xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision bc5aa3a0)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 
47 
48 static DEFINE_MUTEX(xfs_uuid_table_mutex);
49 static int xfs_uuid_table_size;
50 static uuid_t *xfs_uuid_table;
51 
52 void
53 xfs_uuid_table_free(void)
54 {
55 	if (xfs_uuid_table_size == 0)
56 		return;
57 	kmem_free(xfs_uuid_table);
58 	xfs_uuid_table = NULL;
59 	xfs_uuid_table_size = 0;
60 }
61 
62 /*
63  * See if the UUID is unique among mounted XFS filesystems.
64  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
65  */
66 STATIC int
67 xfs_uuid_mount(
68 	struct xfs_mount	*mp)
69 {
70 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
71 	int			hole, i;
72 
73 	if (mp->m_flags & XFS_MOUNT_NOUUID)
74 		return 0;
75 
76 	if (uuid_is_nil(uuid)) {
77 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
78 		return -EINVAL;
79 	}
80 
81 	mutex_lock(&xfs_uuid_table_mutex);
82 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 		if (uuid_is_nil(&xfs_uuid_table[i])) {
84 			hole = i;
85 			continue;
86 		}
87 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 			goto out_duplicate;
89 	}
90 
91 	if (hole < 0) {
92 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 			KM_SLEEP);
95 		hole = xfs_uuid_table_size++;
96 	}
97 	xfs_uuid_table[hole] = *uuid;
98 	mutex_unlock(&xfs_uuid_table_mutex);
99 
100 	return 0;
101 
102  out_duplicate:
103 	mutex_unlock(&xfs_uuid_table_mutex);
104 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
105 	return -EINVAL;
106 }
107 
108 STATIC void
109 xfs_uuid_unmount(
110 	struct xfs_mount	*mp)
111 {
112 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
113 	int			i;
114 
115 	if (mp->m_flags & XFS_MOUNT_NOUUID)
116 		return;
117 
118 	mutex_lock(&xfs_uuid_table_mutex);
119 	for (i = 0; i < xfs_uuid_table_size; i++) {
120 		if (uuid_is_nil(&xfs_uuid_table[i]))
121 			continue;
122 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
123 			continue;
124 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
125 		break;
126 	}
127 	ASSERT(i < xfs_uuid_table_size);
128 	mutex_unlock(&xfs_uuid_table_mutex);
129 }
130 
131 
132 STATIC void
133 __xfs_free_perag(
134 	struct rcu_head	*head)
135 {
136 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
137 
138 	ASSERT(atomic_read(&pag->pag_ref) == 0);
139 	kmem_free(pag);
140 }
141 
142 /*
143  * Free up the per-ag resources associated with the mount structure.
144  */
145 STATIC void
146 xfs_free_perag(
147 	xfs_mount_t	*mp)
148 {
149 	xfs_agnumber_t	agno;
150 	struct xfs_perag *pag;
151 
152 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
153 		spin_lock(&mp->m_perag_lock);
154 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
155 		spin_unlock(&mp->m_perag_lock);
156 		ASSERT(pag);
157 		ASSERT(atomic_read(&pag->pag_ref) == 0);
158 		call_rcu(&pag->rcu_head, __xfs_free_perag);
159 	}
160 }
161 
162 /*
163  * Check size of device based on the (data/realtime) block count.
164  * Note: this check is used by the growfs code as well as mount.
165  */
166 int
167 xfs_sb_validate_fsb_count(
168 	xfs_sb_t	*sbp,
169 	__uint64_t	nblocks)
170 {
171 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
172 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
173 
174 	/* Limited by ULONG_MAX of page cache index */
175 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
176 		return -EFBIG;
177 	return 0;
178 }
179 
180 int
181 xfs_initialize_perag(
182 	xfs_mount_t	*mp,
183 	xfs_agnumber_t	agcount,
184 	xfs_agnumber_t	*maxagi)
185 {
186 	xfs_agnumber_t	index;
187 	xfs_agnumber_t	first_initialised = 0;
188 	xfs_perag_t	*pag;
189 	int		error = -ENOMEM;
190 
191 	/*
192 	 * Walk the current per-ag tree so we don't try to initialise AGs
193 	 * that already exist (growfs case). Allocate and insert all the
194 	 * AGs we don't find ready for initialisation.
