1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_dir2.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_alloc.h" 22 #include "xfs_rtalloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_log.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_fsops.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_rmap_btree.h" 34 #include "xfs_refcount_btree.h" 35 #include "xfs_reflink.h" 36 #include "xfs_extent_busy.h" 37 38 39 static DEFINE_MUTEX(xfs_uuid_table_mutex); 40 static int xfs_uuid_table_size; 41 static uuid_t *xfs_uuid_table; 42 43 void 44 xfs_uuid_table_free(void) 45 { 46 if (xfs_uuid_table_size == 0) 47 return; 48 kmem_free(xfs_uuid_table); 49 xfs_uuid_table = NULL; 50 xfs_uuid_table_size = 0; 51 } 52 53 /* 54 * See if the UUID is unique among mounted XFS filesystems. 55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 56 */ 57 STATIC int 58 xfs_uuid_mount( 59 struct xfs_mount *mp) 60 { 61 uuid_t *uuid = &mp->m_sb.sb_uuid; 62 int hole, i; 63 64 /* Publish UUID in struct super_block */ 65 uuid_copy(&mp->m_super->s_uuid, uuid); 66 67 if (mp->m_flags & XFS_MOUNT_NOUUID) 68 return 0; 69 70 if (uuid_is_null(uuid)) { 71 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 72 return -EINVAL; 73 } 74 75 mutex_lock(&xfs_uuid_table_mutex); 76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 77 if (uuid_is_null(&xfs_uuid_table[i])) { 78 hole = i; 79 continue; 80 } 81 if (uuid_equal(uuid, &xfs_uuid_table[i])) 82 goto out_duplicate; 83 } 84 85 if (hole < 0) { 86 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 87 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 88 KM_SLEEP); 89 hole = xfs_uuid_table_size++; 90 } 91 xfs_uuid_table[hole] = *uuid; 92 mutex_unlock(&xfs_uuid_table_mutex); 93 94 return 0; 95 96 out_duplicate: 97 mutex_unlock(&xfs_uuid_table_mutex); 98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 99 return -EINVAL; 100 } 101 102 STATIC void 103 xfs_uuid_unmount( 104 struct xfs_mount *mp) 105 { 106 uuid_t *uuid = &mp->m_sb.sb_uuid; 107 int i; 108 109 if (mp->m_flags & XFS_MOUNT_NOUUID) 110 return; 111 112 mutex_lock(&xfs_uuid_table_mutex); 113 for (i = 0; i < xfs_uuid_table_size; i++) { 114 if (uuid_is_null(&xfs_uuid_table[i])) 115 continue; 116 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 117 continue; 118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 119 break; 120 } 121 ASSERT(i < xfs_uuid_table_size); 122 mutex_unlock(&xfs_uuid_table_mutex); 123 } 124 125 126 STATIC void 127 __xfs_free_perag( 128 struct rcu_head *head) 129 { 130 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 131 132 ASSERT(atomic_read(&pag->pag_ref) == 0); 133 kmem_free(pag); 134 } 135 136 /* 137 * Free up the per-ag resources associated with the mount structure. 138 */ 139 STATIC void 140 xfs_free_perag( 141 xfs_mount_t *mp) 142 { 143 xfs_agnumber_t agno; 144 struct xfs_perag *pag; 145 146 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 147 spin_lock(&mp->m_perag_lock); 148 pag = radix_tree_delete(&mp->m_perag_tree, agno); 149 spin_unlock(&mp->m_perag_lock); 150 ASSERT(pag); 151 ASSERT(atomic_read(&pag->pag_ref) == 0); 152 xfs_buf_hash_destroy(pag); 153 mutex_destroy(&pag->pag_ici_reclaim_lock); 154 call_rcu(&pag->rcu_head, __xfs_free_perag); 155 } 156 } 157 158 /* 159 * Check size of device based on the (data/realtime) block count. 160 * Note: this check is used by the growfs code as well as mount. 161 */ 162 int 163 xfs_sb_validate_fsb_count( 164 xfs_sb_t *sbp, 165 uint64_t nblocks) 166 { 167 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 168 ASSERT(sbp->sb_blocklog >= BBSHIFT); 169 170 /* Limited by ULONG_MAX of page cache index */ 171 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 172 return -EFBIG; 173 return 0; 174 } 175 176 int 177 xfs_initialize_perag( 178 xfs_mount_t *mp, 179 xfs_agnumber_t agcount, 180 xfs_agnumber_t *maxagi) 181 { 182 xfs_agnumber_t index; 183 xfs_agnumber_t first_initialised = NULLAGNUMBER; 184 xfs_perag_t *pag; 185 int error = -ENOMEM; 186 187 /* 188 * Walk the current per-ag tree so we don't try to initialise AGs 189 * that already exist (growfs case). Allocate and insert all the 190 * AGs we don't find ready for initialisation. 191 */ 192 for (index = 0; index < agcount; index++) { 193 pag = xfs_perag_get(mp, index); 194 if (pag) { 195 xfs_perag_put(pag); 196 continue; 197 } 198 199 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 200 if (!pag) 201 goto out_unwind_new_pags; 202 pag->pag_agno = index; 203 pag->pag_mount = mp; 204 spin_lock_init(&pag->pag_ici_lock); 205 mutex_init(&pag->pag_ici_reclaim_lock); 206 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 207 if (xfs_buf_hash_init(pag)) 208 goto out_free_pag; 209 init_waitqueue_head(&pag->pagb_wait); 210 spin_lock_init(&pag->pagb_lock); 211 pag->pagb_count = 0; 212 pag->pagb_tree = RB_ROOT; 213 214 if (radix_tree_preload(GFP_NOFS)) 215 goto out_hash_destroy; 216 217 spin_lock(&mp->m_perag_lock); 218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 219 BUG(); 220 spin_unlock(&mp->m_perag_lock); 221 radix_tree_preload_end(); 222 error = -EEXIST; 223 goto out_hash_destroy; 224 } 225 