1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_defer.h" 28 #include "xfs_da_format.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_sysfs.h" 45 #include "xfs_rmap_btree.h" 46 #include "xfs_refcount_btree.h" 47 #include "xfs_reflink.h" 48 #include "xfs_extent_busy.h" 49 50 51 static DEFINE_MUTEX(xfs_uuid_table_mutex); 52 static int xfs_uuid_table_size; 53 static uuid_t *xfs_uuid_table; 54 55 void 56 xfs_uuid_table_free(void) 57 { 58 if (xfs_uuid_table_size == 0) 59 return; 60 kmem_free(xfs_uuid_table); 61 xfs_uuid_table = NULL; 62 xfs_uuid_table_size = 0; 63 } 64 65 /* 66 * See if the UUID is unique among mounted XFS filesystems. 67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 68 */ 69 STATIC int 70 xfs_uuid_mount( 71 struct xfs_mount *mp) 72 { 73 uuid_t *uuid = &mp->m_sb.sb_uuid; 74 int hole, i; 75 76 /* Publish UUID in struct super_block */ 77 BUILD_BUG_ON(sizeof(mp->m_super->s_uuid) != sizeof(uuid_t)); 78 memcpy(&mp->m_super->s_uuid, uuid, sizeof(uuid_t)); 79 80 if (mp->m_flags & XFS_MOUNT_NOUUID) 81 return 0; 82 83 if (uuid_is_nil(uuid)) { 84 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 85 return -EINVAL; 86 } 87 88 mutex_lock(&xfs_uuid_table_mutex); 89 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 90 if (uuid_is_nil(&xfs_uuid_table[i])) { 91 hole = i; 92 continue; 93 } 94 if (uuid_equal(uuid, &xfs_uuid_table[i])) 95 goto out_duplicate; 96 } 97 98 if (hole < 0) { 99 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 100 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 101 KM_SLEEP); 102 hole = xfs_uuid_table_size++; 103 } 104 xfs_uuid_table[hole] = *uuid; 105 mutex_unlock(&xfs_uuid_table_mutex); 106 107 return 0; 108 109 out_duplicate: 110 mutex_unlock(&xfs_uuid_table_mutex); 111 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 112 return -EINVAL; 113 } 114 115 STATIC void 116 xfs_uuid_unmount( 117 struct xfs_mount *mp) 118 { 119 uuid_t *uuid = &mp->m_sb.sb_uuid; 120 int i; 121 122 if (mp->m_flags & XFS_MOUNT_NOUUID) 123 return; 124 125 mutex_lock(&xfs_uuid_table_mutex); 126 for (i = 0; i < xfs_uuid_table_size; i++) { 127 if (uuid_is_nil(&xfs_uuid_table[i])) 128 continue; 129 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 130 continue; 131 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 132 break; 133 } 134 ASSERT(i < xfs_uuid_table_size); 135 mutex_unlock(&xfs_uuid_table_mutex); 136 } 137 138 139 STATIC void 140 __xfs_free_perag( 141 struct rcu_head *head) 142 { 143 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 144 145 ASSERT(atomic_read(&pag->pag_ref) == 0); 146 kmem_free(pag); 147 } 148 149 /* 150 * Free up the per-ag resources associated with the mount structure. 151 */ 152 STATIC void 153 xfs_free_perag( 154 xfs_mount_t *mp) 155 { 156 xfs_agnumber_t agno; 157 struct xfs_perag *pag; 158 159 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 160 spin_lock(&mp->m_perag_lock); 161 pag = radix_tree_delete(&mp->m_perag_tree, agno); 162 spin_unlock(&mp->m_perag_lock); 163 ASSERT(pag); 164 ASSERT(atomic_read(&pag->pag_ref) == 0); 165 xfs_buf_hash_destroy(pag); 166 call_rcu(&pag->rcu_head, __xfs_free_perag); 167 } 168 } 169 170 /* 171 * Check size of device based on the (data/realtime) block count. 172 * Note: this check is used by the growfs code as well as mount. 173 */ 174 int 175 xfs_sb_validate_fsb_count( 176 xfs_sb_t *sbp, 177 __uint64_t nblocks) 178 { 179 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 180 ASSERT(sbp->sb_blocklog >= BBSHIFT); 181 182 /* Limited by ULONG_MAX of page cache index */ 183 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 184 return -EFBIG; 185 return 0; 186 } 187 188 int 189 xfs_initialize_perag( 190 xfs_mount_t *mp, 191 xfs_agnumber_t agcount, 192 xfs_agnumber_t *maxagi) 193 { 194 xfs_agnumber_t index; 195 xfs_agnumber_t first_initialised = NULLAGNUMBER; 196 xfs_perag_t *pag; 197 int error = -ENOMEM; 198 199 /* 200 * Walk the current per-ag tree so we don't try to initialise AGs 201 * that already exist (growfs case). Allocate and insert all the 202 * AGs we don't find ready for initialisation. 203 */ 204 for (index = 0; index < agcount; index++) { 205 pag = xfs_perag_get(mp, index); 206 if (pag) { 207 xfs_perag_put(pag); 208 continue; 209 } 210 211 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 212 if (!pag) 213 goto out_unwind_new_pags; 214 pag->pag_agno = index; 215 pag->pag_mount = mp; 216 spin_lock_init(&pag->pag_ici_lock); 217 mutex_init(&pag->pag_ici_reclaim_lock); 218 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 219 if (xfs_buf_hash_init(pag)) 220 goto out_free_pag; 221 init_waitqueue_head(&pag->pagb_wait); 222 223 if (radix_tree_preload(GFP_NOFS)) 224 goto out_hash_destroy; 225 226 spin_lock(&mp->m_perag_lock); 227 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 228 BUG(); 229 spin_unlock(&mp->m_perag_lock); 