xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision c4ee0af3)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45 
46 
47 #ifdef HAVE_PERCPU_SB
48 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 						int);
50 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 						int);
52 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54 
55 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
57 #endif
58 
59 static DEFINE_MUTEX(xfs_uuid_table_mutex);
60 static int xfs_uuid_table_size;
61 static uuid_t *xfs_uuid_table;
62 
63 /*
64  * See if the UUID is unique among mounted XFS filesystems.
65  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66  */
67 STATIC int
68 xfs_uuid_mount(
69 	struct xfs_mount	*mp)
70 {
71 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
72 	int			hole, i;
73 
74 	if (mp->m_flags & XFS_MOUNT_NOUUID)
75 		return 0;
76 
77 	if (uuid_is_nil(uuid)) {
78 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 		return XFS_ERROR(EINVAL);
80 	}
81 
82 	mutex_lock(&xfs_uuid_table_mutex);
83 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 		if (uuid_is_nil(&xfs_uuid_table[i])) {
85 			hole = i;
86 			continue;
87 		}
88 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 			goto out_duplicate;
90 	}
91 
92 	if (hole < 0) {
93 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
96 			KM_SLEEP);
97 		hole = xfs_uuid_table_size++;
98 	}
99 	xfs_uuid_table[hole] = *uuid;
100 	mutex_unlock(&xfs_uuid_table_mutex);
101 
102 	return 0;
103 
104  out_duplicate:
105 	mutex_unlock(&xfs_uuid_table_mutex);
106 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 	return XFS_ERROR(EINVAL);
108 }
109 
110 STATIC void
111 xfs_uuid_unmount(
112 	struct xfs_mount	*mp)
113 {
114 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
115 	int			i;
116 
117 	if (mp->m_flags & XFS_MOUNT_NOUUID)
118 		return;
119 
120 	mutex_lock(&xfs_uuid_table_mutex);
121 	for (i = 0; i < xfs_uuid_table_size; i++) {
122 		if (uuid_is_nil(&xfs_uuid_table[i]))
123 			continue;
124 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 			continue;
126 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 		break;
128 	}
129 	ASSERT(i < xfs_uuid_table_size);
130 	mutex_unlock(&xfs_uuid_table_mutex);
131 }
132 
133 
134 STATIC void
135 __xfs_free_perag(
136 	struct rcu_head	*head)
137 {
138 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139 
140 	ASSERT(atomic_read(&pag->pag_ref) == 0);
141 	kmem_free(pag);
142 }
143 
144 /*
145  * Free up the per-ag resources associated with the mount structure.
146  */
147 STATIC void
148 xfs_free_perag(
149 	xfs_mount_t	*mp)
150 {
151 	xfs_agnumber_t	agno;
152 	struct xfs_perag *pag;
153 
154 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 		spin_lock(&mp->m_perag_lock);
156 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 		spin_unlock(&mp->m_perag_lock);
158 		ASSERT(pag);
159 		ASSERT(atomic_read(&pag->pag_ref) == 0);
160 		call_rcu(&pag->rcu_head, __xfs_free_perag);
161 	}
162 }
163 
164 /*
165  * Check size of device based on the (data/realtime) block count.
166  * Note: this check is used by the growfs code as well as mount.
167  */
168 int
169 xfs_sb_validate_fsb_count(
170 	xfs_sb_t	*sbp,
171 	__uint64_t	nblocks)
172 {
173 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
175 
176 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
177 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 		return EFBIG;
179 #else                  /* Limited by UINT_MAX of sectors */
180 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 		return EFBIG;
182 #endif
183 	return 0;
184 }
185 
186 int
187 xfs_initialize_perag(
188 	xfs_mount_t	*mp,
189 	xfs_agnumber_t	agcount,
190 	xfs_agnumber_t	*maxagi)
191 {
192 	xfs_agnumber_t	index;
193 	xfs_agnumber_t	first_initialised = 0;
194 	xfs_perag_t	*pag;
195 	xfs_agino_t	agino;
196 	xfs_ino_t	ino;
197 	xfs_sb_t	*sbp = &mp->m_sb;
198 	int		error = -ENOMEM;
199 
200 	/*
201 	 * Walk the current per-ag tree so we don't try to initialise AGs
202 	 * that already exist (growfs case). Allocate and insert all the
203 	 * AGs we don't find ready for initialisation.
204 	 */
205 	for (index = 0; index < agcount; index++) {
206 		pag = xfs_perag_get(mp, index);
207 		if (pag) {
208 			xfs_perag_put(pag);
209 			continue;
210 		}
211 		if (!first_initialised)
212 			first_initialised = index;
213 
214 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 		if (!pag)
216 			goto out_unwind;
217 		pag->pag_agno = index;
218 		pag->pag_mount = mp;
219 		spin_lock_init(&pag->pag_ici_lock);
220 		mutex_init(&pag->pag_ici_reclaim_lock);
221 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 		spin_lock_init(&pag->pag_buf_lock);
223 		pag->pag_buf_tree = RB_ROOT;
224 
225 		if (radix_tree_preload(GFP_NOFS))
226 			goto out_unwind;
227 
228 		spin_lock(&mp->m_perag_lock);
229 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 			BUG();
231 			spin_unlock(&mp->m_perag_lock);
232 			radix_tree_preload_end();
233 			error = -EEXIST;
234 			goto out_unwind;
235 		}
236 		spin_unlock(&mp->m_perag_lock);
237 		radix_tree_preload_end();
238 	}
239 
240 	/*
241 	 * If we mount with the inode64 option, or no inode overflows
242 	 * the legacy 32-bit address space clear the inode32 option.
243 	 */
244 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246 
247 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 		mp->m_flags |= XFS_MOUNT_32BITINODES;
249 	else
250 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251 
252 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 		index = xfs_set_inode32(mp);
254 	else
255 		index = xfs_set_inode64(mp);
256 
257 	if (maxagi)
258 		*maxagi = index;
259 	return 0;
260 
261 out_unwind:
262 	kmem_free(pag);
263 	for (; index > first_initialised; index--) {
264 		pag = radix_tree_delete(&mp->m_perag_tree, index);
265 		kmem_free(pag);
266 	}
267 	return error;
268 }
269 
270 /*
271  * xfs_readsb
272  *
273  * Does the initial read of the superblock.
274  */
275 int
276 xfs_readsb(
277 	struct xfs_mount *mp,
278 	int		flags)
279 {
280 	unsigned int	sector_size;
281 	struct xfs_buf	*bp;
282 	struct xfs_sb	*sbp = &mp->m_sb;
283 	int		error;
284 	int		loud = !(flags & XFS_MFSI_QUIET);
285 
286 	ASSERT(mp->m_sb_bp == NULL);
287 	ASSERT(mp->m_ddev_targp != NULL);
288 
289 	/*
290 	 * Allocate a (locked) buffer to hold the superblock.
291 	 * This will be kept around at all times to optimize
292 	 * access to the superblock.
293 	 */
294 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 
296 reread:
297 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
298 				   BTOBB(sector_size), 0,
299 				   loud ? &xfs_sb_buf_ops
300 				        : &xfs_sb_quiet_buf_ops);
301 	if (!bp) {
302 		if (loud)
303 			xfs_warn(mp, "SB buffer read failed");
304 		return EIO;
305 	}
306 	if (bp->b_error) {
307 		error = bp->b_error;
308 		if (loud)
309 			xfs_warn(mp, "SB validate failed with error %d.", error);
310 		goto release_buf;
311 	}
312 
313 	/*
314 	 * Initialize the mount structure from the superblock.
315 	 */
316 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
317 	xfs_sb_quota_from_disk(&mp->m_sb);
318 
319 	/*
320 	 * We must be able to do sector-sized and sector-aligned IO.