195 	 */
196 	for (index = 0; index < agcount; index++) {
197 		pag = xfs_perag_get(mp, index);
198 		if (pag) {
199 			xfs_perag_put(pag);
200 			continue;
201 		}
202 		if (!first_initialised)
203 			first_initialised = index;
204 
205 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
206 		if (!pag)
207 			goto out_unwind;
208 		pag->pag_agno = index;
209 		pag->pag_mount = mp;
210 		spin_lock_init(&pag->pag_ici_lock);
211 		mutex_init(&pag->pag_ici_reclaim_lock);
212 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
213 		spin_lock_init(&pag->pag_buf_lock);
214 		pag->pag_buf_tree = RB_ROOT;
215 
216 		if (radix_tree_preload(GFP_NOFS))
217 			goto out_unwind;
218 
219 		spin_lock(&mp->m_perag_lock);
220 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
221 			BUG();
222 			spin_unlock(&mp->m_perag_lock);
223 			radix_tree_preload_end();
224 			error = -EEXIST;
225 			goto out_unwind;
226 		}
227 		spin_unlock(&mp->m_perag_lock);
228 		radix_tree_preload_end();
229 	}
230 
231 	index = xfs_set_inode_alloc(mp, agcount);
232 
233 	if (maxagi)
234 		*maxagi = index;
235 
236 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
237 	return 0;
238 
239 out_unwind:
240 	kmem_free(pag);
241 	for (; index > first_initialised; index--) {
242 		pag = radix_tree_delete(&mp->m_perag_tree, index);
243 		kmem_free(pag);
244 	}
245 	return error;
246 }
247 
248 /*
249  * xfs_readsb
250  *
251  * Does the initial read of the superblock.
252  */
253 int
254 xfs_readsb(
255 	struct xfs_mount *mp,
256 	int		flags)
257 {
258 	unsigned int	sector_size;
259 	struct xfs_buf	*bp;
260 	struct xfs_sb	*sbp = &mp->m_sb;
261 	int		error;
262 	int		loud = !(flags & XFS_MFSI_QUIET);
263 	const struct xfs_buf_ops *buf_ops;
264 
265 	ASSERT(mp->m_sb_bp == NULL);
266 	ASSERT(mp->m_ddev_targp != NULL);
267 
268 	/*
269 	 * For the initial read, we must guess at the sector
270 	 * size based on the block device.  It's enough to
271 	 * get the sb_sectsize out of the superblock and
272 	 * then reread with the proper length.
273 	 * We don't verify it yet, because it may not be complete.
274 	 */
275 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
276 	buf_ops = NULL;
277 
278 	/*
279 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
280 	 * around at all times to optimize access to the superblock. Therefore,
281 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
282 	 * elevated.
283 	 */
284 reread:
285 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
286 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
287 				      buf_ops);
288 	if (error) {
289 		if (loud)
290 			xfs_warn(mp, "SB validate failed with error %d.", error);
291 		/* bad CRC means corrupted metadata */
292 		if (error == -EFSBADCRC)
293 			error = -EFSCORRUPTED;
294 		return error;
295 	}
296 
297 	/*
298 	 * Initialize the mount structure from the superblock.
299 	 */
300 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
301 
302 	/*
303 	 * If we haven't validated the superblock, do so now before we try
304 	 * to check the sector size and reread the superblock appropriately.
305 	 */
306 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
307 		if (loud)
308 			xfs_warn(mp, "Invalid superblock magic number");
309 		error = -EINVAL;
310 		goto release_buf;
311 	}
312 
313 	/*
314 	 * We must be able to do sector-sized and sector-aligned IO.
315 	 */
316 	if (sector_size > sbp->sb_sectsize) {
317 		if (loud)
318 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
319 				sector_size, sbp->sb_sectsize);
320 		error = -ENOSYS;
321 		goto release_buf;
322 	}
323 
324 	if (buf_ops == NULL) {
325 		/*
326 		 * Re-read the superblock so the buffer is correctly sized,
327 		 * and properly verified.
328 		 */
329 		xfs_buf_relse(bp);
330 		sector_size = sbp->sb_sectsize;
331 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
332 		goto reread;
333 	}
334 
335 	xfs_reinit_percpu_counters(mp);
336 
337 	/* no need to be quiet anymore, so reset the buf ops */
338 	bp->b_ops = &xfs_sb_buf_ops;
339 
340 	mp->m_sb_bp = bp;
341 	xfs_buf_unlock(bp);
342 	return 0;
343 
344 release_buf:
345 	xfs_buf_relse(bp);
346 	return error;
347 }
348 
349 /*
350  * Update alignment values based on mount options and sb values
351  */
352 STATIC int
353 xfs_update_alignment(xfs_mount_t *mp)
354 {
355 	xfs_sb_t	*sbp = &(mp->m_sb);
356 
357 	if (mp->m_dalign) {
358 		/*
359 		 * If stripe unit and stripe width are not multiples
360 		 * of the fs blocksize turn off alignment.
361 		 */
362 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
363 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
364 			xfs_warn(mp,
365 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
366 				sbp->sb_blocksize);
367 			return -EINVAL;
368 		} else {
369 			/*
370 			 * Convert the stripe unit and width to FSBs.