spin_unlock(&mp->m_perag_lock); 226 radix_tree_preload_end(); 227 /* first new pag is fully initialized */ 228 if (first_initialised == NULLAGNUMBER) 229 first_initialised = index; 230 } 231 232 index = xfs_set_inode_alloc(mp, agcount); 233 234 if (maxagi) 235 *maxagi = index; 236 237 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 238 return 0; 239 240 out_hash_destroy: 241 xfs_buf_hash_destroy(pag); 242 out_free_pag: 243 mutex_destroy(&pag->pag_ici_reclaim_lock); 244 kmem_free(pag); 245 out_unwind_new_pags: 246 /* unwind any prior newly initialized pags */ 247 for (index = first_initialised; index < agcount; index++) { 248 pag = radix_tree_delete(&mp->m_perag_tree, index); 249 if (!pag) 250 break; 251 xfs_buf_hash_destroy(pag); 252 mutex_destroy(&pag->pag_ici_reclaim_lock); 253 kmem_free(pag); 254 } 255 return error; 256 } 257 258 /* 259 * xfs_readsb 260 * 261 * Does the initial read of the superblock. 262 */ 263 int 264 xfs_readsb( 265 struct xfs_mount *mp, 266 int flags) 267 { 268 unsigned int sector_size; 269 struct xfs_buf *bp; 270 struct xfs_sb *sbp = &mp->m_sb; 271 int error; 272 int loud = !(flags & XFS_MFSI_QUIET); 273 const struct xfs_buf_ops *buf_ops; 274 275 ASSERT(mp->m_sb_bp == NULL); 276 ASSERT(mp->m_ddev_targp != NULL); 277 278 /* 279 * For the initial read, we must guess at the sector 280 * size based on the block device. It's enough to 281 * get the sb_sectsize out of the superblock and 282 * then reread with the proper length. 283 * We don't verify it yet, because it may not be complete. 284 */ 285 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 286 buf_ops = NULL; 287 288 /* 289 * Allocate a (locked) buffer to hold the superblock. This will be kept 290 * around at all times to optimize access to the superblock. Therefore, 291 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 292 * elevated. 293 */ 294 reread: 295 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 296 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 297 buf_ops); 298 if (error) { 299 if (loud) 300 xfs_warn(mp, "SB validate failed with error %d.", error); 301 /* bad CRC means corrupted metadata */ 302 if (error == -EFSBADCRC) 303 error = -EFSCORRUPTED; 304 return error; 305 } 306 307 /* 308 * Initialize the mount structure from the superblock. 309 */ 310 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 311 312 /* 313 * If we haven't validated the superblock, do so now before we try 314 * to check the sector size and reread the superblock appropriately. 315 */ 316 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 317 if (loud) 318 xfs_warn(mp, "Invalid superblock magic number"); 319 error = -EINVAL; 320 goto release_buf; 321 } 322 323 /* 324 * We must be able to do sector-sized and sector-aligned IO. 325 */ 326 if (sector_size > sbp->sb_sectsize) { 327 if (loud) 328 xfs_warn(mp, "device supports %u byte sectors (not %u)", 329 sector_size, sbp->sb_sectsize); 330 error = -ENOSYS; 331 goto release_buf; 332 } 333 334 if (buf_ops == NULL) { 335 /* 336 * Re-read the superblock so the buffer is correctly sized, 337 * and properly verified. 338 */ 339 xfs_buf_relse(bp); 340 sector_size = sbp->sb_sectsize; 341 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 342 goto reread; 343 } 344 345 xfs_reinit_percpu_counters(mp); 346 347 /* no need to be quiet anymore, so reset the buf ops */ 348 bp->b_ops = &xfs_sb_buf_ops; 349 350 mp->m_sb_bp = bp; 351 xfs_buf_unlock(bp); 352 return 0; 353 354 release_buf: 355 xfs_buf_relse(bp); 356 return error; 357 } 358 359 /* 360 * Update alignment values based on mount options and sb values 361 */ 362 STATIC int 363 xfs_update_alignment(xfs_mount_t *mp) 364 { 365 xfs_sb_t *sbp = &(mp->m_sb); 366 367 if (mp->m_dalign) { 368 /* 369 * If stripe unit and stripe width are not multiples 370 * of the fs blocksize turn off alignment. 371 */ 372 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 373 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 374 xfs_warn(mp, 375 "alignment check failed: sunit/swidth vs. blocksize(%d)", 376 sbp->sb_blocksize); 377 return -EINVAL; 378 } else { 379 /* 380 * Convert the stripe unit and width to FSBs. 381 */ 382 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 383 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 384 xfs_warn(mp, 385 "alignment check failed: sunit/swidth vs. agsize(%d)", 386 sbp->sb_agblocks); 387 return -EINVAL; 388 } else if (mp->m_dalign) { 389 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 390 } else { 391 xfs_warn(mp, 392 "alignment check failed: sunit(%d) less than bsize(%d)", 393 mp->m_dalign, sbp->sb_blocksize); 394 return -EINVAL; 395 } 396 } 397 398 /* 399 * Update superblock with new values 400 * and log changes 401 */ 402 if (xfs_sb_version_hasdalign(sbp)) { 403 if (sbp->sb_unit != mp->m_dalign) { 404 sbp->sb_unit = mp->m_dalign; 405 mp->m_update_sb = true; 406 } 407 if (sbp->sb_width != mp->m_swidth) { 408 sbp->sb_width = mp->m_swidth; 409 mp->m_update_sb = true; 410 } 411 } else { 412 xfs_warn(mp, 413 "cannot change alignment: superblock does not support data alignment"); 414 return -EINVAL; 415 } 416 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 