321 	 */
322 	if (sector_size > sbp->sb_sectsize) {
323 		if (loud)
324 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
325 				sector_size, sbp->sb_sectsize);
326 		error = ENOSYS;
327 		goto release_buf;
328 	}
329 
330 	/*
331 	 * If device sector size is smaller than the superblock size,
332 	 * re-read the superblock so the buffer is correctly sized.
333 	 */
334 	if (sector_size < sbp->sb_sectsize) {
335 		xfs_buf_relse(bp);
336 		sector_size = sbp->sb_sectsize;
337 		goto reread;
338 	}
339 
340 	/* Initialize per-cpu counters */
341 	xfs_icsb_reinit_counters(mp);
342 
343 	/* no need to be quiet anymore, so reset the buf ops */
344 	bp->b_ops = &xfs_sb_buf_ops;
345 
346 	mp->m_sb_bp = bp;
347 	xfs_buf_unlock(bp);
348 	return 0;
349 
350 release_buf:
351 	xfs_buf_relse(bp);
352 	return error;
353 }
354 
355 /*
356  * Update alignment values based on mount options and sb values
357  */
358 STATIC int
359 xfs_update_alignment(xfs_mount_t *mp)
360 {
361 	xfs_sb_t	*sbp = &(mp->m_sb);
362 
363 	if (mp->m_dalign) {
364 		/*
365 		 * If stripe unit and stripe width are not multiples
366 		 * of the fs blocksize turn off alignment.
367 		 */
368 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
369 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
370 			xfs_warn(mp,
371 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
372 				sbp->sb_blocksize);
373 			return XFS_ERROR(EINVAL);
374 		} else {
375 			/*
376 			 * Convert the stripe unit and width to FSBs.
377 			 */
378 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
379 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
380 				xfs_warn(mp,
381 			"alignment check failed: sunit/swidth vs. agsize(%d)",
382 					 sbp->sb_agblocks);
383 				return XFS_ERROR(EINVAL);
384 			} else if (mp->m_dalign) {
385 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
386 			} else {
387 				xfs_warn(mp,
388 			"alignment check failed: sunit(%d) less than bsize(%d)",
389 					 mp->m_dalign, sbp->sb_blocksize);
390 				return XFS_ERROR(EINVAL);
391 			}
392 		}
393 
394 		/*
395 		 * Update superblock with new values
396 		 * and log changes
397 		 */
398 		if (xfs_sb_version_hasdalign(sbp)) {
399 			if (sbp->sb_unit != mp->m_dalign) {
400 				sbp->sb_unit = mp->m_dalign;
401 				mp->m_update_flags |= XFS_SB_UNIT;
402 			}
403 			if (sbp->sb_width != mp->m_swidth) {
404 				sbp->sb_width = mp->m_swidth;
405 				mp->m_update_flags |= XFS_SB_WIDTH;
406 			}
407 		} else {
408 			xfs_warn(mp,
409 	"cannot change alignment: superblock does not support data alignment");
410 			return XFS_ERROR(EINVAL);
411 		}
412 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
413 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
414 			mp->m_dalign = sbp->sb_unit;
415 			mp->m_swidth = sbp->sb_width;
416 	}
417 
418 	return 0;
419 }
420 
421 /*
422  * Set the maximum inode count for this filesystem
423  */
424 STATIC void
425 xfs_set_maxicount(xfs_mount_t *mp)
426 {
427 	xfs_sb_t	*sbp = &(mp->m_sb);
428 	__uint64_t	icount;
429 
430 	if (sbp->sb_imax_pct) {
431 		/*
432 		 * Make sure the maximum inode count is a multiple
433 		 * of the units we allocate inodes in.
434 		 */
435 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
436 		do_div(icount, 100);
437 		do_div(icount, mp->m_ialloc_blks);
438 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
439 				   sbp->sb_inopblog;
440 	} else {
441 		mp->m_maxicount = 0;
442 	}
443 }
444 
445 /*
446  * Set the default minimum read and write sizes unless
447  * already specified in a mount option.
448  * We use smaller I/O sizes when the file system
449  * is being used for NFS service (wsync mount option).
450  */
451 STATIC void
452 xfs_set_rw_sizes(xfs_mount_t *mp)
453 {
454 	xfs_sb_t	*sbp = &(mp->m_sb);
455 	int		readio_log, writeio_log;
456 
457 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
458 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
459 			readio_log = XFS_WSYNC_READIO_LOG;
460 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
461 		} else {
462 			readio_log = XFS_READIO_LOG_LARGE;
463 			writeio_log = XFS_WRITEIO_LOG_LARGE;
464 		}
465 	} else {
466 		readio_log = mp->m_readio_log;
467 		writeio_log = mp->m_writeio_log;
468 	}
469 
470 	if (sbp->sb_blocklog > readio_log) {
471 		mp->m_readio_log = sbp->sb_blocklog;
472 	} else {
473 		mp->m_readio_log = readio_log;
474 	}
475 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
476 	if (sbp->sb_blocklog > writeio_log) {
477 		mp->m_writeio_log = sbp->sb_blocklog;
478 	} else {
479 		mp->m_writeio_log = writeio_log;
480 	}
481 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
482 }
483 
484 /*
485  * precalculate the low space thresholds for dynamic speculative preallocation.
486  */
487 void
488 xfs_set_low_space_thresholds(
489 	struct xfs_mount	*mp)
490 {
491 	int i;
492 
493 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
494 		__uint64_t space = mp->m_sb.sb_dblocks;
495 
496 		do_div(space, 100);
497 		mp->m_low_space[i] = space * (i + 1);
498 	}
499 }
500 
501 
502 /*
503  * Set whether we're using inode alignment.
504  */
505 STATIC void
506 xfs_set_inoalignment(xfs_mount_t *mp)
507 {
508 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
509 	    mp->m_sb.sb_inoalignmt >=
510 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
511 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
512 	else
513 		mp->m_inoalign_mask = 0;
514 	/*
515 	 * If we are using stripe alignment, check whether
516 	 * the stripe unit is a multiple of the inode alignment
517 	 */
518 	if (mp->m_dalign && mp->m_inoalign_mask &&
519 	    !(mp->m_dalign & mp->m_inoalign_mask))
520 		mp->m_sinoalign = mp->m_dalign;
521 	else
522 		mp->m_sinoalign = 0;
523 }
524 
525 /*
526  * Check that the data (and log if separate) is an ok size.
527  */
528 STATIC int
529 xfs_check_sizes(xfs_mount_t *mp)
530 {
531 	xfs_buf_t	*bp;
532 	xfs_daddr_t	d;
533 
534 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
535 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
536 		xfs_warn(mp, "filesystem size mismatch detected");
537 		return XFS_ERROR(EFBIG);
538 	}
539 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
540 					d - XFS_FSS_TO_BB(mp, 1),
541 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
542 	if (!bp) {
543 		xfs_warn(mp, "last sector read failed");
544 		return EIO;
545 	}
546 	xfs_buf_relse(bp);
547 
548 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
549 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
550 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
551 			xfs_warn(mp, "log size mismatch detected");
552 			return XFS_ERROR(EFBIG);
553 		}
554 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
555 					d - XFS_FSB_TO_BB(mp, 1),
556 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
557 		if (!bp) {
558 			xfs_warn(mp, "log device read failed");
559 			return EIO;
560 		}
561 		xfs_buf_relse(bp);
562 	}
563 	return 0;
564 }
565 
566 /*
567  * Clear the quotaflags in memory and in the superblock.
568  */
569 int
570 xfs_mount_reset_sbqflags(
571 	struct xfs_mount	*mp)
572 {
573 	int			error;
574 	struct xfs_trans	*tp;
575 
576 	mp->m_qflags = 0;
577 
578 	/*
579 	 * It is OK to look at sb_qflags here in mount path,
580 	 * without m_sb_lock.
