xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision bb0eb050)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
49 
50 
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
54 
55 void
56 xfs_uuid_table_free(void)
57 {
58 	if (xfs_uuid_table_size == 0)
59 		return;
60 	kmem_free(xfs_uuid_table);
61 	xfs_uuid_table = NULL;
62 	xfs_uuid_table_size = 0;
63 }
64 
65 /*
66  * See if the UUID is unique among mounted XFS filesystems.
67  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68  */
69 STATIC int
70 xfs_uuid_mount(
71 	struct xfs_mount	*mp)
72 {
73 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
74 	int			hole, i;
75 
76 	/* Publish UUID in struct super_block */
77 	BUILD_BUG_ON(sizeof(mp->m_super->s_uuid) != sizeof(uuid_t));
78 	memcpy(&mp->m_super->s_uuid, uuid, sizeof(uuid_t));
79 
80 	if (mp->m_flags & XFS_MOUNT_NOUUID)
81 		return 0;
82 
83 	if (uuid_is_nil(uuid)) {
84 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
85 		return -EINVAL;
86 	}
87 
88 	mutex_lock(&xfs_uuid_table_mutex);
89 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
90 		if (uuid_is_nil(&xfs_uuid_table[i])) {
91 			hole = i;
92 			continue;
93 		}
94 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
95 			goto out_duplicate;
96 	}
97 
98 	if (hole < 0) {
99 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
100 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
101 			KM_SLEEP);
102 		hole = xfs_uuid_table_size++;
103 	}
104 	xfs_uuid_table[hole] = *uuid;
105 	mutex_unlock(&xfs_uuid_table_mutex);
106 
107 	return 0;
108 
109  out_duplicate:
110 	mutex_unlock(&xfs_uuid_table_mutex);
111 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
112 	return -EINVAL;
113 }
114 
115 STATIC void
116 xfs_uuid_unmount(
117 	struct xfs_mount	*mp)
118 {
119 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
120 	int			i;
121 
122 	if (mp->m_flags & XFS_MOUNT_NOUUID)
123 		return;
124 
125 	mutex_lock(&xfs_uuid_table_mutex);
126 	for (i = 0; i < xfs_uuid_table_size; i++) {
127 		if (uuid_is_nil(&xfs_uuid_table[i]))
128 			continue;
129 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
130 			continue;
131 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
132 		break;
133 	}
134 	ASSERT(i < xfs_uuid_table_size);
135 	mutex_unlock(&xfs_uuid_table_mutex);
136 }
137 
138 
139 STATIC void
140 __xfs_free_perag(
141 	struct rcu_head	*head)
142 {
143 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
144 
145 	ASSERT(atomic_read(&pag->pag_ref) == 0);
146 	kmem_free(pag);
147 }
148 
149 /*
150  * Free up the per-ag resources associated with the mount structure.
151  */
152 STATIC void
153 xfs_free_perag(
154 	xfs_mount_t	*mp)
155 {
156 	xfs_agnumber_t	agno;
157 	struct xfs_perag *pag;
158 
159 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
160 		spin_lock(&mp->m_perag_lock);
161 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
162 		spin_unlock(&mp->m_perag_lock);
163 		ASSERT(pag);
164 		ASSERT(atomic_read(&pag->pag_ref) == 0);
165 		xfs_buf_hash_destroy(pag);
166 		call_rcu(&pag->rcu_head, __xfs_free_perag);
167 	}
168 }
169 
170 /*
171  * Check size of device based on the (data/realtime) block count.
172  * Note: this check is used by the growfs code as well as mount.
173  */
174 int
175 xfs_sb_validate_fsb_count(
176 	xfs_sb_t	*sbp,
177 	__uint64_t	nblocks)
178 {
179 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
180 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
181 
182 	/* Limited by ULONG_MAX of page cache index */
183 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
184 		return -EFBIG;
185 	return 0;
186 }
187 
188 int
189 xfs_initialize_perag(
190 	xfs_mount_t	*mp,
191 	xfs_agnumber_t	agcount,
192 	xfs_agnumber_t	*maxagi)
193 {
194 	xfs_agnumber_t	index;
195 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
196 	xfs_perag_t	*pag;
197 	int		error = -ENOMEM;
198 
199 	/*
200 	 * Walk the current per-ag tree so we don't try to initialise AGs
201 	 * that already exist (growfs case). Allocate and insert all the
202 	 * AGs we don't find ready for initialisation.
