; 67 68 if (uuid_is_null(uuid)) { 69 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 70 return -EINVAL; 71 } 72 73 mutex_lock(&xfs_uuid_table_mutex); 74 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 75 if (uuid_is_null(&xfs_uuid_table[i])) { 76 hole = i; 77 continue; 78 } 79 if (uuid_equal(uuid, &xfs_uuid_table[i])) 80 goto out_duplicate; 81 } 82 83 if (hole < 0) { 84 xfs_uuid_table = krealloc(xfs_uuid_table, 85 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 86 GFP_KERNEL | __GFP_NOFAIL); 87 hole = xfs_uuid_table_size++; 88 } 89 xfs_uuid_table[hole] = *uuid; 90 mutex_unlock(&xfs_uuid_table_mutex); 91 92 return 0; 93 94 out_duplicate: 95 mutex_unlock(&xfs_uuid_table_mutex); 96 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 97 return -EINVAL; 98 } 99 100 STATIC void 101 xfs_uuid_unmount( 102 struct xfs_mount *mp) 103 { 104 uuid_t *uuid = &mp->m_sb.sb_uuid; 105 int i; 106 107 if (xfs_has_nouuid(mp)) 108 return; 109 110 mutex_lock(&xfs_uuid_table_mutex); 111 for (i = 0; i < xfs_uuid_table_size; i++) { 112 if (uuid_is_null(&xfs_uuid_table[i])) 113 continue; 114 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 115 continue; 116 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 117 break; 118 } 119 ASSERT(i < xfs_uuid_table_size); 120 mutex_unlock(&xfs_uuid_table_mutex); 121 } 122 123 /* 124 * Check size of device based on the (data/realtime) block count. 125 * Note: this check is used by the growfs code as well as mount. 126 */ 127 int 128 xfs_sb_validate_fsb_count( 129 xfs_sb_t *sbp, 130 uint64_t nblocks) 131 { 132 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 133 ASSERT(sbp->sb_blocklog >= BBSHIFT); 134 135 /* Limited by ULONG_MAX of page cache index */ 136 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 137 return -EFBIG; 138 return 0; 139 } 140 141 /* 142 * xfs_readsb 143 * 144 * Does the initial read of the superblock. 145 */ 146 int 147 xfs_readsb( 148 struct xfs_mount *mp, 149 int flags) 150 { 151 unsigned int sector_size; 152 struct xfs_buf *bp; 153 struct xfs_sb *sbp = &mp->m_sb; 154 int error; 155 int loud = !(flags & XFS_MFSI_QUIET); 156 const struct xfs_buf_ops *buf_ops; 157 158 ASSERT(mp->m_sb_bp == NULL); 159 ASSERT(mp->m_ddev_targp != NULL); 160 161 /* 162 * For the initial read, we must guess at the sector 163 * size based on the block device. It's enough to 164 * get the sb_sectsize out of the superblock and 165 * then reread with the proper length. 166 * We don't verify it yet, because it may not be complete. 167 */ 168 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 169 buf_ops = NULL; 170 171 /* 172 * Allocate a (locked) buffer to hold the superblock. This will be kept 173 * around at all times to optimize access to the superblock. Therefore, 174 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 175 * elevated. 176 */ 177 reread: 178 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 179 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 180 buf_ops); 181 if (error) { 182 if (loud) 183 xfs_warn(mp, "SB validate failed with error %d.", error); 184 /* bad CRC means corrupted metadata */ 185 if (error == -EFSBADCRC) 186 error = -EFSCORRUPTED; 187 return error; 188 } 189 190 /* 191 * Initialize the mount structure from the superblock. 192 */ 193 xfs_sb_from_disk(sbp, bp->b_addr); 194 195 /* 196 * If we haven't validated the superblock, do so now before we try 197 * to check the sector size and reread the superblock appropriately. 198 */ 199 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 200 if (loud) 201 xfs_warn(mp, "Invalid superblock magic number"); 202 error = -EINVAL; 203 goto release_buf; 204 } 205 206 /* 207 * We must be able to do sector-sized and sector-aligned IO. 208 */ 209 if (sector_size > sbp->sb_sectsize) { 210 if (loud) 211 xfs_warn(mp, "device supports %u byte sectors (not %u)", 212 sector_size, sbp->sb_sectsize); 213 error = -ENOSYS; 214 goto release_buf; 215 } 216 217 if (buf_ops == NULL) { 218 /* 219 * Re-read the superblock so the buffer is correctly sized, 220 * and properly verified. 221 */ 222 xfs_buf_relse(bp); 223 sector_size = sbp->sb_sectsize; 224 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 225 goto reread; 226 } 227 228 mp->m_features |= xfs_sb_version_to_features(sbp); 229 xfs_reinit_percpu_counters(mp); 230 231 /* no need to be quiet anymore, so reset the buf ops */ 232 bp->b_ops = &xfs_sb_buf_ops; 233 234 mp->m_sb_bp = bp; 235 xfs_buf_unlock(bp); 236 return 0; 237 238 release_buf: 239 xfs_buf_relse(bp); 240 return error; 241 } 242 243 /* 244 * If the sunit/swidth change would move the precomputed root inode value, we 245 * must reject the ondisk change because repair will stumble over that. 246 * However, we allow the mount to proceed because we never rejected this 247 * combination before. Returns true to update the sb, false otherwise. 