1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 48 STATIC int xfs_uuid_mount(xfs_mount_t *); 49 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 50 51 52 #ifdef HAVE_PERCPU_SB 53 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 56 int); 57 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 58 int64_t, int); 59 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 60 61 #else 62 63 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 64 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 65 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 66 67 #endif 68 69 static const struct { 70 short offset; 71 short type; /* 0 = integer 72 * 1 = binary / string (no translation) 73 */ 74 } xfs_sb_info[] = { 75 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 76 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 77 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 78 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 79 { offsetof(xfs_sb_t, sb_rextents), 0 }, 80 { offsetof(xfs_sb_t, sb_uuid), 1 }, 81 { offsetof(xfs_sb_t, sb_logstart), 0 }, 82 { offsetof(xfs_sb_t, sb_rootino), 0 }, 83 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 84 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 85 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 86 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 87 { offsetof(xfs_sb_t, sb_agcount), 0 }, 88 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 89 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 90 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 91 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 92 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 93 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 94 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 95 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 96 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 97 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 98 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 99 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 100 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 101 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 102 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 103 { offsetof(xfs_sb_t, sb_icount), 0 }, 104 { offsetof(xfs_sb_t, sb_ifree), 0 }, 105 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 106 { offsetof(xfs_sb_t, sb_frextents), 0 }, 107 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 108 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 109 { offsetof(xfs_sb_t, sb_qflags), 0 }, 110 { offsetof(xfs_sb_t, sb_flags), 0 }, 111 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 112 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 113 { offsetof(xfs_sb_t, sb_unit), 0 }, 114 { offsetof(xfs_sb_t, sb_width), 0 }, 115 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 116 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 117 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 118 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 119 { offsetof(xfs_sb_t, sb_features2), 0 }, 120 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 121 { sizeof(xfs_sb_t), 0 } 122 }; 123 124 /* 125 * Free up the resources associated with a mount structure. Assume that 126 * the structure was initially zeroed, so we can tell which fields got 127 * initialized. 128 */ 129 STATIC void 130 xfs_free_perag( 131 xfs_mount_t *mp) 132 { 133 if (mp->m_perag) { 134 int agno; 135 136 for (agno = 0; agno < mp->m_maxagi; agno++) 137 if (mp->m_perag[agno].pagb_list) 138 kmem_free(mp->m_perag[agno].pagb_list); 139 kmem_free(mp->m_perag); 140 } 141 } 142 143 /* 144 * Check size of device based on the (data/realtime) block count. 145 * Note: this check is used by the growfs code as well as mount. 146 */ 147 int 148 xfs_sb_validate_fsb_count( 149 xfs_sb_t *sbp, 150 __uint64_t nblocks) 151 { 152 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 153 ASSERT(sbp->sb_blocklog >= BBSHIFT); 154 155 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 156 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 157 return E2BIG; 158 #else /* Limited by UINT_MAX of sectors */ 159 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 160 return E2BIG; 161 #endif 162 return 0; 163 } 164 165 /* 166 * Check the validity of the SB found. 167 */ 168 STATIC int 169 xfs_mount_validate_sb( 170 xfs_mount_t *mp, 171 xfs_sb_t *sbp, 172 int flags) 173 { 174 /* 175 * If the log device and data device have the 176 * same device number, the log is internal. 177 * Consequently, the sb_logstart should be non-zero. If 178 * we have a zero sb_logstart in this case, we may be trying to mount 179 * a volume filesystem in a non-volume manner. 