417 xfs_sb_version_hasdalign(&mp->m_sb)) { 418 mp->m_dalign = sbp->sb_unit; 419 mp->m_swidth = sbp->sb_width; 420 } 421 422 return 0; 423 } 424 425 /* 426 * Set the maximum inode count for this filesystem 427 */ 428 STATIC void 429 xfs_set_maxicount(xfs_mount_t *mp) 430 { 431 xfs_sb_t *sbp = &(mp->m_sb); 432 uint64_t icount; 433 434 if (sbp->sb_imax_pct) { 435 /* 436 * Make sure the maximum inode count is a multiple 437 * of the units we allocate inodes in. 438 */ 439 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 440 do_div(icount, 100); 441 do_div(icount, mp->m_ialloc_blks); 442 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 443 sbp->sb_inopblog; 444 } else { 445 mp->m_maxicount = 0; 446 } 447 } 448 449 /* 450 * Set the default minimum read and write sizes unless 451 * already specified in a mount option. 452 * We use smaller I/O sizes when the file system 453 * is being used for NFS service (wsync mount option). 454 */ 455 STATIC void 456 xfs_set_rw_sizes(xfs_mount_t *mp) 457 { 458 xfs_sb_t *sbp = &(mp->m_sb); 459 int readio_log, writeio_log; 460 461 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 462 if (mp->m_flags & XFS_MOUNT_WSYNC) { 463 readio_log = XFS_WSYNC_READIO_LOG; 464 writeio_log = XFS_WSYNC_WRITEIO_LOG; 465 } else { 466 readio_log = XFS_READIO_LOG_LARGE; 467 writeio_log = XFS_WRITEIO_LOG_LARGE; 468 } 469 } else { 470 readio_log = mp->m_readio_log; 471 writeio_log = mp->m_writeio_log; 472 } 473 474 if (sbp->sb_blocklog > readio_log) { 475 mp->m_readio_log = sbp->sb_blocklog; 476 } else { 477 mp->m_readio_log = readio_log; 478 } 479 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 480 if (sbp->sb_blocklog > writeio_log) { 481 mp->m_writeio_log = sbp->sb_blocklog; 482 } else { 483 mp->m_writeio_log = writeio_log; 484 } 485 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 486 } 487 488 /* 489 * precalculate the low space thresholds for dynamic speculative preallocation. 490 */ 491 void 492 xfs_set_low_space_thresholds( 493 struct xfs_mount *mp) 494 { 495 int i; 496 497 for (i = 0; i < XFS_LOWSP_MAX; i++) { 498 uint64_t space = mp->m_sb.sb_dblocks; 499 500 do_div(space, 100); 501 mp->m_low_space[i] = space * (i + 1); 502 } 503 } 504 505 506 /* 507 * Set whether we're using inode alignment. 508 */ 509 STATIC void 510 xfs_set_inoalignment(xfs_mount_t *mp) 511 { 512 if (xfs_sb_version_hasalign(&mp->m_sb) && 513 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 514 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 515 else 516 mp->m_inoalign_mask = 0; 517 /* 518 * If we are using stripe alignment, check whether 519 * the stripe unit is a multiple of the inode alignment 520 */ 521 if (mp->m_dalign && mp->m_inoalign_mask && 522 !(mp->m_dalign & mp->m_inoalign_mask)) 523 mp->m_sinoalign = mp->m_dalign; 524 else 525 mp->m_sinoalign = 0; 526 } 527 528 /* 529 * Check that the data (and log if separate) is an ok size. 530 */ 531 STATIC int 532 xfs_check_sizes( 533 struct xfs_mount *mp) 534 { 535 struct xfs_buf *bp; 536 xfs_daddr_t d; 537 int error; 538 539 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 540 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 541 xfs_warn(mp, "filesystem size mismatch detected"); 542 return -EFBIG; 543 } 544 error = xfs_buf_read_uncached(mp->m_ddev_targp, 545 d - XFS_FSS_TO_BB(mp, 1), 546 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 547 if (error) { 548 xfs_warn(mp, "last sector read failed"); 549 return error; 550 } 551 xfs_buf_relse(bp); 552 553 if (mp->m_logdev_targp == mp->m_ddev_targp) 554 return 0; 555 556 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 557 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 558 xfs_warn(mp, "log size mismatch detected"); 559 return -EFBIG; 560 } 561 error = xfs_buf_read_uncached(mp->m_logdev_targp, 562 d - XFS_FSB_TO_BB(mp, 1), 563 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 564 if (error) { 565 xfs_warn(mp, "log device read failed"); 566 return error; 567 } 568 xfs_buf_relse(bp); 569 return 0; 570 } 571 572 /* 573 * Clear the quotaflags in memory and in the superblock. 574 */ 575 int 576 xfs_mount_reset_sbqflags( 577 struct xfs_mount *mp) 578 { 579 mp->m_qflags = 0; 580 581 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 582 if (mp->m_sb.sb_qflags == 0) 583 return 0; 584 spin_lock(&mp->m_sb_lock); 585 mp->m_sb.sb_qflags = 0; 586 spin_unlock(&mp->m_sb_lock); 587 588 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 589 return 0; 590 591 return xfs_sync_sb(mp, false); 592 } 593 594 uint64_t 595 xfs_default_resblks(xfs_mount_t *mp) 596 { 597 uint64_t resblks; 598 599 /* 600 * We default to 5% or 8192 fsbs of space reserved, whichever is 601 * smaller. This is intended to cover concurrent allocation 602 * transactions when we initially hit enospc. These each require a 4 603 * block reservation. Hence by default we cover roughly 2000 concurrent 604 * allocation reservations. 