230 radix_tree_preload_end(); 231 error = -EEXIST; 232 goto out_hash_destroy; 233 } 234 spin_unlock(&mp->m_perag_lock); 235 radix_tree_preload_end(); 236 /* first new pag is fully initialized */ 237 if (first_initialised == NULLAGNUMBER) 238 first_initialised = index; 239 } 240 241 index = xfs_set_inode_alloc(mp, agcount); 242 243 if (maxagi) 244 *maxagi = index; 245 246 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 247 return 0; 248 249 out_hash_destroy: 250 xfs_buf_hash_destroy(pag); 251 out_free_pag: 252 kmem_free(pag); 253 out_unwind_new_pags: 254 /* unwind any prior newly initialized pags */ 255 for (index = first_initialised; index < agcount; index++) { 256 pag = radix_tree_delete(&mp->m_perag_tree, index); 257 if (!pag) 258 break; 259 xfs_buf_hash_destroy(pag); 260 kmem_free(pag); 261 } 262 return error; 263 } 264 265 /* 266 * xfs_readsb 267 * 268 * Does the initial read of the superblock. 269 */ 270 int 271 xfs_readsb( 272 struct xfs_mount *mp, 273 int flags) 274 { 275 unsigned int sector_size; 276 struct xfs_buf *bp; 277 struct xfs_sb *sbp = &mp->m_sb; 278 int error; 279 int loud = !(flags & XFS_MFSI_QUIET); 280 const struct xfs_buf_ops *buf_ops; 281 282 ASSERT(mp->m_sb_bp == NULL); 283 ASSERT(mp->m_ddev_targp != NULL); 284 285 /* 286 * For the initial read, we must guess at the sector 287 * size based on the block device. It's enough to 288 * get the sb_sectsize out of the superblock and 289 * then reread with the proper length. 290 * We don't verify it yet, because it may not be complete. 291 */ 292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 293 buf_ops = NULL; 294 295 /* 296 * Allocate a (locked) buffer to hold the superblock. This will be kept 297 * around at all times to optimize access to the superblock. Therefore, 298 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 299 * elevated. 300 */ 301 reread: 302 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 303 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 304 buf_ops); 305 if (error) { 306 if (loud) 307 xfs_warn(mp, "SB validate failed with error %d.", error); 308 /* bad CRC means corrupted metadata */ 309 if (error == -EFSBADCRC) 310 error = -EFSCORRUPTED; 311 return error; 312 } 313 314 /* 315 * Initialize the mount structure from the superblock. 316 */ 317 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 318 319 /* 320 * If we haven't validated the superblock, do so now before we try 321 * to check the sector size and reread the superblock appropriately. 322 */ 323 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 324 if (loud) 325 xfs_warn(mp, "Invalid superblock magic number"); 326 error = -EINVAL; 327 goto release_buf; 328 } 329 330 /* 331 * We must be able to do sector-sized and sector-aligned IO. 332 */ 333 if (sector_size > sbp->sb_sectsize) { 334 if (loud) 335 xfs_warn(mp, "device supports %u byte sectors (not %u)", 336 sector_size, sbp->sb_sectsize); 337 error = -ENOSYS; 338 goto release_buf; 339 } 340 341 if (buf_ops == NULL) { 342 /* 343 * Re-read the superblock so the buffer is correctly sized, 344 * and properly verified. 345 */ 346 xfs_buf_relse(bp); 347 sector_size = sbp->sb_sectsize; 348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 349 goto reread; 350 } 351 352 xfs_reinit_percpu_counters(mp); 353 354 /* no need to be quiet anymore, so reset the buf ops */ 355 bp->b_ops = &xfs_sb_buf_ops; 356 357 mp->m_sb_bp = bp; 358 xfs_buf_unlock(bp); 359 return 0; 360 361 release_buf: 362 xfs_buf_relse(bp); 363 return error; 364 } 365 366 /* 367 * Update alignment values based on mount options and sb values 368 */ 369 STATIC int 370 xfs_update_alignment(xfs_mount_t *mp) 371 { 372 xfs_sb_t *sbp = &(mp->m_sb); 373 374 if (mp->m_dalign) { 375 /* 376 * If stripe unit and stripe width are not multiples 377 * of the fs blocksize turn off alignment. 378 */ 379 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 380 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 381 xfs_warn(mp, 382 "alignment check failed: sunit/swidth vs. blocksize(%d)", 383 sbp->sb_blocksize); 384 return -EINVAL; 385 } else { 386 /* 387 * Convert the stripe unit and width to FSBs. 388 */ 389 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 390 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 391 xfs_warn(mp, 392 "alignment check failed: sunit/swidth vs. agsize(%d)", 393 sbp->sb_agblocks); 394 return -EINVAL; 395 } else if (mp->m_dalign) { 396 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 397 } else { 398 xfs_warn(mp, 399 "alignment check failed: sunit(%d) less than bsize(%d)", 400 mp->m_dalign, sbp->sb_blocksize); 401 return -EINVAL; 402 } 403 } 404 405 /* 406 * Update superblock with new values 407 * and log changes 408 */ 409 if (xfs_sb_version_hasdalign(sbp)) { 410 if (sbp->sb_unit != mp->m_dalign) { 411 sbp->sb_unit = mp->m_dalign; 