1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 #include "xfs_trace.h" 35 36 static DEFINE_MUTEX(xfs_uuid_table_mutex); 37 static int xfs_uuid_table_size; 38 static uuid_t *xfs_uuid_table; 39 40 void 41 xfs_uuid_table_free(void) 42 { 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48 } 49 50 /* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54 STATIC int 55 xfs_uuid_mount( 56 struct xfs_mount *mp) 57 { 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = krealloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 GFP_KERNEL | __GFP_NOFAIL); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97 } 98 99 STATIC void 100 xfs_uuid_unmount( 101 struct xfs_mount *mp) 102 { 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120 } 121 122 123 STATIC void 124 __xfs_free_perag( 125 struct rcu_head *head) 126 { 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 130 ASSERT(atomic_read(&pag->pag_ref) == 0); 131 kmem_free(pag); 132 } 133 134 /* 135 * Free up the per-ag resources associated with the mount structure. 136 */ 137 STATIC void 138 xfs_free_perag( 139 xfs_mount_t *mp) 140 { 141 xfs_agnumber_t agno; 142 struct xfs_perag *pag; 143 144 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 145 spin_lock(&mp->m_perag_lock); 146 pag = radix_tree_delete(&mp->m_perag_tree, agno); 147 spin_unlock(&mp->m_perag_lock); 148 ASSERT(pag); 149 ASSERT(atomic_read(&pag->pag_ref) == 0); 150 cancel_delayed_work_sync(&pag->pag_blockgc_work); 151 xfs_iunlink_destroy(pag); 152 xfs_buf_hash_destroy(pag); 153 call_rcu(&pag->rcu_head, __xfs_free_perag); 154 } 155 } 156 157 /* 158 * Check size of device based on the (data/realtime) block count. 159 * Note: this check is used by the growfs code as well as mount. 160 */ 161 int 162 xfs_sb_validate_fsb_count( 163 xfs_sb_t *sbp, 164 uint64_t nblocks) 165 { 166 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 167 ASSERT(sbp->sb_blocklog >= BBSHIFT); 168 169 /* Limited by ULONG_MAX of page cache index */ 170 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 171 return -EFBIG; 172 return 0; 173 } 174 175 int 176 xfs_initialize_perag( 177 xfs_mount_t *mp, 178 xfs_agnumber_t agcount, 179 xfs_agnumber_t *maxagi) 180 { 181 xfs_agnumber_t index; 182 xfs_agnumber_t first_initialised = NULLAGNUMBER; 183 xfs_perag_t *pag; 184 int error = -ENOMEM; 185 186 /* 187 * Walk the current per-ag tree so we don't try to initialise AGs 188 * that already exist (growfs case). Allocate and insert all the 189 * AGs we don't find ready for initialisation. 190 */ 191 for (index = 0; index < agcount; index++) { 192 pag = xfs_perag_get(mp, index); 193 if (pag) { 194 xfs_perag_put(pag); 195 continue; 196 } 197 198 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 199 if (!pag) { 200 error = -ENOMEM; 201 goto out_unwind_new_pags; 202 } 203 pag->pag_agno = index; 204 pag->pag_mount = mp; 205 spin_lock_init(&pag->pag_ici_lock); 206 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 207 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 208 209 error = xfs_buf_hash_init(pag); 210 if (error) 211 goto out_free_pag; 212 init_waitqueue_head(&pag->pagb_wait); 213 spin_lock_init(&pag->pagb_lock); 214 pag->pagb_count = 0; 215 pag->pagb_tree = RB_ROOT; 216 217 error = radix_tree_preload(GFP_NOFS); 218 if (error) 219 goto out_hash_destroy; 220 221 spin_lock(&mp->m_perag_lock); 222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 223 WARN_ON_ONCE(1); 224 spin_unlock(&mp->m_perag_lock); 225 radix_tree_preload_end(); 226 error = -EEXIST; 227 goto out_hash_destroy; 228 } 229 spin_unlock(&mp->m_perag_lock); 230 radix_tree_preload_end(); 231 /* first new pag is fully initialized */ 232 if (first_initialised == NULLAGNUMBER) 233 first_initialised = index; 234 error = xfs_iunlink_init(pag); 235 if (error) 236 goto out_hash_destroy; 237 spin_lock_init(&pag->pag_state_lock); 238 } 239 240 index = xfs_set_inode_alloc(mp, agcount); 241 242 if (maxagi) 243 *maxagi = index; 244 245 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 246 return 0; 247 248 out_hash_destroy: 249 xfs_buf_hash_destroy(pag); 250 out_free_pag: 251 kmem_free(pag); 252 out_unwind_new_pags: 253 /* unwind any prior newly initialized pags */ 254 for (index = first_initialised; index < agcount; index++) { 255 pag = radix_tree_delete(&mp->m_perag_tree, index); 256 if (!pag) 257 break; 258 xfs_buf_hash_destroy(pag); 259 xfs_iunlink_destroy(pag); 260 kmem_free(pag); 261 } 262 return error; 263 } 264 265 /* 266 * xfs_readsb 267 * 268 * Does the initial read of the superblock. 