581 	 */
582 	if (mp->m_sb.sb_qflags == 0)
583 		return 0;
584 	spin_lock(&mp->m_sb_lock);
585 	mp->m_sb.sb_qflags = 0;
586 	spin_unlock(&mp->m_sb_lock);
587 
588 	/*
589 	 * If the fs is readonly, let the incore superblock run
590 	 * with quotas off but don't flush the update out to disk
591 	 */
592 	if (mp->m_flags & XFS_MOUNT_RDONLY)
593 		return 0;
594 
595 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
596 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
597 	if (error) {
598 		xfs_trans_cancel(tp, 0);
599 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
600 		return error;
601 	}
602 
603 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
604 	return xfs_trans_commit(tp, 0);
605 }
606 
607 __uint64_t
608 xfs_default_resblks(xfs_mount_t *mp)
609 {
610 	__uint64_t resblks;
611 
612 	/*
613 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
614 	 * smaller.  This is intended to cover concurrent allocation
615 	 * transactions when we initially hit enospc. These each require a 4
616 	 * block reservation. Hence by default we cover roughly 2000 concurrent
617 	 * allocation reservations.
618 	 */
619 	resblks = mp->m_sb.sb_dblocks;
620 	do_div(resblks, 20);
621 	resblks = min_t(__uint64_t, resblks, 8192);
622 	return resblks;
623 }
624 
625 /*
626  * This function does the following on an initial mount of a file system:
627  *	- reads the superblock from disk and init the mount struct
628  *	- if we're a 32-bit kernel, do a size check on the superblock
629  *		so we don't mount terabyte filesystems
630  *	- init mount struct realtime fields
631  *	- allocate inode hash table for fs
632  *	- init directory manager
633  *	- perform recovery and init the log manager
634  */
635 int
636 xfs_mountfs(
637 	xfs_mount_t	*mp)
638 {
639 	xfs_sb_t	*sbp = &(mp->m_sb);
640 	xfs_inode_t	*rip;
641 	__uint64_t	resblks;
642 	uint		quotamount = 0;
643 	uint		quotaflags = 0;
644 	int		error = 0;
645 
646 	xfs_sb_mount_common(mp, sbp);
647 
648 	/*
649 	 * Check for a mismatched features2 values.  Older kernels
650 	 * read & wrote into the wrong sb offset for sb_features2
651 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
652 	 * when sb_features2 was added, which made older superblock
653 	 * reading/writing routines swap it as a 64-bit value.
654 	 *
655 	 * For backwards compatibility, we make both slots equal.
656 	 *
657 	 * If we detect a mismatched field, we OR the set bits into the
658 	 * existing features2 field in case it has already been modified; we
659 	 * don't want to lose any features.  We then update the bad location
660 	 * with the ORed value so that older kernels will see any features2
661 	 * flags, and mark the two fields as needing updates once the
662 	 * transaction subsystem is online.
663 	 */
664 	if (xfs_sb_has_mismatched_features2(sbp)) {
665 		xfs_warn(mp, "correcting sb_features alignment problem");
666 		sbp->sb_features2 |= sbp->sb_bad_features2;
667 		sbp->sb_bad_features2 = sbp->sb_features2;
668 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
669 
670 		/*
671 		 * Re-check for ATTR2 in case it was found in bad_features2
672 		 * slot.
673 		 */
674 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
675 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
676 			mp->m_flags |= XFS_MOUNT_ATTR2;
677 	}
678 
679 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
680 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
681 		xfs_sb_version_removeattr2(&mp->m_sb);
682 		mp->m_update_flags |= XFS_SB_FEATURES2;
683 
684 		/* update sb_versionnum for the clearing of the morebits */
685 		if (!sbp->sb_features2)
686 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
687 	}
688 
689 	/*
690 	 * Check if sb_agblocks is aligned at stripe boundary
691 	 * If sb_agblocks is NOT aligned turn off m_dalign since
692 	 * allocator alignment is within an ag, therefore ag has
693 	 * to be aligned at stripe boundary.
694 	 */
695 	error = xfs_update_alignment(mp);
696 	if (error)
697 		goto out;
698 
699 	xfs_alloc_compute_maxlevels(mp);
700 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
701 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
702 	xfs_ialloc_compute_maxlevels(mp);
703 
704 	xfs_set_maxicount(mp);
705 
706 	error = xfs_uuid_mount(mp);
707 	if (error)
708 		goto out;
709 
710 	/*
711 	 * Set the minimum read and write sizes
712 	 */
713 	xfs_set_rw_sizes(mp);
714 
715 	/* set the low space thresholds for dynamic preallocation */
716 	xfs_set_low_space_thresholds(mp);
717 
718 	/*
719 	 * Set the inode cluster size.
720 	 * This may still be overridden by the file system
721 	 * block size if it is larger than the chosen cluster size.
722 	 *
723 	 * For v5 filesystems, scale the cluster size with the inode size to
724 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
725 	 * has set the inode alignment value appropriately for larger cluster
726 	 * sizes.
727 	 */
728 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
729 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
730 		int	new_size = mp->m_inode_cluster_size;
731 
732 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
733 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
734 			mp->m_inode_cluster_size = new_size;
735 		xfs_info(mp, "Using inode cluster size of %d bytes",
736 			 mp->m_inode_cluster_size);
737 	}
738 
739 	/*
740 	 * Set inode alignment fields
741 	 */
742 	xfs_set_inoalignment(mp);
743 
744 	/*
745 	 * Check that the data (and log if separate) is an ok size.
746 	 */
747 	error = xfs_check_sizes(mp);
748 	if (error)
749 		goto out_remove_uuid;
750 
751 	/*
752 	 * Initialize realtime fields in the mount structure
753 	 */
754 	error = xfs_rtmount_init(mp);
755 	if (error) {
756 		xfs_warn(mp, "RT mount failed");
757 		goto out_remove_uuid;
758 	}
759 
760 	/*
761 	 *  Copies the low order bits of the timestamp and the randomly
762 	 *  set "sequence" number out of a UUID.
763 	 */
764 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
765 
766 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
767 
768 	xfs_dir_mount(mp);
769 
770 	/*
771 	 * Initialize the attribute manager's entries.
772 	 */
773 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
774 
775 	/*
776 	 * Initialize the precomputed transaction reservations values.
777 	 */
778 	xfs_trans_init(mp);
779 
780 	/*
781 	 * Allocate and initialize the per-ag data.
782 	 */
783 	spin_lock_init(&mp->m_perag_lock);
784 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
785 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
786 	if (error) {
787 		xfs_warn(mp, "Failed per-ag init: %d", error);
788 		goto out_remove_uuid;
789 	}
790 
791 	if (!sbp->sb_logblocks) {
792 		xfs_warn(mp, "no log defined");
793 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
794 		error = XFS_ERROR(EFSCORRUPTED);
795 		goto out_free_perag;
796 	}
797 
798 	/*
799 	 * log's mount-time initialization. Perform 1st part recovery if needed
800 	 */
801 	error = xfs_log_mount(mp, mp->m_logdev_targp,
802 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
803 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
804 	if (error) {
805 		xfs_warn(mp, "log mount failed");
806 		goto out_fail_wait;
807 	}
808 
809 	/*
810 	 * Now the log is mounted, we know if it was an unclean shutdown or
811 	 * not. If it was, with the first phase of recovery has completed, we
812 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
813 	 * but they are recovered transactionally in the second recovery phase
814 	 * later.
815 	 *
816 	 * Hence we can safely re-initialise incore superblock counters from
817 	 * the per-ag data. These may not be correct if the filesystem was not
818 	 * cleanly unmounted, so we need to wait for recovery to finish before
819 	 * doing this.