412 mp->m_update_sb = true; 413 } 414 if (sbp->sb_width != mp->m_swidth) { 415 sbp->sb_width = mp->m_swidth; 416 mp->m_update_sb = true; 417 } 418 } else { 419 xfs_warn(mp, 420 "cannot change alignment: superblock does not support data alignment"); 421 return -EINVAL; 422 } 423 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 424 xfs_sb_version_hasdalign(&mp->m_sb)) { 425 mp->m_dalign = sbp->sb_unit; 426 mp->m_swidth = sbp->sb_width; 427 } 428 429 return 0; 430 } 431 432 /* 433 * Set the maximum inode count for this filesystem 434 */ 435 STATIC void 436 xfs_set_maxicount(xfs_mount_t *mp) 437 { 438 xfs_sb_t *sbp = &(mp->m_sb); 439 __uint64_t icount; 440 441 if (sbp->sb_imax_pct) { 442 /* 443 * Make sure the maximum inode count is a multiple 444 * of the units we allocate inodes in. 445 */ 446 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 447 do_div(icount, 100); 448 do_div(icount, mp->m_ialloc_blks); 449 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 450 sbp->sb_inopblog; 451 } else { 452 mp->m_maxicount = 0; 453 } 454 } 455 456 /* 457 * Set the default minimum read and write sizes unless 458 * already specified in a mount option. 459 * We use smaller I/O sizes when the file system 460 * is being used for NFS service (wsync mount option). 461 */ 462 STATIC void 463 xfs_set_rw_sizes(xfs_mount_t *mp) 464 { 465 xfs_sb_t *sbp = &(mp->m_sb); 466 int readio_log, writeio_log; 467 468 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 469 if (mp->m_flags & XFS_MOUNT_WSYNC) { 470 readio_log = XFS_WSYNC_READIO_LOG; 471 writeio_log = XFS_WSYNC_WRITEIO_LOG; 472 } else { 473 readio_log = XFS_READIO_LOG_LARGE; 474 writeio_log = XFS_WRITEIO_LOG_LARGE; 475 } 476 } else { 477 readio_log = mp->m_readio_log; 478 writeio_log = mp->m_writeio_log; 479 } 480 481 if (sbp->sb_blocklog > readio_log) { 482 mp->m_readio_log = sbp->sb_blocklog; 483 } else { 484 mp->m_readio_log = readio_log; 485 } 486 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 487 if (sbp->sb_blocklog > writeio_log) { 488 mp->m_writeio_log = sbp->sb_blocklog; 489 } else { 490 mp->m_writeio_log = writeio_log; 491 } 492 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 493 } 494 495 /* 496 * precalculate the low space thresholds for dynamic speculative preallocation. 497 */ 498 void 499 xfs_set_low_space_thresholds( 500 struct xfs_mount *mp) 501 { 502 int i; 503 504 for (i = 0; i < XFS_LOWSP_MAX; i++) { 505 __uint64_t space = mp->m_sb.sb_dblocks; 506 507 do_div(space, 100); 508 mp->m_low_space[i] = space * (i + 1); 509 } 510 } 511 512 513 /* 514 * Set whether we're using inode alignment. 515 */ 516 STATIC void 517 xfs_set_inoalignment(xfs_mount_t *mp) 518 { 519 if (xfs_sb_version_hasalign(&mp->m_sb) && 520 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 521 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 522 else 523 mp->m_inoalign_mask = 0; 524 /* 525 * If we are using stripe alignment, check whether 526 * the stripe unit is a multiple of the inode alignment 527 */ 528 if (mp->m_dalign && mp->m_inoalign_mask && 529 !(mp->m_dalign & mp->m_inoalign_mask)) 530 mp->m_sinoalign = mp->m_dalign; 531 else 532 mp->m_sinoalign = 0; 533 } 534 535 /* 536 * Check that the data (and log if separate) is an ok size. 537 */ 538 STATIC int 539 xfs_check_sizes( 540 struct xfs_mount *mp) 541 { 542 struct xfs_buf *bp; 543 xfs_daddr_t d; 544 int error; 545 546 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 547 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 548 xfs_warn(mp, "filesystem size mismatch detected"); 549 return -EFBIG; 550 } 551 error = xfs_buf_read_uncached(mp->m_ddev_targp, 552 d - XFS_FSS_TO_BB(mp, 1), 553 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 554 if (error) { 555 xfs_warn(mp, "last sector read failed"); 556 return error; 557 } 558 xfs_buf_relse(bp); 559 560 if (mp->m_logdev_targp == mp->m_ddev_targp) 561 return 0; 562 563 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 564 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 565 xfs_warn(mp, "log size mismatch detected"); 566 return -EFBIG; 567 } 568 error = xfs_buf_read_uncached(mp->m_logdev_targp, 569 d - XFS_FSB_TO_BB(mp, 1), 570 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 571 if (error) { 572 xfs_warn(mp, "log device read failed"); 573 return error; 574 } 575 xfs_buf_relse(bp); 576 return 0; 577 } 578 579 /* 580 * Clear the quotaflags in memory and in the superblock. 