605 */ 606 resblks = mp->m_sb.sb_dblocks; 607 do_div(resblks, 20); 608 resblks = min_t(uint64_t, resblks, 8192); 609 return resblks; 610 } 611 612 /* Ensure the summary counts are correct. */ 613 STATIC int 614 xfs_check_summary_counts( 615 struct xfs_mount *mp) 616 { 617 /* 618 * The AG0 superblock verifier rejects in-progress filesystems, 619 * so we should never see the flag set this far into mounting. 620 */ 621 if (mp->m_sb.sb_inprogress) { 622 xfs_err(mp, "sb_inprogress set after log recovery??"); 623 WARN_ON(1); 624 return -EFSCORRUPTED; 625 } 626 627 /* 628 * Now the log is mounted, we know if it was an unclean shutdown or 629 * not. If it was, with the first phase of recovery has completed, we 630 * have consistent AG blocks on disk. We have not recovered EFIs yet, 631 * but they are recovered transactionally in the second recovery phase 632 * later. 633 * 634 * If the log was clean when we mounted, we can check the summary 635 * counters. If any of them are obviously incorrect, we can recompute 636 * them from the AGF headers in the next step. 637 */ 638 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 639 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 640 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 641 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 642 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; 643 644 /* 645 * We can safely re-initialise incore superblock counters from the 646 * per-ag data. These may not be correct if the filesystem was not 647 * cleanly unmounted, so we waited for recovery to finish before doing 648 * this. 649 * 650 * If the filesystem was cleanly unmounted or the previous check did 651 * not flag anything weird, then we can trust the values in the 652 * superblock to be correct and we don't need to do anything here. 653 * Otherwise, recalculate the summary counters. 654 */ 655 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 656 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 657 !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY)) 658 return 0; 659 660 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 661 } 662 663 /* 664 * This function does the following on an initial mount of a file system: 665 * - reads the superblock from disk and init the mount struct 666 * - if we're a 32-bit kernel, do a size check on the superblock 667 * so we don't mount terabyte filesystems 668 * - init mount struct realtime fields 669 * - allocate inode hash table for fs 670 * - init directory manager 671 * - perform recovery and init the log manager 672 */ 673 int 674 xfs_mountfs( 675 struct xfs_mount *mp) 676 { 677 struct xfs_sb *sbp = &(mp->m_sb); 678 struct xfs_inode *rip; 679 uint64_t resblks; 680 uint quotamount = 0; 681 uint quotaflags = 0; 682 int error = 0; 683 684 xfs_sb_mount_common(mp, sbp); 685 686 /* 687 * Check for a mismatched features2 values. Older kernels read & wrote 688 * into the wrong sb offset for sb_features2 on some platforms due to 689 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 690 * which made older superblock reading/writing routines swap it as a 691 * 64-bit value. 692 * 693 * For backwards compatibility, we make both slots equal. 694 * 695 * If we detect a mismatched field, we OR the set bits into the existing 696 * features2 field in case it has already been modified; we don't want 697 * to lose any features. We then update the bad location with the ORed 698 * value so that older kernels will see any features2 flags. The 699 * superblock writeback code ensures the new sb_features2 is copied to 700 * sb_bad_features2 before it is logged or written to disk. 701 */ 702 if (xfs_sb_has_mismatched_features2(sbp)) { 703 xfs_warn(mp, "correcting sb_features alignment problem"); 704 sbp->sb_features2 |= sbp->sb_bad_features2; 705 mp->m_update_sb = true; 706 707 /* 708 * Re-check for ATTR2 in case it was found in bad_features2 709 * slot. 710 */ 711 if (xfs_sb_version_hasattr2(&mp->m_sb) && 712 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 713 mp->m_flags |= XFS_MOUNT_ATTR2; 714 } 715 716 if (xfs_sb_version_hasattr2(&mp->m_sb) && 717 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 718 xfs_sb_version_removeattr2(&mp->m_sb); 719 mp->m_update_sb = true; 720 721 /* update sb_versionnum for the clearing of the morebits */ 722 if (!sbp->sb_features2) 723 mp->m_update_sb = true; 724 } 725 726 /* always use v2 inodes by default now */ 727 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 728 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 729 mp->m_update_sb = true; 730 } 731 732 /* 733 * Check if sb_agblocks is aligned at stripe boundary 734 * If sb_agblocks is NOT aligned turn off m_dalign since 735 * allocator alignment is within an ag, therefore ag has 736 * to be aligned at stripe boundary. 