820 	 *
821 	 * If the filesystem was cleanly unmounted, then we can trust the
822 	 * values in the superblock to be correct and we don't need to do
823 	 * anything here.
824 	 *
825 	 * If we are currently making the filesystem, the initialisation will
826 	 * fail as the perag data is in an undefined state.
827 	 */
828 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
829 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
830 	     !mp->m_sb.sb_inprogress) {
831 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
832 		if (error)
833 			goto out_fail_wait;
834 	}
835 
836 	/*
837 	 * Get and sanity-check the root inode.
838 	 * Save the pointer to it in the mount structure.
839 	 */
840 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
841 	if (error) {
842 		xfs_warn(mp, "failed to read root inode");
843 		goto out_log_dealloc;
844 	}
845 
846 	ASSERT(rip != NULL);
847 
848 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
849 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
850 			(unsigned long long)rip->i_ino);
851 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
852 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
853 				 mp);
854 		error = XFS_ERROR(EFSCORRUPTED);
855 		goto out_rele_rip;
856 	}
857 	mp->m_rootip = rip;	/* save it */
858 
859 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
860 
861 	/*
862 	 * Initialize realtime inode pointers in the mount structure
863 	 */
864 	error = xfs_rtmount_inodes(mp);
865 	if (error) {
866 		/*
867 		 * Free up the root inode.
868 		 */
869 		xfs_warn(mp, "failed to read RT inodes");
870 		goto out_rele_rip;
871 	}
872 
873 	/*
874 	 * If this is a read-only mount defer the superblock updates until
875 	 * the next remount into writeable mode.  Otherwise we would never
876 	 * perform the update e.g. for the root filesystem.
877 	 */
878 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
879 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
880 		if (error) {
881 			xfs_warn(mp, "failed to write sb changes");
882 			goto out_rtunmount;
883 		}
884 	}
885 
886 	/*
887 	 * Initialise the XFS quota management subsystem for this mount
888 	 */
889 	if (XFS_IS_QUOTA_RUNNING(mp)) {
890 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
891 		if (error)
892 			goto out_rtunmount;
893 	} else {
894 		ASSERT(!XFS_IS_QUOTA_ON(mp));
895 
896 		/*
897 		 * If a file system had quotas running earlier, but decided to
898 		 * mount without -o uquota/pquota/gquota options, revoke the
899 		 * quotachecked license.
900 		 */
901 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
902 			xfs_notice(mp, "resetting quota flags");
903 			error = xfs_mount_reset_sbqflags(mp);
904 			if (error)
905 				return error;
906 		}
907 	}
908 
909 	/*
910 	 * Finish recovering the file system.  This part needed to be
911 	 * delayed until after the root and real-time bitmap inodes
912 	 * were consistently read in.
913 	 */
914 	error = xfs_log_mount_finish(mp);
915 	if (error) {
916 		xfs_warn(mp, "log mount finish failed");
917 		goto out_rtunmount;
918 	}
919 
920 	/*
921 	 * Complete the quota initialisation, post-log-replay component.
922 	 */
923 	if (quotamount) {
924 		ASSERT(mp->m_qflags == 0);
925 		mp->m_qflags = quotaflags;
926 
927 		xfs_qm_mount_quotas(mp);
928 	}
929 
930 	/*
931 	 * Now we are mounted, reserve a small amount of unused space for
932 	 * privileged transactions. This is needed so that transaction
933 	 * space required for critical operations can dip into this pool
934 	 * when at ENOSPC. This is needed for operations like create with
935 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
936 	 * are not allowed to use this reserved space.
937 	 *
938 	 * This may drive us straight to ENOSPC on mount, but that implies
939 	 * we were already there on the last unmount. Warn if this occurs.
940 	 */
941 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
942 		resblks = xfs_default_resblks(mp);
943 		error = xfs_reserve_blocks(mp, &resblks, NULL);
944 		if (error)
945 			xfs_warn(mp,
946 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
947 	}
948 
949 	return 0;
950 
951  out_rtunmount:
952 	xfs_rtunmount_inodes(mp);
953  out_rele_rip:
954 	IRELE(rip);
955  out_log_dealloc:
956 	xfs_log_unmount(mp);
957  out_fail_wait:
958 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
959 		xfs_wait_buftarg(mp->m_logdev_targp);
960 	xfs_wait_buftarg(mp->m_ddev_targp);
961  out_free_perag:
962 	xfs_free_perag(mp);
963  out_remove_uuid:
964 	xfs_uuid_unmount(mp);
965  out:
966 	return error;
967 }
968 
969 /*
970  * This flushes out the inodes,dquots and the superblock, unmounts the
971  * log and makes sure that incore structures are freed.
972  */
973 void
974 xfs_unmountfs(
975 	struct xfs_mount	*mp)
976 {
977 	__uint64_t		resblks;
978 	int			error;
979 
980 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
981 
982 	xfs_qm_unmount_quotas(mp);
983 	xfs_rtunmount_inodes(mp);
984 	IRELE(mp->m_rootip);
985 
986 	/*
987 	 * We can potentially deadlock here if we have an inode cluster
988 	 * that has been freed has its buffer still pinned in memory because
989 	 * the transaction is still sitting in a iclog. The stale inodes
990 	 * on that buffer will have their flush locks held until the
991 	 * transaction hits the disk and the callbacks run. the inode
992 	 * flush takes the flush lock unconditionally and with nothing to
993 	 * push out the iclog we will never get that unlocked. hence we
994 	 * need to force the log first.
995 	 */
996 	xfs_log_force(mp, XFS_LOG_SYNC);
997 
998 	/*
999 	 * Flush all pending changes from the AIL.
1000 	 */
1001 	xfs_ail_push_all_sync(mp->m_ail);
1002 
1003 	/*
1004 	 * And reclaim all inodes.  At this point there should be no dirty
1005 	 * inodes and none should be pinned or locked, but use synchronous
1006 	 * reclaim just to be sure. We can stop background inode reclaim
1007 	 * here as well if it is still running.
1008 	 */
1009 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1010 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1011 
1012 	xfs_qm_unmount(mp);
1013 
1014 	/*
1015 	 * Unreserve any blocks we have so that when we unmount we don't account
1016 	 * the reserved free space as used. This is really only necessary for
1017 	 * lazy superblock counting because it trusts the incore superblock
1018 	 * counters to be absolutely correct on clean unmount.
1019 	 *
1020 	 * We don't bother correcting this elsewhere for lazy superblock
1021 	 * counting because on mount of an unclean filesystem we reconstruct the
1022 	 * correct counter value and this is irrelevant.
1023 	 *
1024 	 * For non-lazy counter filesystems, this doesn't matter at all because
1025 	 * we only every apply deltas to the superblock and hence the incore
1026 	 * value does not matter....
1027 	 */
1028 	resblks = 0;
1029 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1030 	if (error)
1031 		xfs_warn(mp, "Unable to free reserved block pool. "
1032 				"Freespace may not be correct on next mount.");
1033 
1034 	error = xfs_log_sbcount(mp);
1035 	if (error)
1036 		xfs_warn(mp, "Unable to update superblock counters. "
1037 				"Freespace may not be correct on next mount.");
1038 
1039 	xfs_log_unmount(mp);
1040 	xfs_uuid_unmount(mp);
1041 
1042 #if defined(DEBUG)
1043 	xfs_errortag_clearall(mp, 0);
1044 #endif
1045 	xfs_free_perag(mp);
1046 }
1047 
1048 int
1049 xfs_fs_writable(xfs_mount_t *mp)
1050 {
1051 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1052 		(mp->m_flags & XFS_MOUNT_RDONLY));
1053 }
1054 
1055 /*
1056  * xfs_log_sbcount
1057  *
1058  * Sync the superblock counters to disk.