269 */ 270 int 271 xfs_readsb( 272 struct xfs_mount *mp, 273 int flags) 274 { 275 unsigned int sector_size; 276 struct xfs_buf *bp; 277 struct xfs_sb *sbp = &mp->m_sb; 278 int error; 279 int loud = !(flags & XFS_MFSI_QUIET); 280 const struct xfs_buf_ops *buf_ops; 281 282 ASSERT(mp->m_sb_bp == NULL); 283 ASSERT(mp->m_ddev_targp != NULL); 284 285 /* 286 * For the initial read, we must guess at the sector 287 * size based on the block device. It's enough to 288 * get the sb_sectsize out of the superblock and 289 * then reread with the proper length. 290 * We don't verify it yet, because it may not be complete. 291 */ 292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 293 buf_ops = NULL; 294 295 /* 296 * Allocate a (locked) buffer to hold the superblock. This will be kept 297 * around at all times to optimize access to the superblock. Therefore, 298 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 299 * elevated. 300 */ 301 reread: 302 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 303 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 304 buf_ops); 305 if (error) { 306 if (loud) 307 xfs_warn(mp, "SB validate failed with error %d.", error); 308 /* bad CRC means corrupted metadata */ 309 if (error == -EFSBADCRC) 310 error = -EFSCORRUPTED; 311 return error; 312 } 313 314 /* 315 * Initialize the mount structure from the superblock. 316 */ 317 xfs_sb_from_disk(sbp, bp->b_addr); 318 319 /* 320 * If we haven't validated the superblock, do so now before we try 321 * to check the sector size and reread the superblock appropriately. 322 */ 323 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 324 if (loud) 325 xfs_warn(mp, "Invalid superblock magic number"); 326 error = -EINVAL; 327 goto release_buf; 328 } 329 330 /* 331 * We must be able to do sector-sized and sector-aligned IO. 332 */ 333 if (sector_size > sbp->sb_sectsize) { 334 if (loud) 335 xfs_warn(mp, "device supports %u byte sectors (not %u)", 336 sector_size, sbp->sb_sectsize); 337 error = -ENOSYS; 338 goto release_buf; 339 } 340 341 if (buf_ops == NULL) { 342 /* 343 * Re-read the superblock so the buffer is correctly sized, 344 * and properly verified. 345 */ 346 xfs_buf_relse(bp); 347 sector_size = sbp->sb_sectsize; 348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 349 goto reread; 350 } 351 352 xfs_reinit_percpu_counters(mp); 353 354 /* no need to be quiet anymore, so reset the buf ops */ 355 bp->b_ops = &xfs_sb_buf_ops; 356 357 mp->m_sb_bp = bp; 358 xfs_buf_unlock(bp); 359 return 0; 360 361 release_buf: 362 xfs_buf_relse(bp); 363 return error; 364 } 365 366 /* 367 * If the sunit/swidth change would move the precomputed root inode value, we 368 * must reject the ondisk change because repair will stumble over that. 369 * However, we allow the mount to proceed because we never rejected this 370 * combination before. Returns true to update the sb, false otherwise. 371 */ 372 static inline int 373 xfs_check_new_dalign( 374 struct xfs_mount *mp, 375 int new_dalign, 376 bool *update_sb) 377 { 378 struct xfs_sb *sbp = &mp->m_sb; 379 xfs_ino_t calc_ino; 380 381 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 382 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 383 384 if (sbp->sb_rootino == calc_ino) { 385 *update_sb = true; 386 return 0; 387 } 388 389 xfs_warn(mp, 390 "Cannot change stripe alignment; would require moving root inode."); 391 392 /* 393 * XXX: Next time we add a new incompat feature, this should start 394 * returning -EINVAL to fail the mount. Until then, spit out a warning 395 * that we're ignoring the administrator's instructions. 396 */ 397 xfs_warn(mp, "Skipping superblock stripe alignment update."); 398 *update_sb = false; 399 return 0; 400 } 401 402 /* 403 * If we were provided with new sunit/swidth values as mount options, make sure 404 * that they pass basic alignment and superblock feature checks, and convert 405 * them into the same units (FSB) that everything else expects. This step 406 * /must/ be done before computing the inode geometry. 407 */ 408 STATIC int 409 xfs_validate_new_dalign( 410 struct xfs_mount *mp) 411 { 412 if (mp->m_dalign == 0) 413 return 0; 414 415 /* 416 * If stripe unit and stripe width are not multiples 417 * of the fs blocksize turn off alignment. 