203 	 */
204 	for (index = 0; index < agcount; index++) {
205 		pag = xfs_perag_get(mp, index);
206 		if (pag) {
207 			xfs_perag_put(pag);
208 			continue;
209 		}
210 
211 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
212 		if (!pag)
213 			goto out_unwind_new_pags;
214 		pag->pag_agno = index;
215 		pag->pag_mount = mp;
216 		spin_lock_init(&pag->pag_ici_lock);
217 		mutex_init(&pag->pag_ici_reclaim_lock);
218 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
219 		if (xfs_buf_hash_init(pag))
220 			goto out_free_pag;
221 		init_waitqueue_head(&pag->pagb_wait);
222 
223 		if (radix_tree_preload(GFP_NOFS))
224 			goto out_hash_destroy;
225 
226 		spin_lock(&mp->m_perag_lock);
227 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
228 			BUG();
229 			spin_unlock(&mp->m_perag_lock);
230 			radix_tree_preload_end();
231 			error = -EEXIST;
232 			goto out_hash_destroy;
233 		}
234 		spin_unlock(&mp->m_perag_lock);
235 		radix_tree_preload_end();
236 		/* first new pag is fully initialized */
237 		if (first_initialised == NULLAGNUMBER)
238 			first_initialised = index;
239 	}
240 
241 	index = xfs_set_inode_alloc(mp, agcount);
242 
243 	if (maxagi)
244 		*maxagi = index;
245 
246 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
247 	return 0;
248 
249 out_hash_destroy:
250 	xfs_buf_hash_destroy(pag);
251 out_free_pag:
252 	kmem_free(pag);
253 out_unwind_new_pags:
254 	/* unwind any prior newly initialized pags */
255 	for (index = first_initialised; index < agcount; index++) {
256 		pag = radix_tree_delete(&mp->m_perag_tree, index);
257 		if (!pag)
258 			break;
259 		xfs_buf_hash_destroy(pag);
260 		kmem_free(pag);
261 	}
262 	return error;
263 }
264 
265 /*
266  * xfs_readsb
267  *
268  * Does the initial read of the superblock.
269  */
270 int
271 xfs_readsb(
272 	struct xfs_mount *mp,
273 	int		flags)
274 {
275 	unsigned int	sector_size;
276 	struct xfs_buf	*bp;
277 	struct xfs_sb	*sbp = &mp->m_sb;
278 	int		error;
279 	int		loud = !(flags & XFS_MFSI_QUIET);
280 	const struct xfs_buf_ops *buf_ops;
281 
282 	ASSERT(mp->m_sb_bp == NULL);
283 	ASSERT(mp->m_ddev_targp != NULL);
284 
285 	/*
286 	 * For the initial read, we must guess at the sector
287 	 * size based on the block device.  It's enough to
288 	 * get the sb_sectsize out of the superblock and
289 	 * then reread with the proper length.
290 	 * We don't verify it yet, because it may not be complete.
291 	 */
292 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
293 	buf_ops = NULL;
294 
295 	/*
296 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
297 	 * around at all times to optimize access to the superblock. Therefore,
298 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
299 	 * elevated.
300 	 */
301 reread:
302 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
303 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
304 				      buf_ops);
305 	if (error) {
306 		if (loud)
307 			xfs_warn(mp, "SB validate failed with error %d.", error);
308 		/* bad CRC means corrupted metadata */
309 		if (error == -EFSBADCRC)
310 			error = -EFSCORRUPTED;
311 		return error;
312 	}
313 
314 	/*
315 	 * Initialize the mount structure from the superblock.
316 	 */
317 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
318 
319 	/*
320 	 * If we haven't validated the superblock, do so now before we try
321 	 * to check the sector size and reread the superblock appropriately.
322 	 */
323 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
324 		if (loud)
325 			xfs_warn(mp, "Invalid superblock magic number");
326 		error = -EINVAL;
327 		goto release_buf;
328 	}
329 
330 	/*
331 	 * We must be able to do sector-sized and sector-aligned IO.
332 	 */
333 	if (sector_size > sbp->sb_sectsize) {
334 		if (loud)
335 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
336 				sector_size, sbp->sb_sectsize);
337 		error = -ENOSYS;
338 		goto release_buf;
339 	}
340 
341 	if (buf_ops == NULL) {
342 		/*
343 		 * Re-read the superblock so the buffer is correctly sized,
344 		 * and properly verified.
345 		 */
346 		xfs_buf_relse(bp);
347 		sector_size = sbp->sb_sectsize;
348 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
349 		goto reread;
350 	}
351 
352 	xfs_reinit_percpu_counters(mp);
353 
354 	/* no need to be quiet anymore, so reset the buf ops */
355 	bp->b_ops = &xfs_sb_buf_ops;
356 
357 	mp->m_sb_bp = bp;
358 	xfs_buf_unlock(bp);
359 	return 0;
360 
361 release_buf:
362 	xfs_buf_relse(bp);
363 	return error;
364 }
365 
366 /*
367  * Update alignment values based on mount options and sb values
368  */
369 STATIC int
370 xfs_update_alignment(xfs_mount_t *mp)
371 {
372 	xfs_sb_t	*sbp = &(mp->m_sb);
373 
374 	if (mp->m_dalign) {
375 		/*
376 		 * If stripe unit and stripe width are not multiples
377 		 * of the fs blocksize turn off alignment.
378 		 */
379 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
380 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
381 			xfs_warn(mp,
382 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
383 				sbp->sb_blocksize);
384 			return -EINVAL;
385 		} else {
386 			/*
387 			 * Convert the stripe unit and width to FSBs.