737 */ 738 error = xfs_update_alignment(mp); 739 if (error) 740 goto out; 741 742 xfs_alloc_compute_maxlevels(mp); 743 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 744 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 745 xfs_ialloc_compute_maxlevels(mp); 746 xfs_rmapbt_compute_maxlevels(mp); 747 xfs_refcountbt_compute_maxlevels(mp); 748 749 xfs_set_maxicount(mp); 750 751 /* enable fail_at_unmount as default */ 752 mp->m_fail_unmount = true; 753 754 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 755 if (error) 756 goto out; 757 758 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 759 &mp->m_kobj, "stats"); 760 if (error) 761 goto out_remove_sysfs; 762 763 error = xfs_error_sysfs_init(mp); 764 if (error) 765 goto out_del_stats; 766 767 error = xfs_errortag_init(mp); 768 if (error) 769 goto out_remove_error_sysfs; 770 771 error = xfs_uuid_mount(mp); 772 if (error) 773 goto out_remove_errortag; 774 775 /* 776 * Set the minimum read and write sizes 777 */ 778 xfs_set_rw_sizes(mp); 779 780 /* set the low space thresholds for dynamic preallocation */ 781 xfs_set_low_space_thresholds(mp); 782 783 /* 784 * Set the inode cluster size. 785 * This may still be overridden by the file system 786 * block size if it is larger than the chosen cluster size. 787 * 788 * For v5 filesystems, scale the cluster size with the inode size to 789 * keep a constant ratio of inode per cluster buffer, but only if mkfs 790 * has set the inode alignment value appropriately for larger cluster 791 * sizes. 792 */ 793 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 794 if (xfs_sb_version_hascrc(&mp->m_sb)) { 795 int new_size = mp->m_inode_cluster_size; 796 797 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 798 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 799 mp->m_inode_cluster_size = new_size; 800 } 801 mp->m_blocks_per_cluster = xfs_icluster_size_fsb(mp); 802 mp->m_inodes_per_cluster = XFS_FSB_TO_INO(mp, mp->m_blocks_per_cluster); 803 mp->m_cluster_align = xfs_ialloc_cluster_alignment(mp); 804 mp->m_cluster_align_inodes = XFS_FSB_TO_INO(mp, mp->m_cluster_align); 805 806 /* 807 * If enabled, sparse inode chunk alignment is expected to match the 808 * cluster size. Full inode chunk alignment must match the chunk size, 809 * but that is checked on sb read verification... 810 */ 811 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 812 mp->m_sb.sb_spino_align != 813 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 814 xfs_warn(mp, 815 "Sparse inode block alignment (%u) must match cluster size (%llu).", 816 mp->m_sb.sb_spino_align, 817 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 818 error = -EINVAL; 819 goto out_remove_uuid; 820 } 821 822 /* 823 * Set inode alignment fields 824 */ 825 xfs_set_inoalignment(mp); 826 827 /* 828 * Check that the data (and log if separate) is an ok size. 829 */ 830 error = xfs_check_sizes(mp); 831 if (error) 832 goto out_remove_uuid; 833 834 /* 835 * Initialize realtime fields in the mount structure 836 */ 837 error = xfs_rtmount_init(mp); 838 if (error) { 839 xfs_warn(mp, "RT mount failed"); 840 goto out_remove_uuid; 841 } 842 843 /* 844 * Copies the low order bits of the timestamp and the randomly 845 * set "sequence" number out of a UUID. 846 */ 847 mp->m_fixedfsid[0] = 848 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 849 get_unaligned_be16(&sbp->sb_uuid.b[4]); 850 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 851 852 error = xfs_da_mount(mp); 853 if (error) { 854 xfs_warn(mp, "Failed dir/attr init: %d", error); 855 goto out_remove_uuid; 856 } 857 858 /* 859 * Initialize the precomputed transaction reservations values. 860 */ 861 xfs_trans_init(mp); 862 863 /* 864 * Allocate and initialize the per-ag data. 865 */ 866 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 867 if (error) { 868 xfs_warn(mp, "Failed per-ag init: %d", error); 869 goto out_free_dir; 870 } 871 872 if (!sbp->sb_logblocks) { 873 xfs_warn(mp, "no log defined"); 874 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 875 error = -EFSCORRUPTED; 876 goto out_free_perag; 877 } 878 879 /* 880 * Log's mount-time initialization. The first part of recovery can place 881 * some items on the AIL, to be handled when recovery is finished or 882 * cancelled. 883 */ 884 error = xfs_log_mount(mp, mp->m_logdev_targp, 885 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 886 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 887 if (error) { 888 xfs_warn(mp, "log mount failed"); 889 goto out_fail_wait; 890 } 891 892 /* Make sure the summary counts are ok. */ 893 error = xfs_check_summary_counts(mp); 894 if (error) 895 goto out_log_dealloc; 896 897 /* 898 * Get and sanity-check the root inode. 899 * Save the pointer to it in the mount structure. 900 */ 901 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 902 XFS_ILOCK_EXCL, &rip); 903 if (error) { 904 xfs_warn(mp, 905 "Failed to read root inode 0x%llx, error %d", 906 sbp->sb_rootino, -error); 907 goto out_log_dealloc; 908 } 909 910 ASSERT(rip != NULL); 911 912 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 913 xfs_warn(mp, "corrupted root inode %llu: not a directory", 914 (unsigned long long)rip->i_ino); 915 xfs_iunlock(rip, XFS_ILOCK_EXCL); 916 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 917 mp); 918 error = -EFSCORRUPTED; 919 goto out_rele_rip; 920 } 921 mp->m_rootip = rip; /* save it */ 922 923 xfs_iunlock(rip, XFS_ILOCK_EXCL); 924 925 /* 926 * Initialize realtime inode pointers in the mount structure 927 */ 928 error = xfs_rtmount_inodes(mp); 929 if (error) { 930 /* 931 * Free up the root inode. 