418 */ 419 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 420 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 421 xfs_warn(mp, 422 "alignment check failed: sunit/swidth vs. blocksize(%d)", 423 mp->m_sb.sb_blocksize); 424 return -EINVAL; 425 } else { 426 /* 427 * Convert the stripe unit and width to FSBs. 428 */ 429 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 430 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 431 xfs_warn(mp, 432 "alignment check failed: sunit/swidth vs. agsize(%d)", 433 mp->m_sb.sb_agblocks); 434 return -EINVAL; 435 } else if (mp->m_dalign) { 436 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 437 } else { 438 xfs_warn(mp, 439 "alignment check failed: sunit(%d) less than bsize(%d)", 440 mp->m_dalign, mp->m_sb.sb_blocksize); 441 return -EINVAL; 442 } 443 } 444 445 if (!xfs_sb_version_hasdalign(&mp->m_sb)) { 446 xfs_warn(mp, 447 "cannot change alignment: superblock does not support data alignment"); 448 return -EINVAL; 449 } 450 451 return 0; 452 } 453 454 /* Update alignment values based on mount options and sb values. */ 455 STATIC int 456 xfs_update_alignment( 457 struct xfs_mount *mp) 458 { 459 struct xfs_sb *sbp = &mp->m_sb; 460 461 if (mp->m_dalign) { 462 bool update_sb; 463 int error; 464 465 if (sbp->sb_unit == mp->m_dalign && 466 sbp->sb_width == mp->m_swidth) 467 return 0; 468 469 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 470 if (error || !update_sb) 471 return error; 472 473 sbp->sb_unit = mp->m_dalign; 474 sbp->sb_width = mp->m_swidth; 475 mp->m_update_sb = true; 476 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 477 xfs_sb_version_hasdalign(&mp->m_sb)) { 478 mp->m_dalign = sbp->sb_unit; 479 mp->m_swidth = sbp->sb_width; 480 } 481 482 return 0; 483 } 484 485 /* 486 * precalculate the low space thresholds for dynamic speculative preallocation. 487 */ 488 void 489 xfs_set_low_space_thresholds( 490 struct xfs_mount *mp) 491 { 492 int i; 493 494 for (i = 0; i < XFS_LOWSP_MAX; i++) { 495 uint64_t space = mp->m_sb.sb_dblocks; 496 497 do_div(space, 100); 498 mp->m_low_space[i] = space * (i + 1); 499 } 500 } 501 502 /* 503 * Check that the data (and log if separate) is an ok size. 504 */ 505 STATIC int 506 xfs_check_sizes( 507 struct xfs_mount *mp) 508 { 509 struct xfs_buf *bp; 510 xfs_daddr_t d; 511 int error; 512 513 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 514 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 515 xfs_warn(mp, "filesystem size mismatch detected"); 516 return -EFBIG; 517 } 518 error = xfs_buf_read_uncached(mp->m_ddev_targp, 519 d - XFS_FSS_TO_BB(mp, 1), 520 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 521 if (error) { 522 xfs_warn(mp, "last sector read failed"); 523 return error; 524 } 525 xfs_buf_relse(bp); 526 527 if (mp->m_logdev_targp == mp->m_ddev_targp) 528 return 0; 529 530 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 531 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 532 xfs_warn(mp, "log size mismatch detected"); 533 return -EFBIG; 534 } 535 error = xfs_buf_read_uncached(mp->m_logdev_targp, 536 d - XFS_FSB_TO_BB(mp, 1), 537 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 538 if (error) { 539 xfs_warn(mp, "log device read failed"); 540 return error; 541 } 542 xfs_buf_relse(bp); 543 return 0; 544 } 545 546 /* 547 * Clear the quotaflags in memory and in the superblock. 548 */ 549 int 550 xfs_mount_reset_sbqflags( 551 struct xfs_mount *mp) 552 { 553 mp->m_qflags = 0; 554 555 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 556 if (mp->m_sb.sb_qflags == 0) 557 return 0; 558 spin_lock(&mp->m_sb_lock); 559 mp->m_sb.sb_qflags = 0; 560 spin_unlock(&mp->m_sb_lock); 561 562 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 563 return 0; 564 565 return xfs_sync_sb(mp, false); 566 } 567 568 uint64_t 569 xfs_default_resblks(xfs_mount_t *mp) 570 { 571 uint64_t resblks; 572 573 /* 574 * We default to 5% or 8192 fsbs of space reserved, whichever is 575 * smaller. This is intended to cover concurrent allocation 576 * transactions when we initially hit enospc. These each require a 4 577 * block reservation. Hence by default we cover roughly 2000 concurrent 578 * allocation reservations. 579 */ 580 resblks = mp->m_sb.sb_dblocks; 581 do_div(resblks, 20); 582 resblks = min_t(uint64_t, resblks, 8192); 583 return resblks; 584 } 585 586 /* Ensure the summary counts are correct. */ 587 STATIC int 588 xfs_check_summary_counts( 589 struct xfs_mount *mp) 590 { 591 /* 592 * The AG0 superblock verifier rejects in-progress filesystems, 593 * so we should never see the flag set this far into mounting. 594 */ 595 if (mp->m_sb.sb_inprogress) { 596 xfs_err(mp, "sb_inprogress set after log recovery??"); 597 WARN_ON(1); 598 return -EFSCORRUPTED; 599 } 600 601 /* 602 * Now the log is mounted, we know if it was an unclean shutdown or 603 * not. If it was, with the first phase of recovery has completed, we 604 * have consistent AG blocks on disk. We have not recovered EFIs yet, 605 * but they are recovered transactionally in the second recovery phase 606 * later. 