1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 35 36 static DEFINE_MUTEX(xfs_uuid_table_mutex); 37 static int xfs_uuid_table_size; 38 static uuid_t *xfs_uuid_table; 39 40 void 41 xfs_uuid_table_free(void) 42 { 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48 } 49 50 /* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54 STATIC int 55 xfs_uuid_mount( 56 struct xfs_mount *mp) 57 { 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 0); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97 } 98 99 STATIC void 100 xfs_uuid_unmount( 101 struct xfs_mount *mp) 102 { 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120 } 121 122 123 STATIC void 124 __xfs_free_perag( 125 struct rcu_head *head) 126 { 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 ASSERT(atomic_read(&pag->pag_ref) == 0); 130 kmem_free(pag); 131 } 132 133 /* 134 * Free up the per-ag resources associated with the mount structure. 135 */ 136 STATIC void 137 xfs_free_perag( 138 xfs_mount_t *mp) 139 { 140 xfs_agnumber_t agno; 141 struct xfs_perag *pag; 142 143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 144 spin_lock(&mp->m_perag_lock); 145 pag = radix_tree_delete(&mp->m_perag_tree, agno); 146 spin_unlock(&mp->m_perag_lock); 147 ASSERT(pag); 148 ASSERT(atomic_read(&pag->pag_ref) == 0); 149 xfs_iunlink_destroy(pag); 150 xfs_buf_hash_destroy(pag); 151 mutex_destroy(&pag->pag_ici_reclaim_lock); 152 call_rcu(&pag->rcu_head, __xfs_free_perag); 153 } 154 } 155 156 /* 157 * Check size of device based on the (data/realtime) block count. 158 * Note: this check is used by the growfs code as well as mount. 159 */ 160 int 161 xfs_sb_validate_fsb_count( 162 xfs_sb_t *sbp, 163 uint64_t nblocks) 164 { 165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 166 ASSERT(sbp->sb_blocklog >= BBSHIFT); 167 168 /* Limited by ULONG_MAX of page cache index */ 169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 170 return -EFBIG; 171 return 0; 172 } 173 174 int 175 xfs_initialize_perag( 176 xfs_mount_t *mp, 177 xfs_agnumber_t agcount, 178 xfs_agnumber_t *maxagi) 179 { 180 xfs_agnumber_t index; 181 xfs_agnumber_t first_initialised = NULLAGNUMBER; 182 xfs_perag_t *pag; 183 int error = -ENOMEM; 184 185 /* 186 * Walk the current per-ag tree so we don't try to initialise AGs 187 * that already exist (growfs case). Allocate and insert all the 188 * AGs we don't find ready for initialisation. 189 */ 190 for (index = 0; index < agcount; index++) { 191 pag = xfs_perag_get(mp, index); 192 if (pag) { 193 xfs_perag_put(pag); 194 continue; 195 } 196 197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 198 if (!pag) 199 goto out_unwind_new_pags; 200 pag->pag_agno = index; 201 pag->pag_mount = mp; 202 spin_lock_init(&pag->pag_ici_lock); 203 mutex_init(&pag->pag_ici_reclaim_lock); 204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 205 if (xfs_buf_hash_init(pag)) 206 goto out_free_pag; 207 init_waitqueue_head(&pag->pagb_wait); 208 spin_lock_init(&pag->pagb_lock); 209 pag->pagb_count = 0; 210 pag->pagb_tree = RB_ROOT; 211 212 if (radix_tree_preload(GFP_NOFS)) 213 goto out_hash_destroy; 214 215 spin_lock(&mp->m_perag_lock); 216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 217 WARN_ON_ONCE(1); 218 spin_unlock(&mp->m_perag_lock); 219 radix_tree_preload_end(); 220 error = -EEXIST; 221 goto out_hash_destroy; 222 } 223 spin_unlock(&mp->m_perag_lock); 224 radix_tree_preload_end(); 225 /* first new pag is fully initialized */ 226 if (first_initialised == NULLAGNUMBER) 227 first_initialised = index; 228 error = xfs_iunlink_init(pag); 229 if (error) 230 goto out_hash_destroy; 231 spin_lock_init(&pag->pag_state_lock); 232 } 233 234 index = xfs_set_inode_alloc(mp, agcount); 235 236 if (maxagi) 237 *maxagi = index; 238 239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 240 return 0; 241 242 out_hash_destroy: 243 xfs_buf_hash_destroy(pag); 244 out_free_pag: 245 mutex_destroy(&pag->pag_ici_reclaim_lock); 246 kmem_free(pag); 247 out_unwind_new_pags: 248 /* unwind any prior newly initialized pags */ 249 for (index = first_initialised; index < agcount; index++) { 250 pag = radix_tree_delete(&mp->m_perag_tree, index); 251 if (!pag) 252 break; 253 xfs_buf_hash_destroy(pag); 254 xfs_iunlink_destroy(pag); 255 mutex_destroy(&pag->pag_ici_reclaim_lock); 256 kmem_free(pag); 257 } 258 return error; 259 } 260 261 /* 262 * xfs_readsb 263 * 264 * Does the initial read of the superblock. 265 */ 266 int 267 xfs_readsb( 268 struct xfs_mount *mp, 269 int flags) 270 { 271 unsigned int sector_size; 272 struct xfs_buf *bp; 273 struct xfs_sb *sbp = &mp->m_sb; 274 int error; 275 int loud = !