388 			 */
389 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
390 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
391 				xfs_warn(mp,
392 			"alignment check failed: sunit/swidth vs. agsize(%d)",
393 					 sbp->sb_agblocks);
394 				return -EINVAL;
395 			} else if (mp->m_dalign) {
396 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
397 			} else {
398 				xfs_warn(mp,
399 			"alignment check failed: sunit(%d) less than bsize(%d)",
400 					 mp->m_dalign, sbp->sb_blocksize);
401 				return -EINVAL;
402 			}
403 		}
404 
405 		/*
406 		 * Update superblock with new values
407 		 * and log changes
408 		 */
409 		if (xfs_sb_version_hasdalign(sbp)) {
410 			if (sbp->sb_unit != mp->m_dalign) {
411 				sbp->sb_unit = mp->m_dalign;
412 				mp->m_update_sb = true;
413 			}
414 			if (sbp->sb_width != mp->m_swidth) {
415 				sbp->sb_width = mp->m_swidth;
416 				mp->m_update_sb = true;
417 			}
418 		} else {
419 			xfs_warn(mp,
420 	"cannot change alignment: superblock does not support data alignment");
421 			return -EINVAL;
422 		}
423 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
424 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
425 			mp->m_dalign = sbp->sb_unit;
426 			mp->m_swidth = sbp->sb_width;
427 	}
428 
429 	return 0;
430 }
431 
432 /*
433  * Set the maximum inode count for this filesystem
434  */
435 STATIC void
436 xfs_set_maxicount(xfs_mount_t *mp)
437 {
438 	xfs_sb_t	*sbp = &(mp->m_sb);
439 	__uint64_t	icount;
440 
441 	if (sbp->sb_imax_pct) {
442 		/*
443 		 * Make sure the maximum inode count is a multiple
444 		 * of the units we allocate inodes in.
445 		 */
446 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
447 		do_div(icount, 100);
448 		do_div(icount, mp->m_ialloc_blks);
449 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
450 				   sbp->sb_inopblog;
451 	} else {
452 		mp->m_maxicount = 0;
453 	}
454 }
455 
456 /*
457  * Set the default minimum read and write sizes unless
458  * already specified in a mount option.
459  * We use smaller I/O sizes when the file system
460  * is being used for NFS service (wsync mount option).
461  */
462 STATIC void
463 xfs_set_rw_sizes(xfs_mount_t *mp)
464 {
465 	xfs_sb_t	*sbp = &(mp->m_sb);
466 	int		readio_log, writeio_log;
467 
468 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
469 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
470 			readio_log = XFS_WSYNC_READIO_LOG;
471 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
472 		} else {
473 			readio_log = XFS_READIO_LOG_LARGE;
474 			writeio_log = XFS_WRITEIO_LOG_LARGE;
475 		}
476 	} else {
477 		readio_log = mp->m_readio_log;
478 		writeio_log = mp->m_writeio_log;
479 	}
480 
481 	if (sbp->sb_blocklog > readio_log) {
482 		mp->m_readio_log = sbp->sb_blocklog;
483 	} else {
484 		mp->m_readio_log = readio_log;
485 	}
486 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
487 	if (sbp->sb_blocklog > writeio_log) {
488 		mp->m_writeio_log = sbp->sb_blocklog;
489 	} else {
490 		mp->m_writeio_log = writeio_log;
491 	}
492 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
493 }
494 
495 /*
496  * precalculate the low space thresholds for dynamic speculative preallocation.
497  */
498 void
499 xfs_set_low_space_thresholds(
500 	struct xfs_mount	*mp)
501 {
502 	int i;
503 
504 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
505 		__uint64_t space = mp->m_sb.sb_dblocks;
506 
507 		do_div(space, 100);
508 		mp->m_low_space[i] = space * (i + 1);
509 	}
510 }
511 
512 
513 /*
514  * Set whether we're using inode alignment.
515  */
516 STATIC void
517 xfs_set_inoalignment(xfs_mount_t *mp)
518 {
519 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
520 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
521 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
522 	else
523 		mp->m_inoalign_mask = 0;
524 	/*
525 	 * If we are using stripe alignment, check whether
526 	 * the stripe unit is a multiple of the inode alignment
527 	 */
528 	if (mp->m_dalign && mp->m_inoalign_mask &&
529 	    !(mp->m_dalign & mp->m_inoalign_mask))
530 		mp->m_sinoalign = mp->m_dalign;
531 	else
532 		mp->m_sinoalign = 0;
533 }
534 
535 /*
536  * Check that the data (and log if separate) is an ok size.
537  */
538 STATIC int
539 xfs_check_sizes(
540 	struct xfs_mount *mp)
541 {
542 	struct xfs_buf	*bp;
543 	xfs_daddr_t	d;
544 	int		error;
545 
546 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
547 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
548 		xfs_warn(mp, "filesystem size mismatch detected");
549 		return -EFBIG;
550 	}
551 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
552 					d - XFS_FSS_TO_BB(mp, 1),
553 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
554 	if (error) {
555 		xfs_warn(mp, "last sector read failed");
556 		return error;
557 	}
558 	xfs_buf_relse(bp);
559 
560 	if (mp->m_logdev_targp == mp->m_ddev_targp)
561 		return 0;
562 
563 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
564 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
565 		xfs_warn(mp, "log size mismatch detected");
566 		return -EFBIG;
567 	}
568 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
569 					d - XFS_FSB_TO_BB(mp, 1),
570 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
571 	if (error) {
572 		xfs_warn(mp, "log device read failed");
573 		return error;
574 	}
575 	xfs_buf_relse(bp);
576 	return 0;
577 }
578 
579 /*
580  * Clear the quotaflags in memory and in the superblock.