248 */ 249 static inline int 250 xfs_check_new_dalign( 251 struct xfs_mount *mp, 252 int new_dalign, 253 bool *update_sb) 254 { 255 struct xfs_sb *sbp = &mp->m_sb; 256 xfs_ino_t calc_ino; 257 258 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 259 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 260 261 if (sbp->sb_rootino == calc_ino) { 262 *update_sb = true; 263 return 0; 264 } 265 266 xfs_warn(mp, 267 "Cannot change stripe alignment; would require moving root inode."); 268 269 /* 270 * XXX: Next time we add a new incompat feature, this should start 271 * returning -EINVAL to fail the mount. Until then, spit out a warning 272 * that we're ignoring the administrator's instructions. 273 */ 274 xfs_warn(mp, "Skipping superblock stripe alignment update."); 275 *update_sb = false; 276 return 0; 277 } 278 279 /* 280 * If we were provided with new sunit/swidth values as mount options, make sure 281 * that they pass basic alignment and superblock feature checks, and convert 282 * them into the same units (FSB) that everything else expects. This step 283 * /must/ be done before computing the inode geometry. 284 */ 285 STATIC int 286 xfs_validate_new_dalign( 287 struct xfs_mount *mp) 288 { 289 if (mp->m_dalign == 0) 290 return 0; 291 292 /* 293 * If stripe unit and stripe width are not multiples 294 * of the fs blocksize turn off alignment. 295 */ 296 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 297 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 298 xfs_warn(mp, 299 "alignment check failed: sunit/swidth vs. blocksize(%d)", 300 mp->m_sb.sb_blocksize); 301 return -EINVAL; 302 } else { 303 /* 304 * Convert the stripe unit and width to FSBs. 305 */ 306 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 307 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 308 xfs_warn(mp, 309 "alignment check failed: sunit/swidth vs. agsize(%d)", 310 mp->m_sb.sb_agblocks); 311 return -EINVAL; 312 } else if (mp->m_dalign) { 313 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 314 } else { 315 xfs_warn(mp, 316 "alignment check failed: sunit(%d) less than bsize(%d)", 317 mp->m_dalign, mp->m_sb.sb_blocksize); 318 return -EINVAL; 319 } 320 } 321 322 if (!xfs_has_dalign(mp)) { 323 xfs_warn(mp, 324 "cannot change alignment: superblock does not support data alignment"); 325 return -EINVAL; 326 } 327 328 return 0; 329 } 330 331 /* Update alignment values based on mount options and sb values. */ 332 STATIC int 333 xfs_update_alignment( 334 struct xfs_mount *mp) 335 { 336 struct xfs_sb *sbp = &mp->m_sb; 337 338 if (mp->m_dalign) { 339 bool update_sb; 340 int error; 341 342 if (sbp->sb_unit == mp->m_dalign && 343 sbp->sb_width == mp->m_swidth) 344 return 0; 345 346 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 347 if (error || !update_sb) 348 return error; 349 350 sbp->sb_unit = mp->m_dalign; 351 sbp->sb_width = mp->m_swidth; 352 mp->m_update_sb = true; 353 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 354 mp->m_dalign = sbp->sb_unit; 355 mp->m_swidth = sbp->sb_width; 356 } 357 358 return 0; 359 } 360 361 /* 362 * precalculate the low space thresholds for dynamic speculative preallocation. 363 */ 364 void 365 xfs_set_low_space_thresholds( 366 struct xfs_mount *mp) 367 { 368 uint64_t dblocks = mp->m_sb.sb_dblocks; 369 uint64_t rtexts = mp->m_sb.sb_rextents; 370 int i; 371 372 do_div(dblocks, 100); 373 do_div(rtexts, 100); 374 375 for (i = 0; i < XFS_LOWSP_MAX; i++) { 376 mp->m_low_space[i] = dblocks * (i + 1); 377 mp->m_low_rtexts[i] = rtexts * (i + 1); 378 } 379 } 380 381 /* 382 * Check that the data (and log if separate) is an ok size. 383 */ 384 STATIC int 385 xfs_check_sizes( 386 struct xfs_mount *mp) 387 { 388 struct xfs_buf *bp; 389 xfs_daddr_t d; 390 int error; 391 392 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 393 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 394 xfs_warn(mp, "filesystem size mismatch detected"); 395 return -EFBIG; 396 } 397 error = xfs_buf_read_uncached(mp->m_ddev_targp, 398 d - XFS_FSS_TO_BB(mp, 1), 399 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 400 if (error) { 401 xfs_warn(mp, "last sector read failed"); 402 return error; 403 } 404 xfs_buf_relse(bp); 405 406 if (mp->m_logdev_targp == mp->m_ddev_targp) 407 return 0; 408 409 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 410 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 411 xfs_warn(mp, "log size mismatch detected"); 412 return -EFBIG; 413 } 414 error = xfs_buf_read_uncached(mp->m_logdev_targp, 415 d - XFS_FSB_TO_BB(mp, 1), 416 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 417 if (error) { 418 xfs_warn(mp, "log device read failed"); 419 return error; 420 } 421 xfs_buf_relse(bp); 422 return 0; 423 } 424 425 /* 426 * Clear the quotaflags in memory and in the superblock. 