(flags & XFS_MFSI_QUIET); 276 const struct xfs_buf_ops *buf_ops; 277 278 ASSERT(mp->m_sb_bp == NULL); 279 ASSERT(mp->m_ddev_targp != NULL); 280 281 /* 282 * For the initial read, we must guess at the sector 283 * size based on the block device. It's enough to 284 * get the sb_sectsize out of the superblock and 285 * then reread with the proper length. 286 * We don't verify it yet, because it may not be complete. 287 */ 288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 289 buf_ops = NULL; 290 291 /* 292 * Allocate a (locked) buffer to hold the superblock. This will be kept 293 * around at all times to optimize access to the superblock. Therefore, 294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 295 * elevated. 296 */ 297 reread: 298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 299 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 300 buf_ops); 301 if (error) { 302 if (loud) 303 xfs_warn(mp, "SB validate failed with error %d.", error); 304 /* bad CRC means corrupted metadata */ 305 if (error == -EFSBADCRC) 306 error = -EFSCORRUPTED; 307 return error; 308 } 309 310 /* 311 * Initialize the mount structure from the superblock. 312 */ 313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 314 315 /* 316 * If we haven't validated the superblock, do so now before we try 317 * to check the sector size and reread the superblock appropriately. 318 */ 319 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 320 if (loud) 321 xfs_warn(mp, "Invalid superblock magic number"); 322 error = -EINVAL; 323 goto release_buf; 324 } 325 326 /* 327 * We must be able to do sector-sized and sector-aligned IO. 328 */ 329 if (sector_size > sbp->sb_sectsize) { 330 if (loud) 331 xfs_warn(mp, "device supports %u byte sectors (not %u)", 332 sector_size, sbp->sb_sectsize); 333 error = -ENOSYS; 334 goto release_buf; 335 } 336 337 if (buf_ops == NULL) { 338 /* 339 * Re-read the superblock so the buffer is correctly sized, 340 * and properly verified. 341 */ 342 xfs_buf_relse(bp); 343 sector_size = sbp->sb_sectsize; 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 345 goto reread; 346 } 347 348 xfs_reinit_percpu_counters(mp); 349 350 /* no need to be quiet anymore, so reset the buf ops */ 351 bp->b_ops = &xfs_sb_buf_ops; 352 353 mp->m_sb_bp = bp; 354 xfs_buf_unlock(bp); 355 return 0; 356 357 release_buf: 358 xfs_buf_relse(bp); 359 return error; 360 } 361 362 /* 363 * Update alignment values based on mount options and sb values 364 */ 365 STATIC int 366 xfs_update_alignment(xfs_mount_t *mp) 367 { 368 xfs_sb_t *sbp = &(mp->m_sb); 369 370 if (mp->m_dalign) { 371 /* 372 * If stripe unit and stripe width are not multiples 373 * of the fs blocksize turn off alignment. 374 */ 375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 377 xfs_warn(mp, 378 "alignment check failed: sunit/swidth vs. blocksize(%d)", 379 sbp->sb_blocksize); 380 return -EINVAL; 381 } else { 382 /* 383 * Convert the stripe unit and width to FSBs. 384 */ 385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 387 xfs_warn(mp, 388 "alignment check failed: sunit/swidth vs. agsize(%d)", 389 sbp->sb_agblocks); 390 return -EINVAL; 391 } else if (mp->m_dalign) { 392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 393 } else { 394 xfs_warn(mp, 395 "alignment check failed: sunit(%d) less than bsize(%d)", 396 mp->m_dalign, sbp->sb_blocksize); 397 return -EINVAL; 398 } 399 } 400 401 /* 402 * Update superblock with new values 403 * and log changes 404 */ 405 if (xfs_sb_version_hasdalign(sbp)) { 406 if (sbp->sb_unit != mp->m_dalign) { 407 sbp->sb_unit = mp->m_dalign; 408 mp->m_update_sb = true; 409 } 410 if (sbp->sb_width != mp->m_swidth) { 411 sbp->sb_width = mp->m_swidth; 412 mp->m_update_sb = true; 413 } 414 } else { 415 xfs_warn(mp, 416 "cannot change alignment: superblock does not support data alignment"); 417 return -EINVAL; 418 } 419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 420 xfs_sb_version_hasdalign(&mp->m_sb)) { 421 mp->m_dalign = sbp->sb_unit; 422 mp->m_swidth = sbp->sb_width; 423 } 424 425 return 0; 426 } 427 428 /* 429 * precalculate the low space thresholds for dynamic speculative preallocation. 