581  */
582 int
583 xfs_mount_reset_sbqflags(
584 	struct xfs_mount	*mp)
585 {
586 	mp->m_qflags = 0;
587 
588 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
589 	if (mp->m_sb.sb_qflags == 0)
590 		return 0;
591 	spin_lock(&mp->m_sb_lock);
592 	mp->m_sb.sb_qflags = 0;
593 	spin_unlock(&mp->m_sb_lock);
594 
595 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
596 		return 0;
597 
598 	return xfs_sync_sb(mp, false);
599 }
600 
601 __uint64_t
602 xfs_default_resblks(xfs_mount_t *mp)
603 {
604 	__uint64_t resblks;
605 
606 	/*
607 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
608 	 * smaller.  This is intended to cover concurrent allocation
609 	 * transactions when we initially hit enospc. These each require a 4
610 	 * block reservation. Hence by default we cover roughly 2000 concurrent
611 	 * allocation reservations.
612 	 */
613 	resblks = mp->m_sb.sb_dblocks;
614 	do_div(resblks, 20);
615 	resblks = min_t(__uint64_t, resblks, 8192);
616 	return resblks;
617 }
618 
619 /*
620  * This function does the following on an initial mount of a file system:
621  *	- reads the superblock from disk and init the mount struct
622  *	- if we're a 32-bit kernel, do a size check on the superblock
623  *		so we don't mount terabyte filesystems
624  *	- init mount struct realtime fields
625  *	- allocate inode hash table for fs
626  *	- init directory manager
627  *	- perform recovery and init the log manager
628  */
629 int
630 xfs_mountfs(
631 	struct xfs_mount	*mp)
632 {
633 	struct xfs_sb		*sbp = &(mp->m_sb);
634 	struct xfs_inode	*rip;
635 	__uint64_t		resblks;
636 	uint			quotamount = 0;
637 	uint			quotaflags = 0;
638 	int			error = 0;
639 
640 	xfs_sb_mount_common(mp, sbp);
641 
642 	/*
643 	 * Check for a mismatched features2 values.  Older kernels read & wrote
644 	 * into the wrong sb offset for sb_features2 on some platforms due to
645 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
646 	 * which made older superblock reading/writing routines swap it as a
647 	 * 64-bit value.
648 	 *
649 	 * For backwards compatibility, we make both slots equal.
650 	 *
651 	 * If we detect a mismatched field, we OR the set bits into the existing
652 	 * features2 field in case it has already been modified; we don't want
653 	 * to lose any features.  We then update the bad location with the ORed
654 	 * value so that older kernels will see any features2 flags. The
655 	 * superblock writeback code ensures the new sb_features2 is copied to
656 	 * sb_bad_features2 before it is logged or written to disk.
657 	 */
658 	if (xfs_sb_has_mismatched_features2(sbp)) {
659 		xfs_warn(mp, "correcting sb_features alignment problem");
660 		sbp->sb_features2 |= sbp->sb_bad_features2;
661 		mp->m_update_sb = true;
662 
663 		/*
664 		 * Re-check for ATTR2 in case it was found in bad_features2
665 		 * slot.
666 		 */
667 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
668 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
669 			mp->m_flags |= XFS_MOUNT_ATTR2;
670 	}
671 
672 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
673 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
674 		xfs_sb_version_removeattr2(&mp->m_sb);
675 		mp->m_update_sb = true;
676 
677 		/* update sb_versionnum for the clearing of the morebits */
678 		if (!sbp->sb_features2)
679 			mp->m_update_sb = true;
680 	}
681 
682 	/* always use v2 inodes by default now */
683 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
684 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
685 		mp->m_update_sb = true;
686 	}
687 
688 	/*
689 	 * Check if sb_agblocks is aligned at stripe boundary
690 	 * If sb_agblocks is NOT aligned turn off m_dalign since
691 	 * allocator alignment is within an ag, therefore ag has
692 	 * to be aligned at stripe boundary.
693 	 */
694 	error = xfs_update_alignment(mp);
695 	if (error)
696 		goto out;
697 
698 	xfs_alloc_compute_maxlevels(mp);
699 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 	xfs_ialloc_compute_maxlevels(mp);
702 	xfs_rmapbt_compute_maxlevels(mp);
703 	xfs_refcountbt_compute_maxlevels(mp);
704 
705 	xfs_set_maxicount(mp);
706 
707 	/* enable fail_at_unmount as default */
708 	mp->m_fail_unmount = 1;
709 
710 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
711 	if (error)
712 		goto out;
713 
714 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
715 			       &mp->m_kobj, "stats");
716 	if (error)
717 		goto out_remove_sysfs;
718 
719 	error = xfs_error_sysfs_init(mp);
720 	if (error)
721 		goto out_del_stats;
722 
723 
724 	error = xfs_uuid_mount(mp);
725 	if (error)
726 		goto out_remove_error_sysfs;
727 
728 	/*
729 	 * Set the minimum read and write sizes
730 	 */
731 	xfs_set_rw_sizes(mp);
732 
733 	/* set the low space thresholds for dynamic preallocation */
734 	xfs_set_low_space_thresholds(mp);
735 
736 	/*
737 	 * Set the inode cluster size.
738 	 * This may still be overridden by the file system
739 	 * block size if it is larger than the chosen cluster size.
740 	 *
741 	 * For v5 filesystems, scale the cluster size with the inode size to
742 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
743 	 * has set the inode alignment value appropriately for larger cluster
744 	 * sizes.