581 */ 582 int 583 xfs_mount_reset_sbqflags( 584 struct xfs_mount *mp) 585 { 586 mp->m_qflags = 0; 587 588 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 589 if (mp->m_sb.sb_qflags == 0) 590 return 0; 591 spin_lock(&mp->m_sb_lock); 592 mp->m_sb.sb_qflags = 0; 593 spin_unlock(&mp->m_sb_lock); 594 595 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 596 return 0; 597 598 return xfs_sync_sb(mp, false); 599 } 600 601 __uint64_t 602 xfs_default_resblks(xfs_mount_t *mp) 603 { 604 __uint64_t resblks; 605 606 /* 607 * We default to 5% or 8192 fsbs of space reserved, whichever is 608 * smaller. This is intended to cover concurrent allocation 609 * transactions when we initially hit enospc. These each require a 4 610 * block reservation. Hence by default we cover roughly 2000 concurrent 611 * allocation reservations. 612 */ 613 resblks = mp->m_sb.sb_dblocks; 614 do_div(resblks, 20); 615 resblks = min_t(__uint64_t, resblks, 8192); 616 return resblks; 617 } 618 619 /* 620 * This function does the following on an initial mount of a file system: 621 * - reads the superblock from disk and init the mount struct 622 * - if we're a 32-bit kernel, do a size check on the superblock 623 * so we don't mount terabyte filesystems 624 * - init mount struct realtime fields 625 * - allocate inode hash table for fs 626 * - init directory manager 627 * - perform recovery and init the log manager 628 */ 629 int 630 xfs_mountfs( 631 struct xfs_mount *mp) 632 { 633 struct xfs_sb *sbp = &(mp->m_sb); 634 struct xfs_inode *rip; 635 __uint64_t resblks; 636 uint quotamount = 0; 637 uint quotaflags = 0; 638 int error = 0; 639 640 xfs_sb_mount_common(mp, sbp); 641 642 /* 643 * Check for a mismatched features2 values. Older kernels read & wrote 644 * into the wrong sb offset for sb_features2 on some platforms due to 645 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 646 * which made older superblock reading/writing routines swap it as a 647 * 64-bit value. 648 * 649 * For backwards compatibility, we make both slots equal. 650 * 651 * If we detect a mismatched field, we OR the set bits into the existing 652 * features2 field in case it has already been modified; we don't want 653 * to lose any features. We then update the bad location with the ORed 654 * value so that older kernels will see any features2 flags. The 655 * superblock writeback code ensures the new sb_features2 is copied to 656 * sb_bad_features2 before it is logged or written to disk. 657 */ 658 if (xfs_sb_has_mismatched_features2(sbp)) { 659 xfs_warn(mp, "correcting sb_features alignment problem"); 660 sbp->sb_features2 |= sbp->sb_bad_features2; 661 mp->m_update_sb = true; 662 663 /* 664 * Re-check for ATTR2 in case it was found in bad_features2 665 * slot. 666 */ 667 if (xfs_sb_version_hasattr2(&mp->m_sb) && 668 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 669 mp->m_flags |= XFS_MOUNT_ATTR2; 670 } 671 672 if (xfs_sb_version_hasattr2(&mp->m_sb) && 673 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 674 xfs_sb_version_removeattr2(&mp->m_sb); 675 mp->m_update_sb = true; 676 677 /* update sb_versionnum for the clearing of the morebits */ 678 if (!sbp->sb_features2) 679 mp->m_update_sb = true; 680 } 681 682 /* always use v2 inodes by default now */ 683 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 684 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 685 mp->m_update_sb = true; 686 } 687 688 /* 689 * Check if sb_agblocks is aligned at stripe boundary 690 * If sb_agblocks is NOT aligned turn off m_dalign since 691 * allocator alignment is within an ag, therefore ag has 692 * to be aligned at stripe boundary. 693 */ 694 error = xfs_update_alignment(mp); 695 if (error) 696 goto out; 697 698 xfs_alloc_compute_maxlevels(mp); 699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 701 xfs_ialloc_compute_maxlevels(mp); 702 xfs_rmapbt_compute_maxlevels(mp); 703 xfs_refcountbt_compute_maxlevels(mp); 704 705 xfs_set_maxicount(mp); 706 707 /* enable fail_at_unmount as default */ 708 mp->m_fail_unmount = 1; 709 710 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 711 if (error) 712 goto out; 713 714 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 715 &mp->m_kobj, "stats"); 716 if (error) 717 goto out_remove_sysfs; 718 719 error = xfs_error_sysfs_init(mp); 720 if (error) 721 goto out_del_stats; 722 723 724 error = xfs_uuid_mount(mp); 725 if (error) 726 goto out_remove_error_sysfs; 727 728 /* 729 * Set the minimum read and write sizes 730 */ 731 xfs_set_rw_sizes(mp); 732 733 /* set the low space thresholds for dynamic preallocation */ 734 xfs_set_low_space_thresholds(mp); 735 736 /* 737 * Set the inode cluster size. 738 * This may still be overridden by the file system 739 * block size if it is larger than the chosen cluster size. 740 * 741 * For v5 filesystems, scale the cluster size with the inode size to 742 * keep a constant ratio of inode per cluster buffer, but only if mkfs 743 * has set the inode alignment value appropriately for larger cluster 744 * sizes. 