430 */ 431 void 432 xfs_set_low_space_thresholds( 433 struct xfs_mount *mp) 434 { 435 int i; 436 437 for (i = 0; i < XFS_LOWSP_MAX; i++) { 438 uint64_t space = mp->m_sb.sb_dblocks; 439 440 do_div(space, 100); 441 mp->m_low_space[i] = space * (i + 1); 442 } 443 } 444 445 /* 446 * Check that the data (and log if separate) is an ok size. 447 */ 448 STATIC int 449 xfs_check_sizes( 450 struct xfs_mount *mp) 451 { 452 struct xfs_buf *bp; 453 xfs_daddr_t d; 454 int error; 455 456 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 457 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 458 xfs_warn(mp, "filesystem size mismatch detected"); 459 return -EFBIG; 460 } 461 error = xfs_buf_read_uncached(mp->m_ddev_targp, 462 d - XFS_FSS_TO_BB(mp, 1), 463 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 464 if (error) { 465 xfs_warn(mp, "last sector read failed"); 466 return error; 467 } 468 xfs_buf_relse(bp); 469 470 if (mp->m_logdev_targp == mp->m_ddev_targp) 471 return 0; 472 473 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 474 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 475 xfs_warn(mp, "log size mismatch detected"); 476 return -EFBIG; 477 } 478 error = xfs_buf_read_uncached(mp->m_logdev_targp, 479 d - XFS_FSB_TO_BB(mp, 1), 480 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 481 if (error) { 482 xfs_warn(mp, "log device read failed"); 483 return error; 484 } 485 xfs_buf_relse(bp); 486 return 0; 487 } 488 489 /* 490 * Clear the quotaflags in memory and in the superblock. 491 */ 492 int 493 xfs_mount_reset_sbqflags( 494 struct xfs_mount *mp) 495 { 496 mp->m_qflags = 0; 497 498 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 499 if (mp->m_sb.sb_qflags == 0) 500 return 0; 501 spin_lock(&mp->m_sb_lock); 502 mp->m_sb.sb_qflags = 0; 503 spin_unlock(&mp->m_sb_lock); 504 505 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 506 return 0; 507 508 return xfs_sync_sb(mp, false); 509 } 510 511 uint64_t 512 xfs_default_resblks(xfs_mount_t *mp) 513 { 514 uint64_t resblks; 515 516 /* 517 * We default to 5% or 8192 fsbs of space reserved, whichever is 518 * smaller. This is intended to cover concurrent allocation 519 * transactions when we initially hit enospc. These each require a 4 520 * block reservation. Hence by default we cover roughly 2000 concurrent 521 * allocation reservations. 522 */ 523 resblks = mp->m_sb.sb_dblocks; 524 do_div(resblks, 20); 525 resblks = min_t(uint64_t, resblks, 8192); 526 return resblks; 527 } 528 529 /* Ensure the summary counts are correct. */ 530 STATIC int 531 xfs_check_summary_counts( 532 struct xfs_mount *mp) 533 { 534 /* 535 * The AG0 superblock verifier rejects in-progress filesystems, 536 * so we should never see the flag set this far into mounting. 537 */ 538 if (mp->m_sb.sb_inprogress) { 539 xfs_err(mp, "sb_inprogress set after log recovery??"); 540 WARN_ON(1); 541 return -EFSCORRUPTED; 542 } 543 544 /* 545 * Now the log is mounted, we know if it was an unclean shutdown or 546 * not. If it was, with the first phase of recovery has completed, we 547 * have consistent AG blocks on disk. We have not recovered EFIs yet, 548 * but they are recovered transactionally in the second recovery phase 549 * later. 550 * 551 * If the log was clean when we mounted, we can check the summary 552 * counters. If any of them are obviously incorrect, we can recompute 553 * them from the AGF headers in the next step. 554 */ 555 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 556 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 557 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 558 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 559 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 560 561 /* 562 * We can safely re-initialise incore superblock counters from the 563 * per-ag data. These may not be correct if the filesystem was not 564 * cleanly unmounted, so we waited for recovery to finish before doing 565 * this. 566 * 567 * If the filesystem was cleanly unmounted or the previous check did 568 * not flag anything weird, then we can trust the values in the 569 * superblock to be correct and we don't need to do anything here. 570 * Otherwise, recalculate the summary counters. 571 */ 572 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 573 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 574 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 575 return 0; 576 577 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 578 } 579 580 /* 581 * This function does the following on an initial mount of a file system: 582 * - reads the superblock from disk and init the mount struct 583 * - if we're a 32-bit kernel, do a size check on the superblock 584 * so we don't mount terabyte filesystems 585 * - init mount struct realtime fields 586 * - allocate inode hash table for fs 587 * - init directory manager 588 * - perform recovery and init the log manager 589 */ 590 int 591 xfs_mountfs( 592 struct xfs_mount *mp) 593 { 594 struct xfs_sb *sbp = &(mp->m_sb); 595 struct xfs_inode *rip; 596 struct xfs_ino_geometry *igeo = M_IGEO(mp); 597 uint64_t resblks; 598 uint quotamount = 0; 599 uint quotaflags = 0; 600 int error = 0; 601 602 xfs_sb_mount_common(mp, sbp); 603 604 /* 605 * Check for a mismatched features2 values. Older kernels read & wrote 606 * into the wrong sb offset for sb_features2 on some platforms due to 607 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 608 * which made older superblock reading/writing routines swap it as a 609 * 64-bit value. 