745 	 */
746 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
747 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
748 		int	new_size = mp->m_inode_cluster_size;
749 
750 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
751 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
752 			mp->m_inode_cluster_size = new_size;
753 	}
754 
755 	/*
756 	 * If enabled, sparse inode chunk alignment is expected to match the
757 	 * cluster size. Full inode chunk alignment must match the chunk size,
758 	 * but that is checked on sb read verification...
759 	 */
760 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
761 	    mp->m_sb.sb_spino_align !=
762 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
763 		xfs_warn(mp,
764 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
765 			 mp->m_sb.sb_spino_align,
766 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
767 		error = -EINVAL;
768 		goto out_remove_uuid;
769 	}
770 
771 	/*
772 	 * Set inode alignment fields
773 	 */
774 	xfs_set_inoalignment(mp);
775 
776 	/*
777 	 * Check that the data (and log if separate) is an ok size.
778 	 */
779 	error = xfs_check_sizes(mp);
780 	if (error)
781 		goto out_remove_uuid;
782 
783 	/*
784 	 * Initialize realtime fields in the mount structure
785 	 */
786 	error = xfs_rtmount_init(mp);
787 	if (error) {
788 		xfs_warn(mp, "RT mount failed");
789 		goto out_remove_uuid;
790 	}
791 
792 	/*
793 	 *  Copies the low order bits of the timestamp and the randomly
794 	 *  set "sequence" number out of a UUID.
795 	 */
796 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
797 
798 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
799 
800 	error = xfs_da_mount(mp);
801 	if (error) {
802 		xfs_warn(mp, "Failed dir/attr init: %d", error);
803 		goto out_remove_uuid;
804 	}
805 
806 	/*
807 	 * Initialize the precomputed transaction reservations values.
808 	 */
809 	xfs_trans_init(mp);
810 
811 	/*
812 	 * Allocate and initialize the per-ag data.
813 	 */
814 	spin_lock_init(&mp->m_perag_lock);
815 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
816 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
817 	if (error) {
818 		xfs_warn(mp, "Failed per-ag init: %d", error);
819 		goto out_free_dir;
820 	}
821 
822 	if (!sbp->sb_logblocks) {
823 		xfs_warn(mp, "no log defined");
824 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
825 		error = -EFSCORRUPTED;
826 		goto out_free_perag;
827 	}
828 
829 	/*
830 	 * Log's mount-time initialization. The first part of recovery can place
831 	 * some items on the AIL, to be handled when recovery is finished or
832 	 * cancelled.
833 	 */
834 	error = xfs_log_mount(mp, mp->m_logdev_targp,
835 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
836 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
837 	if (error) {
838 		xfs_warn(mp, "log mount failed");
839 		goto out_fail_wait;
840 	}
841 
842 	/*
843 	 * Now the log is mounted, we know if it was an unclean shutdown or
844 	 * not. If it was, with the first phase of recovery has completed, we
845 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
846 	 * but they are recovered transactionally in the second recovery phase
847 	 * later.
848 	 *
849 	 * Hence we can safely re-initialise incore superblock counters from
850 	 * the per-ag data. These may not be correct if the filesystem was not
851 	 * cleanly unmounted, so we need to wait for recovery to finish before
852 	 * doing this.
853 	 *
854 	 * If the filesystem was cleanly unmounted, then we can trust the
855 	 * values in the superblock to be correct and we don't need to do
856 	 * anything here.
857 	 *
858 	 * If we are currently making the filesystem, the initialisation will
859 	 * fail as the perag data is in an undefined state.
860 	 */
861 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
862 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
863 	     !mp->m_sb.sb_inprogress) {
864 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
865 		if (error)
866 			goto out_log_dealloc;
867 	}
868 
869 	/*
870 	 * Get and sanity-check the root inode.
871 	 * Save the pointer to it in the mount structure.
872 	 */
873 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
874 	if (error) {
875 		xfs_warn(mp, "failed to read root inode");
876 		goto out_log_dealloc;
877 	}
878 
879 	ASSERT(rip != NULL);
880 
881 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
882 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
883 			(unsigned long long)rip->i_ino);
884 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
885 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
886 				 mp);
887 		error = -EFSCORRUPTED;
888 		goto out_rele_rip;
889 	}
890 	mp->m_rootip = rip;	/* save it */
891 
892 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
893 
894 	/*
895 	 * Initialize realtime inode pointers in the mount structure
896 	 */
897 	error = xfs_rtmount_inodes(mp);
898 	if (error) {
899 		/*
900 		 * Free up the root inode.
901 		 */
902 		xfs_warn(mp, "failed to read RT inodes");
903 		goto out_rele_rip;
904 	}
905 
906 	/*
907 	 * If this is a read-only mount defer the superblock updates until
908 	 * the next remount into writeable mode.  Otherwise we would never
909 	 * perform the update e.g. for the root filesystem.
910 	 */
911 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
912 		error = xfs_sync_sb(mp, false);
913 		if (error) {
914 			xfs_warn(mp, "failed to write sb changes");
915 			goto out_rtunmount;
916 		}
917 	}
918 
919 	/*
920 	 * Initialise the XFS quota management subsystem for this mount
921 	 */
922 	if (XFS_IS_QUOTA_RUNNING(mp)) {
923 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
924 		if (error)
925 			goto out_rtunmount;
926 	} else {
927 		ASSERT(!XFS_IS_QUOTA_ON(mp));
928 
929 		/*
930 		 * If a file system had quotas running earlier, but decided to
931 		 * mount without -o uquota/pquota/gquota options, revoke the
932 		 * quotachecked license.