745 */ 746 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 747 if (xfs_sb_version_hascrc(&mp->m_sb)) { 748 int new_size = mp->m_inode_cluster_size; 749 750 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 751 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 752 mp->m_inode_cluster_size = new_size; 753 } 754 755 /* 756 * If enabled, sparse inode chunk alignment is expected to match the 757 * cluster size. Full inode chunk alignment must match the chunk size, 758 * but that is checked on sb read verification... 759 */ 760 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 761 mp->m_sb.sb_spino_align != 762 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 763 xfs_warn(mp, 764 "Sparse inode block alignment (%u) must match cluster size (%llu).", 765 mp->m_sb.sb_spino_align, 766 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 767 error = -EINVAL; 768 goto out_remove_uuid; 769 } 770 771 /* 772 * Set inode alignment fields 773 */ 774 xfs_set_inoalignment(mp); 775 776 /* 777 * Check that the data (and log if separate) is an ok size. 778 */ 779 error = xfs_check_sizes(mp); 780 if (error) 781 goto out_remove_uuid; 782 783 /* 784 * Initialize realtime fields in the mount structure 785 */ 786 error = xfs_rtmount_init(mp); 787 if (error) { 788 xfs_warn(mp, "RT mount failed"); 789 goto out_remove_uuid; 790 } 791 792 /* 793 * Copies the low order bits of the timestamp and the randomly 794 * set "sequence" number out of a UUID. 795 */ 796 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 797 798 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 799 800 error = xfs_da_mount(mp); 801 if (error) { 802 xfs_warn(mp, "Failed dir/attr init: %d", error); 803 goto out_remove_uuid; 804 } 805 806 /* 807 * Initialize the precomputed transaction reservations values. 808 */ 809 xfs_trans_init(mp); 810 811 /* 812 * Allocate and initialize the per-ag data. 813 */ 814 spin_lock_init(&mp->m_perag_lock); 815 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 816 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 817 if (error) { 818 xfs_warn(mp, "Failed per-ag init: %d", error); 819 goto out_free_dir; 820 } 821 822 if (!sbp->sb_logblocks) { 823 xfs_warn(mp, "no log defined"); 824 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 825 error = -EFSCORRUPTED; 826 goto out_free_perag; 827 } 828 829 /* 830 * Log's mount-time initialization. The first part of recovery can place 831 * some items on the AIL, to be handled when recovery is finished or 832 * cancelled. 833 */ 834 error = xfs_log_mount(mp, mp->m_logdev_targp, 835 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 836 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 837 if (error) { 838 xfs_warn(mp, "log mount failed"); 839 goto out_fail_wait; 840 } 841 842 /* 843 * Now the log is mounted, we know if it was an unclean shutdown or 844 * not. If it was, with the first phase of recovery has completed, we 845 * have consistent AG blocks on disk. We have not recovered EFIs yet, 846 * but they are recovered transactionally in the second recovery phase 847 * later. 848 * 849 * Hence we can safely re-initialise incore superblock counters from 850 * the per-ag data. These may not be correct if the filesystem was not 851 * cleanly unmounted, so we need to wait for recovery to finish before 852 * doing this. 853 * 854 * If the filesystem was cleanly unmounted, then we can trust the 855 * values in the superblock to be correct and we don't need to do 856 * anything here. 857 * 858 * If we are currently making the filesystem, the initialisation will 859 * fail as the perag data is in an undefined state. 860 */ 861 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 862 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 863 !mp->m_sb.sb_inprogress) { 864 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 865 if (error) 866 goto out_log_dealloc; 867 } 868 869 /* 870 * Get and sanity-check the root inode. 871 * Save the pointer to it in the mount structure. 872 */ 873 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 874 if (error) { 875 xfs_warn(mp, "failed to read root inode"); 876 goto out_log_dealloc; 877 } 878 879 ASSERT(rip != NULL); 880 881 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 882 xfs_warn(mp, "corrupted root inode %llu: not a directory", 883 (unsigned long long)rip->i_ino); 884 xfs_iunlock(rip, XFS_ILOCK_EXCL); 885 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 886 mp); 887 error = -EFSCORRUPTED; 888 goto out_rele_rip; 889 } 890 mp->m_rootip = rip; /* save it */ 891 892 xfs_iunlock(rip, XFS_ILOCK_EXCL); 893 894 /* 895 * Initialize realtime inode pointers in the mount structure 896 */ 897 error = xfs_rtmount_inodes(mp); 898 if (error) { 899 /* 900 * Free up the root inode. 901 */ 902 xfs_warn(mp, "failed to read RT inodes"); 903 goto out_rele_rip; 904 } 905 906 /* 907 * If this is a read-only mount defer the superblock updates until 908 * the next remount into writeable mode. Otherwise we would never 909 * perform the update e.g. for the root filesystem. 