371 			 */
372 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
373 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
374 				xfs_warn(mp,
375 			"alignment check failed: sunit/swidth vs. agsize(%d)",
376 					 sbp->sb_agblocks);
377 				return -EINVAL;
378 			} else if (mp->m_dalign) {
379 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
380 			} else {
381 				xfs_warn(mp,
382 			"alignment check failed: sunit(%d) less than bsize(%d)",
383 					 mp->m_dalign, sbp->sb_blocksize);
384 				return -EINVAL;
385 			}
386 		}
387 
388 		/*
389 		 * Update superblock with new values
390 		 * and log changes
391 		 */
392 		if (xfs_sb_version_hasdalign(sbp)) {
393 			if (sbp->sb_unit != mp->m_dalign) {
394 				sbp->sb_unit = mp->m_dalign;
395 				mp->m_update_sb = true;
396 			}
397 			if (sbp->sb_width != mp->m_swidth) {
398 				sbp->sb_width = mp->m_swidth;
399 				mp->m_update_sb = true;
400 			}
401 		} else {
402 			xfs_warn(mp,
403 	"cannot change alignment: superblock does not support data alignment");
404 			return -EINVAL;
405 		}
406 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
407 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
408 			mp->m_dalign = sbp->sb_unit;
409 			mp->m_swidth = sbp->sb_width;
410 	}
411 
412 	return 0;
413 }
414 
415 /*
416  * Set the maximum inode count for this filesystem
417  */
418 STATIC void
419 xfs_set_maxicount(xfs_mount_t *mp)
420 {
421 	xfs_sb_t	*sbp = &(mp->m_sb);
422 	__uint64_t	icount;
423 
424 	if (sbp->sb_imax_pct) {
425 		/*
426 		 * Make sure the maximum inode count is a multiple
427 		 * of the units we allocate inodes in.
428 		 */
429 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
430 		do_div(icount, 100);
431 		do_div(icount, mp->m_ialloc_blks);
432 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
433 				   sbp->sb_inopblog;
434 	} else {
435 		mp->m_maxicount = 0;
436 	}
437 }
438 
439 /*
440  * Set the default minimum read and write sizes unless
441  * already specified in a mount option.
442  * We use smaller I/O sizes when the file system
443  * is being used for NFS service (wsync mount option).
444  */
445 STATIC void
446 xfs_set_rw_sizes(xfs_mount_t *mp)
447 {
448 	xfs_sb_t	*sbp = &(mp->m_sb);
449 	int		readio_log, writeio_log;
450 
451 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
452 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
453 			readio_log = XFS_WSYNC_READIO_LOG;
454 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
455 		} else {
456 			readio_log = XFS_READIO_LOG_LARGE;
457 			writeio_log = XFS_WRITEIO_LOG_LARGE;
458 		}
459 	} else {
460 		readio_log = mp->m_readio_log;
461 		writeio_log = mp->m_writeio_log;
462 	}
463 
464 	if (sbp->sb_blocklog > readio_log) {
465 		mp->m_readio_log = sbp->sb_blocklog;
466 	} else {
467 		mp->m_readio_log = readio_log;
468 	}
469 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
470 	if (sbp->sb_blocklog > writeio_log) {
471 		mp->m_writeio_log = sbp->sb_blocklog;
472 	} else {
473 		mp->m_writeio_log = writeio_log;
474 	}
475 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
476 }
477 
478 /*
479  * precalculate the low space thresholds for dynamic speculative preallocation.
480  */
481 void
482 xfs_set_low_space_thresholds(
483 	struct xfs_mount	*mp)
484 {
485 	int i;
486 
487 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
488 		__uint64_t space = mp->m_sb.sb_dblocks;
489 
490 		do_div(space, 100);
491 		mp->m_low_space[i] = space * (i + 1);
492 	}
493 }
494 
495 
496 /*
497  * Set whether we're using inode alignment.
498  */
499 STATIC void
500 xfs_set_inoalignment(xfs_mount_t *mp)
501 {
502 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
503 	    mp->m_sb.sb_inoalignmt >=
504 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
505 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
506 	else
507 		mp->m_inoalign_mask = 0;
508 	/*
509 	 * If we are using stripe alignment, check whether
510 	 * the stripe unit is a multiple of the inode alignment
511 	 */
512 	if (mp->m_dalign && mp->m_inoalign_mask &&
513 	    !(mp->m_dalign & mp->m_inoalign_mask))
514 		mp->m_sinoalign = mp->m_dalign;
515 	else
516 		mp->m_sinoalign = 0;
517 }
518 
519 /*
520  * Check that the data (and log if separate) is an ok size.
521  */
522 STATIC int
523 xfs_check_sizes(
524 	struct xfs_mount *mp)
525 {
526 	struct xfs_buf	*bp;
527 	xfs_daddr_t	d;
528 	int		error;
529 
530 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
531 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
532 		xfs_warn(mp, "filesystem size mismatch detected");
533 		return -EFBIG;
534 	}
535 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
536 					d - XFS_FSS_TO_BB(mp, 1),
537 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
538 	if (error) {
539 		xfs_warn(mp, "last sector read failed");
540 		return error;
541 	}
542 	xfs_buf_relse(bp);
543 
544 	if (mp->m_logdev_targp == mp->m_ddev_targp)
545 		return 0;
546 
547 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
548 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
549 		xfs_warn(mp, "log size mismatch detected");
550 		return -EFBIG;
551 	}
552 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
553 					d - XFS_FSB_TO_BB(mp, 1),
554 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
555 	if (error) {
556 		xfs_warn(mp, "log device read failed");
557 		return error;
558 	}
559 	xfs_buf_relse(bp);
560 	return 0;
561 }
562 
563 /*
564  * Clear the quotaflags in memory and in the superblock.