933 		 */
934 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
935 			xfs_notice(mp, "resetting quota flags");
936 			error = xfs_mount_reset_sbqflags(mp);
937 			if (error)
938 				goto out_rtunmount;
939 		}
940 	}
941 
942 	/*
943 	 * During the second phase of log recovery, we need iget and
944 	 * iput to behave like they do for an active filesystem.
945 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
946 	 * of inodes before we're done replaying log items on those
947 	 * inodes.
948 	 */
949 	mp->m_super->s_flags |= MS_ACTIVE;
950 
951 	/*
952 	 * Finish recovering the file system.  This part needed to be delayed
953 	 * until after the root and real-time bitmap inodes were consistently
954 	 * read in.
955 	 */
956 	error = xfs_log_mount_finish(mp);
957 	if (error) {
958 		xfs_warn(mp, "log mount finish failed");
959 		goto out_rtunmount;
960 	}
961 
962 	/*
963 	 * Now the log is fully replayed, we can transition to full read-only
964 	 * mode for read-only mounts. This will sync all the metadata and clean
965 	 * the log so that the recovery we just performed does not have to be
966 	 * replayed again on the next mount.
967 	 *
968 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
969 	 * semantically identical operations.
970 	 */
971 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
972 							XFS_MOUNT_RDONLY) {
973 		xfs_quiesce_attr(mp);
974 	}
975 
976 	/*
977 	 * Complete the quota initialisation, post-log-replay component.
978 	 */
979 	if (quotamount) {
980 		ASSERT(mp->m_qflags == 0);
981 		mp->m_qflags = quotaflags;
982 
983 		xfs_qm_mount_quotas(mp);
984 	}
985 
986 	/*
987 	 * Now we are mounted, reserve a small amount of unused space for
988 	 * privileged transactions. This is needed so that transaction
989 	 * space required for critical operations can dip into this pool
990 	 * when at ENOSPC. This is needed for operations like create with
991 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
992 	 * are not allowed to use this reserved space.
993 	 *
994 	 * This may drive us straight to ENOSPC on mount, but that implies
995 	 * we were already there on the last unmount. Warn if this occurs.
996 	 */
997 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
998 		resblks = xfs_default_resblks(mp);
999 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1000 		if (error)
1001 			xfs_warn(mp,
1002 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1003 
1004 		/* Recover any CoW blocks that never got remapped. */
1005 		error = xfs_reflink_recover_cow(mp);
1006 		if (error) {
1007 			xfs_err(mp,
1008 	"Error %d recovering leftover CoW allocations.", error);
1009 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1010 			goto out_quota;
1011 		}
1012 
1013 		/* Reserve AG blocks for future btree expansion. */
1014 		error = xfs_fs_reserve_ag_blocks(mp);
1015 		if (error && error != -ENOSPC)
1016 			goto out_agresv;
1017 	}
1018 
1019 	return 0;
1020 
1021  out_agresv:
1022 	xfs_fs_unreserve_ag_blocks(mp);
1023  out_quota:
1024 	xfs_qm_unmount_quotas(mp);
1025  out_rtunmount:
1026 	mp->m_super->s_flags &= ~MS_ACTIVE;
1027 	xfs_rtunmount_inodes(mp);
1028  out_rele_rip:
1029 	IRELE(rip);
1030 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1031 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1032  out_log_dealloc:
1033 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1034 	xfs_log_mount_cancel(mp);
1035  out_fail_wait:
1036 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1037 		xfs_wait_buftarg(mp->m_logdev_targp);
1038 	xfs_wait_buftarg(mp->m_ddev_targp);
1039  out_free_perag:
1040 	xfs_free_perag(mp);
1041  out_free_dir:
1042 	xfs_da_unmount(mp);
1043  out_remove_uuid:
1044 	xfs_uuid_unmount(mp);
1045  out_remove_error_sysfs:
1046 	xfs_error_sysfs_del(mp);
1047  out_del_stats:
1048 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1049  out_remove_sysfs:
1050 	xfs_sysfs_del(&mp->m_kobj);
1051  out:
1052 	return error;
1053 }
1054 
1055 /*
1056  * This flushes out the inodes,dquots and the superblock, unmounts the
1057  * log and makes sure that incore structures are freed.
1058  */
1059 void
1060 xfs_unmountfs(
1061 	struct xfs_mount	*mp)
1062 {
1063 	__uint64_t		resblks;
1064 	int			error;
1065 
1066 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1067 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1068 
1069 	xfs_fs_unreserve_ag_blocks(mp);
1070 	xfs_qm_unmount_quotas(mp);
1071 	xfs_rtunmount_inodes(mp);
1072 	IRELE(mp->m_rootip);
1073 
1074 	/*
1075 	 * We can potentially deadlock here if we have an inode cluster
1076 	 * that has been freed has its buffer still pinned in memory because
1077 	 * the transaction is still sitting in a iclog. The stale inodes
1078 	 * on that buffer will have their flush locks held until the
1079 	 * transaction hits the disk and the callbacks run. the inode
1080 	 * flush takes the flush lock unconditionally and with nothing to
1081 	 * push out the iclog we will never get that unlocked. hence we
1082 	 * need to force the log first.