910 */ 911 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 912 error = xfs_sync_sb(mp, false); 913 if (error) { 914 xfs_warn(mp, "failed to write sb changes"); 915 goto out_rtunmount; 916 } 917 } 918 919 /* 920 * Initialise the XFS quota management subsystem for this mount 921 */ 922 if (XFS_IS_QUOTA_RUNNING(mp)) { 923 error = xfs_qm_newmount(mp, "amount, "aflags); 924 if (error) 925 goto out_rtunmount; 926 } else { 927 ASSERT(!XFS_IS_QUOTA_ON(mp)); 928 929 /* 930 * If a file system had quotas running earlier, but decided to 931 * mount without -o uquota/pquota/gquota options, revoke the 932 * quotachecked license. 933 */ 934 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 935 xfs_notice(mp, "resetting quota flags"); 936 error = xfs_mount_reset_sbqflags(mp); 937 if (error) 938 goto out_rtunmount; 939 } 940 } 941 942 /* 943 * During the second phase of log recovery, we need iget and 944 * iput to behave like they do for an active filesystem. 945 * xfs_fs_drop_inode needs to be able to prevent the deletion 946 * of inodes before we're done replaying log items on those 947 * inodes. 948 */ 949 mp->m_super->s_flags |= MS_ACTIVE; 950 951 /* 952 * Finish recovering the file system. This part needed to be delayed 953 * until after the root and real-time bitmap inodes were consistently 954 * read in. 955 */ 956 error = xfs_log_mount_finish(mp); 957 if (error) { 958 xfs_warn(mp, "log mount finish failed"); 959 goto out_rtunmount; 960 } 961 962 /* 963 * Now the log is fully replayed, we can transition to full read-only 964 * mode for read-only mounts. This will sync all the metadata and clean 965 * the log so that the recovery we just performed does not have to be 966 * replayed again on the next mount. 967 * 968 * We use the same quiesce mechanism as the rw->ro remount, as they are 969 * semantically identical operations. 970 */ 971 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 972 XFS_MOUNT_RDONLY) { 973 xfs_quiesce_attr(mp); 974 } 975 976 /* 977 * Complete the quota initialisation, post-log-replay component. 978 */ 979 if (quotamount) { 980 ASSERT(mp->m_qflags == 0); 981 mp->m_qflags = quotaflags; 982 983 xfs_qm_mount_quotas(mp); 984 } 985 986 /* 987 * Now we are mounted, reserve a small amount of unused space for 988 * privileged transactions. This is needed so that transaction 989 * space required for critical operations can dip into this pool 990 * when at ENOSPC. This is needed for operations like create with 991 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 992 * are not allowed to use this reserved space. 993 * 994 * This may drive us straight to ENOSPC on mount, but that implies 995 * we were already there on the last unmount. Warn if this occurs. 996 */ 997 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 998 resblks = xfs_default_resblks(mp); 999 error = xfs_reserve_blocks(mp, &resblks, NULL); 1000 if (error) 1001 xfs_warn(mp, 1002 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1003 1004 /* Recover any CoW blocks that never got remapped. */ 1005 error = xfs_reflink_recover_cow(mp); 1006 if (error) { 1007 xfs_err(mp, 1008 "Error %d recovering leftover CoW allocations.", error); 1009 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1010 goto out_quota; 1011 } 1012 1013 /* Reserve AG blocks for future btree expansion. */ 1014 error = xfs_fs_reserve_ag_blocks(mp); 1015 if (error && error != -ENOSPC) 1016 goto out_agresv; 1017 } 1018 1019 return 0; 1020 1021 out_agresv: 1022 xfs_fs_unreserve_ag_blocks(mp); 1023 out_quota: 1024 xfs_qm_unmount_quotas(mp); 1025 out_rtunmount: 1026 mp->m_super->s_flags &= ~MS_ACTIVE; 1027 xfs_rtunmount_inodes(mp); 1028 out_rele_rip: 1029 IRELE(rip); 1030 cancel_delayed_work_sync(&mp->m_reclaim_work); 1031 xfs_reclaim_inodes(mp, SYNC_WAIT); 1032 out_log_dealloc: 1033 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1034 xfs_log_mount_cancel(mp); 1035 out_fail_wait: 1036 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1037 xfs_wait_buftarg(mp->m_logdev_targp); 1038 xfs_wait_buftarg(mp->m_ddev_targp); 1039 out_free_perag: 1040 xfs_free_perag(mp); 1041 out_free_dir: 1042 xfs_da_unmount(mp); 1043 out_remove_uuid: 1044 xfs_uuid_unmount(mp); 1045 out_remove_error_sysfs: 1046 xfs_error_sysfs_del(mp); 1047 out_del_stats: 1048 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1049 out_remove_sysfs: 1050 xfs_sysfs_del(&mp->m_kobj); 1051 out: 1052 return error; 1053 } 1054 1055 /* 1056 * This flushes out the inodes,dquots and the superblock, unmounts the 1057 * log and makes sure that incore structures are freed. 