565  */
566 int
567 xfs_mount_reset_sbqflags(
568 	struct xfs_mount	*mp)
569 {
570 	mp->m_qflags = 0;
571 
572 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
573 	if (mp->m_sb.sb_qflags == 0)
574 		return 0;
575 	spin_lock(&mp->m_sb_lock);
576 	mp->m_sb.sb_qflags = 0;
577 	spin_unlock(&mp->m_sb_lock);
578 
579 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
580 		return 0;
581 
582 	return xfs_sync_sb(mp, false);
583 }
584 
585 __uint64_t
586 xfs_default_resblks(xfs_mount_t *mp)
587 {
588 	__uint64_t resblks;
589 
590 	/*
591 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
592 	 * smaller.  This is intended to cover concurrent allocation
593 	 * transactions when we initially hit enospc. These each require a 4
594 	 * block reservation. Hence by default we cover roughly 2000 concurrent
595 	 * allocation reservations.
596 	 */
597 	resblks = mp->m_sb.sb_dblocks;
598 	do_div(resblks, 20);
599 	resblks = min_t(__uint64_t, resblks, 8192);
600 	return resblks;
601 }
602 
603 /*
604  * This function does the following on an initial mount of a file system:
605  *	- reads the superblock from disk and init the mount struct
606  *	- if we're a 32-bit kernel, do a size check on the superblock
607  *		so we don't mount terabyte filesystems
608  *	- init mount struct realtime fields
609  *	- allocate inode hash table for fs
610  *	- init directory manager
611  *	- perform recovery and init the log manager
612  */
613 int
614 xfs_mountfs(
615 	struct xfs_mount	*mp)
616 {
617 	struct xfs_sb		*sbp = &(mp->m_sb);
618 	struct xfs_inode	*rip;
619 	__uint64_t		resblks;
620 	uint			quotamount = 0;
621 	uint			quotaflags = 0;
622 	int			error = 0;
623 
624 	xfs_sb_mount_common(mp, sbp);
625 
626 	/*
627 	 * Check for a mismatched features2 values.  Older kernels read & wrote
628 	 * into the wrong sb offset for sb_features2 on some platforms due to
629 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
630 	 * which made older superblock reading/writing routines swap it as a
631 	 * 64-bit value.
632 	 *
633 	 * For backwards compatibility, we make both slots equal.
634 	 *
635 	 * If we detect a mismatched field, we OR the set bits into the existing
636 	 * features2 field in case it has already been modified; we don't want
637 	 * to lose any features.  We then update the bad location with the ORed
638 	 * value so that older kernels will see any features2 flags. The
639 	 * superblock writeback code ensures the new sb_features2 is copied to
640 	 * sb_bad_features2 before it is logged or written to disk.
641 	 */
642 	if (xfs_sb_has_mismatched_features2(sbp)) {
643 		xfs_warn(mp, "correcting sb_features alignment problem");
644 		sbp->sb_features2 |= sbp->sb_bad_features2;
645 		mp->m_update_sb = true;
646 
647 		/*
648 		 * Re-check for ATTR2 in case it was found in bad_features2
649 		 * slot.
650 		 */
651 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
652 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
653 			mp->m_flags |= XFS_MOUNT_ATTR2;
654 	}
655 
656 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
657 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
658 		xfs_sb_version_removeattr2(&mp->m_sb);
659 		mp->m_update_sb = true;
660 
661 		/* update sb_versionnum for the clearing of the morebits */
662 		if (!sbp->sb_features2)
663 			mp->m_update_sb = true;
664 	}
665 
666 	/* always use v2 inodes by default now */
667 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
668 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
669 		mp->m_update_sb = true;
670 	}
671 
672 	/*
673 	 * Check if sb_agblocks is aligned at stripe boundary
674 	 * If sb_agblocks is NOT aligned turn off m_dalign since
675 	 * allocator alignment is within an ag, therefore ag has
676 	 * to be aligned at stripe boundary.
677 	 */
678 	error = xfs_update_alignment(mp);
679 	if (error)
680 		goto out;
681 
682 	xfs_alloc_compute_maxlevels(mp);
683 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
684 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
685 	xfs_ialloc_compute_maxlevels(mp);
686 	xfs_rmapbt_compute_maxlevels(mp);
687 
688 	xfs_set_maxicount(mp);
689 
690 	/* enable fail_at_unmount as default */
691 	mp->m_fail_unmount = 1;
692 
693 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
694 	if (error)
695 		goto out;
696 
697 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
698 			       &mp->m_kobj, "stats");
699 	if (error)
700 		goto out_remove_sysfs;
701 
702 	error = xfs_error_sysfs_init(mp);
703 	if (error)
704 		goto out_del_stats;
705 
706 
707 	error = xfs_uuid_mount(mp);
708 	if (error)
709 		goto out_remove_error_sysfs;
710 
711 	/*
712 	 * Set the minimum read and write sizes
713 	 */
714 	xfs_set_rw_sizes(mp);
715 
716 	/* set the low space thresholds for dynamic preallocation */
717 	xfs_set_low_space_thresholds(mp);
718 
719 	/*
720 	 * Set the inode cluster size.