1083 	 */
1084 	xfs_log_force(mp, XFS_LOG_SYNC);
1085 
1086 	/*
1087 	 * Wait for all busy extents to be freed, including completion of
1088 	 * any discard operation.
1089 	 */
1090 	xfs_extent_busy_wait_all(mp);
1091 	flush_workqueue(xfs_discard_wq);
1092 
1093 	/*
1094 	 * We now need to tell the world we are unmounting. This will allow
1095 	 * us to detect that the filesystem is going away and we should error
1096 	 * out anything that we have been retrying in the background. This will
1097 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1098 	 */
1099 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1100 
1101 	/*
1102 	 * Flush all pending changes from the AIL.
1103 	 */
1104 	xfs_ail_push_all_sync(mp->m_ail);
1105 
1106 	/*
1107 	 * And reclaim all inodes.  At this point there should be no dirty
1108 	 * inodes and none should be pinned or locked, but use synchronous
1109 	 * reclaim just to be sure. We can stop background inode reclaim
1110 	 * here as well if it is still running.
1111 	 */
1112 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1113 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1114 
1115 	xfs_qm_unmount(mp);
1116 
1117 	/*
1118 	 * Unreserve any blocks we have so that when we unmount we don't account
1119 	 * the reserved free space as used. This is really only necessary for
1120 	 * lazy superblock counting because it trusts the incore superblock
1121 	 * counters to be absolutely correct on clean unmount.
1122 	 *
1123 	 * We don't bother correcting this elsewhere for lazy superblock
1124 	 * counting because on mount of an unclean filesystem we reconstruct the
1125 	 * correct counter value and this is irrelevant.
1126 	 *
1127 	 * For non-lazy counter filesystems, this doesn't matter at all because
1128 	 * we only every apply deltas to the superblock and hence the incore
1129 	 * value does not matter....
1130 	 */
1131 	resblks = 0;
1132 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1133 	if (error)
1134 		xfs_warn(mp, "Unable to free reserved block pool. "
1135 				"Freespace may not be correct on next mount.");
1136 
1137 	error = xfs_log_sbcount(mp);
1138 	if (error)
1139 		xfs_warn(mp, "Unable to update superblock counters. "
1140 				"Freespace may not be correct on next mount.");
1141 
1142 
1143 	xfs_log_unmount(mp);
1144 	xfs_da_unmount(mp);
1145 	xfs_uuid_unmount(mp);
1146 
1147 #if defined(DEBUG)
1148 	xfs_errortag_clearall(mp, 0);
1149 #endif
1150 	xfs_free_perag(mp);
1151 
1152 	xfs_error_sysfs_del(mp);
1153 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1154 	xfs_sysfs_del(&mp->m_kobj);
1155 }
1156 
1157 /*
1158  * Determine whether modifications can proceed. The caller specifies the minimum
1159  * freeze level for which modifications should not be allowed. This allows
1160  * certain operations to proceed while the freeze sequence is in progress, if
1161  * necessary.
1162  */
1163 bool
1164 xfs_fs_writable(
1165 	struct xfs_mount	*mp,
1166 	int			level)
1167 {
1168 	ASSERT(level > SB_UNFROZEN);
1169 	if ((mp->m_super->s_writers.frozen >= level) ||
1170 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1171 		return false;
1172 
1173 	return true;
1174 }
1175 
1176 /*
1177  * xfs_log_sbcount
1178  *
1179  * Sync the superblock counters to disk.
1180  *
1181  * Note this code can be called during the process of freezing, so we use the
1182  * transaction allocator that does not block when the transaction subsystem is
1183  * in its frozen state.
1184  */
1185 int
1186 xfs_log_sbcount(xfs_mount_t *mp)
1187 {
1188 	/* allow this to proceed during the freeze sequence... */
1189 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1190 		return 0;
1191 
1192 	/*
1193 	 * we don't need to do this if we are updating the superblock
1194 	 * counters on every modification.
1195 	 */
1196 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1197 		return 0;
1198 
1199 	return xfs_sync_sb(mp, true);
1200 }
1201 
1202 /*
1203  * Deltas for the inode count are +/-64, hence we use a large batch size
1204  * of 128 so we don't need to take the counter lock on every update.
1205  */
1206 #define XFS_ICOUNT_BATCH	128
1207 int
1208 xfs_mod_icount(
1209 	struct xfs_mount	*mp,
1210 	int64_t			delta)
1211 {
1212 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1213 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1214 		ASSERT(0);
1215 		percpu_counter_add(&mp->m_icount, -delta);
1216 		return -EINVAL;
1217 	}
1218 	return 0;
1219 }
1220 
1221 int
1222 xfs_mod_ifree(
1223 	struct xfs_mount	*mp,
1224 	int64_t			delta)
1225 {
1226 	percpu_counter_add(&mp->m_ifree, delta);
1227 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1228 		ASSERT(0);
1229 		percpu_counter_add(&mp->m_ifree, -delta);
1230 		return -EINVAL;
1231 	}
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Deltas for the block count can vary from 1 to very large, but lock contention
1237  * only occurs on frequent small block count updates such as in the delayed
1238  * allocation path for buffered writes (page a time updates). Hence we set
1239  * a large batch count (1024) to minimise global counter updates except when
1240  * we get near to ENOSPC and we have to be very accurate with our updates.