607 * 608 * If the log was clean when we mounted, we can check the summary 609 * counters. If any of them are obviously incorrect, we can recompute 610 * them from the AGF headers in the next step. 611 */ 612 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 613 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 614 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 615 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 616 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 617 618 /* 619 * We can safely re-initialise incore superblock counters from the 620 * per-ag data. These may not be correct if the filesystem was not 621 * cleanly unmounted, so we waited for recovery to finish before doing 622 * this. 623 * 624 * If the filesystem was cleanly unmounted or the previous check did 625 * not flag anything weird, then we can trust the values in the 626 * superblock to be correct and we don't need to do anything here. 627 * Otherwise, recalculate the summary counters. 628 */ 629 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 630 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 631 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 632 return 0; 633 634 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 635 } 636 637 /* 638 * This function does the following on an initial mount of a file system: 639 * - reads the superblock from disk and init the mount struct 640 * - if we're a 32-bit kernel, do a size check on the superblock 641 * so we don't mount terabyte filesystems 642 * - init mount struct realtime fields 643 * - allocate inode hash table for fs 644 * - init directory manager 645 * - perform recovery and init the log manager 646 */ 647 int 648 xfs_mountfs( 649 struct xfs_mount *mp) 650 { 651 struct xfs_sb *sbp = &(mp->m_sb); 652 struct xfs_inode *rip; 653 struct xfs_ino_geometry *igeo = M_IGEO(mp); 654 uint64_t resblks; 655 uint quotamount = 0; 656 uint quotaflags = 0; 657 int error = 0; 658 659 xfs_sb_mount_common(mp, sbp); 660 661 /* 662 * Check for a mismatched features2 values. Older kernels read & wrote 663 * into the wrong sb offset for sb_features2 on some platforms due to 664 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 665 * which made older superblock reading/writing routines swap it as a 666 * 64-bit value. 667 * 668 * For backwards compatibility, we make both slots equal. 669 * 670 * If we detect a mismatched field, we OR the set bits into the existing 671 * features2 field in case it has already been modified; we don't want 672 * to lose any features. We then update the bad location with the ORed 673 * value so that older kernels will see any features2 flags. The 674 * superblock writeback code ensures the new sb_features2 is copied to 675 * sb_bad_features2 before it is logged or written to disk. 676 */ 677 if (xfs_sb_has_mismatched_features2(sbp)) { 678 xfs_warn(mp, "correcting sb_features alignment problem"); 679 sbp->sb_features2 |= sbp->sb_bad_features2; 680 mp->m_update_sb = true; 681 682 /* 683 * Re-check for ATTR2 in case it was found in bad_features2 684 * slot. 685 */ 686 if (xfs_sb_version_hasattr2(&mp->m_sb) && 687 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 688 mp->m_flags |= XFS_MOUNT_ATTR2; 689 } 690 691 if (xfs_sb_version_hasattr2(&mp->m_sb) && 692 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 693 xfs_sb_version_removeattr2(&mp->m_sb); 694 mp->m_update_sb = true; 695 696 /* update sb_versionnum for the clearing of the morebits */ 697 if (!sbp->sb_features2) 698 mp->m_update_sb = true; 699 } 700 701 /* always use v2 inodes by default now */ 702 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 703 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 704 mp->m_update_sb = true; 705 } 706 707 /* 708 * If we were given new sunit/swidth options, do some basic validation 709 * checks and convert the incore dalign and swidth values to the 710 * same units (FSB) that everything else uses. This /must/ happen 711 * before computing the inode geometry. 