721 	 * This may still be overridden by the file system
722 	 * block size if it is larger than the chosen cluster size.
723 	 *
724 	 * For v5 filesystems, scale the cluster size with the inode size to
725 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
726 	 * has set the inode alignment value appropriately for larger cluster
727 	 * sizes.
728 	 */
729 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
730 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
731 		int	new_size = mp->m_inode_cluster_size;
732 
733 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
734 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
735 			mp->m_inode_cluster_size = new_size;
736 	}
737 
738 	/*
739 	 * If enabled, sparse inode chunk alignment is expected to match the
740 	 * cluster size. Full inode chunk alignment must match the chunk size,
741 	 * but that is checked on sb read verification...
742 	 */
743 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 	    mp->m_sb.sb_spino_align !=
745 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
746 		xfs_warn(mp,
747 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
748 			 mp->m_sb.sb_spino_align,
749 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
750 		error = -EINVAL;
751 		goto out_remove_uuid;
752 	}
753 
754 	/*
755 	 * Set inode alignment fields
756 	 */
757 	xfs_set_inoalignment(mp);
758 
759 	/*
760 	 * Check that the data (and log if separate) is an ok size.
761 	 */
762 	error = xfs_check_sizes(mp);
763 	if (error)
764 		goto out_remove_uuid;
765 
766 	/*
767 	 * Initialize realtime fields in the mount structure
768 	 */
769 	error = xfs_rtmount_init(mp);
770 	if (error) {
771 		xfs_warn(mp, "RT mount failed");
772 		goto out_remove_uuid;
773 	}
774 
775 	/*
776 	 *  Copies the low order bits of the timestamp and the randomly
777 	 *  set "sequence" number out of a UUID.
778 	 */
779 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
780 
781 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
782 
783 	error = xfs_da_mount(mp);
784 	if (error) {
785 		xfs_warn(mp, "Failed dir/attr init: %d", error);
786 		goto out_remove_uuid;
787 	}
788 
789 	/*
790 	 * Initialize the precomputed transaction reservations values.
791 	 */
792 	xfs_trans_init(mp);
793 
794 	/*
795 	 * Allocate and initialize the per-ag data.
796 	 */
797 	spin_lock_init(&mp->m_perag_lock);
798 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
799 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
800 	if (error) {
801 		xfs_warn(mp, "Failed per-ag init: %d", error);
802 		goto out_free_dir;
803 	}
804 
805 	if (!sbp->sb_logblocks) {
806 		xfs_warn(mp, "no log defined");
807 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
808 		error = -EFSCORRUPTED;
809 		goto out_free_perag;
810 	}
811 
812 	/*
813 	 * Log's mount-time initialization. The first part of recovery can place
814 	 * some items on the AIL, to be handled when recovery is finished or
815 	 * cancelled.
816 	 */
817 	error = xfs_log_mount(mp, mp->m_logdev_targp,
818 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
819 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
820 	if (error) {
821 		xfs_warn(mp, "log mount failed");
822 		goto out_fail_wait;
823 	}
824 
825 	/*
826 	 * Now the log is mounted, we know if it was an unclean shutdown or
827 	 * not. If it was, with the first phase of recovery has completed, we
828 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
829 	 * but they are recovered transactionally in the second recovery phase
830 	 * later.
831 	 *
832 	 * Hence we can safely re-initialise incore superblock counters from
833 	 * the per-ag data. These may not be correct if the filesystem was not
834 	 * cleanly unmounted, so we need to wait for recovery to finish before
835 	 * doing this.
836 	 *
837 	 * If the filesystem was cleanly unmounted, then we can trust the
838 	 * values in the superblock to be correct and we don't need to do
839 	 * anything here.
840 	 *
841 	 * If we are currently making the filesystem, the initialisation will
842 	 * fail as the perag data is in an undefined state.
843 	 */
844 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
845 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
846 	     !mp->m_sb.sb_inprogress) {
847 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
848 		if (error)
849 			goto out_log_dealloc;
850 	}
851 
852 	/*
853 	 * Get and sanity-check the root inode.
854 	 * Save the pointer to it in the mount structure.
855 	 */
856 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
857 	if (error) {
858 		xfs_warn(mp, "failed to read root inode");
859 		goto out_log_dealloc;
860 	}
861 
862 	ASSERT(rip != NULL);
863 
864 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
865 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
866 			(unsigned long long)rip->i_ino);
867 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
868 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
869 				 mp);
870 		error = -EFSCORRUPTED;
871 		goto out_rele_rip;
872 	}
873 	mp->m_rootip = rip;	/* save it */
874 
875 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
876 
877 	/*
878 	 * Initialize realtime inode pointers in the mount structure
879 	 */
880 	error = xfs_rtmount_inodes(mp);
881 	if (error) {
882 		/*
883 		 * Free up the root inode.