610 * 611 * For backwards compatibility, we make both slots equal. 612 * 613 * If we detect a mismatched field, we OR the set bits into the existing 614 * features2 field in case it has already been modified; we don't want 615 * to lose any features. We then update the bad location with the ORed 616 * value so that older kernels will see any features2 flags. The 617 * superblock writeback code ensures the new sb_features2 is copied to 618 * sb_bad_features2 before it is logged or written to disk. 619 */ 620 if (xfs_sb_has_mismatched_features2(sbp)) { 621 xfs_warn(mp, "correcting sb_features alignment problem"); 622 sbp->sb_features2 |= sbp->sb_bad_features2; 623 mp->m_update_sb = true; 624 625 /* 626 * Re-check for ATTR2 in case it was found in bad_features2 627 * slot. 628 */ 629 if (xfs_sb_version_hasattr2(&mp->m_sb) && 630 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 631 mp->m_flags |= XFS_MOUNT_ATTR2; 632 } 633 634 if (xfs_sb_version_hasattr2(&mp->m_sb) && 635 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 636 xfs_sb_version_removeattr2(&mp->m_sb); 637 mp->m_update_sb = true; 638 639 /* update sb_versionnum for the clearing of the morebits */ 640 if (!sbp->sb_features2) 641 mp->m_update_sb = true; 642 } 643 644 /* always use v2 inodes by default now */ 645 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 646 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 647 mp->m_update_sb = true; 648 } 649 650 /* 651 * Check if sb_agblocks is aligned at stripe boundary 652 * If sb_agblocks is NOT aligned turn off m_dalign since 653 * allocator alignment is within an ag, therefore ag has 654 * to be aligned at stripe boundary. 655 */ 656 error = xfs_update_alignment(mp); 657 if (error) 658 goto out; 659 660 xfs_alloc_compute_maxlevels(mp); 661 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 662 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 663 xfs_ialloc_setup_geometry(mp); 664 xfs_rmapbt_compute_maxlevels(mp); 665 xfs_refcountbt_compute_maxlevels(mp); 666 667 /* enable fail_at_unmount as default */ 668 mp->m_fail_unmount = true; 669 670 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 671 NULL, mp->m_super->s_id); 672 if (error) 673 goto out; 674 675 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 676 &mp->m_kobj, "stats"); 677 if (error) 678 goto out_remove_sysfs; 679 680 error = xfs_error_sysfs_init(mp); 681 if (error) 682 goto out_del_stats; 683 684 error = xfs_errortag_init(mp); 685 if (error) 686 goto out_remove_error_sysfs; 687 688 error = xfs_uuid_mount(mp); 689 if (error) 690 goto out_remove_errortag; 691 692 /* 693 * Update the preferred write size based on the information from the 694 * on-disk superblock. 695 */ 696 mp->m_allocsize_log = 697 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 698 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 699 700 /* set the low space thresholds for dynamic preallocation */ 701 xfs_set_low_space_thresholds(mp); 702 703 /* 704 * If enabled, sparse inode chunk alignment is expected to match the 705 * cluster size. Full inode chunk alignment must match the chunk size, 706 * but that is checked on sb read verification... 707 */ 708 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 709 mp->m_sb.sb_spino_align != 710 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 711 xfs_warn(mp, 712 "Sparse inode block alignment (%u) must match cluster size (%llu).", 713 mp->m_sb.sb_spino_align, 714 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 715 error = -EINVAL; 716 goto out_remove_uuid; 717 } 718 719 /* 720 * Check that the data (and log if separate) is an ok size. 721 */ 722 error = xfs_check_sizes(mp); 723 if (error) 724 goto out_remove_uuid; 725 726 /* 727 * Initialize realtime fields in the mount structure 728 */ 729 error = xfs_rtmount_init(mp); 730 if (error) { 731 xfs_warn(mp, "RT mount failed"); 732 goto out_remove_uuid; 733 } 734 735 /* 736 * Copies the low order bits of the timestamp and the randomly 737 * set "sequence" number out of a UUID. 738 */ 739 mp->m_fixedfsid[0] = 740 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 741 get_unaligned_be16(&sbp->sb_uuid.b[4]); 742 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 743 744 error = xfs_da_mount(mp); 745 if (error) { 746 xfs_warn(mp, "Failed dir/attr init: %d", error); 747 goto out_remove_uuid; 748 } 749 750 /* 751 * Initialize the precomputed transaction reservations values. 