1059  *
1060  * Note this code can be called during the process of freezing, so
1061  * we may need to use the transaction allocator which does not
1062  * block when the transaction subsystem is in its frozen state.
1063  */
1064 int
1065 xfs_log_sbcount(xfs_mount_t *mp)
1066 {
1067 	xfs_trans_t	*tp;
1068 	int		error;
1069 
1070 	if (!xfs_fs_writable(mp))
1071 		return 0;
1072 
1073 	xfs_icsb_sync_counters(mp, 0);
1074 
1075 	/*
1076 	 * we don't need to do this if we are updating the superblock
1077 	 * counters on every modification.
1078 	 */
1079 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1080 		return 0;
1081 
1082 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1083 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1084 	if (error) {
1085 		xfs_trans_cancel(tp, 0);
1086 		return error;
1087 	}
1088 
1089 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1090 	xfs_trans_set_sync(tp);
1091 	error = xfs_trans_commit(tp, 0);
1092 	return error;
1093 }
1094 
1095 /*
1096  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1097  * a delta to a specified field in the in-core superblock.  Simply
1098  * switch on the field indicated and apply the delta to that field.
1099  * Fields are not allowed to dip below zero, so if the delta would
1100  * do this do not apply it and return EINVAL.
1101  *
1102  * The m_sb_lock must be held when this routine is called.
1103  */
1104 STATIC int
1105 xfs_mod_incore_sb_unlocked(
1106 	xfs_mount_t	*mp,
1107 	xfs_sb_field_t	field,
1108 	int64_t		delta,
1109 	int		rsvd)
1110 {
1111 	int		scounter;	/* short counter for 32 bit fields */
1112 	long long	lcounter;	/* long counter for 64 bit fields */
1113 	long long	res_used, rem;
1114 
1115 	/*
1116 	 * With the in-core superblock spin lock held, switch
1117 	 * on the indicated field.  Apply the delta to the
1118 	 * proper field.  If the fields value would dip below
1119 	 * 0, then do not apply the delta and return EINVAL.
1120 	 */
1121 	switch (field) {
1122 	case XFS_SBS_ICOUNT:
1123 		lcounter = (long long)mp->m_sb.sb_icount;
1124 		lcounter += delta;
1125 		if (lcounter < 0) {
1126 			ASSERT(0);
1127 			return XFS_ERROR(EINVAL);
1128 		}
1129 		mp->m_sb.sb_icount = lcounter;
1130 		return 0;
1131 	case XFS_SBS_IFREE:
1132 		lcounter = (long long)mp->m_sb.sb_ifree;
1133 		lcounter += delta;
1134 		if (lcounter < 0) {
1135 			ASSERT(0);
1136 			return XFS_ERROR(EINVAL);
1137 		}
1138 		mp->m_sb.sb_ifree = lcounter;
1139 		return 0;
1140 	case XFS_SBS_FDBLOCKS:
1141 		lcounter = (long long)
1142 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1143 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1144 
1145 		if (delta > 0) {		/* Putting blocks back */
1146 			if (res_used > delta) {
1147 				mp->m_resblks_avail += delta;
1148 			} else {
1149 				rem = delta - res_used;
1150 				mp->m_resblks_avail = mp->m_resblks;
1151 				lcounter += rem;
1152 			}
1153 		} else {				/* Taking blocks away */
1154 			lcounter += delta;
1155 			if (lcounter >= 0) {
1156 				mp->m_sb.sb_fdblocks = lcounter +
1157 							XFS_ALLOC_SET_ASIDE(mp);
1158 				return 0;
1159 			}
1160 
1161 			/*
1162 			 * We are out of blocks, use any available reserved
1163 			 * blocks if were allowed to.
1164 			 */
1165 			if (!rsvd)
1166 				return XFS_ERROR(ENOSPC);
1167 
1168 			lcounter = (long long)mp->m_resblks_avail + delta;
1169 			if (lcounter >= 0) {
1170 				mp->m_resblks_avail = lcounter;
1171 				return 0;
1172 			}
1173 			printk_once(KERN_WARNING
1174 				"Filesystem \"%s\": reserve blocks depleted! "
1175 				"Consider increasing reserve pool size.",
1176 				mp->m_fsname);
1177 			return XFS_ERROR(ENOSPC);
1178 		}
1179 
1180 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1181 		return 0;
1182 	case XFS_SBS_FREXTENTS:
1183 		lcounter = (long long)mp->m_sb.sb_frextents;
1184 		lcounter += delta;
1185 		if (lcounter < 0) {
1186 			return XFS_ERROR(ENOSPC);
1187 		}
1188 		mp->m_sb.sb_frextents = lcounter;
1189 		return 0;
1190 	case XFS_SBS_DBLOCKS:
1191 		lcounter = (long long)mp->m_sb.sb_dblocks;
1192 		lcounter += delta;
1193 		if (lcounter < 0) {
1194 			ASSERT(0);
1195 			return XFS_ERROR(EINVAL);
1196 		}
1197 		mp->m_sb.sb_dblocks = lcounter;
1198 		return 0;
1199 	case XFS_SBS_AGCOUNT:
1200 		scounter = mp->m_sb.sb_agcount;
1201 		scounter += delta;
1202 		if (scounter < 0) {
1203 			ASSERT(0);
1204 			return XFS_ERROR(EINVAL);
1205 		}
1206 		mp->m_sb.sb_agcount = scounter;
1207 		return 0;
1208 	case XFS_SBS_IMAX_PCT:
1209 		scounter = mp->m_sb.sb_imax_pct;
1210 		scounter += delta;
1211 		if (scounter < 0) {
1212 			ASSERT(0);
1213 			return XFS_ERROR(EINVAL);
1214 		}
1215 		mp->m_sb.sb_imax_pct = scounter;
1216 		return 0;
1217 	case XFS_SBS_REXTSIZE:
1218 		scounter = mp->m_sb.sb_rextsize;
1219 		scounter += delta;
1220 		if (scounter < 0) {
1221 			ASSERT(0);
1222 			return XFS_ERROR(EINVAL);
1223 		}
1224 		mp->m_sb.sb_rextsize = scounter;
1225 		return 0;
1226 	case XFS_SBS_RBMBLOCKS:
1227 		scounter = mp->m_sb.sb_rbmblocks;
1228 		scounter += delta;
1229 		if (scounter < 0) {
1230 			ASSERT(0);
1231 			return XFS_ERROR(EINVAL);
1232 		}
1233 		mp->m_sb.sb_rbmblocks = scounter;
1234 		return 0;
1235 	case XFS_SBS_RBLOCKS:
1236 		lcounter = (long long)mp->m_sb.sb_rblocks;
1237 		lcounter += delta;
1238 		if (lcounter < 0) {
1239 			ASSERT(0);
1240 			return XFS_ERROR(EINVAL);
1241 		}
1242 		mp->m_sb.sb_rblocks = lcounter;
1243 		return 0;
1244 	case XFS_SBS_REXTENTS:
1245 		lcounter = (long long)mp->m_sb.sb_rextents;
1246 		lcounter += delta;
1247 		if (lcounter < 0) {
1248 			ASSERT(0);
1249 			return XFS_ERROR(EINVAL);
1250 		}
1251 		mp->m_sb.sb_rextents = lcounter;
1252 		return 0;
1253 	case XFS_SBS_REXTSLOG:
1254 		scounter = mp->m_sb.sb_rextslog;
1255 		scounter += delta;
1256 		if (scounter < 0) {
1257 			ASSERT(0);
1258 			return XFS_ERROR(EINVAL);
1259 		}
1260 		mp->m_sb.sb_rextslog = scounter;
1261 		return 0;
1262 	default:
1263 		ASSERT(0);
1264 		return XFS_ERROR(EINVAL);
1265 	}
1266 }
1267 
1268 /*
1269  * xfs_mod_incore_sb() is used to change a field in the in-core
1270  * superblock structure by the specified delta.  This modification
1271  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1272  * routine to do the work.