884 		 */
885 		xfs_warn(mp, "failed to read RT inodes");
886 		goto out_rele_rip;
887 	}
888 
889 	/*
890 	 * If this is a read-only mount defer the superblock updates until
891 	 * the next remount into writeable mode.  Otherwise we would never
892 	 * perform the update e.g. for the root filesystem.
893 	 */
894 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
895 		error = xfs_sync_sb(mp, false);
896 		if (error) {
897 			xfs_warn(mp, "failed to write sb changes");
898 			goto out_rtunmount;
899 		}
900 	}
901 
902 	/*
903 	 * Initialise the XFS quota management subsystem for this mount
904 	 */
905 	if (XFS_IS_QUOTA_RUNNING(mp)) {
906 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
907 		if (error)
908 			goto out_rtunmount;
909 	} else {
910 		ASSERT(!XFS_IS_QUOTA_ON(mp));
911 
912 		/*
913 		 * If a file system had quotas running earlier, but decided to
914 		 * mount without -o uquota/pquota/gquota options, revoke the
915 		 * quotachecked license.
916 		 */
917 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
918 			xfs_notice(mp, "resetting quota flags");
919 			error = xfs_mount_reset_sbqflags(mp);
920 			if (error)
921 				goto out_rtunmount;
922 		}
923 	}
924 
925 	/*
926 	 * Finish recovering the file system.  This part needed to be delayed
927 	 * until after the root and real-time bitmap inodes were consistently
928 	 * read in.
929 	 */
930 	error = xfs_log_mount_finish(mp);
931 	if (error) {
932 		xfs_warn(mp, "log mount finish failed");
933 		goto out_rtunmount;
934 	}
935 
936 	/*
937 	 * Complete the quota initialisation, post-log-replay component.
938 	 */
939 	if (quotamount) {
940 		ASSERT(mp->m_qflags == 0);
941 		mp->m_qflags = quotaflags;
942 
943 		xfs_qm_mount_quotas(mp);
944 	}
945 
946 	/*
947 	 * Now we are mounted, reserve a small amount of unused space for
948 	 * privileged transactions. This is needed so that transaction
949 	 * space required for critical operations can dip into this pool
950 	 * when at ENOSPC. This is needed for operations like create with
951 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
952 	 * are not allowed to use this reserved space.
953 	 *
954 	 * This may drive us straight to ENOSPC on mount, but that implies
955 	 * we were already there on the last unmount. Warn if this occurs.
956 	 */
957 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
958 		resblks = xfs_default_resblks(mp);
959 		error = xfs_reserve_blocks(mp, &resblks, NULL);
960 		if (error)
961 			xfs_warn(mp,
962 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
963 	}
964 
965 	return 0;
966 
967  out_rtunmount:
968 	xfs_rtunmount_inodes(mp);
969  out_rele_rip:
970 	IRELE(rip);
971 	cancel_delayed_work_sync(&mp->m_reclaim_work);
972 	xfs_reclaim_inodes(mp, SYNC_WAIT);
973  out_log_dealloc:
974 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
975 	xfs_log_mount_cancel(mp);
976  out_fail_wait:
977 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
978 		xfs_wait_buftarg(mp->m_logdev_targp);
979 	xfs_wait_buftarg(mp->m_ddev_targp);
980  out_free_perag:
981 	xfs_free_perag(mp);
982  out_free_dir:
983 	xfs_da_unmount(mp);
984  out_remove_uuid:
985 	xfs_uuid_unmount(mp);
986  out_remove_error_sysfs:
987 	xfs_error_sysfs_del(mp);
988  out_del_stats:
989 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
990  out_remove_sysfs:
991 	xfs_sysfs_del(&mp->m_kobj);
992  out:
993 	return error;
994 }
995 
996 /*
997  * This flushes out the inodes,dquots and the superblock, unmounts the
998  * log and makes sure that incore structures are freed.
999  */
1000 void
1001 xfs_unmountfs(
1002 	struct xfs_mount	*mp)
1003 {
1004 	__uint64_t		resblks;
1005 	int			error;
1006 
1007 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1008 
1009 	xfs_qm_unmount_quotas(mp);
1010 	xfs_rtunmount_inodes(mp);
1011 	IRELE(mp->m_rootip);
1012 
1013 	/*
1014 	 * We can potentially deadlock here if we have an inode cluster
1015 	 * that has been freed has its buffer still pinned in memory because
1016 	 * the transaction is still sitting in a iclog. The stale inodes
1017 	 * on that buffer will have their flush locks held until the
1018 	 * transaction hits the disk and the callbacks run. the inode
1019 	 * flush takes the flush lock unconditionally and with nothing to
1020 	 * push out the iclog we will never get that unlocked. hence we
1021 	 * need to force the log first.
1022 	 */
1023 	xfs_log_force(mp, XFS_LOG_SYNC);
1024 
1025 	/*
1026 	 * We now need to tell the world we are unmounting. This will allow
1027 	 * us to detect that the filesystem is going away and we should error
1028 	 * out anything that we have been retrying in the background. This will
1029 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1030 	 */
1031 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1032 
1033 	/*
1034 	 * Flush all pending changes from the AIL.