712 */ 713 error = xfs_validate_new_dalign(mp); 714 if (error) 715 goto out; 716 717 xfs_alloc_compute_maxlevels(mp); 718 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 719 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 720 xfs_ialloc_setup_geometry(mp); 721 xfs_rmapbt_compute_maxlevels(mp); 722 xfs_refcountbt_compute_maxlevels(mp); 723 724 /* 725 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 726 * is NOT aligned turn off m_dalign since allocator alignment is within 727 * an ag, therefore ag has to be aligned at stripe boundary. Note that 728 * we must compute the free space and rmap btree geometry before doing 729 * this. 730 */ 731 error = xfs_update_alignment(mp); 732 if (error) 733 goto out; 734 735 /* enable fail_at_unmount as default */ 736 mp->m_fail_unmount = true; 737 738 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 739 NULL, mp->m_super->s_id); 740 if (error) 741 goto out; 742 743 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 744 &mp->m_kobj, "stats"); 745 if (error) 746 goto out_remove_sysfs; 747 748 error = xfs_error_sysfs_init(mp); 749 if (error) 750 goto out_del_stats; 751 752 error = xfs_errortag_init(mp); 753 if (error) 754 goto out_remove_error_sysfs; 755 756 error = xfs_uuid_mount(mp); 757 if (error) 758 goto out_remove_errortag; 759 760 /* 761 * Update the preferred write size based on the information from the 762 * on-disk superblock. 763 */ 764 mp->m_allocsize_log = 765 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 766 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 767 768 /* set the low space thresholds for dynamic preallocation */ 769 xfs_set_low_space_thresholds(mp); 770 771 /* 772 * If enabled, sparse inode chunk alignment is expected to match the 773 * cluster size. Full inode chunk alignment must match the chunk size, 774 * but that is checked on sb read verification... 775 */ 776 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 777 mp->m_sb.sb_spino_align != 778 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 779 xfs_warn(mp, 780 "Sparse inode block alignment (%u) must match cluster size (%llu).", 781 mp->m_sb.sb_spino_align, 782 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 783 error = -EINVAL; 784 goto out_remove_uuid; 785 } 786 787 /* 788 * Check that the data (and log if separate) is an ok size. 789 */ 790 error = xfs_check_sizes(mp); 791 if (error) 792 goto out_remove_uuid; 793 794 /* 795 * Initialize realtime fields in the mount structure 796 */ 797 error = xfs_rtmount_init(mp); 798 if (error) { 799 xfs_warn(mp, "RT mount failed"); 800 goto out_remove_uuid; 801 } 802 803 /* 804 * Copies the low order bits of the timestamp and the randomly 805 * set "sequence" number out of a UUID. 806 */ 807 mp->m_fixedfsid[0] = 808 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 809 get_unaligned_be16(&sbp->sb_uuid.b[4]); 810 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 811 812 error = xfs_da_mount(mp); 813 if (error) { 814 xfs_warn(mp, "Failed dir/attr init: %d", error); 815 goto out_remove_uuid; 816 } 817 818 /* 819 * Initialize the precomputed transaction reservations values. 820 */ 821 xfs_trans_init(mp); 822 823 /* 824 * Allocate and initialize the per-ag data. 825 */ 826 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 827 if (error) { 828 xfs_warn(mp, "Failed per-ag init: %d", error); 829 goto out_free_dir; 830 } 831 832 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 833 xfs_warn(mp, "no log defined"); 834 error = -EFSCORRUPTED; 835 goto out_free_perag; 836 } 837 838 /* 839 * Log's mount-time initialization. The first part of recovery can place 840 * some items on the AIL, to be handled when recovery is finished or 841 * cancelled. 842 */ 843 error = xfs_log_mount(mp, mp->m_logdev_targp, 844 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 845 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 846 if (error) { 847 xfs_warn(mp, "log mount failed"); 848 goto out_fail_wait; 849 } 850 851 /* Make sure the summary counts are ok. */ 852 error = xfs_check_summary_counts(mp); 853 if (error) 854 goto out_log_dealloc; 855 856 /* 857 * Get and sanity-check the root inode. 858 * Save the pointer to it in the mount structure. 859 */ 860 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 861 XFS_ILOCK_EXCL, &rip); 862 if (error) { 863 xfs_warn(mp, 864 "Failed to read root inode 0x%llx, error %d", 865 sbp->sb_rootino, -error); 866 goto out_log_dealloc; 867 } 868 869 ASSERT(rip != NULL); 870 871 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 872 xfs_warn(mp, "corrupted root inode %llu: not a directory", 873 (unsigned long long)rip->i_ino); 874 xfs_iunlock(rip, XFS_ILOCK_EXCL); 875 error = -EFSCORRUPTED; 876 goto out_rele_rip; 877 } 878 mp->m_rootip = rip; /* save it */ 879 880 xfs_iunlock(rip, XFS_ILOCK_EXCL); 881 882 /* 883 * Initialize realtime inode pointers in the mount structure 884 */ 885 error = xfs_rtmount_inodes(mp); 886 if (error) { 887 /* 888 * Free up the root inode. 