1273  */
1274 int
1275 xfs_mod_incore_sb(
1276 	struct xfs_mount	*mp,
1277 	xfs_sb_field_t		field,
1278 	int64_t			delta,
1279 	int			rsvd)
1280 {
1281 	int			status;
1282 
1283 #ifdef HAVE_PERCPU_SB
1284 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1285 #endif
1286 	spin_lock(&mp->m_sb_lock);
1287 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1288 	spin_unlock(&mp->m_sb_lock);
1289 
1290 	return status;
1291 }
1292 
1293 /*
1294  * Change more than one field in the in-core superblock structure at a time.
1295  *
1296  * The fields and changes to those fields are specified in the array of
1297  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1298  * will be applied or none of them will.  If any modified field dips below 0,
1299  * then all modifications will be backed out and EINVAL will be returned.
1300  *
1301  * Note that this function may not be used for the superblock values that
1302  * are tracked with the in-memory per-cpu counters - a direct call to
1303  * xfs_icsb_modify_counters is required for these.
1304  */
1305 int
1306 xfs_mod_incore_sb_batch(
1307 	struct xfs_mount	*mp,
1308 	xfs_mod_sb_t		*msb,
1309 	uint			nmsb,
1310 	int			rsvd)
1311 {
1312 	xfs_mod_sb_t		*msbp;
1313 	int			error = 0;
1314 
1315 	/*
1316 	 * Loop through the array of mod structures and apply each individually.
1317 	 * If any fail, then back out all those which have already been applied.
1318 	 * Do all of this within the scope of the m_sb_lock so that all of the
1319 	 * changes will be atomic.
1320 	 */
1321 	spin_lock(&mp->m_sb_lock);
1322 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1323 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1324 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1325 
1326 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1327 						   msbp->msb_delta, rsvd);
1328 		if (error)
1329 			goto unwind;
1330 	}
1331 	spin_unlock(&mp->m_sb_lock);
1332 	return 0;
1333 
1334 unwind:
1335 	while (--msbp >= msb) {
1336 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1337 						   -msbp->msb_delta, rsvd);
1338 		ASSERT(error == 0);
1339 	}
1340 	spin_unlock(&mp->m_sb_lock);
1341 	return error;
1342 }
1343 
1344 /*
1345  * xfs_getsb() is called to obtain the buffer for the superblock.
1346  * The buffer is returned locked and read in from disk.
1347  * The buffer should be released with a call to xfs_brelse().
1348  *
1349  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1350  * the superblock buffer if it can be locked without sleeping.
1351  * If it can't then we'll return NULL.
1352  */
1353 struct xfs_buf *
1354 xfs_getsb(
1355 	struct xfs_mount	*mp,
1356 	int			flags)
1357 {
1358 	struct xfs_buf		*bp = mp->m_sb_bp;
1359 
1360 	if (!xfs_buf_trylock(bp)) {
1361 		if (flags & XBF_TRYLOCK)
1362 			return NULL;
1363 		xfs_buf_lock(bp);
1364 	}
1365 
1366 	xfs_buf_hold(bp);
1367 	ASSERT(XFS_BUF_ISDONE(bp));
1368 	return bp;
1369 }
1370 
1371 /*
1372  * Used to free the superblock along various error paths.
1373  */
1374 void
1375 xfs_freesb(
1376 	struct xfs_mount	*mp)
1377 {
1378 	struct xfs_buf		*bp = mp->m_sb_bp;
1379 
1380 	xfs_buf_lock(bp);
1381 	mp->m_sb_bp = NULL;
1382 	xfs_buf_relse(bp);
1383 }
1384 
1385 /*
1386  * Used to log changes to the superblock unit and width fields which could
1387  * be altered by the mount options, as well as any potential sb_features2
1388  * fixup. Only the first superblock is updated.
1389  */
1390 int
1391 xfs_mount_log_sb(
1392 	xfs_mount_t	*mp,
1393 	__int64_t	fields)
1394 {
1395 	xfs_trans_t	*tp;
1396 	int		error;
1397 
1398 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1399 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1400 			 XFS_SB_VERSIONNUM));
1401 
1402 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1403 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1404 	if (error) {
1405 		xfs_trans_cancel(tp, 0);
1406 		return error;
1407 	}
1408 	xfs_mod_sb(tp, fields);
1409 	error = xfs_trans_commit(tp, 0);
1410 	return error;
1411 }
1412 
1413 /*
1414  * If the underlying (data/log/rt) device is readonly, there are some
1415  * operations that cannot proceed.
1416  */
1417 int
1418 xfs_dev_is_read_only(
1419 	struct xfs_mount	*mp,
1420 	char			*message)
1421 {
1422 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1423 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1424 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1425 		xfs_notice(mp, "%s required on read-only device.", message);
1426 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1427 		return EROFS;
1428 	}
1429 	return 0;
1430 }
1431 
1432 #ifdef HAVE_PERCPU_SB
1433 /*
1434  * Per-cpu incore superblock counters
1435  *
1436  * Simple concept, difficult implementation
1437  *
1438  * Basically, replace the incore superblock counters with a distributed per cpu
1439  * counter for contended fields (e.g.  free block count).
1440  *
1441  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1442  * hence needs to be accurately read when we are running low on space. Hence
1443  * there is a method to enable and disable the per-cpu counters based on how
1444  * much "stuff" is available in them.
1445  *
1446  * Basically, a counter is enabled if there is enough free resource to justify
1447  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1448  * ENOSPC), then we disable the counters to synchronise all callers and
1449  * re-distribute the available resources.
1450  *
1451  * If, once we redistributed the available resources, we still get a failure,
1452  * we disable the per-cpu counter and go through the slow path.
1453  *
1454  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1455  * when we disable a per-cpu counter, we need to drain its resources back to
1456  * the global superblock. We do this after disabling the counter to prevent
1457  * more threads from queueing up on the counter.
1458  *
1459  * Essentially, this means that we still need a lock in the fast path to enable
1460  * synchronisation between the global counters and the per-cpu counters. This
1461  * is not a problem because the lock will be local to a CPU almost all the time
1462  * and have little contention except when we get to ENOSPC conditions.
1463  *
1464  * Basically, this lock becomes a barrier that enables us to lock out the fast
1465  * path while we do things like enabling and disabling counters and
1466  * synchronising the counters.
1467  *
1468  * Locking rules:
1469  *
1470  * 	1. m_sb_lock before picking up per-cpu locks
1471  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1472  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1473  * 	4. modifying per-cpu counters requires holding per-cpu lock
1474  * 	5. modifying global counters requires holding m_sb_lock
1475  *	6. enabling or disabling a counter requires holding the m_sb_lock
1476  *	   and _none_ of the per-cpu locks.
1477  *
1478  * Disabled counters are only ever re-enabled by a balance operation
1479  * that results in more free resources per CPU than a given threshold.
1480  * To ensure counters don't remain disabled, they are rebalanced when
1481  * the global resource goes above a higher threshold (i.e. some hysteresis
1482  * is present to prevent thrashing).
1483  */
1484 
1485 #ifdef CONFIG_HOTPLUG_CPU
1486 /*
1487  * hot-plug CPU notifier support.
1488  *
1489  * We need a notifier per filesystem as we need to be able to identify
1490  * the filesystem to balance the counters out. This is achieved by
1491  * having a notifier block embedded in the xfs_mount_t and doing pointer
1492  * magic to get the mount pointer from the notifier block address.