427 */ 428 int 429 xfs_mount_reset_sbqflags( 430 struct xfs_mount *mp) 431 { 432 mp->m_qflags = 0; 433 434 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 435 if (mp->m_sb.sb_qflags == 0) 436 return 0; 437 spin_lock(&mp->m_sb_lock); 438 mp->m_sb.sb_qflags = 0; 439 spin_unlock(&mp->m_sb_lock); 440 441 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 442 return 0; 443 444 return xfs_sync_sb(mp, false); 445 } 446 447 uint64_t 448 xfs_default_resblks(xfs_mount_t *mp) 449 { 450 uint64_t resblks; 451 452 /* 453 * We default to 5% or 8192 fsbs of space reserved, whichever is 454 * smaller. This is intended to cover concurrent allocation 455 * transactions when we initially hit enospc. These each require a 4 456 * block reservation. Hence by default we cover roughly 2000 concurrent 457 * allocation reservations. 458 */ 459 resblks = mp->m_sb.sb_dblocks; 460 do_div(resblks, 20); 461 resblks = min_t(uint64_t, resblks, 8192); 462 return resblks; 463 } 464 465 /* Ensure the summary counts are correct. */ 466 STATIC int 467 xfs_check_summary_counts( 468 struct xfs_mount *mp) 469 { 470 /* 471 * The AG0 superblock verifier rejects in-progress filesystems, 472 * so we should never see the flag set this far into mounting. 473 */ 474 if (mp->m_sb.sb_inprogress) { 475 xfs_err(mp, "sb_inprogress set after log recovery??"); 476 WARN_ON(1); 477 return -EFSCORRUPTED; 478 } 479 480 /* 481 * Now the log is mounted, we know if it was an unclean shutdown or 482 * not. If it was, with the first phase of recovery has completed, we 483 * have consistent AG blocks on disk. We have not recovered EFIs yet, 484 * but they are recovered transactionally in the second recovery phase 485 * later. 486 * 487 * If the log was clean when we mounted, we can check the summary 488 * counters. If any of them are obviously incorrect, we can recompute 489 * them from the AGF headers in the next step. 490 */ 491 if (xfs_is_clean(mp) && 492 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 493 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 494 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 495 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 496 497 /* 498 * We can safely re-initialise incore superblock counters from the 499 * per-ag data. These may not be correct if the filesystem was not 500 * cleanly unmounted, so we waited for recovery to finish before doing 501 * this. 502 * 503 * If the filesystem was cleanly unmounted or the previous check did 504 * not flag anything weird, then we can trust the values in the 505 * superblock to be correct and we don't need to do anything here. 506 * Otherwise, recalculate the summary counters. 507 */ 508 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) && 509 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 510 return 0; 511 512 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 513 } 514 515 /* 516 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 517 * internal inode structures can be sitting in the CIL and AIL at this point, 518 * so we need to unpin them, write them back and/or reclaim them before unmount 519 * can proceed. In other words, callers are required to have inactivated all 520 * inodes. 521 * 522 * An inode cluster that has been freed can have its buffer still pinned in 523 * memory because the transaction is still sitting in a iclog. The stale inodes 524 * on that buffer will be pinned to the buffer until the transaction hits the 525 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 526 * may never see the pinned buffer, so nothing will push out the iclog and 527 * unpin the buffer. 528 * 529 * Hence we need to force the log to unpin everything first. However, log 530 * forces don't wait for the discards they issue to complete, so we have to 531 * explicitly wait for them to complete here as well. 532 * 533 * Then we can tell the world we are unmounting so that error handling knows 534 * that the filesystem is going away and we should error out anything that we 535 * have been retrying in the background. This will prevent never-ending 536 * retries in AIL pushing from hanging the unmount. 537 * 538 * Finally, we can push the AIL to clean all the remaining dirty objects, then 539 * reclaim the remaining inodes that are still in memory at this point in time. 540 */ 541 static void 542 xfs_unmount_flush_inodes( 543 struct xfs_mount *mp) 544 { 545 xfs_log_force(mp, XFS_LOG_SYNC); 546 xfs_extent_busy_wait_all(mp); 547 flush_workqueue(xfs_discard_wq); 548 549 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 550 551 xfs_ail_push_all_sync(mp->m_ail); 552 xfs_inodegc_stop(mp); 553 cancel_delayed_work_sync(&mp->m_reclaim_work); 554 xfs_reclaim_inodes(mp); 555 xfs_health_unmount(mp); 556 } 557 558 static void 559 xfs_mount_setup_inode_geom( 560 struct xfs_mount *mp) 561 { 562 struct xfs_ino_geometry *igeo = M_IGEO(mp); 563 564 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 565 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 566 567 xfs_ialloc_setup_geometry(mp); 568 } 569 570 /* Compute maximum possible height for per-AG btree types for this fs. */ 571 static inline void 572 xfs_agbtree_compute_maxlevels( 573 struct xfs_mount *mp) 574 { 575 unsigned int levels; 576 577 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 