932 */ 933 xfs_warn(mp, "failed to read RT inodes"); 934 goto out_rele_rip; 935 } 936 937 /* 938 * If this is a read-only mount defer the superblock updates until 939 * the next remount into writeable mode. Otherwise we would never 940 * perform the update e.g. for the root filesystem. 941 */ 942 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 943 error = xfs_sync_sb(mp, false); 944 if (error) { 945 xfs_warn(mp, "failed to write sb changes"); 946 goto out_rtunmount; 947 } 948 } 949 950 /* 951 * Initialise the XFS quota management subsystem for this mount 952 */ 953 if (XFS_IS_QUOTA_RUNNING(mp)) { 954 error = xfs_qm_newmount(mp, "amount, "aflags); 955 if (error) 956 goto out_rtunmount; 957 } else { 958 ASSERT(!XFS_IS_QUOTA_ON(mp)); 959 960 /* 961 * If a file system had quotas running earlier, but decided to 962 * mount without -o uquota/pquota/gquota options, revoke the 963 * quotachecked license. 964 */ 965 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 966 xfs_notice(mp, "resetting quota flags"); 967 error = xfs_mount_reset_sbqflags(mp); 968 if (error) 969 goto out_rtunmount; 970 } 971 } 972 973 /* 974 * Finish recovering the file system. This part needed to be delayed 975 * until after the root and real-time bitmap inodes were consistently 976 * read in. 977 */ 978 error = xfs_log_mount_finish(mp); 979 if (error) { 980 xfs_warn(mp, "log mount finish failed"); 981 goto out_rtunmount; 982 } 983 984 /* 985 * Now the log is fully replayed, we can transition to full read-only 986 * mode for read-only mounts. This will sync all the metadata and clean 987 * the log so that the recovery we just performed does not have to be 988 * replayed again on the next mount. 989 * 990 * We use the same quiesce mechanism as the rw->ro remount, as they are 991 * semantically identical operations. 992 */ 993 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 994 XFS_MOUNT_RDONLY) { 995 xfs_quiesce_attr(mp); 996 } 997 998 /* 999 * Complete the quota initialisation, post-log-replay component. 1000 */ 1001 if (quotamount) { 1002 ASSERT(mp->m_qflags == 0); 1003 mp->m_qflags = quotaflags; 1004 1005 xfs_qm_mount_quotas(mp); 1006 } 1007 1008 /* 1009 * Now we are mounted, reserve a small amount of unused space for 1010 * privileged transactions. This is needed so that transaction 1011 * space required for critical operations can dip into this pool 1012 * when at ENOSPC. This is needed for operations like create with 1013 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1014 * are not allowed to use this reserved space. 1015 * 1016 * This may drive us straight to ENOSPC on mount, but that implies 1017 * we were already there on the last unmount. Warn if this occurs. 1018 */ 1019 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1020 resblks = xfs_default_resblks(mp); 1021 error = xfs_reserve_blocks(mp, &resblks, NULL); 1022 if (error) 1023 xfs_warn(mp, 1024 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1025 1026 /* Recover any CoW blocks that never got remapped. */ 1027 error = xfs_reflink_recover_cow(mp); 1028 if (error) { 1029 xfs_err(mp, 1030 "Error %d recovering leftover CoW allocations.", error); 1031 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1032 goto out_quota; 1033 } 1034 1035 /* Reserve AG blocks for future btree expansion. */ 1036 error = xfs_fs_reserve_ag_blocks(mp); 1037 if (error && error != -ENOSPC) 1038 goto out_agresv; 1039 } 1040 1041 return 0; 1042 1043 out_agresv: 1044 xfs_fs_unreserve_ag_blocks(mp); 1045 out_quota: 1046 xfs_qm_unmount_quotas(mp); 1047 out_rtunmount: 1048 xfs_rtunmount_inodes(mp); 1049 out_rele_rip: 1050 xfs_irele(rip); 1051 /* Clean out dquots that might be in memory after quotacheck. */ 1052 xfs_qm_unmount(mp); 1053 /* 1054 * Cancel all delayed reclaim work and reclaim the inodes directly. 1055 * We have to do this /after/ rtunmount and qm_unmount because those 1056 * two will have scheduled delayed reclaim for the rt/quota inodes. 1057 * 1058 * This is slightly different from the unmountfs call sequence 1059 * because we could be tearing down a partially set up mount. In 1060 * particular, if log_mount_finish fails we bail out without calling 1061 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1062 * quota inodes. 1063 */ 1064 cancel_delayed_work_sync(&mp->m_reclaim_work); 1065 xfs_reclaim_inodes(mp, SYNC_WAIT); 1066 out_log_dealloc: 1067 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1068 xfs_log_mount_cancel(mp); 1069 out_fail_wait: 1070 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1071 xfs_wait_buftarg(mp->m_logdev_targp); 1072 xfs_wait_buftarg(mp->m_ddev_targp); 1073 out_free_perag: 1074 xfs_free_perag(mp); 1075 out_free_dir: 1076 xfs_da_unmount(mp); 1077 out_remove_uuid: 1078 xfs_uuid_unmount(mp); 1079 out_remove_errortag: 1080 xfs_errortag_del(mp); 1081 out_remove_error_sysfs: 1082 xfs_error_sysfs_del(mp); 1083 out_del_stats: 1084 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1085 out_remove_sysfs: 1086 xfs_sysfs_del(&mp->m_kobj); 1087 out: 1088 return error; 1089 } 1090 1091 /* 1092 * This flushes out the inodes,dquots and the superblock, unmounts the 1093 * log and makes sure that incore structures are freed. 