1058 */ 1059 void 1060 xfs_unmountfs( 1061 struct xfs_mount *mp) 1062 { 1063 __uint64_t resblks; 1064 int error; 1065 1066 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1067 cancel_delayed_work_sync(&mp->m_cowblocks_work); 1068 1069 xfs_fs_unreserve_ag_blocks(mp); 1070 xfs_qm_unmount_quotas(mp); 1071 xfs_rtunmount_inodes(mp); 1072 IRELE(mp->m_rootip); 1073 1074 /* 1075 * We can potentially deadlock here if we have an inode cluster 1076 * that has been freed has its buffer still pinned in memory because 1077 * the transaction is still sitting in a iclog. The stale inodes 1078 * on that buffer will have their flush locks held until the 1079 * transaction hits the disk and the callbacks run. the inode 1080 * flush takes the flush lock unconditionally and with nothing to 1081 * push out the iclog we will never get that unlocked. hence we 1082 * need to force the log first. 1083 */ 1084 xfs_log_force(mp, XFS_LOG_SYNC); 1085 1086 /* 1087 * Wait for all busy extents to be freed, including completion of 1088 * any discard operation. 1089 */ 1090 xfs_extent_busy_wait_all(mp); 1091 flush_workqueue(xfs_discard_wq); 1092 1093 /* 1094 * We now need to tell the world we are unmounting. This will allow 1095 * us to detect that the filesystem is going away and we should error 1096 * out anything that we have been retrying in the background. This will 1097 * prevent neverending retries in AIL pushing from hanging the unmount. 1098 */ 1099 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1100 1101 /* 1102 * Flush all pending changes from the AIL. 1103 */ 1104 xfs_ail_push_all_sync(mp->m_ail); 1105 1106 /* 1107 * And reclaim all inodes. At this point there should be no dirty 1108 * inodes and none should be pinned or locked, but use synchronous 1109 * reclaim just to be sure. We can stop background inode reclaim 1110 * here as well if it is still running. 1111 */ 1112 cancel_delayed_work_sync(&mp->m_reclaim_work); 1113 xfs_reclaim_inodes(mp, SYNC_WAIT); 1114 1115 xfs_qm_unmount(mp); 1116 1117 /* 1118 * Unreserve any blocks we have so that when we unmount we don't account 1119 * the reserved free space as used. This is really only necessary for 1120 * lazy superblock counting because it trusts the incore superblock 1121 * counters to be absolutely correct on clean unmount. 1122 * 1123 * We don't bother correcting this elsewhere for lazy superblock 1124 * counting because on mount of an unclean filesystem we reconstruct the 1125 * correct counter value and this is irrelevant. 1126 * 1127 * For non-lazy counter filesystems, this doesn't matter at all because 1128 * we only every apply deltas to the superblock and hence the incore 1129 * value does not matter.... 1130 */ 1131 resblks = 0; 1132 error = xfs_reserve_blocks(mp, &resblks, NULL); 1133 if (error) 1134 xfs_warn(mp, "Unable to free reserved block pool. " 1135 "Freespace may not be correct on next mount."); 1136 1137 error = xfs_log_sbcount(mp); 1138 if (error) 1139 xfs_warn(mp, "Unable to update superblock counters. " 1140 "Freespace may not be correct on next mount."); 1141 1142 1143 xfs_log_unmount(mp); 1144 xfs_da_unmount(mp); 1145 xfs_uuid_unmount(mp); 1146 1147 #if defined(DEBUG) 1148 xfs_errortag_clearall(mp, 0); 1149 #endif 1150 xfs_free_perag(mp); 1151 1152 xfs_error_sysfs_del(mp); 1153 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1154 xfs_sysfs_del(&mp->m_kobj); 1155 } 1156 1157 /* 1158 * Determine whether modifications can proceed. The caller specifies the minimum 1159 * freeze level for which modifications should not be allowed. This allows 1160 * certain operations to proceed while the freeze sequence is in progress, if 1161 * necessary. 1162 */ 1163 bool 1164 xfs_fs_writable( 1165 struct xfs_mount *mp, 1166 int level) 1167 { 1168 ASSERT(level > SB_UNFROZEN); 1169 if ((mp->m_super->s_writers.frozen >= level) || 1170 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1171 return false; 1172 1173 return true; 1174 } 1175 1176 /* 1177 * xfs_log_sbcount 1178 * 1179 * Sync the superblock counters to disk. 1180 * 1181 * Note this code can be called during the process of freezing, so we use the 1182 * transaction allocator that does not block when the transaction subsystem is 1183 * in its frozen state. 1184 */ 1185 int 1186 xfs_log_sbcount(xfs_mount_t *mp) 1187 { 1188 /* allow this to proceed during the freeze sequence... */ 1189 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1190 return 0; 1191 1192 /* 1193 * we don't need to do this if we are updating the superblock 1194 * counters on every modification. 1195 */ 1196 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1197 return 0; 1198 1199 return xfs_sync_sb(mp, true); 1200 } 1201 1202 /* 1203 * Deltas for the inode count are +/-64, hence we use a large batch size 1204 * of 128 so we don't need to take the counter lock on every update. 