578 levels = max(levels, mp->m_rmap_maxlevels); 579 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 580 } 581 582 /* 583 * This function does the following on an initial mount of a file system: 584 * - reads the superblock from disk and init the mount struct 585 * - if we're a 32-bit kernel, do a size check on the superblock 586 * so we don't mount terabyte filesystems 587 * - init mount struct realtime fields 588 * - allocate inode hash table for fs 589 * - init directory manager 590 * - perform recovery and init the log manager 591 */ 592 int 593 xfs_mountfs( 594 struct xfs_mount *mp) 595 { 596 struct xfs_sb *sbp = &(mp->m_sb); 597 struct xfs_inode *rip; 598 struct xfs_ino_geometry *igeo = M_IGEO(mp); 599 uint64_t resblks; 600 uint quotamount = 0; 601 uint quotaflags = 0; 602 int error = 0; 603 604 xfs_sb_mount_common(mp, sbp); 605 606 /* 607 * Check for a mismatched features2 values. Older kernels read & wrote 608 * into the wrong sb offset for sb_features2 on some platforms due to 609 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 610 * which made older superblock reading/writing routines swap it as a 611 * 64-bit value. 612 * 613 * For backwards compatibility, we make both slots equal. 614 * 615 * If we detect a mismatched field, we OR the set bits into the existing 616 * features2 field in case it has already been modified; we don't want 617 * to lose any features. We then update the bad location with the ORed 618 * value so that older kernels will see any features2 flags. The 619 * superblock writeback code ensures the new sb_features2 is copied to 620 * sb_bad_features2 before it is logged or written to disk. 621 */ 622 if (xfs_sb_has_mismatched_features2(sbp)) { 623 xfs_warn(mp, "correcting sb_features alignment problem"); 624 sbp->sb_features2 |= sbp->sb_bad_features2; 625 mp->m_update_sb = true; 626 } 627 628 629 /* always use v2 inodes by default now */ 630 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 631 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 632 mp->m_features |= XFS_FEAT_NLINK; 633 mp->m_update_sb = true; 634 } 635 636 /* 637 * If we were given new sunit/swidth options, do some basic validation 638 * checks and convert the incore dalign and swidth values to the 639 * same units (FSB) that everything else uses. This /must/ happen 640 * before computing the inode geometry. 641 */ 642 error = xfs_validate_new_dalign(mp); 643 if (error) 644 goto out; 645 646 xfs_alloc_compute_maxlevels(mp); 647 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 648 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 649 xfs_mount_setup_inode_geom(mp); 650 xfs_rmapbt_compute_maxlevels(mp); 651 xfs_refcountbt_compute_maxlevels(mp); 652 653 xfs_agbtree_compute_maxlevels(mp); 654 655 /* 656 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 657 * is NOT aligned turn off m_dalign since allocator alignment is within 658 * an ag, therefore ag has to be aligned at stripe boundary. Note that 659 * we must compute the free space and rmap btree geometry before doing 660 * this. 661 */ 662 error = xfs_update_alignment(mp); 663 if (error) 664 goto out; 665 666 /* enable fail_at_unmount as default */ 667 mp->m_fail_unmount = true; 668 669 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 670 NULL, mp->m_super->s_id); 671 if (error) 672 goto out; 673 674 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 675 &mp->m_kobj, "stats"); 676 if (error) 677 goto out_remove_sysfs; 678 679 error = xfs_error_sysfs_init(mp); 680 if (error) 681 goto out_del_stats; 682 683 error = xfs_errortag_init(mp); 684 if (error) 685 goto out_remove_error_sysfs; 686 687 error = xfs_uuid_mount(mp); 688 if (error) 689 goto out_remove_errortag; 690 691 /* 692 * Update the preferred write size based on the information from the 693 * on-disk superblock. 694 */ 695 mp->m_allocsize_log = 696 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 697 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 698 699 /* set the low space thresholds for dynamic preallocation */ 700 xfs_set_low_space_thresholds(mp); 701 702 /* 703 * If enabled, sparse inode chunk alignment is expected to match the 704 * cluster size. Full inode chunk alignment must match the chunk size, 705 * but that is checked on sb read verification... 706 */ 707 if (xfs_has_sparseinodes(mp) && 708 mp->m_sb.sb_spino_align != 709 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 710 xfs_warn(mp, 711 "Sparse inode block alignment (%u) must match cluster size (%llu).", 712 mp->m_sb.sb_spino_align, 713 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 714 error = -EINVAL; 715 goto out_remove_uuid; 716 } 717 718 /* 719 * Check that the data (and log if separate) is an ok size. 720 */ 721 error = xfs_check_sizes(mp); 722 if (error) 723 goto out_remove_uuid; 724 725 /* 726 * Initialize realtime fields in the mount structure 727 */ 728 error = xfs_rtmount_init(mp); 729 if (error) { 730 xfs_warn(mp, "RT mount failed"); 731 goto out_remove_uuid; 732 } 733 734 /* 735 * Copies the low order bits of the timestamp and the randomly 736 * set "sequence" number out of a UUID. 737 */ 738 mp->m_fixedfsid[0] = 739 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 740 get_unaligned_be16(&sbp->sb_uuid.b[4]); 741 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 742 743 error = xfs_da_mount(mp); 744 if (error) { 745 xfs_warn(mp, "Failed dir/attr init: %d", error); 746 goto out_remove_uuid; 747 } 748 749 /* 750 * Initialize the precomputed transaction reservations values. 