752 */ 753 xfs_trans_init(mp); 754 755 /* 756 * Allocate and initialize the per-ag data. 757 */ 758 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 759 if (error) { 760 xfs_warn(mp, "Failed per-ag init: %d", error); 761 goto out_free_dir; 762 } 763 764 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 765 xfs_warn(mp, "no log defined"); 766 error = -EFSCORRUPTED; 767 goto out_free_perag; 768 } 769 770 /* 771 * Log's mount-time initialization. The first part of recovery can place 772 * some items on the AIL, to be handled when recovery is finished or 773 * cancelled. 774 */ 775 error = xfs_log_mount(mp, mp->m_logdev_targp, 776 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 777 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 778 if (error) { 779 xfs_warn(mp, "log mount failed"); 780 goto out_fail_wait; 781 } 782 783 /* Make sure the summary counts are ok. */ 784 error = xfs_check_summary_counts(mp); 785 if (error) 786 goto out_log_dealloc; 787 788 /* 789 * Get and sanity-check the root inode. 790 * Save the pointer to it in the mount structure. 791 */ 792 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 793 XFS_ILOCK_EXCL, &rip); 794 if (error) { 795 xfs_warn(mp, 796 "Failed to read root inode 0x%llx, error %d", 797 sbp->sb_rootino, -error); 798 goto out_log_dealloc; 799 } 800 801 ASSERT(rip != NULL); 802 803 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 804 xfs_warn(mp, "corrupted root inode %llu: not a directory", 805 (unsigned long long)rip->i_ino); 806 xfs_iunlock(rip, XFS_ILOCK_EXCL); 807 error = -EFSCORRUPTED; 808 goto out_rele_rip; 809 } 810 mp->m_rootip = rip; /* save it */ 811 812 xfs_iunlock(rip, XFS_ILOCK_EXCL); 813 814 /* 815 * Initialize realtime inode pointers in the mount structure 816 */ 817 error = xfs_rtmount_inodes(mp); 818 if (error) { 819 /* 820 * Free up the root inode. 821 */ 822 xfs_warn(mp, "failed to read RT inodes"); 823 goto out_rele_rip; 824 } 825 826 /* 827 * If this is a read-only mount defer the superblock updates until 828 * the next remount into writeable mode. Otherwise we would never 829 * perform the update e.g. for the root filesystem. 830 */ 831 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 832 error = xfs_sync_sb(mp, false); 833 if (error) { 834 xfs_warn(mp, "failed to write sb changes"); 835 goto out_rtunmount; 836 } 837 } 838 839 /* 840 * Initialise the XFS quota management subsystem for this mount 841 */ 842 if (XFS_IS_QUOTA_RUNNING(mp)) { 843 error = xfs_qm_newmount(mp, "amount, "aflags); 844 if (error) 845 goto out_rtunmount; 846 } else { 847 ASSERT(!XFS_IS_QUOTA_ON(mp)); 848 849 /* 850 * If a file system had quotas running earlier, but decided to 851 * mount without -o uquota/pquota/gquota options, revoke the 852 * quotachecked license. 853 */ 854 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 855 xfs_notice(mp, "resetting quota flags"); 856 error = xfs_mount_reset_sbqflags(mp); 857 if (error) 858 goto out_rtunmount; 859 } 860 } 861 862 /* 863 * Finish recovering the file system. This part needed to be delayed 864 * until after the root and real-time bitmap inodes were consistently 865 * read in. 866 */ 867 error = xfs_log_mount_finish(mp); 868 if (error) { 869 xfs_warn(mp, "log mount finish failed"); 870 goto out_rtunmount; 871 } 872 873 /* 874 * Now the log is fully replayed, we can transition to full read-only 875 * mode for read-only mounts. This will sync all the metadata and clean 876 * the log so that the recovery we just performed does not have to be 877 * replayed again on the next mount. 878 * 879 * We use the same quiesce mechanism as the rw->ro remount, as they are 880 * semantically identical operations. 881 */ 882 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 883 XFS_MOUNT_RDONLY) { 884 xfs_quiesce_attr(mp); 885 } 886 887 /* 888 * Complete the quota initialisation, post-log-replay component. 