1241  */
1242 #define XFS_FDBLOCKS_BATCH	1024
1243 int
1244 xfs_mod_fdblocks(
1245 	struct xfs_mount	*mp,
1246 	int64_t			delta,
1247 	bool			rsvd)
1248 {
1249 	int64_t			lcounter;
1250 	long long		res_used;
1251 	s32			batch;
1252 
1253 	if (delta > 0) {
1254 		/*
1255 		 * If the reserve pool is depleted, put blocks back into it
1256 		 * first. Most of the time the pool is full.
1257 		 */
1258 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1259 			percpu_counter_add(&mp->m_fdblocks, delta);
1260 			return 0;
1261 		}
1262 
1263 		spin_lock(&mp->m_sb_lock);
1264 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1265 
1266 		if (res_used > delta) {
1267 			mp->m_resblks_avail += delta;
1268 		} else {
1269 			delta -= res_used;
1270 			mp->m_resblks_avail = mp->m_resblks;
1271 			percpu_counter_add(&mp->m_fdblocks, delta);
1272 		}
1273 		spin_unlock(&mp->m_sb_lock);
1274 		return 0;
1275 	}
1276 
1277 	/*
1278 	 * Taking blocks away, need to be more accurate the closer we
1279 	 * are to zero.
1280 	 *
1281 	 * If the counter has a value of less than 2 * max batch size,
1282 	 * then make everything serialise as we are real close to
1283 	 * ENOSPC.
1284 	 */
1285 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1286 				     XFS_FDBLOCKS_BATCH) < 0)
1287 		batch = 1;
1288 	else
1289 		batch = XFS_FDBLOCKS_BATCH;
1290 
1291 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1292 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1293 				     XFS_FDBLOCKS_BATCH) >= 0) {
1294 		/* we had space! */
1295 		return 0;
1296 	}
1297 
1298 	/*
1299 	 * lock up the sb for dipping into reserves before releasing the space
1300 	 * that took us to ENOSPC.
1301 	 */
1302 	spin_lock(&mp->m_sb_lock);
1303 	percpu_counter_add(&mp->m_fdblocks, -delta);
1304 	if (!rsvd)
1305 		goto fdblocks_enospc;
1306 
1307 	lcounter = (long long)mp->m_resblks_avail + delta;
1308 	if (lcounter >= 0) {
1309 		mp->m_resblks_avail = lcounter;
1310 		spin_unlock(&mp->m_sb_lock);
1311 		return 0;
1312 	}
1313 	printk_once(KERN_WARNING
1314 		"Filesystem \"%s\": reserve blocks depleted! "
1315 		"Consider increasing reserve pool size.",
1316 		mp->m_fsname);
1317 fdblocks_enospc:
1318 	spin_unlock(&mp->m_sb_lock);
1319 	return -ENOSPC;
1320 }
1321 
1322 int
1323 xfs_mod_frextents(
1324 	struct xfs_mount	*mp,
1325 	int64_t			delta)
1326 {
1327 	int64_t			lcounter;
1328 	int			ret = 0;
1329 
1330 	spin_lock(&mp->m_sb_lock);
1331 	lcounter = mp->m_sb.sb_frextents + delta;
1332 	if (lcounter < 0)
1333 		ret = -ENOSPC;
1334 	else
1335 		mp->m_sb.sb_frextents = lcounter;
1336 	spin_unlock(&mp->m_sb_lock);
1337 	return ret;
1338 }
1339 
1340 /*
1341  * xfs_getsb() is called to obtain the buffer for the superblock.
1342  * The buffer is returned locked and read in from disk.
1343  * The buffer should be released with a call to xfs_brelse().
1344  *
1345  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1346  * the superblock buffer if it can be locked without sleeping.
1347  * If it can't then we'll return NULL.
1348  */
1349 struct xfs_buf *
1350 xfs_getsb(
1351 	struct xfs_mount	*mp,
1352 	int			flags)
1353 {
1354 	struct xfs_buf		*bp = mp->m_sb_bp;
1355 
1356 	if (!xfs_buf_trylock(bp)) {
1357 		if (flags & XBF_TRYLOCK)
1358 			return NULL;
1359 		xfs_buf_lock(bp);
1360 	}
1361 
1362 	xfs_buf_hold(bp);
1363 	ASSERT(bp->b_flags & XBF_DONE);
1364 	return bp;
1365 }
1366 
1367 /*
1368  * Used to free the superblock along various error paths.
1369  */
1370 void
1371 xfs_freesb(
1372 	struct xfs_mount	*mp)
1373 {
1374 	struct xfs_buf		*bp = mp->m_sb_bp;
1375 
1376 	xfs_buf_lock(bp);
1377 	mp->m_sb_bp = NULL;
1378 	xfs_buf_relse(bp);
1379 }
1380 
1381 /*
1382  * If the underlying (data/log/rt) device is readonly, there are some
1383  * operations that cannot proceed.
1384  */
1385 int
1386 xfs_dev_is_read_only(
1387 	struct xfs_mount	*mp,
1388 	char			*message)
1389 {
1390 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1391 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1392 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1393 		xfs_notice(mp, "%s required on read-only device.", message);
1394 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1395 		return -EROFS;
1396 	}
1397 	return 0;
1398 }
1399