751 */ 752 xfs_trans_init(mp); 753 754 /* 755 * Allocate and initialize the per-ag data. 756 */ 757 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 758 if (error) { 759 xfs_warn(mp, "Failed per-ag init: %d", error); 760 goto out_free_dir; 761 } 762 763 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 764 xfs_warn(mp, "no log defined"); 765 error = -EFSCORRUPTED; 766 goto out_free_perag; 767 } 768 769 error = xfs_inodegc_register_shrinker(mp); 770 if (error) 771 goto out_fail_wait; 772 773 /* 774 * Log's mount-time initialization. The first part of recovery can place 775 * some items on the AIL, to be handled when recovery is finished or 776 * cancelled. 777 */ 778 error = xfs_log_mount(mp, mp->m_logdev_targp, 779 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 780 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 781 if (error) { 782 xfs_warn(mp, "log mount failed"); 783 goto out_inodegc_shrinker; 784 } 785 786 /* Make sure the summary counts are ok. */ 787 error = xfs_check_summary_counts(mp); 788 if (error) 789 goto out_log_dealloc; 790 791 /* Enable background inode inactivation workers. */ 792 xfs_inodegc_start(mp); 793 xfs_blockgc_start(mp); 794 795 /* 796 * Now that we've recovered any pending superblock feature bit 797 * additions, we can finish setting up the attr2 behaviour for the 798 * mount. The noattr2 option overrides the superblock flag, so only 799 * check the superblock feature flag if the mount option is not set. 800 */ 801 if (xfs_has_noattr2(mp)) { 802 mp->m_features &= ~XFS_FEAT_ATTR2; 803 } else if (!xfs_has_attr2(mp) && 804 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 805 mp->m_features |= XFS_FEAT_ATTR2; 806 } 807 808 /* 809 * Get and sanity-check the root inode. 810 * Save the pointer to it in the mount structure. 811 */ 812 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 813 XFS_ILOCK_EXCL, &rip); 814 if (error) { 815 xfs_warn(mp, 816 "Failed to read root inode 0x%llx, error %d", 817 sbp->sb_rootino, -error); 818 goto out_log_dealloc; 819 } 820 821 ASSERT(rip != NULL); 822 823 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 824 xfs_warn(mp, "corrupted root inode %llu: not a directory", 825 (unsigned long long)rip->i_ino); 826 xfs_iunlock(rip, XFS_ILOCK_EXCL); 827 error = -EFSCORRUPTED; 828 goto out_rele_rip; 829 } 830 mp->m_rootip = rip; /* save it */ 831 832 xfs_iunlock(rip, XFS_ILOCK_EXCL); 833 834 /* 835 * Initialize realtime inode pointers in the mount structure 836 */ 837 error = xfs_rtmount_inodes(mp); 838 if (error) { 839 /* 840 * Free up the root inode. 841 */ 842 xfs_warn(mp, "failed to read RT inodes"); 843 goto out_rele_rip; 844 } 845 846 /* 847 * If this is a read-only mount defer the superblock updates until 848 * the next remount into writeable mode. Otherwise we would never 849 * perform the update e.g. for the root filesystem. 850 */ 851 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 852 error = xfs_sync_sb(mp, false); 853 if (error) { 854 xfs_warn(mp, "failed to write sb changes"); 855 goto out_rtunmount; 856 } 857 } 858 859 /* 860 * Initialise the XFS quota management subsystem for this mount 861 */ 862 if (XFS_IS_QUOTA_ON(mp)) { 863 error = xfs_qm_newmount(mp, "amount, "aflags); 864 if (error) 865 goto out_rtunmount; 866 } else { 867 /* 868 * If a file system had quotas running earlier, but decided to 869 * mount without -o uquota/pquota/gquota options, revoke the 870 * quotachecked license. 871 */ 872 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 873 xfs_notice(mp, "resetting quota flags"); 874 error = xfs_mount_reset_sbqflags(mp); 875 if (error) 876 goto out_rtunmount; 877 } 878 } 879 880 /* 881 * Finish recovering the file system. This part needed to be delayed 882 * until after the root and real-time bitmap inodes were consistently 883 * read in. Temporarily create per-AG space reservations for metadata 884 * btree shape changes because space freeing transactions (for inode 885 * inactivation) require the per-AG reservation in lieu of reserving 886 * blocks. 887 */ 888 error = xfs_fs_reserve_ag_blocks(mp); 889 if (error && error == -ENOSPC) 890 xfs_warn(mp, 891 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 892 error = xfs_log_mount_finish(mp); 893 xfs_fs_unreserve_ag_blocks(mp); 894 if (error) { 895 xfs_warn(mp, "log mount finish failed"); 896 goto out_rtunmount; 897 } 898 899 /* 900 * Now the log is fully replayed, we can transition to full read-only 901 * mode for read-only mounts. This will sync all the metadata and clean 902 * the log so that the recovery we just performed does not have to be 903 * replayed again on the next mount. 