889 */ 890 if (quotamount) { 891 ASSERT(mp->m_qflags == 0); 892 mp->m_qflags = quotaflags; 893 894 xfs_qm_mount_quotas(mp); 895 } 896 897 /* 898 * Now we are mounted, reserve a small amount of unused space for 899 * privileged transactions. This is needed so that transaction 900 * space required for critical operations can dip into this pool 901 * when at ENOSPC. This is needed for operations like create with 902 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 903 * are not allowed to use this reserved space. 904 * 905 * This may drive us straight to ENOSPC on mount, but that implies 906 * we were already there on the last unmount. Warn if this occurs. 907 */ 908 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 909 resblks = xfs_default_resblks(mp); 910 error = xfs_reserve_blocks(mp, &resblks, NULL); 911 if (error) 912 xfs_warn(mp, 913 "Unable to allocate reserve blocks. Continuing without reserve pool."); 914 915 /* Recover any CoW blocks that never got remapped. */ 916 error = xfs_reflink_recover_cow(mp); 917 if (error) { 918 xfs_err(mp, 919 "Error %d recovering leftover CoW allocations.", error); 920 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 921 goto out_quota; 922 } 923 924 /* Reserve AG blocks for future btree expansion. */ 925 error = xfs_fs_reserve_ag_blocks(mp); 926 if (error && error != -ENOSPC) 927 goto out_agresv; 928 } 929 930 return 0; 931 932 out_agresv: 933 xfs_fs_unreserve_ag_blocks(mp); 934 out_quota: 935 xfs_qm_unmount_quotas(mp); 936 out_rtunmount: 937 xfs_rtunmount_inodes(mp); 938 out_rele_rip: 939 xfs_irele(rip); 940 /* Clean out dquots that might be in memory after quotacheck. */ 941 xfs_qm_unmount(mp); 942 /* 943 * Cancel all delayed reclaim work and reclaim the inodes directly. 944 * We have to do this /after/ rtunmount and qm_unmount because those 945 * two will have scheduled delayed reclaim for the rt/quota inodes. 946 * 947 * This is slightly different from the unmountfs call sequence 948 * because we could be tearing down a partially set up mount. In 949 * particular, if log_mount_finish fails we bail out without calling 950 * qm_unmount_quotas and therefore rely on qm_unmount to release the 951 * quota inodes. 952 */ 953 cancel_delayed_work_sync(&mp->m_reclaim_work); 954 xfs_reclaim_inodes(mp, SYNC_WAIT); 955 xfs_health_unmount(mp); 956 out_log_dealloc: 957 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 958 xfs_log_mount_cancel(mp); 959 out_fail_wait: 960 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 961 xfs_wait_buftarg(mp->m_logdev_targp); 962 xfs_wait_buftarg(mp->m_ddev_targp); 963 out_free_perag: 964 xfs_free_perag(mp); 965 out_free_dir: 966 xfs_da_unmount(mp); 967 out_remove_uuid: 968 xfs_uuid_unmount(mp); 969 out_remove_errortag: 970 xfs_errortag_del(mp); 971 out_remove_error_sysfs: 972 xfs_error_sysfs_del(mp); 973 out_del_stats: 974 xfs_sysfs_del(&mp->m_stats.xs_kobj); 975 out_remove_sysfs: 976 xfs_sysfs_del(&mp->m_kobj); 977 out: 978 return error; 979 } 980 981 /* 982 * This flushes out the inodes,dquots and the superblock, unmounts the 983 * log and makes sure that incore structures are freed. 984 */ 985 void 986 xfs_unmountfs( 987 struct xfs_mount *mp) 988 { 989 uint64_t resblks; 990 int error; 991 992 xfs_stop_block_reaping(mp); 993 xfs_fs_unreserve_ag_blocks(mp); 994 xfs_qm_unmount_quotas(mp); 995 xfs_rtunmount_inodes(mp); 996 xfs_irele(mp->m_rootip); 997 998 /* 999 * We can potentially deadlock here if we have an inode cluster 1000 * that has been freed has its buffer still pinned in memory because 1001 * the transaction is still sitting in a iclog. The stale inodes 1002 * on that buffer will have their flush locks held until the 1003 * transaction hits the disk and the callbacks run. the inode 1004 * flush takes the flush lock unconditionally and with nothing to 1005 * push out the iclog we will never get that unlocked. hence we 1006 * need to force the log first. 1007 */ 1008 xfs_log_force(mp, XFS_LOG_SYNC); 1009 1010 /* 1011 * Wait for all busy extents to be freed, including completion of 1012 * any discard operation. 1013 */ 1014 xfs_extent_busy_wait_all(mp); 1015 flush_workqueue(xfs_discard_wq); 1016 1017 /* 1018 * We now need to tell the world we are unmounting. This will allow 1019 * us to detect that the filesystem is going away and we should error 1020 * out anything that we have been retrying in the background. This will 1021 * prevent neverending retries in AIL pushing from hanging the unmount. 1022 */ 1023 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1024 1025 /* 1026 * Flush all pending changes from the AIL. 1027 */ 1028 xfs_ail_push_all_sync(mp->m_ail); 1029 1030 /* 1031 * And reclaim all inodes. At this point there should be no dirty 1032 * inodes and none should be pinned or locked, but use synchronous 1033 * reclaim just to be sure. We can stop background inode reclaim 1034 * here as well if it is still running. 