1035 	 */
1036 	xfs_ail_push_all_sync(mp->m_ail);
1037 
1038 	/*
1039 	 * And reclaim all inodes.  At this point there should be no dirty
1040 	 * inodes and none should be pinned or locked, but use synchronous
1041 	 * reclaim just to be sure. We can stop background inode reclaim
1042 	 * here as well if it is still running.
1043 	 */
1044 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1045 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1046 
1047 	xfs_qm_unmount(mp);
1048 
1049 	/*
1050 	 * Unreserve any blocks we have so that when we unmount we don't account
1051 	 * the reserved free space as used. This is really only necessary for
1052 	 * lazy superblock counting because it trusts the incore superblock
1053 	 * counters to be absolutely correct on clean unmount.
1054 	 *
1055 	 * We don't bother correcting this elsewhere for lazy superblock
1056 	 * counting because on mount of an unclean filesystem we reconstruct the
1057 	 * correct counter value and this is irrelevant.
1058 	 *
1059 	 * For non-lazy counter filesystems, this doesn't matter at all because
1060 	 * we only every apply deltas to the superblock and hence the incore
1061 	 * value does not matter....
1062 	 */
1063 	resblks = 0;
1064 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1065 	if (error)
1066 		xfs_warn(mp, "Unable to free reserved block pool. "
1067 				"Freespace may not be correct on next mount.");
1068 
1069 	error = xfs_log_sbcount(mp);
1070 	if (error)
1071 		xfs_warn(mp, "Unable to update superblock counters. "
1072 				"Freespace may not be correct on next mount.");
1073 
1074 
1075 	xfs_log_unmount(mp);
1076 	xfs_da_unmount(mp);
1077 	xfs_uuid_unmount(mp);
1078 
1079 #if defined(DEBUG)
1080 	xfs_errortag_clearall(mp, 0);
1081 #endif
1082 	xfs_free_perag(mp);
1083 
1084 	xfs_error_sysfs_del(mp);
1085 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1086 	xfs_sysfs_del(&mp->m_kobj);
1087 }
1088 
1089 /*
1090  * Determine whether modifications can proceed. The caller specifies the minimum
1091  * freeze level for which modifications should not be allowed. This allows
1092  * certain operations to proceed while the freeze sequence is in progress, if
1093  * necessary.
1094  */
1095 bool
1096 xfs_fs_writable(
1097 	struct xfs_mount	*mp,
1098 	int			level)
1099 {
1100 	ASSERT(level > SB_UNFROZEN);
1101 	if ((mp->m_super->s_writers.frozen >= level) ||
1102 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1103 		return false;
1104 
1105 	return true;
1106 }
1107 
1108 /*
1109  * xfs_log_sbcount
1110  *
1111  * Sync the superblock counters to disk.
1112  *
1113  * Note this code can be called during the process of freezing, so we use the
1114  * transaction allocator that does not block when the transaction subsystem is
1115  * in its frozen state.
1116  */
1117 int
1118 xfs_log_sbcount(xfs_mount_t *mp)
1119 {
1120 	/* allow this to proceed during the freeze sequence... */
1121 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1122 		return 0;
1123 
1124 	/*
1125 	 * we don't need to do this if we are updating the superblock
1126 	 * counters on every modification.
1127 	 */
1128 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1129 		return 0;
1130 
1131 	return xfs_sync_sb(mp, true);
1132 }
1133 
1134 /*
1135  * Deltas for the inode count are +/-64, hence we use a large batch size
1136  * of 128 so we don't need to take the counter lock on every update.
1137  */
1138 #define XFS_ICOUNT_BATCH	128
1139 int
1140 xfs_mod_icount(
1141 	struct xfs_mount	*mp,
1142 	int64_t			delta)
1143 {
1144 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1145 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1146 		ASSERT(0);
1147 		percpu_counter_add(&mp->m_icount, -delta);
1148 		return -EINVAL;
1149 	}
1150 	return 0;
1151 }
1152 
1153 int
1154 xfs_mod_ifree(
1155 	struct xfs_mount	*mp,
1156 	int64_t			delta)
1157 {
1158 	percpu_counter_add(&mp->m_ifree, delta);
1159 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1160 		ASSERT(0);
1161 		percpu_counter_add(&mp->m_ifree, -delta);
1162 		return -EINVAL;
1163 	}
1164 	return 0;
1165 }
1166 
1167 /*
1168  * Deltas for the block count can vary from 1 to very large, but lock contention
1169  * only occurs on frequent small block count updates such as in the delayed
1170  * allocation path for buffered writes (page a time updates). Hence we set
1171  * a large batch count (1024) to minimise global counter updates except when
1172  * we get near to ENOSPC and we have to be very accurate with our updates.