904 * 905 * We use the same quiesce mechanism as the rw->ro remount, as they are 906 * semantically identical operations. 907 */ 908 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 909 xfs_log_clean(mp); 910 911 /* 912 * Complete the quota initialisation, post-log-replay component. 913 */ 914 if (quotamount) { 915 ASSERT(mp->m_qflags == 0); 916 mp->m_qflags = quotaflags; 917 918 xfs_qm_mount_quotas(mp); 919 } 920 921 /* 922 * Now we are mounted, reserve a small amount of unused space for 923 * privileged transactions. This is needed so that transaction 924 * space required for critical operations can dip into this pool 925 * when at ENOSPC. This is needed for operations like create with 926 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 927 * are not allowed to use this reserved space. 928 * 929 * This may drive us straight to ENOSPC on mount, but that implies 930 * we were already there on the last unmount. Warn if this occurs. 931 */ 932 if (!xfs_is_readonly(mp)) { 933 resblks = xfs_default_resblks(mp); 934 error = xfs_reserve_blocks(mp, &resblks, NULL); 935 if (error) 936 xfs_warn(mp, 937 "Unable to allocate reserve blocks. Continuing without reserve pool."); 938 939 /* Recover any CoW blocks that never got remapped. */ 940 error = xfs_reflink_recover_cow(mp); 941 if (error) { 942 xfs_err(mp, 943 "Error %d recovering leftover CoW allocations.", error); 944 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 945 goto out_quota; 946 } 947 948 /* Reserve AG blocks for future btree expansion. */ 949 error = xfs_fs_reserve_ag_blocks(mp); 950 if (error && error != -ENOSPC) 951 goto out_agresv; 952 } 953 954 return 0; 955 956 out_agresv: 957 xfs_fs_unreserve_ag_blocks(mp); 958 out_quota: 959 xfs_qm_unmount_quotas(mp); 960 out_rtunmount: 961 xfs_rtunmount_inodes(mp); 962 out_rele_rip: 963 xfs_irele(rip); 964 /* Clean out dquots that might be in memory after quotacheck. */ 965 xfs_qm_unmount(mp); 966 967 /* 968 * Inactivate all inodes that might still be in memory after a log 969 * intent recovery failure so that reclaim can free them. Metadata 970 * inodes and the root directory shouldn't need inactivation, but the 971 * mount failed for some reason, so pull down all the state and flee. 972 */ 973 xfs_inodegc_flush(mp); 974 975 /* 976 * Flush all inode reclamation work and flush the log. 977 * We have to do this /after/ rtunmount and qm_unmount because those 978 * two will have scheduled delayed reclaim for the rt/quota inodes. 979 * 980 * This is slightly different from the unmountfs call sequence 981 * because we could be tearing down a partially set up mount. In 982 * particular, if log_mount_finish fails we bail out without calling 983 * qm_unmount_quotas and therefore rely on qm_unmount to release the 984 * quota inodes. 985 */ 986 xfs_unmount_flush_inodes(mp); 987 out_log_dealloc: 988 xfs_log_mount_cancel(mp); 989 out_inodegc_shrinker: 990 unregister_shrinker(&mp->m_inodegc_shrinker); 991 out_fail_wait: 992 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 993 xfs_buftarg_drain(mp->m_logdev_targp); 994 xfs_buftarg_drain(mp->m_ddev_targp); 995 out_free_perag: 996 xfs_free_perag(mp); 997 out_free_dir: 998 xfs_da_unmount(mp); 999 out_remove_uuid: 1000 xfs_uuid_unmount(mp); 1001 out_remove_errortag: 1002 xfs_errortag_del(mp); 1003 out_remove_error_sysfs: 1004 xfs_error_sysfs_del(mp); 1005 out_del_stats: 1006 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1007 out_remove_sysfs: 1008 xfs_sysfs_del(&mp->m_kobj); 1009 out: 1010 return error; 1011 } 1012 1013 /* 1014 * This flushes out the inodes,dquots and the superblock, unmounts the 1015 * log and makes sure that incore structures are freed. 1016 */ 1017 void 1018 xfs_unmountfs( 1019 struct xfs_mount *mp) 1020 { 1021 uint64_t resblks; 1022 int error; 1023 1024 /* 1025 * Perform all on-disk metadata updates required to inactivate inodes 1026 * that the VFS evicted earlier in the unmount process. Freeing inodes 1027 * and discarding CoW fork preallocations can cause shape changes to 1028 * the free inode and refcount btrees, respectively, so we must finish 1029 * this before we discard the metadata space reservations. Metadata 1030 * inodes and the root directory do not require inactivation. 1031 */ 1032 xfs_inodegc_flush(mp); 1033 1034 xfs_blockgc_stop(mp); 1035 xfs_fs_unreserve_ag_blocks(mp); 1036 xfs_qm_unmount_quotas(mp); 1037 xfs_rtunmount_inodes(mp); 1038 xfs_irele(mp->m_rootip); 1039 1040 xfs_unmount_flush_inodes(mp); 1041 1042 xfs_qm_unmount(mp); 1043 1044 /* 1045 * Unreserve any blocks we have so that when we unmount we don't account 1046 * the reserved free space as used. This is really only necessary for 1047 * lazy superblock counting because it trusts the incore superblock 1048 * counters to be absolutely correct on clean unmount. 