1035 */ 1036 cancel_delayed_work_sync(&mp->m_reclaim_work); 1037 xfs_reclaim_inodes(mp, SYNC_WAIT); 1038 xfs_health_unmount(mp); 1039 1040 xfs_qm_unmount(mp); 1041 1042 /* 1043 * Unreserve any blocks we have so that when we unmount we don't account 1044 * the reserved free space as used. This is really only necessary for 1045 * lazy superblock counting because it trusts the incore superblock 1046 * counters to be absolutely correct on clean unmount. 1047 * 1048 * We don't bother correcting this elsewhere for lazy superblock 1049 * counting because on mount of an unclean filesystem we reconstruct the 1050 * correct counter value and this is irrelevant. 1051 * 1052 * For non-lazy counter filesystems, this doesn't matter at all because 1053 * we only every apply deltas to the superblock and hence the incore 1054 * value does not matter.... 1055 */ 1056 resblks = 0; 1057 error = xfs_reserve_blocks(mp, &resblks, NULL); 1058 if (error) 1059 xfs_warn(mp, "Unable to free reserved block pool. " 1060 "Freespace may not be correct on next mount."); 1061 1062 error = xfs_log_sbcount(mp); 1063 if (error) 1064 xfs_warn(mp, "Unable to update superblock counters. " 1065 "Freespace may not be correct on next mount."); 1066 1067 1068 xfs_log_unmount(mp); 1069 xfs_da_unmount(mp); 1070 xfs_uuid_unmount(mp); 1071 1072 #if defined(DEBUG) 1073 xfs_errortag_clearall(mp); 1074 #endif 1075 xfs_free_perag(mp); 1076 1077 xfs_errortag_del(mp); 1078 xfs_error_sysfs_del(mp); 1079 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1080 xfs_sysfs_del(&mp->m_kobj); 1081 } 1082 1083 /* 1084 * Determine whether modifications can proceed. The caller specifies the minimum 1085 * freeze level for which modifications should not be allowed. This allows 1086 * certain operations to proceed while the freeze sequence is in progress, if 1087 * necessary. 1088 */ 1089 bool 1090 xfs_fs_writable( 1091 struct xfs_mount *mp, 1092 int level) 1093 { 1094 ASSERT(level > SB_UNFROZEN); 1095 if ((mp->m_super->s_writers.frozen >= level) || 1096 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1097 return false; 1098 1099 return true; 1100 } 1101 1102 /* 1103 * xfs_log_sbcount 1104 * 1105 * Sync the superblock counters to disk. 1106 * 1107 * Note this code can be called during the process of freezing, so we use the 1108 * transaction allocator that does not block when the transaction subsystem is 1109 * in its frozen state. 1110 */ 1111 int 1112 xfs_log_sbcount(xfs_mount_t *mp) 1113 { 1114 /* allow this to proceed during the freeze sequence... */ 1115 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1116 return 0; 1117 1118 /* 1119 * we don't need to do this if we are updating the superblock 1120 * counters on every modification. 1121 */ 1122 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1123 return 0; 1124 1125 return xfs_sync_sb(mp, true); 1126 } 1127 1128 /* 1129 * Deltas for the inode count are +/-64, hence we use a large batch size 1130 * of 128 so we don't need to take the counter lock on every update. 1131 */ 1132 #define XFS_ICOUNT_BATCH 128 1133 int 1134 xfs_mod_icount( 1135 struct xfs_mount *mp, 1136 int64_t delta) 1137 { 1138 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1139 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1140 ASSERT(0); 1141 percpu_counter_add(&mp->m_icount, -delta); 1142 return -EINVAL; 1143 } 1144 return 0; 1145 } 1146 1147 int 1148 xfs_mod_ifree( 1149 struct xfs_mount *mp, 1150 int64_t delta) 1151 { 1152 percpu_counter_add(&mp->m_ifree, delta); 1153 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1154 ASSERT(0); 1155 percpu_counter_add(&mp->m_ifree, -delta); 1156 return -EINVAL; 1157 } 1158 return 0; 1159 } 1160 1161 /* 1162 * Deltas for the block count can vary from 1 to very large, but lock contention 1163 * only occurs on frequent small block count updates such as in the delayed 1164 * allocation path for buffered writes (page a time updates). Hence we set 1165 * a large batch count (1024) to minimise global counter updates except when 1166 * we get near to ENOSPC and we have to be very accurate with our updates. 