1173  */
1174 #define XFS_FDBLOCKS_BATCH	1024
1175 int
1176 xfs_mod_fdblocks(
1177 	struct xfs_mount	*mp,
1178 	int64_t			delta,
1179 	bool			rsvd)
1180 {
1181 	int64_t			lcounter;
1182 	long long		res_used;
1183 	s32			batch;
1184 
1185 	if (delta > 0) {
1186 		/*
1187 		 * If the reserve pool is depleted, put blocks back into it
1188 		 * first. Most of the time the pool is full.
1189 		 */
1190 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1191 			percpu_counter_add(&mp->m_fdblocks, delta);
1192 			return 0;
1193 		}
1194 
1195 		spin_lock(&mp->m_sb_lock);
1196 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1197 
1198 		if (res_used > delta) {
1199 			mp->m_resblks_avail += delta;
1200 		} else {
1201 			delta -= res_used;
1202 			mp->m_resblks_avail = mp->m_resblks;
1203 			percpu_counter_add(&mp->m_fdblocks, delta);
1204 		}
1205 		spin_unlock(&mp->m_sb_lock);
1206 		return 0;
1207 	}
1208 
1209 	/*
1210 	 * Taking blocks away, need to be more accurate the closer we
1211 	 * are to zero.
1212 	 *
1213 	 * If the counter has a value of less than 2 * max batch size,
1214 	 * then make everything serialise as we are real close to
1215 	 * ENOSPC.
1216 	 */
1217 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1218 				     XFS_FDBLOCKS_BATCH) < 0)
1219 		batch = 1;
1220 	else
1221 		batch = XFS_FDBLOCKS_BATCH;
1222 
1223 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1224 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1225 				     XFS_FDBLOCKS_BATCH) >= 0) {
1226 		/* we had space! */
1227 		return 0;
1228 	}
1229 
1230 	/*
1231 	 * lock up the sb for dipping into reserves before releasing the space
1232 	 * that took us to ENOSPC.
1233 	 */
1234 	spin_lock(&mp->m_sb_lock);
1235 	percpu_counter_add(&mp->m_fdblocks, -delta);
1236 	if (!rsvd)
1237 		goto fdblocks_enospc;
1238 
1239 	lcounter = (long long)mp->m_resblks_avail + delta;
1240 	if (lcounter >= 0) {
1241 		mp->m_resblks_avail = lcounter;
1242 		spin_unlock(&mp->m_sb_lock);
1243 		return 0;
1244 	}
1245 	printk_once(KERN_WARNING
1246 		"Filesystem \"%s\": reserve blocks depleted! "
1247 		"Consider increasing reserve pool size.",
1248 		mp->m_fsname);
1249 fdblocks_enospc:
1250 	spin_unlock(&mp->m_sb_lock);
1251 	return -ENOSPC;
1252 }
1253 
1254 int
1255 xfs_mod_frextents(
1256 	struct xfs_mount	*mp,
1257 	int64_t			delta)
1258 {
1259 	int64_t			lcounter;
1260 	int			ret = 0;
1261 
1262 	spin_lock(&mp->m_sb_lock);
1263 	lcounter = mp->m_sb.sb_frextents + delta;
1264 	if (lcounter < 0)
1265 		ret = -ENOSPC;
1266 	else
1267 		mp->m_sb.sb_frextents = lcounter;
1268 	spin_unlock(&mp->m_sb_lock);
1269 	return ret;
1270 }
1271 
1272 /*
1273  * xfs_getsb() is called to obtain the buffer for the superblock.
1274  * The buffer is returned locked and read in from disk.
1275  * The buffer should be released with a call to xfs_brelse().
1276  *
1277  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1278  * the superblock buffer if it can be locked without sleeping.
1279  * If it can't then we'll return NULL.
1280  */
1281 struct xfs_buf *
1282 xfs_getsb(
1283 	struct xfs_mount	*mp,
1284 	int			flags)
1285 {
1286 	struct xfs_buf		*bp = mp->m_sb_bp;
1287 
1288 	if (!xfs_buf_trylock(bp)) {
1289 		if (flags & XBF_TRYLOCK)
1290 			return NULL;
1291 		xfs_buf_lock(bp);
1292 	}
1293 
1294 	xfs_buf_hold(bp);
1295 	ASSERT(bp->b_flags & XBF_DONE);
1296 	return bp;
1297 }
1298 
1299 /*
1300  * Used to free the superblock along various error paths.
1301  */
1302 void
1303 xfs_freesb(
1304 	struct xfs_mount	*mp)
1305 {
1306 	struct xfs_buf		*bp = mp->m_sb_bp;
1307 
1308 	xfs_buf_lock(bp);
1309 	mp->m_sb_bp = NULL;
1310 	xfs_buf_relse(bp);
1311 }
1312 
1313 /*
1314  * If the underlying (data/log/rt) device is readonly, there are some
1315  * operations that cannot proceed.
1316  */
1317 int
1318 xfs_dev_is_read_only(
1319 	struct xfs_mount	*mp,
1320 	char			*message)
1321 {
1322 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1323 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1324 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1325 		xfs_notice(mp, "%s required on read-only device.", message);
1326 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1327 		return -EROFS;
1328 	}
1329 	return 0;
1330 }
1331