1049 * 1050 * We don't bother correcting this elsewhere for lazy superblock 1051 * counting because on mount of an unclean filesystem we reconstruct the 1052 * correct counter value and this is irrelevant. 1053 * 1054 * For non-lazy counter filesystems, this doesn't matter at all because 1055 * we only every apply deltas to the superblock and hence the incore 1056 * value does not matter.... 1057 */ 1058 resblks = 0; 1059 error = xfs_reserve_blocks(mp, &resblks, NULL); 1060 if (error) 1061 xfs_warn(mp, "Unable to free reserved block pool. " 1062 "Freespace may not be correct on next mount."); 1063 1064 xfs_log_unmount(mp); 1065 xfs_da_unmount(mp); 1066 xfs_uuid_unmount(mp); 1067 1068 #if defined(DEBUG) 1069 xfs_errortag_clearall(mp); 1070 #endif 1071 unregister_shrinker(&mp->m_inodegc_shrinker); 1072 xfs_free_perag(mp); 1073 1074 xfs_errortag_del(mp); 1075 xfs_error_sysfs_del(mp); 1076 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1077 xfs_sysfs_del(&mp->m_kobj); 1078 } 1079 1080 /* 1081 * Determine whether modifications can proceed. The caller specifies the minimum 1082 * freeze level for which modifications should not be allowed. This allows 1083 * certain operations to proceed while the freeze sequence is in progress, if 1084 * necessary. 1085 */ 1086 bool 1087 xfs_fs_writable( 1088 struct xfs_mount *mp, 1089 int level) 1090 { 1091 ASSERT(level > SB_UNFROZEN); 1092 if ((mp->m_super->s_writers.frozen >= level) || 1093 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1094 return false; 1095 1096 return true; 1097 } 1098 1099 int 1100 xfs_mod_fdblocks( 1101 struct xfs_mount *mp, 1102 int64_t delta, 1103 bool rsvd) 1104 { 1105 int64_t lcounter; 1106 long long res_used; 1107 s32 batch; 1108 uint64_t set_aside; 1109 1110 if (delta > 0) { 1111 /* 1112 * If the reserve pool is depleted, put blocks back into it 1113 * first. Most of the time the pool is full. 1114 */ 1115 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1116 percpu_counter_add(&mp->m_fdblocks, delta); 1117 return 0; 1118 } 1119 1120 spin_lock(&mp->m_sb_lock); 1121 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1122 1123 if (res_used > delta) { 1124 mp->m_resblks_avail += delta; 1125 } else { 1126 delta -= res_used; 1127 mp->m_resblks_avail = mp->m_resblks; 1128 percpu_counter_add(&mp->m_fdblocks, delta); 1129 } 1130 spin_unlock(&mp->m_sb_lock); 1131 return 0; 1132 } 1133 1134 /* 1135 * Taking blocks away, need to be more accurate the closer we 1136 * are to zero. 1137 * 1138 * If the counter has a value of less than 2 * max batch size, 1139 * then make everything serialise as we are real close to 1140 * ENOSPC. 1141 */ 1142 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1143 XFS_FDBLOCKS_BATCH) < 0) 1144 batch = 1; 1145 else 1146 batch = XFS_FDBLOCKS_BATCH; 1147 1148 /* 1149 * Set aside allocbt blocks because these blocks are tracked as free 1150 * space but not available for allocation. Technically this means that a 1151 * single reservation cannot consume all remaining free space, but the 1152 * ratio of allocbt blocks to usable free blocks should be rather small. 1153 * The tradeoff without this is that filesystems that maintain high 1154 * perag block reservations can over reserve physical block availability 1155 * and fail physical allocation, which leads to much more serious 1156 * problems (i.e. transaction abort, pagecache discards, etc.) than 1157 * slightly premature -ENOSPC. 1158 */ 1159 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks); 1160 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1161 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside, 1162 XFS_FDBLOCKS_BATCH) >= 0) { 1163 /* we had space! */ 1164 return 0; 1165 } 1166 1167 /* 1168 * lock up the sb for dipping into reserves before releasing the space 1169 * that took us to ENOSPC. 1170 */ 1171 spin_lock(&mp->m_sb_lock); 1172 percpu_counter_add(&mp->m_fdblocks, -delta); 1173 if (!rsvd) 1174 goto fdblocks_enospc; 1175 1176 lcounter = (long long)mp->m_resblks_avail + delta; 1177 if (lcounter >= 0) { 1178 mp->m_resblks_avail = lcounter; 1179 spin_unlock(&mp->m_sb_lock); 1180 return 0; 1181 } 1182 xfs_warn_once(mp, 1183 "Reserve blocks depleted! Consider increasing reserve pool size."); 1184 1185 fdblocks_enospc: 1186 spin_unlock(&mp->m_sb_lock); 1187 return -ENOSPC; 1188 } 1189 1190 int 1191 xfs_mod_frextents( 1192 struct xfs_mount *mp, 1193 int64_t delta) 1194 { 1195 int64_t lcounter; 1196 int ret = 0; 1197 1198 spin_lock(&mp->m_sb_lock); 1199 lcounter = mp->m_sb.sb_frextents + delta; 1200 if (lcounter < 0) 1201 ret = -ENOSPC; 1202 else 1203 mp->m_sb.sb_frextents = lcounter; 1204 spin_unlock(&mp->m_sb_lock); 1205 return ret; 1206 } 1207 1208 /* 1209 * Used to free the superblock along various error paths. 