1493  */
1494 STATIC int
1495 xfs_icsb_cpu_notify(
1496 	struct notifier_block *nfb,
1497 	unsigned long action,
1498 	void *hcpu)
1499 {
1500 	xfs_icsb_cnts_t *cntp;
1501 	xfs_mount_t	*mp;
1502 
1503 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1504 	cntp = (xfs_icsb_cnts_t *)
1505 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1506 	switch (action) {
1507 	case CPU_UP_PREPARE:
1508 	case CPU_UP_PREPARE_FROZEN:
1509 		/* Easy Case - initialize the area and locks, and
1510 		 * then rebalance when online does everything else for us. */
1511 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1512 		break;
1513 	case CPU_ONLINE:
1514 	case CPU_ONLINE_FROZEN:
1515 		xfs_icsb_lock(mp);
1516 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1517 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1518 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1519 		xfs_icsb_unlock(mp);
1520 		break;
1521 	case CPU_DEAD:
1522 	case CPU_DEAD_FROZEN:
1523 		/* Disable all the counters, then fold the dead cpu's
1524 		 * count into the total on the global superblock and
1525 		 * re-enable the counters. */
1526 		xfs_icsb_lock(mp);
1527 		spin_lock(&mp->m_sb_lock);
1528 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1529 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1530 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1531 
1532 		mp->m_sb.sb_icount += cntp->icsb_icount;
1533 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1534 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1535 
1536 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1537 
1538 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1539 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1540 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1541 		spin_unlock(&mp->m_sb_lock);
1542 		xfs_icsb_unlock(mp);
1543 		break;
1544 	}
1545 
1546 	return NOTIFY_OK;
1547 }
1548 #endif /* CONFIG_HOTPLUG_CPU */
1549 
1550 int
1551 xfs_icsb_init_counters(
1552 	xfs_mount_t	*mp)
1553 {
1554 	xfs_icsb_cnts_t *cntp;
1555 	int		i;
1556 
1557 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1558 	if (mp->m_sb_cnts == NULL)
1559 		return -ENOMEM;
1560 
1561 	for_each_online_cpu(i) {
1562 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1563 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1564 	}
1565 
1566 	mutex_init(&mp->m_icsb_mutex);
1567 
1568 	/*
1569 	 * start with all counters disabled so that the
1570 	 * initial balance kicks us off correctly
1571 	 */
1572 	mp->m_icsb_counters = -1;
1573 
1574 #ifdef CONFIG_HOTPLUG_CPU
1575 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1576 	mp->m_icsb_notifier.priority = 0;
1577 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1578 #endif /* CONFIG_HOTPLUG_CPU */
1579 
1580 	return 0;
1581 }
1582 
1583 void
1584 xfs_icsb_reinit_counters(
1585 	xfs_mount_t	*mp)
1586 {
1587 	xfs_icsb_lock(mp);
1588 	/*
1589 	 * start with all counters disabled so that the
1590 	 * initial balance kicks us off correctly
1591 	 */
1592 	mp->m_icsb_counters = -1;
1593 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1594 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1595 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1596 	xfs_icsb_unlock(mp);
1597 }
1598 
1599 void
1600 xfs_icsb_destroy_counters(
1601 	xfs_mount_t	*mp)
1602 {
1603 	if (mp->m_sb_cnts) {
1604 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1605 		free_percpu(mp->m_sb_cnts);
1606 	}
1607 	mutex_destroy(&mp->m_icsb_mutex);
1608 }
1609 
1610 STATIC void
1611 xfs_icsb_lock_cntr(
1612 	xfs_icsb_cnts_t	*icsbp)
1613 {
1614 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1615 		ndelay(1000);
1616 	}
1617 }
1618 
1619 STATIC void
1620 xfs_icsb_unlock_cntr(
1621 	xfs_icsb_cnts_t	*icsbp)
1622 {
1623 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1624 }
1625 
1626 
1627 STATIC void
1628 xfs_icsb_lock_all_counters(
1629 	xfs_mount_t	*mp)
1630 {
1631 	xfs_icsb_cnts_t *cntp;
1632 	int		i;
1633 
1634 	for_each_online_cpu(i) {
1635 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1636 		xfs_icsb_lock_cntr(cntp);
1637 	}
1638 }
1639 
1640 STATIC void
1641 xfs_icsb_unlock_all_counters(
1642 	xfs_mount_t	*mp)
1643 {
1644 	xfs_icsb_cnts_t *cntp;
1645 	int		i;
1646 
1647 	for_each_online_cpu(i) {
1648 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1649 		xfs_icsb_unlock_cntr(cntp);
1650 	}
1651 }
1652 
1653 STATIC void
1654 xfs_icsb_count(
1655 	xfs_mount_t	*mp,
1656 	xfs_icsb_cnts_t	*cnt,
1657 	int		flags)
1658 {
1659 	xfs_icsb_cnts_t *cntp;
1660 	int		i;
1661 
1662 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1663 
1664 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1665 		xfs_icsb_lock_all_counters(mp);
1666 
1667 	for_each_online_cpu(i) {
1668 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1669 		cnt->icsb_icount += cntp->icsb_icount;
1670 		cnt->icsb_ifree += cntp->icsb_ifree;
1671 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1672 	}
1673 
1674 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1675 		xfs_icsb_unlock_all_counters(mp);
1676 }
1677 
1678 STATIC int
1679 xfs_icsb_counter_disabled(
1680 	xfs_mount_t	*mp,
1681 	xfs_sb_field_t	field)
1682 {
1683 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1684 	return test_bit(field, &mp->m_icsb_counters);
1685 }
1686 
1687 STATIC void
1688 xfs_icsb_disable_counter(
1689 	xfs_mount_t	*mp,
1690 	xfs_sb_field_t	field)
1691 {
1692 	xfs_icsb_cnts_t	cnt;
1693 
1694 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1695 
1696 	/*
1697 	 * If we are already disabled, then there is nothing to do
1698 	 * here. We check before locking all the counters to avoid
1699 	 * the expensive lock operation when being called in the
1700 	 * slow path and the counter is already disabled. This is
1701 	 * safe because the only time we set or clear this state is under
1702 	 * the m_icsb_mutex.
1703 	 */
1704 	if (xfs_icsb_counter_disabled(mp, field))
1705 		return;
1706 
1707 	xfs_icsb_lock_all_counters(mp);
1708 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1709 		/* drain back to superblock */
1710 
1711 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1712 		switch(field) {
1713 		case XFS_SBS_ICOUNT:
1714 			mp->m_sb.sb_icount = cnt.icsb_icount;
1715 			break;
1716 		case XFS_SBS_IFREE:
1717 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1718 			break;
1719 		case XFS_SBS_FDBLOCKS:
1720 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1721 			break;
1722 		default:
1723 			BUG();
1724 		}
1725 	}
1726 
1727 	xfs_icsb_unlock_all_counters(mp);
1728 }
1729 
1730 STATIC void
1731 xfs_icsb_enable_counter(
1732 	xfs_mount_t	*mp,
1733 	xfs_sb_field_t	field,
1734 	uint64_t	count,
1735 	uint64_t	resid)
1736 {
1737 	xfs_icsb_cnts_t	*cntp;
1738 	int		i;
1739 
1740 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1741 
1742 	xfs_icsb_lock_all_counters(mp);
1743 	for_each_online_cpu(i) {
1744 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1745 		switch (field) {
1746 		case XFS_SBS_ICOUNT:
1747 			cntp->icsb_icount = count + resid;
1748 			break;
1749 		case XFS_SBS_IFREE:
1750 			cntp->icsb_ifree = count + resid;
1751 			break;
1752 		case XFS_SBS_FDBLOCKS:
1753 			cntp->icsb_fdblocks = count + resid;
1754 			break;
1755 		default:
1756 			BUG();
1757 			break;
1758 		}
1759 		resid = 0;
1760 	}
1761 	clear_bit(field, &mp->m_icsb_counters);
1762 	xfs_icsb_unlock_all_counters(mp);
1763 }
1764 
1765 void
1766 xfs_icsb_sync_counters_locked(
1767 	xfs_mount_t	*mp,
1768 	int		flags)
1769 {
1770 	xfs_icsb_cnts_t	cnt;
1771 
1772 	xfs_icsb_count(mp, &cnt, flags);
1773 
1774 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1775 		mp->m_sb.sb_icount = cnt.icsb_icount;
1776 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1777 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1778 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1779 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1780 }
1781 
1782 /*
1783  * Accurate update of per-cpu counters to incore superblock
1784  */
1785 void
1786 xfs_icsb_sync_counters(
1787 	xfs_mount_t	*mp,
1788 	int		flags)
1789 {
1790 	spin_lock(&mp->m_sb_lock);
1791 	xfs_icsb_sync_counters_locked(mp, flags);
1792 	spin_unlock(&mp->m_sb_lock);
1793 }
1794 
1795 /*
1796  * Balance and enable/disable counters as necessary.