1094 */ 1095 void 1096 xfs_unmountfs( 1097 struct xfs_mount *mp) 1098 { 1099 uint64_t resblks; 1100 int error; 1101 1102 xfs_icache_disable_reclaim(mp); 1103 xfs_fs_unreserve_ag_blocks(mp); 1104 xfs_qm_unmount_quotas(mp); 1105 xfs_rtunmount_inodes(mp); 1106 xfs_irele(mp->m_rootip); 1107 1108 /* 1109 * We can potentially deadlock here if we have an inode cluster 1110 * that has been freed has its buffer still pinned in memory because 1111 * the transaction is still sitting in a iclog. The stale inodes 1112 * on that buffer will have their flush locks held until the 1113 * transaction hits the disk and the callbacks run. the inode 1114 * flush takes the flush lock unconditionally and with nothing to 1115 * push out the iclog we will never get that unlocked. hence we 1116 * need to force the log first. 1117 */ 1118 xfs_log_force(mp, XFS_LOG_SYNC); 1119 1120 /* 1121 * Wait for all busy extents to be freed, including completion of 1122 * any discard operation. 1123 */ 1124 xfs_extent_busy_wait_all(mp); 1125 flush_workqueue(xfs_discard_wq); 1126 1127 /* 1128 * We now need to tell the world we are unmounting. This will allow 1129 * us to detect that the filesystem is going away and we should error 1130 * out anything that we have been retrying in the background. This will 1131 * prevent neverending retries in AIL pushing from hanging the unmount. 1132 */ 1133 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1134 1135 /* 1136 * Flush all pending changes from the AIL. 1137 */ 1138 xfs_ail_push_all_sync(mp->m_ail); 1139 1140 /* 1141 * And reclaim all inodes. At this point there should be no dirty 1142 * inodes and none should be pinned or locked, but use synchronous 1143 * reclaim just to be sure. We can stop background inode reclaim 1144 * here as well if it is still running. 1145 */ 1146 cancel_delayed_work_sync(&mp->m_reclaim_work); 1147 xfs_reclaim_inodes(mp, SYNC_WAIT); 1148 1149 xfs_qm_unmount(mp); 1150 1151 /* 1152 * Unreserve any blocks we have so that when we unmount we don't account 1153 * the reserved free space as used. This is really only necessary for 1154 * lazy superblock counting because it trusts the incore superblock 1155 * counters to be absolutely correct on clean unmount. 1156 * 1157 * We don't bother correcting this elsewhere for lazy superblock 1158 * counting because on mount of an unclean filesystem we reconstruct the 1159 * correct counter value and this is irrelevant. 1160 * 1161 * For non-lazy counter filesystems, this doesn't matter at all because 1162 * we only every apply deltas to the superblock and hence the incore 1163 * value does not matter.... 1164 */ 1165 resblks = 0; 1166 error = xfs_reserve_blocks(mp, &resblks, NULL); 1167 if (error) 1168 xfs_warn(mp, "Unable to free reserved block pool. " 1169 "Freespace may not be correct on next mount."); 1170 1171 error = xfs_log_sbcount(mp); 1172 if (error) 1173 xfs_warn(mp, "Unable to update superblock counters. " 1174 "Freespace may not be correct on next mount."); 1175 1176 1177 xfs_log_unmount(mp); 1178 xfs_da_unmount(mp); 1179 xfs_uuid_unmount(mp); 1180 1181 #if defined(DEBUG) 1182 xfs_errortag_clearall(mp); 1183 #endif 1184 xfs_free_perag(mp); 1185 1186 xfs_errortag_del(mp); 1187 xfs_error_sysfs_del(mp); 1188 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1189 xfs_sysfs_del(&mp->m_kobj); 1190 } 1191 1192 /* 1193 * Determine whether modifications can proceed. The caller specifies the minimum 1194 * freeze level for which modifications should not be allowed. This allows 1195 * certain operations to proceed while the freeze sequence is in progress, if 1196 * necessary. 1197 */ 1198 bool 1199 xfs_fs_writable( 1200 struct xfs_mount *mp, 1201 int level) 1202 { 1203 ASSERT(level > SB_UNFROZEN); 1204 if ((mp->m_super->s_writers.frozen >= level) || 1205 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1206 return false; 1207 1208 return true; 1209 } 1210 1211 /* 1212 * xfs_log_sbcount 1213 * 1214 * Sync the superblock counters to disk. 1215 * 1216 * Note this code can be called during the process of freezing, so we use the 1217 * transaction allocator that does not block when the transaction subsystem is 1218 * in its frozen state. 1219 */ 1220 int 1221 xfs_log_sbcount(xfs_mount_t *mp) 1222 { 1223 /* allow this to proceed during the freeze sequence... */ 1224 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1225 return 0; 1226 1227 /* 1228 * we don't need to do this if we are updating the superblock 1229 * counters on every modification. 1230 */ 1231 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1232 return 0; 1233 1234 return xfs_sync_sb(mp, true); 1235 } 1236 1237 /* 1238 * Deltas for the inode count are +/-64, hence we use a large batch size 1239 * of 128 so we don't need to take the counter lock on every update. 