889 */ 890 xfs_warn(mp, "failed to read RT inodes"); 891 goto out_rele_rip; 892 } 893 894 /* 895 * If this is a read-only mount defer the superblock updates until 896 * the next remount into writeable mode. Otherwise we would never 897 * perform the update e.g. for the root filesystem. 898 */ 899 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 900 error = xfs_sync_sb(mp, false); 901 if (error) { 902 xfs_warn(mp, "failed to write sb changes"); 903 goto out_rtunmount; 904 } 905 } 906 907 /* 908 * Initialise the XFS quota management subsystem for this mount 909 */ 910 if (XFS_IS_QUOTA_RUNNING(mp)) { 911 error = xfs_qm_newmount(mp, "amount, "aflags); 912 if (error) 913 goto out_rtunmount; 914 } else { 915 ASSERT(!XFS_IS_QUOTA_ON(mp)); 916 917 /* 918 * If a file system had quotas running earlier, but decided to 919 * mount without -o uquota/pquota/gquota options, revoke the 920 * quotachecked license. 921 */ 922 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 923 xfs_notice(mp, "resetting quota flags"); 924 error = xfs_mount_reset_sbqflags(mp); 925 if (error) 926 goto out_rtunmount; 927 } 928 } 929 930 /* 931 * Finish recovering the file system. This part needed to be delayed 932 * until after the root and real-time bitmap inodes were consistently 933 * read in. 934 */ 935 error = xfs_log_mount_finish(mp); 936 if (error) { 937 xfs_warn(mp, "log mount finish failed"); 938 goto out_rtunmount; 939 } 940 941 /* 942 * Now the log is fully replayed, we can transition to full read-only 943 * mode for read-only mounts. This will sync all the metadata and clean 944 * the log so that the recovery we just performed does not have to be 945 * replayed again on the next mount. 946 * 947 * We use the same quiesce mechanism as the rw->ro remount, as they are 948 * semantically identical operations. 949 */ 950 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 951 XFS_MOUNT_RDONLY) { 952 xfs_log_clean(mp); 953 } 954 955 /* 956 * Complete the quota initialisation, post-log-replay component. 957 */ 958 if (quotamount) { 959 ASSERT(mp->m_qflags == 0); 960 mp->m_qflags = quotaflags; 961 962 xfs_qm_mount_quotas(mp); 963 } 964 965 /* 966 * Now we are mounted, reserve a small amount of unused space for 967 * privileged transactions. This is needed so that transaction 968 * space required for critical operations can dip into this pool 969 * when at ENOSPC. This is needed for operations like create with 970 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 971 * are not allowed to use this reserved space. 972 * 973 * This may drive us straight to ENOSPC on mount, but that implies 974 * we were already there on the last unmount. Warn if this occurs. 975 */ 976 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 977 resblks = xfs_default_resblks(mp); 978 error = xfs_reserve_blocks(mp, &resblks, NULL); 979 if (error) 980 xfs_warn(mp, 981 "Unable to allocate reserve blocks. Continuing without reserve pool."); 982 983 /* Recover any CoW blocks that never got remapped. */ 984 error = xfs_reflink_recover_cow(mp); 985 if (error) { 986 xfs_err(mp, 987 "Error %d recovering leftover CoW allocations.", error); 988 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 989 goto out_quota; 990 } 991 992 /* Reserve AG blocks for future btree expansion. */ 993 error = xfs_fs_reserve_ag_blocks(mp); 994 if (error && error != -ENOSPC) 995 goto out_agresv; 996 } 997 998 return 0; 999 1000 out_agresv: 1001 xfs_fs_unreserve_ag_blocks(mp); 1002 out_quota: 1003 xfs_qm_unmount_quotas(mp); 1004 out_rtunmount: 1005 xfs_rtunmount_inodes(mp); 1006 out_rele_rip: 1007 xfs_irele(rip); 1008 /* Clean out dquots that might be in memory after quotacheck. */ 1009 xfs_qm_unmount(mp); 1010 /* 1011 * Cancel all delayed reclaim work and reclaim the inodes directly. 1012 * We have to do this /after/ rtunmount and qm_unmount because those 1013 * two will have scheduled delayed reclaim for the rt/quota inodes. 1014 * 1015 * This is slightly different from the unmountfs call sequence 1016 * because we could be tearing down a partially set up mount. In 1017 * particular, if log_mount_finish fails we bail out without calling 1018 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1019 * quota inodes. 