180 */ 181 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 182 xfs_fs_mount_cmn_err(flags, "bad magic number"); 183 return XFS_ERROR(EWRONGFS); 184 } 185 186 if (!xfs_sb_good_version(sbp)) { 187 xfs_fs_mount_cmn_err(flags, "bad version"); 188 return XFS_ERROR(EWRONGFS); 189 } 190 191 if (unlikely( 192 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 193 xfs_fs_mount_cmn_err(flags, 194 "filesystem is marked as having an external log; " 195 "specify logdev on the\nmount command line."); 196 return XFS_ERROR(EINVAL); 197 } 198 199 if (unlikely( 200 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 201 xfs_fs_mount_cmn_err(flags, 202 "filesystem is marked as having an internal log; " 203 "do not specify logdev on\nthe mount command line."); 204 return XFS_ERROR(EINVAL); 205 } 206 207 /* 208 * More sanity checking. These were stolen directly from 209 * xfs_repair. 210 */ 211 if (unlikely( 212 sbp->sb_agcount <= 0 || 213 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 214 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 215 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 216 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 217 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 218 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 219 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 220 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 221 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 222 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 223 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 224 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 225 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 226 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 227 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 228 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 229 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 230 return XFS_ERROR(EFSCORRUPTED); 231 } 232 233 /* 234 * Sanity check AG count, size fields against data size field 235 */ 236 if (unlikely( 237 sbp->sb_dblocks == 0 || 238 sbp->sb_dblocks > 239 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 240 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 241 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 242 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 243 return XFS_ERROR(EFSCORRUPTED); 244 } 245 246 /* 247 * Until this is fixed only page-sized or smaller data blocks work. 248 */ 249 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 250 xfs_fs_mount_cmn_err(flags, 251 "file system with blocksize %d bytes", 252 sbp->sb_blocksize); 253 xfs_fs_mount_cmn_err(flags, 254 "only pagesize (%ld) or less will currently work.", 255 PAGE_SIZE); 256 return XFS_ERROR(ENOSYS); 257 } 258 259 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 260 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 261 xfs_fs_mount_cmn_err(flags, 262 "file system too large to be mounted on this system."); 263 return XFS_ERROR(E2BIG); 264 } 265 266 if (unlikely(sbp->sb_inprogress)) { 267 xfs_fs_mount_cmn_err(flags, "file system busy"); 268 return XFS_ERROR(EFSCORRUPTED); 269 } 270 271 /* 272 * Version 1 directory format has never worked on Linux. 273 */ 274 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 275 xfs_fs_mount_cmn_err(flags, 276 "file system using version 1 directory format"); 277 return XFS_ERROR(ENOSYS); 278 } 279 280 return 0; 281 } 282 283 STATIC void 284 xfs_initialize_perag_icache( 285 xfs_perag_t *pag) 286 { 287 if (!pag->pag_ici_init) { 288 rwlock_init(&pag->pag_ici_lock); 289 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 290 pag->pag_ici_init = 1; 291 } 292 } 293 294 xfs_agnumber_t 295 xfs_initialize_perag( 296 xfs_mount_t *mp, 297 xfs_agnumber_t agcount) 298 { 299 xfs_agnumber_t index, max_metadata; 300 xfs_perag_t *pag; 301 xfs_agino_t agino; 302 xfs_ino_t ino; 303 xfs_sb_t *sbp = &mp->m_sb; 304 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 305 306 /* Check to see if the filesystem can overflow 32 bit inodes */ 307 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 308 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 309 310 /* Clear the mount flag if no inode can overflow 32 bits 311 * on this filesystem, or if specifically requested.. 312 */ 313 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 314 mp->m_flags |= XFS_MOUNT_32BITINODES; 315 } else { 316 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 317 } 318 319 /* If we can overflow then setup the ag headers accordingly */ 320 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 321 /* Calculate how much should be reserved for inodes to 322 * meet the max inode percentage. 