1797  *
1798  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1799  * chosen to be the same number as single on disk allocation chunk per CPU, and
1800  * free blocks is something far enough zero that we aren't going thrash when we
1801  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1802  * prevent looping endlessly when xfs_alloc_space asks for more than will
1803  * be distributed to a single CPU but each CPU has enough blocks to be
1804  * reenabled.
1805  *
1806  * Note that we can be called when counters are already disabled.
1807  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1808  * prevent locking every per-cpu counter needlessly.
1809  */
1810 
1811 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1812 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1813 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1814 STATIC void
1815 xfs_icsb_balance_counter_locked(
1816 	xfs_mount_t	*mp,
1817 	xfs_sb_field_t  field,
1818 	int		min_per_cpu)
1819 {
1820 	uint64_t	count, resid;
1821 	int		weight = num_online_cpus();
1822 	uint64_t	min = (uint64_t)min_per_cpu;
1823 
1824 	/* disable counter and sync counter */
1825 	xfs_icsb_disable_counter(mp, field);
1826 
1827 	/* update counters  - first CPU gets residual*/
1828 	switch (field) {
1829 	case XFS_SBS_ICOUNT:
1830 		count = mp->m_sb.sb_icount;
1831 		resid = do_div(count, weight);
1832 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1833 			return;
1834 		break;
1835 	case XFS_SBS_IFREE:
1836 		count = mp->m_sb.sb_ifree;
1837 		resid = do_div(count, weight);
1838 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1839 			return;
1840 		break;
1841 	case XFS_SBS_FDBLOCKS:
1842 		count = mp->m_sb.sb_fdblocks;
1843 		resid = do_div(count, weight);
1844 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1845 			return;
1846 		break;
1847 	default:
1848 		BUG();
1849 		count = resid = 0;	/* quiet, gcc */
1850 		break;
1851 	}
1852 
1853 	xfs_icsb_enable_counter(mp, field, count, resid);
1854 }
1855 
1856 STATIC void
1857 xfs_icsb_balance_counter(
1858 	xfs_mount_t	*mp,
1859 	xfs_sb_field_t  fields,
1860 	int		min_per_cpu)
1861 {
1862 	spin_lock(&mp->m_sb_lock);
1863 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1864 	spin_unlock(&mp->m_sb_lock);
1865 }
1866 
1867 int
1868 xfs_icsb_modify_counters(
1869 	xfs_mount_t	*mp,
1870 	xfs_sb_field_t	field,
1871 	int64_t		delta,
1872 	int		rsvd)
1873 {
1874 	xfs_icsb_cnts_t	*icsbp;
1875 	long long	lcounter;	/* long counter for 64 bit fields */
1876 	int		ret = 0;
1877 
1878 	might_sleep();
1879 again:
1880 	preempt_disable();
1881 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1882 
1883 	/*
1884 	 * if the counter is disabled, go to slow path
1885 	 */
1886 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1887 		goto slow_path;
1888 	xfs_icsb_lock_cntr(icsbp);
1889 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1890 		xfs_icsb_unlock_cntr(icsbp);
1891 		goto slow_path;
1892 	}
1893 
1894 	switch (field) {
1895 	case XFS_SBS_ICOUNT:
1896 		lcounter = icsbp->icsb_icount;
1897 		lcounter += delta;
1898 		if (unlikely(lcounter < 0))
1899 			goto balance_counter;
1900 		icsbp->icsb_icount = lcounter;
1901 		break;
1902 
1903 	case XFS_SBS_IFREE:
1904 		lcounter = icsbp->icsb_ifree;
1905 		lcounter += delta;
1906 		if (unlikely(lcounter < 0))
1907 			goto balance_counter;
1908 		icsbp->icsb_ifree = lcounter;
1909 		break;
1910 
1911 	case XFS_SBS_FDBLOCKS:
1912 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1913 
1914 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1915 		lcounter += delta;
1916 		if (unlikely(lcounter < 0))
1917 			goto balance_counter;
1918 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1919 		break;
1920 	default:
1921 		BUG();
1922 		break;
1923 	}
1924 	xfs_icsb_unlock_cntr(icsbp);
1925 	preempt_enable();
1926 	return 0;
1927 
1928 slow_path:
1929 	preempt_enable();
1930 
1931 	/*
1932 	 * serialise with a mutex so we don't burn lots of cpu on
1933 	 * the superblock lock. We still need to hold the superblock
1934 	 * lock, however, when we modify the global structures.
1935 	 */
1936 	xfs_icsb_lock(mp);
1937 
1938 	/*
1939 	 * Now running atomically.
1940 	 *
1941 	 * If the counter is enabled, someone has beaten us to rebalancing.
1942 	 * Drop the lock and try again in the fast path....
1943 	 */
1944 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1945 		xfs_icsb_unlock(mp);
1946 		goto again;
1947 	}
1948 
1949 	/*
1950 	 * The counter is currently disabled. Because we are
1951 	 * running atomically here, we know a rebalance cannot
1952 	 * be in progress. Hence we can go straight to operating
1953 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1954 	 * here even though we need to get the m_sb_lock. Doing so
1955 	 * will cause us to re-enter this function and deadlock.
1956 	 * Hence we get the m_sb_lock ourselves and then call
1957 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1958 	 * directly on the global counters.
1959 	 */
1960 	spin_lock(&mp->m_sb_lock);
1961 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1962 	spin_unlock(&mp->m_sb_lock);
1963 
1964 	/*
1965 	 * Now that we've modified the global superblock, we
1966 	 * may be able to re-enable the distributed counters
1967 	 * (e.g. lots of space just got freed). After that
1968 	 * we are done.
1969 	 */
1970 	if (ret != ENOSPC)
1971 		xfs_icsb_balance_counter(mp, field, 0);
1972 	xfs_icsb_unlock(mp);
1973 	return ret;
1974 
1975 balance_counter:
1976 	xfs_icsb_unlock_cntr(icsbp);
1977 	preempt_enable();
1978 
1979 	/*
1980 	 * We may have multiple threads here if multiple per-cpu
1981 	 * counters run dry at the same time. This will mean we can
1982 	 * do more balances than strictly necessary but it is not
1983 	 * the common slowpath case.
1984 	 */
1985 	xfs_icsb_lock(mp);
1986 
1987 	/*
1988 	 * running atomically.
1989 	 *
1990 	 * This will leave the counter in the correct state for future
1991 	 * accesses. After the rebalance, we simply try again and our retry
1992 	 * will either succeed through the fast path or slow path without
1993 	 * another balance operation being required.
1994 	 */
1995 	xfs_icsb_balance_counter(mp, field, delta);
1996 	xfs_icsb_unlock(mp);
1997 	goto again;
1998 }
1999 
2000 #endif
2001