1167 */ 1168 #define XFS_FDBLOCKS_BATCH 1024 1169 int 1170 xfs_mod_fdblocks( 1171 struct xfs_mount *mp, 1172 int64_t delta, 1173 bool rsvd) 1174 { 1175 int64_t lcounter; 1176 long long res_used; 1177 s32 batch; 1178 1179 if (delta > 0) { 1180 /* 1181 * If the reserve pool is depleted, put blocks back into it 1182 * first. Most of the time the pool is full. 1183 */ 1184 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1185 percpu_counter_add(&mp->m_fdblocks, delta); 1186 return 0; 1187 } 1188 1189 spin_lock(&mp->m_sb_lock); 1190 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1191 1192 if (res_used > delta) { 1193 mp->m_resblks_avail += delta; 1194 } else { 1195 delta -= res_used; 1196 mp->m_resblks_avail = mp->m_resblks; 1197 percpu_counter_add(&mp->m_fdblocks, delta); 1198 } 1199 spin_unlock(&mp->m_sb_lock); 1200 return 0; 1201 } 1202 1203 /* 1204 * Taking blocks away, need to be more accurate the closer we 1205 * are to zero. 1206 * 1207 * If the counter has a value of less than 2 * max batch size, 1208 * then make everything serialise as we are real close to 1209 * ENOSPC. 1210 */ 1211 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1212 XFS_FDBLOCKS_BATCH) < 0) 1213 batch = 1; 1214 else 1215 batch = XFS_FDBLOCKS_BATCH; 1216 1217 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1218 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1219 XFS_FDBLOCKS_BATCH) >= 0) { 1220 /* we had space! */ 1221 return 0; 1222 } 1223 1224 /* 1225 * lock up the sb for dipping into reserves before releasing the space 1226 * that took us to ENOSPC. 1227 */ 1228 spin_lock(&mp->m_sb_lock); 1229 percpu_counter_add(&mp->m_fdblocks, -delta); 1230 if (!rsvd) 1231 goto fdblocks_enospc; 1232 1233 lcounter = (long long)mp->m_resblks_avail + delta; 1234 if (lcounter >= 0) { 1235 mp->m_resblks_avail = lcounter; 1236 spin_unlock(&mp->m_sb_lock); 1237 return 0; 1238 } 1239 printk_once(KERN_WARNING 1240 "Filesystem \"%s\": reserve blocks depleted! " 1241 "Consider increasing reserve pool size.", 1242 mp->m_super->s_id); 1243 fdblocks_enospc: 1244 spin_unlock(&mp->m_sb_lock); 1245 return -ENOSPC; 1246 } 1247 1248 int 1249 xfs_mod_frextents( 1250 struct xfs_mount *mp, 1251 int64_t delta) 1252 { 1253 int64_t lcounter; 1254 int ret = 0; 1255 1256 spin_lock(&mp->m_sb_lock); 1257 lcounter = mp->m_sb.sb_frextents + delta; 1258 if (lcounter < 0) 1259 ret = -ENOSPC; 1260 else 1261 mp->m_sb.sb_frextents = lcounter; 1262 spin_unlock(&mp->m_sb_lock); 1263 return ret; 1264 } 1265 1266 /* 1267 * xfs_getsb() is called to obtain the buffer for the superblock. 1268 * The buffer is returned locked and read in from disk. 1269 * The buffer should be released with a call to xfs_brelse(). 1270 */ 1271 struct xfs_buf * 1272 xfs_getsb( 1273 struct xfs_mount *mp) 1274 { 1275 struct xfs_buf *bp = mp->m_sb_bp; 1276 1277 xfs_buf_lock(bp); 1278 xfs_buf_hold(bp); 1279 ASSERT(bp->b_flags & XBF_DONE); 1280 return bp; 1281 } 1282 1283 /* 1284 * Used to free the superblock along various error paths. 1285 */ 1286 void 1287 xfs_freesb( 1288 struct xfs_mount *mp) 1289 { 1290 struct xfs_buf *bp = mp->m_sb_bp; 1291 1292 xfs_buf_lock(bp); 1293 mp->m_sb_bp = NULL; 1294 xfs_buf_relse(bp); 1295 } 1296 1297 /* 1298 * If the underlying (data/log/rt) device is readonly, there are some 1299 * operations that cannot proceed. 1300 */ 1301 int 1302 xfs_dev_is_read_only( 1303 struct xfs_mount *mp, 1304 char *message) 1305 { 1306 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1307 xfs_readonly_buftarg(mp->m_logdev_targp) || 1308 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1309 xfs_notice(mp, "%s required on read-only device.", message); 1310 xfs_notice(mp, "write access unavailable, cannot proceed."); 1311 return -EROFS; 1312 } 1313 return 0; 1314 } 1315 1316 /* Force the summary counters to be recalculated at next mount. */ 1317 void 1318 xfs_force_summary_recalc( 1319 struct xfs_mount *mp) 1320 { 1321 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1322 return; 1323 1324 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1325 } 1326 1327 /* 1328 * Update the in-core delayed block counter. 1329 * 1330 * We prefer to update the counter without having to take a spinlock for every 1331 * counter update (i.e. batching). Each change to delayed allocation 1332 * reservations can change can easily exceed the default percpu counter 1333 * batching, so we use a larger batch factor here. 1334 * 1335 * Note that we don't currently have any callers requiring fast summation 1336 * (e.g. percpu_counter_read) so we can use a big batch value here. 1337 */ 1338 #define XFS_DELALLOC_BATCH (4096) 1339 void 1340 xfs_mod_delalloc( 1341 struct xfs_mount *mp, 1342 int64_t delta) 1343 { 1344 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1345 XFS_DELALLOC_BATCH); 1346 } 1347