323 */ 324 if (mp->m_maxicount) { 325 __uint64_t icount; 326 327 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 328 do_div(icount, 100); 329 icount += sbp->sb_agblocks - 1; 330 do_div(icount, sbp->sb_agblocks); 331 max_metadata = icount; 332 } else { 333 max_metadata = agcount; 334 } 335 for (index = 0; index < agcount; index++) { 336 ino = XFS_AGINO_TO_INO(mp, index, agino); 337 if (ino > max_inum) { 338 index++; 339 break; 340 } 341 342 /* This ag is preferred for inodes */ 343 pag = &mp->m_perag[index]; 344 pag->pagi_inodeok = 1; 345 if (index < max_metadata) 346 pag->pagf_metadata = 1; 347 xfs_initialize_perag_icache(pag); 348 } 349 } else { 350 /* Setup default behavior for smaller filesystems */ 351 for (index = 0; index < agcount; index++) { 352 pag = &mp->m_perag[index]; 353 pag->pagi_inodeok = 1; 354 xfs_initialize_perag_icache(pag); 355 } 356 } 357 return index; 358 } 359 360 void 361 xfs_sb_from_disk( 362 xfs_sb_t *to, 363 xfs_dsb_t *from) 364 { 365 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 366 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 367 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 368 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 369 to->sb_rextents = be64_to_cpu(from->sb_rextents); 370 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 371 to->sb_logstart = be64_to_cpu(from->sb_logstart); 372 to->sb_rootino = be64_to_cpu(from->sb_rootino); 373 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 374 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 375 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 376 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 377 to->sb_agcount = be32_to_cpu(from->sb_agcount); 378 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 379 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 380 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 381 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 382 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 383 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 384 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 385 to->sb_blocklog = from->sb_blocklog; 386 to->sb_sectlog = from->sb_sectlog; 387 to->sb_inodelog = from->sb_inodelog; 388 to->sb_inopblog = from->sb_inopblog; 389 to->sb_agblklog = from->sb_agblklog; 390 to->sb_rextslog = from->sb_rextslog; 391 to->sb_inprogress = from->sb_inprogress; 392 to->sb_imax_pct = from->sb_imax_pct; 393 to->sb_icount = be64_to_cpu(from->sb_icount); 394 to->sb_ifree = be64_to_cpu(from->sb_ifree); 395 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 396 to->sb_frextents = be64_to_cpu(from->sb_frextents); 397 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 398 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 399 to->sb_qflags = be16_to_cpu(from->sb_qflags); 400 to->sb_flags = from->sb_flags; 401 to->sb_shared_vn = from->sb_shared_vn; 402 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 403 to->sb_unit = be32_to_cpu(from->sb_unit); 404 to->sb_width = be32_to_cpu(from->sb_width); 405 to->sb_dirblklog = from->sb_dirblklog; 406 to->sb_logsectlog = from->sb_logsectlog; 407 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 408 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 409 to->sb_features2 = be32_to_cpu(from->sb_features2); 410 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 411 } 412 413 /* 414 * Copy in core superblock to ondisk one. 415 * 416 * The fields argument is mask of superblock fields to copy. 417 */ 418 void 419 xfs_sb_to_disk( 420 xfs_dsb_t *to, 421 xfs_sb_t *from, 422 __int64_t fields) 423 { 424 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 425 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 426 xfs_sb_field_t f; 427 int first; 428 int size; 429 430 ASSERT(fields); 431 if (!fields) 432 return; 433 434 while (fields) { 435 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 436 first = xfs_sb_info[f].offset; 437 size = xfs_sb_info[f + 1].offset - first; 438 439 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 440 441 if (size == 1 || xfs_sb_info[f].type == 1) { 442 memcpy(to_ptr + first, from_ptr + first, size); 443 } else { 444 switch (size) { 445 case 2: 446 *(__be16 *)(to_ptr + first) = 447 cpu_to_be16(*(__u16 *)(from_ptr + first)); 448 break; 449 case 4: 450 *(__be32 *)(to_ptr + first) = 451 cpu_to_be32(*(__u32 *)(from_ptr + first)); 452 break; 453 case 8: 454 *(__be64 *)(to_ptr + first) = 455 cpu_to_be64(*(__u64 *)(from_ptr + first)); 456 break; 457 default: 458 ASSERT(0); 459 } 460 } 461 462 fields &= ~(1LL << f); 463 } 464 } 465 466 /* 467 * xfs_readsb 468 * 469 * Does the initial read of the superblock. 470 */ 471 int 472 xfs_readsb(xfs_mount_t *mp, int flags) 473 { 474 unsigned int sector_size; 475 unsigned int extra_flags; 476 xfs_buf_t *bp; 477 int error; 478 479 ASSERT(mp->m_sb_bp == NULL); 480 ASSERT(mp->m_ddev_targp != NULL); 481 482 /* 483 * Allocate a (locked) buffer to hold the superblock. 484 * This will be kept around at all times to optimize 485 * access to the superblock. 486 */ 487 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 488 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 489 490 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 491 BTOBB(sector_size), extra_flags); 492 if (!bp || XFS_BUF_ISERROR(bp)) { 493 xfs_fs_mount_cmn_err(flags, "SB read failed"); 494 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 495 goto fail; 496 } 497 ASSERT(XFS_BUF_ISBUSY(bp)); 498 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 499 500 /* 501 * Initialize the mount structure from the superblock. 