1020 */ 1021 cancel_delayed_work_sync(&mp->m_reclaim_work); 1022 xfs_reclaim_inodes(mp); 1023 xfs_health_unmount(mp); 1024 out_log_dealloc: 1025 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1026 xfs_log_mount_cancel(mp); 1027 out_fail_wait: 1028 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1029 xfs_buftarg_drain(mp->m_logdev_targp); 1030 xfs_buftarg_drain(mp->m_ddev_targp); 1031 out_free_perag: 1032 xfs_free_perag(mp); 1033 out_free_dir: 1034 xfs_da_unmount(mp); 1035 out_remove_uuid: 1036 xfs_uuid_unmount(mp); 1037 out_remove_errortag: 1038 xfs_errortag_del(mp); 1039 out_remove_error_sysfs: 1040 xfs_error_sysfs_del(mp); 1041 out_del_stats: 1042 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1043 out_remove_sysfs: 1044 xfs_sysfs_del(&mp->m_kobj); 1045 out: 1046 return error; 1047 } 1048 1049 /* 1050 * This flushes out the inodes,dquots and the superblock, unmounts the 1051 * log and makes sure that incore structures are freed. 1052 */ 1053 void 1054 xfs_unmountfs( 1055 struct xfs_mount *mp) 1056 { 1057 uint64_t resblks; 1058 int error; 1059 1060 xfs_blockgc_stop(mp); 1061 xfs_fs_unreserve_ag_blocks(mp); 1062 xfs_qm_unmount_quotas(mp); 1063 xfs_rtunmount_inodes(mp); 1064 xfs_irele(mp->m_rootip); 1065 1066 /* 1067 * We can potentially deadlock here if we have an inode cluster 1068 * that has been freed has its buffer still pinned in memory because 1069 * the transaction is still sitting in a iclog. The stale inodes 1070 * on that buffer will be pinned to the buffer until the 1071 * transaction hits the disk and the callbacks run. Pushing the AIL will 1072 * skip the stale inodes and may never see the pinned buffer, so 1073 * nothing will push out the iclog and unpin the buffer. Hence we 1074 * need to force the log here to ensure all items are flushed into the 1075 * AIL before we go any further. 1076 */ 1077 xfs_log_force(mp, XFS_LOG_SYNC); 1078 1079 /* 1080 * Wait for all busy extents to be freed, including completion of 1081 * any discard operation. 1082 */ 1083 xfs_extent_busy_wait_all(mp); 1084 flush_workqueue(xfs_discard_wq); 1085 1086 /* 1087 * We now need to tell the world we are unmounting. This will allow 1088 * us to detect that the filesystem is going away and we should error 1089 * out anything that we have been retrying in the background. This will 1090 * prevent neverending retries in AIL pushing from hanging the unmount. 1091 */ 1092 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1093 1094 /* 1095 * Flush all pending changes from the AIL. 1096 */ 1097 xfs_ail_push_all_sync(mp->m_ail); 1098 1099 /* 1100 * Reclaim all inodes. At this point there should be no dirty inodes and 1101 * none should be pinned or locked. Stop background inode reclaim here 1102 * if it is still running. 1103 */ 1104 cancel_delayed_work_sync(&mp->m_reclaim_work); 1105 xfs_reclaim_inodes(mp); 1106 xfs_health_unmount(mp); 1107 1108 xfs_qm_unmount(mp); 1109 1110 /* 1111 * Unreserve any blocks we have so that when we unmount we don't account 1112 * the reserved free space as used. This is really only necessary for 1113 * lazy superblock counting because it trusts the incore superblock 1114 * counters to be absolutely correct on clean unmount. 1115 * 1116 * We don't bother correcting this elsewhere for lazy superblock 1117 * counting because on mount of an unclean filesystem we reconstruct the 1118 * correct counter value and this is irrelevant. 1119 * 1120 * For non-lazy counter filesystems, this doesn't matter at all because 1121 * we only every apply deltas to the superblock and hence the incore 1122 * value does not matter.... 1123 */ 1124 resblks = 0; 1125 error = xfs_reserve_blocks(mp, &resblks, NULL); 1126 if (error) 1127 xfs_warn(mp, "Unable to free reserved block pool. " 1128 "Freespace may not be correct on next mount."); 1129 1130 xfs_log_unmount(mp); 1131 xfs_da_unmount(mp); 1132 xfs_uuid_unmount(mp); 1133 1134 #if defined(DEBUG) 1135 xfs_errortag_clearall(mp); 1136 #endif 1137 xfs_free_perag(mp); 1138 1139 xfs_errortag_del(mp); 1140 xfs_error_sysfs_del(mp); 1141 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1142 xfs_sysfs_del(&mp->m_kobj); 1143 } 1144 1145 /* 1146 * Determine whether modifications can proceed. The caller specifies the minimum 1147 * freeze level for which modifications should not be allowed. This allows 1148 * certain operations to proceed while the freeze sequence is in progress, if 1149 * necessary. 1150 */ 1151 bool 1152 xfs_fs_writable( 1153 struct xfs_mount *mp, 1154 int level) 1155 { 1156 ASSERT(level > SB_UNFROZEN); 1157 if ((mp->m_super->s_writers.frozen >= level) || 1158 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1159 return false; 1160 1161 return true; 1162 } 1163 1164 /* 1165 * Deltas for the block count can vary from 1 to very large, but lock contention 1166 * only occurs on frequent small block count updates such as in the delayed 1167 * allocation path for buffered writes (page a time updates). Hence we set 1168 * a large batch count (1024) to minimise global counter updates except when 1169 * we get near to ENOSPC and we have to be very accurate with our updates. 