1205 */ 1206 #define XFS_ICOUNT_BATCH 128 1207 int 1208 xfs_mod_icount( 1209 struct xfs_mount *mp, 1210 int64_t delta) 1211 { 1212 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1213 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1214 ASSERT(0); 1215 percpu_counter_add(&mp->m_icount, -delta); 1216 return -EINVAL; 1217 } 1218 return 0; 1219 } 1220 1221 int 1222 xfs_mod_ifree( 1223 struct xfs_mount *mp, 1224 int64_t delta) 1225 { 1226 percpu_counter_add(&mp->m_ifree, delta); 1227 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1228 ASSERT(0); 1229 percpu_counter_add(&mp->m_ifree, -delta); 1230 return -EINVAL; 1231 } 1232 return 0; 1233 } 1234 1235 /* 1236 * Deltas for the block count can vary from 1 to very large, but lock contention 1237 * only occurs on frequent small block count updates such as in the delayed 1238 * allocation path for buffered writes (page a time updates). Hence we set 1239 * a large batch count (1024) to minimise global counter updates except when 1240 * we get near to ENOSPC and we have to be very accurate with our updates. 1241 */ 1242 #define XFS_FDBLOCKS_BATCH 1024 1243 int 1244 xfs_mod_fdblocks( 1245 struct xfs_mount *mp, 1246 int64_t delta, 1247 bool rsvd) 1248 { 1249 int64_t lcounter; 1250 long long res_used; 1251 s32 batch; 1252 1253 if (delta > 0) { 1254 /* 1255 * If the reserve pool is depleted, put blocks back into it 1256 * first. Most of the time the pool is full. 1257 */ 1258 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1259 percpu_counter_add(&mp->m_fdblocks, delta); 1260 return 0; 1261 } 1262 1263 spin_lock(&mp->m_sb_lock); 1264 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1265 1266 if (res_used > delta) { 1267 mp->m_resblks_avail += delta; 1268 } else { 1269 delta -= res_used; 1270 mp->m_resblks_avail = mp->m_resblks; 1271 percpu_counter_add(&mp->m_fdblocks, delta); 1272 } 1273 spin_unlock(&mp->m_sb_lock); 1274 return 0; 1275 } 1276 1277 /* 1278 * Taking blocks away, need to be more accurate the closer we 1279 * are to zero. 1280 * 1281 * If the counter has a value of less than 2 * max batch size, 1282 * then make everything serialise as we are real close to 1283 * ENOSPC. 1284 */ 1285 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1286 XFS_FDBLOCKS_BATCH) < 0) 1287 batch = 1; 1288 else 1289 batch = XFS_FDBLOCKS_BATCH; 1290 1291 __percpu_counter_add(&mp->m_fdblocks, delta, batch); 1292 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1293 XFS_FDBLOCKS_BATCH) >= 0) { 1294 /* we had space! */ 1295 return 0; 1296 } 1297 1298 /* 1299 * lock up the sb for dipping into reserves before releasing the space 1300 * that took us to ENOSPC. 1301 */ 1302 spin_lock(&mp->m_sb_lock); 1303 percpu_counter_add(&mp->m_fdblocks, -delta); 1304 if (!rsvd) 1305 goto fdblocks_enospc; 1306 1307 lcounter = (long long)mp->m_resblks_avail + delta; 1308 if (lcounter >= 0) { 1309 mp->m_resblks_avail = lcounter; 1310 spin_unlock(&mp->m_sb_lock); 1311 return 0; 1312 } 1313 printk_once(KERN_WARNING 1314 "Filesystem \"%s\": reserve blocks depleted! " 1315 "Consider increasing reserve pool size.", 1316 mp->m_fsname); 1317 fdblocks_enospc: 1318 spin_unlock(&mp->m_sb_lock); 1319 return -ENOSPC; 1320 } 1321 1322 int 1323 xfs_mod_frextents( 1324 struct xfs_mount *mp, 1325 int64_t delta) 1326 { 1327 int64_t lcounter; 1328 int ret = 0; 1329 1330 spin_lock(&mp->m_sb_lock); 1331 lcounter = mp->m_sb.sb_frextents + delta; 1332 if (lcounter < 0) 1333 ret = -ENOSPC; 1334 else 1335 mp->m_sb.sb_frextents = lcounter; 1336 spin_unlock(&mp->m_sb_lock); 1337 return ret; 1338 } 1339 1340 /* 1341 * xfs_getsb() is called to obtain the buffer for the superblock. 1342 * The buffer is returned locked and read in from disk. 1343 * The buffer should be released with a call to xfs_brelse(). 1344 * 1345 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1346 * the superblock buffer if it can be locked without sleeping. 1347 * If it can't then we'll return NULL. 1348 */ 1349 struct xfs_buf * 1350 xfs_getsb( 1351 struct xfs_mount *mp, 1352 int flags) 1353 { 1354 struct xfs_buf *bp = mp->m_sb_bp; 1355 1356 if (!xfs_buf_trylock(bp)) { 1357 if (flags & XBF_TRYLOCK) 1358 return NULL; 1359 xfs_buf_lock(bp); 1360 } 1361 1362 xfs_buf_hold(bp); 1363 ASSERT(bp->b_flags & XBF_DONE); 1364 return bp; 1365 } 1366 1367 /* 1368 * Used to free the superblock along various error paths. 1369 */ 1370 void 1371 xfs_freesb( 1372 struct xfs_mount *mp) 1373 { 1374 struct xfs_buf *bp = mp->m_sb_bp; 1375 1376 xfs_buf_lock(bp); 1377 mp->m_sb_bp = NULL; 1378 xfs_buf_relse(bp); 1379 } 1380 1381 /* 1382 * If the underlying (data/log/rt) device is readonly, there are some 1383 * operations that cannot proceed. 1384 */ 1385 int 1386 xfs_dev_is_read_only( 1387 struct xfs_mount *mp, 1388 char *message) 1389 { 1390 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1391 xfs_readonly_buftarg(mp->m_logdev_targp) || 1392 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1393 xfs_notice(mp, "%s required on read-only device.", message); 1394 xfs_notice(mp, "write access unavailable, cannot proceed."); 1395 return -EROFS; 1396 } 1397 return 0; 1398 } 1399