1210 */ 1211 void 1212 xfs_freesb( 1213 struct xfs_mount *mp) 1214 { 1215 struct xfs_buf *bp = mp->m_sb_bp; 1216 1217 xfs_buf_lock(bp); 1218 mp->m_sb_bp = NULL; 1219 xfs_buf_relse(bp); 1220 } 1221 1222 /* 1223 * If the underlying (data/log/rt) device is readonly, there are some 1224 * operations that cannot proceed. 1225 */ 1226 int 1227 xfs_dev_is_read_only( 1228 struct xfs_mount *mp, 1229 char *message) 1230 { 1231 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1232 xfs_readonly_buftarg(mp->m_logdev_targp) || 1233 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1234 xfs_notice(mp, "%s required on read-only device.", message); 1235 xfs_notice(mp, "write access unavailable, cannot proceed."); 1236 return -EROFS; 1237 } 1238 return 0; 1239 } 1240 1241 /* Force the summary counters to be recalculated at next mount. */ 1242 void 1243 xfs_force_summary_recalc( 1244 struct xfs_mount *mp) 1245 { 1246 if (!xfs_has_lazysbcount(mp)) 1247 return; 1248 1249 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1250 } 1251 1252 /* 1253 * Enable a log incompat feature flag in the primary superblock. The caller 1254 * cannot have any other transactions in progress. 1255 */ 1256 int 1257 xfs_add_incompat_log_feature( 1258 struct xfs_mount *mp, 1259 uint32_t feature) 1260 { 1261 struct xfs_dsb *dsb; 1262 int error; 1263 1264 ASSERT(hweight32(feature) == 1); 1265 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1266 1267 /* 1268 * Force the log to disk and kick the background AIL thread to reduce 1269 * the chances that the bwrite will stall waiting for the AIL to unpin 1270 * the primary superblock buffer. This isn't a data integrity 1271 * operation, so we don't need a synchronous push. 1272 */ 1273 error = xfs_log_force(mp, XFS_LOG_SYNC); 1274 if (error) 1275 return error; 1276 xfs_ail_push_all(mp->m_ail); 1277 1278 /* 1279 * Lock the primary superblock buffer to serialize all callers that 1280 * are trying to set feature bits. 1281 */ 1282 xfs_buf_lock(mp->m_sb_bp); 1283 xfs_buf_hold(mp->m_sb_bp); 1284 1285 if (xfs_is_shutdown(mp)) { 1286 error = -EIO; 1287 goto rele; 1288 } 1289 1290 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1291 goto rele; 1292 1293 /* 1294 * Write the primary superblock to disk immediately, because we need 1295 * the log_incompat bit to be set in the primary super now to protect 1296 * the log items that we're going to commit later. 1297 */ 1298 dsb = mp->m_sb_bp->b_addr; 1299 xfs_sb_to_disk(dsb, &mp->m_sb); 1300 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1301 error = xfs_bwrite(mp->m_sb_bp); 1302 if (error) 1303 goto shutdown; 1304 1305 /* 1306 * Add the feature bits to the incore superblock before we unlock the 1307 * buffer. 1308 */ 1309 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1310 xfs_buf_relse(mp->m_sb_bp); 1311 1312 /* Log the superblock to disk. */ 1313 return xfs_sync_sb(mp, false); 1314 shutdown: 1315 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1316 rele: 1317 xfs_buf_relse(mp->m_sb_bp); 1318 return error; 1319 } 1320 1321 /* 1322 * Clear all the log incompat flags from the superblock. 1323 * 1324 * The caller cannot be in a transaction, must ensure that the log does not 1325 * contain any log items protected by any log incompat bit, and must ensure 1326 * that there are no other threads that depend on the state of the log incompat 1327 * feature flags in the primary super. 1328 * 1329 * Returns true if the superblock is dirty. 1330 */ 1331 bool 1332 xfs_clear_incompat_log_features( 1333 struct xfs_mount *mp) 1334 { 1335 bool ret = false; 1336 1337 if (!xfs_has_crc(mp) || 1338 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1339 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1340 xfs_is_shutdown(mp)) 1341 return false; 1342 1343 /* 1344 * Update the incore superblock. We synchronize on the primary super 1345 * buffer lock to be consistent with the add function, though at least 1346 * in theory this shouldn't be necessary. 1347 */ 1348 xfs_buf_lock(mp->m_sb_bp); 1349 xfs_buf_hold(mp->m_sb_bp); 1350 1351 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1352 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1353 xfs_info(mp, "Clearing log incompat feature flags."); 1354 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1355 ret = true; 1356 } 1357 1358 xfs_buf_relse(mp->m_sb_bp); 1359 return ret; 1360 } 1361 1362 /* 1363 * Update the in-core delayed block counter. 1364 * 1365 * We prefer to update the counter without having to take a spinlock for every 1366 * counter update (i.e. batching). Each change to delayed allocation 1367 * reservations can change can easily exceed the default percpu counter 1368 * batching, so we use a larger batch factor here. 1369 * 1370 * Note that we don't currently have any callers requiring fast summation 1371 * (e.g. percpu_counter_read) so we can use a big batch value here. 1372 */ 1373 #define XFS_DELALLOC_BATCH (4096) 1374 void 1375 xfs_mod_delalloc( 1376 struct xfs_mount *mp, 1377 int64_t delta) 1378 { 1379 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1380 XFS_DELALLOC_BATCH); 1381 } 1382