1170 */ 1171 #define XFS_FDBLOCKS_BATCH 1024 1172 int 1173 xfs_mod_fdblocks( 1174 struct xfs_mount *mp, 1175 int64_t delta, 1176 bool rsvd) 1177 { 1178 int64_t lcounter; 1179 long long res_used; 1180 s32 batch; 1181 1182 if (delta > 0) { 1183 /* 1184 * If the reserve pool is depleted, put blocks back into it 1185 * first. Most of the time the pool is full. 1186 */ 1187 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1188 percpu_counter_add(&mp->m_fdblocks, delta); 1189 return 0; 1190 } 1191 1192 spin_lock(&mp->m_sb_lock); 1193 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1194 1195 if (res_used > delta) { 1196 mp->m_resblks_avail += delta; 1197 } else { 1198 delta -= res_used; 1199 mp->m_resblks_avail = mp->m_resblks; 1200 percpu_counter_add(&mp->m_fdblocks, delta); 1201 } 1202 spin_unlock(&mp->m_sb_lock); 1203 return 0; 1204 } 1205 1206 /* 1207 * Taking blocks away, need to be more accurate the closer we 1208 * are to zero. 1209 * 1210 * If the counter has a value of less than 2 * max batch size, 1211 * then make everything serialise as we are real close to 1212 * ENOSPC. 1213 */ 1214 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1215 XFS_FDBLOCKS_BATCH) < 0) 1216 batch = 1; 1217 else 1218 batch = XFS_FDBLOCKS_BATCH; 1219 1220 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1221 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1222 XFS_FDBLOCKS_BATCH) >= 0) { 1223 /* we had space! */ 1224 return 0; 1225 } 1226 1227 /* 1228 * lock up the sb for dipping into reserves before releasing the space 1229 * that took us to ENOSPC. 1230 */ 1231 spin_lock(&mp->m_sb_lock); 1232 percpu_counter_add(&mp->m_fdblocks, -delta); 1233 if (!rsvd) 1234 goto fdblocks_enospc; 1235 1236 lcounter = (long long)mp->m_resblks_avail + delta; 1237 if (lcounter >= 0) { 1238 mp->m_resblks_avail = lcounter; 1239 spin_unlock(&mp->m_sb_lock); 1240 return 0; 1241 } 1242 xfs_warn_once(mp, 1243 "Reserve blocks depleted! Consider increasing reserve pool size."); 1244 1245 fdblocks_enospc: 1246 spin_unlock(&mp->m_sb_lock); 1247 return -ENOSPC; 1248 } 1249 1250 int 1251 xfs_mod_frextents( 1252 struct xfs_mount *mp, 1253 int64_t delta) 1254 { 1255 int64_t lcounter; 1256 int ret = 0; 1257 1258 spin_lock(&mp->m_sb_lock); 1259 lcounter = mp->m_sb.sb_frextents + delta; 1260 if (lcounter < 0) 1261 ret = -ENOSPC; 1262 else 1263 mp->m_sb.sb_frextents = lcounter; 1264 spin_unlock(&mp->m_sb_lock); 1265 return ret; 1266 } 1267 1268 /* 1269 * Used to free the superblock along various error paths. 1270 */ 1271 void 1272 xfs_freesb( 1273 struct xfs_mount *mp) 1274 { 1275 struct xfs_buf *bp = mp->m_sb_bp; 1276 1277 xfs_buf_lock(bp); 1278 mp->m_sb_bp = NULL; 1279 xfs_buf_relse(bp); 1280 } 1281 1282 /* 1283 * If the underlying (data/log/rt) device is readonly, there are some 1284 * operations that cannot proceed. 1285 */ 1286 int 1287 xfs_dev_is_read_only( 1288 struct xfs_mount *mp, 1289 char *message) 1290 { 1291 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1292 xfs_readonly_buftarg(mp->m_logdev_targp) || 1293 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1294 xfs_notice(mp, "%s required on read-only device.", message); 1295 xfs_notice(mp, "write access unavailable, cannot proceed."); 1296 return -EROFS; 1297 } 1298 return 0; 1299 } 1300 1301 /* Force the summary counters to be recalculated at next mount. */ 1302 void 1303 xfs_force_summary_recalc( 1304 struct xfs_mount *mp) 1305 { 1306 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1307 return; 1308 1309 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1310 } 1311 1312 /* 1313 * Update the in-core delayed block counter. 1314 * 1315 * We prefer to update the counter without having to take a spinlock for every 1316 * counter update (i.e. batching). Each change to delayed allocation 1317 * reservations can change can easily exceed the default percpu counter 1318 * batching, so we use a larger batch factor here. 1319 * 1320 * Note that we don't currently have any callers requiring fast summation 1321 * (e.g. percpu_counter_read) so we can use a big batch value here. 1322 */ 1323 #define XFS_DELALLOC_BATCH (4096) 1324 void 1325 xfs_mod_delalloc( 1326 struct xfs_mount *mp, 1327 int64_t delta) 1328 { 1329 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1330 XFS_DELALLOC_BATCH); 1331 } 1332