1240 */ 1241 #define XFS_ICOUNT_BATCH 128 1242 int 1243 xfs_mod_icount( 1244 struct xfs_mount *mp, 1245 int64_t delta) 1246 { 1247 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1248 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1249 ASSERT(0); 1250 percpu_counter_add(&mp->m_icount, -delta); 1251 return -EINVAL; 1252 } 1253 return 0; 1254 } 1255 1256 int 1257 xfs_mod_ifree( 1258 struct xfs_mount *mp, 1259 int64_t delta) 1260 { 1261 percpu_counter_add(&mp->m_ifree, delta); 1262 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1263 ASSERT(0); 1264 percpu_counter_add(&mp->m_ifree, -delta); 1265 return -EINVAL; 1266 } 1267 return 0; 1268 } 1269 1270 /* 1271 * Deltas for the block count can vary from 1 to very large, but lock contention 1272 * only occurs on frequent small block count updates such as in the delayed 1273 * allocation path for buffered writes (page a time updates). Hence we set 1274 * a large batch count (1024) to minimise global counter updates except when 1275 * we get near to ENOSPC and we have to be very accurate with our updates. 1276 */ 1277 #define XFS_FDBLOCKS_BATCH 1024 1278 int 1279 xfs_mod_fdblocks( 1280 struct xfs_mount *mp, 1281 int64_t delta, 1282 bool rsvd) 1283 { 1284 int64_t lcounter; 1285 long long res_used; 1286 s32 batch; 1287 1288 if (delta > 0) { 1289 /* 1290 * If the reserve pool is depleted, put blocks back into it 1291 * first. Most of the time the pool is full. 1292 */ 1293 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1294 percpu_counter_add(&mp->m_fdblocks, delta); 1295 return 0; 1296 } 1297 1298 spin_lock(&mp->m_sb_lock); 1299 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1300 1301 if (res_used > delta) { 1302 mp->m_resblks_avail += delta; 1303 } else { 1304 delta -= res_used; 1305 mp->m_resblks_avail = mp->m_resblks; 1306 percpu_counter_add(&mp->m_fdblocks, delta); 1307 } 1308 spin_unlock(&mp->m_sb_lock); 1309 return 0; 1310 } 1311 1312 /* 1313 * Taking blocks away, need to be more accurate the closer we 1314 * are to zero. 1315 * 1316 * If the counter has a value of less than 2 * max batch size, 1317 * then make everything serialise as we are real close to 1318 * ENOSPC. 1319 */ 1320 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1321 XFS_FDBLOCKS_BATCH) < 0) 1322 batch = 1; 1323 else 1324 batch = XFS_FDBLOCKS_BATCH; 1325 1326 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1327 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1328 XFS_FDBLOCKS_BATCH) >= 0) { 1329 /* we had space! */ 1330 return 0; 1331 } 1332 1333 /* 1334 * lock up the sb for dipping into reserves before releasing the space 1335 * that took us to ENOSPC. 1336 */ 1337 spin_lock(&mp->m_sb_lock); 1338 percpu_counter_add(&mp->m_fdblocks, -delta); 1339 if (!rsvd) 1340 goto fdblocks_enospc; 1341 1342 lcounter = (long long)mp->m_resblks_avail + delta; 1343 if (lcounter >= 0) { 1344 mp->m_resblks_avail = lcounter; 1345 spin_unlock(&mp->m_sb_lock); 1346 return 0; 1347 } 1348 printk_once(KERN_WARNING 1349 "Filesystem \"%s\": reserve blocks depleted! " 1350 "Consider increasing reserve pool size.", 1351 mp->m_fsname); 1352 fdblocks_enospc: 1353 spin_unlock(&mp->m_sb_lock); 1354 return -ENOSPC; 1355 } 1356 1357 int 1358 xfs_mod_frextents( 1359 struct xfs_mount *mp, 1360 int64_t delta) 1361 { 1362 int64_t lcounter; 1363 int ret = 0; 1364 1365 spin_lock(&mp->m_sb_lock); 1366 lcounter = mp->m_sb.sb_frextents + delta; 1367 if (lcounter < 0) 1368 ret = -ENOSPC; 1369 else 1370 mp->m_sb.sb_frextents = lcounter; 1371 spin_unlock(&mp->m_sb_lock); 1372 return ret; 1373 } 1374 1375 /* 1376 * xfs_getsb() is called to obtain the buffer for the superblock. 1377 * The buffer is returned locked and read in from disk. 1378 * The buffer should be released with a call to xfs_brelse(). 1379 * 1380 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1381 * the superblock buffer if it can be locked without sleeping. 1382 * If it can't then we'll return NULL. 1383 */ 1384 struct xfs_buf * 1385 xfs_getsb( 1386 struct xfs_mount *mp, 1387 int flags) 1388 { 1389 struct xfs_buf *bp = mp->m_sb_bp; 1390 1391 if (!xfs_buf_trylock(bp)) { 1392 if (flags & XBF_TRYLOCK) 1393 return NULL; 1394 xfs_buf_lock(bp); 1395 } 1396 1397 xfs_buf_hold(bp); 1398 ASSERT(bp->b_flags & XBF_DONE); 1399 return bp; 1400 } 1401 1402 /* 1403 * Used to free the superblock along various error paths. 1404 */ 1405 void 1406 xfs_freesb( 1407 struct xfs_mount *mp) 1408 { 1409 struct xfs_buf *bp = mp->m_sb_bp; 1410 1411 xfs_buf_lock(bp); 1412 mp->m_sb_bp = NULL; 1413 xfs_buf_relse(bp); 1414 } 1415 1416 /* 1417 * If the underlying (data/log/rt) device is readonly, there are some 1418 * operations that cannot proceed. 1419 */ 1420 int 1421 xfs_dev_is_read_only( 1422 struct xfs_mount *mp, 1423 char *message) 1424 { 1425 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1426 xfs_readonly_buftarg(mp->m_logdev_targp) || 1427 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1428 xfs_notice(mp, "%s required on read-only device.", message); 1429 xfs_notice(mp, "write access unavailable, cannot proceed."); 1430 return -EROFS; 1431 } 1432 return 0; 1433 } 1434 1435 /* Force the summary counters to be recalculated at next mount. */ 1436 void 1437 xfs_force_summary_recalc( 1438 struct xfs_mount *mp) 1439 { 1440 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1441 return; 1442 1443 spin_lock(&mp->m_sb_lock); 1444 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; 1445 spin_unlock(&mp->m_sb_lock); 1446 } 1447