502 * But first do some basic consistency checking. 503 */ 504 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 505 506 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 507 if (error) { 508 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 509 goto fail; 510 } 511 512 /* 513 * We must be able to do sector-sized and sector-aligned IO. 514 */ 515 if (sector_size > mp->m_sb.sb_sectsize) { 516 xfs_fs_mount_cmn_err(flags, 517 "device supports only %u byte sectors (not %u)", 518 sector_size, mp->m_sb.sb_sectsize); 519 error = ENOSYS; 520 goto fail; 521 } 522 523 /* 524 * If device sector size is smaller than the superblock size, 525 * re-read the superblock so the buffer is correctly sized. 526 */ 527 if (sector_size < mp->m_sb.sb_sectsize) { 528 XFS_BUF_UNMANAGE(bp); 529 xfs_buf_relse(bp); 530 sector_size = mp->m_sb.sb_sectsize; 531 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 532 BTOBB(sector_size), extra_flags); 533 if (!bp || XFS_BUF_ISERROR(bp)) { 534 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 535 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 536 goto fail; 537 } 538 ASSERT(XFS_BUF_ISBUSY(bp)); 539 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 540 } 541 542 /* Initialize per-cpu counters */ 543 xfs_icsb_reinit_counters(mp); 544 545 mp->m_sb_bp = bp; 546 xfs_buf_relse(bp); 547 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 548 return 0; 549 550 fail: 551 if (bp) { 552 XFS_BUF_UNMANAGE(bp); 553 xfs_buf_relse(bp); 554 } 555 return error; 556 } 557 558 559 /* 560 * xfs_mount_common 561 * 562 * Mount initialization code establishing various mount 563 * fields from the superblock associated with the given 564 * mount structure 565 */ 566 STATIC void 567 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 568 { 569 mp->m_agfrotor = mp->m_agirotor = 0; 570 spin_lock_init(&mp->m_agirotor_lock); 571 mp->m_maxagi = mp->m_sb.sb_agcount; 572 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 573 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 574 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 575 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 576 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 577 mp->m_litino = sbp->sb_inodesize - sizeof(struct xfs_dinode); 578 mp->m_blockmask = sbp->sb_blocksize - 1; 579 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 580 mp->m_blockwmask = mp->m_blockwsize - 1; 581 582 /* 583 * Setup for attributes, in case they get created. 584 * This value is for inodes getting attributes for the first time, 585 * the per-inode value is for old attribute values. 586 */ 587 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048); 588 switch (sbp->sb_inodesize) { 589 case 256: 590 mp->m_attroffset = XFS_LITINO(mp) - 591 XFS_BMDR_SPACE_CALC(MINABTPTRS); 592 break; 593 case 512: 594 case 1024: 595 case 2048: 596 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS); 597 break; 598 default: 599 ASSERT(0); 600 } 601 ASSERT(mp->m_attroffset < XFS_LITINO(mp)); 602 603 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 604 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 605 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 606 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 607 608 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 609 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 610 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 611 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 612 613 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 614 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 615 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 616 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 617 618 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 619 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 620 sbp->sb_inopblock); 621 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 622 } 623 624 /* 625 * xfs_initialize_perag_data 626 * 627 * Read in each per-ag structure so we can count up the number of 628 * allocated inodes, free inodes and used filesystem blocks as this 629 * information is no longer persistent in the superblock. Once we have 630 * this information, write it into the in-core superblock structure. 631 */ 632 STATIC int 633 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 634 { 635 xfs_agnumber_t index; 636 xfs_perag_t *pag; 637 xfs_sb_t *sbp = &mp->m_sb; 638 uint64_t ifree = 0; 639 uint64_t ialloc = 0; 640 uint64_t bfree = 0; 641 uint64_t bfreelst = 0; 642 uint64_t btree = 0; 643 int error; 644 645 for (index = 0; index < agcount; index++) { 646 /* 647 * read the agf, then the agi. This gets us 648 * all the inforamtion we need and populates the 649 * per-ag structures for us. 650 */ 651 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 652 if (error) 653 return error; 654 655 error = xfs_ialloc_pagi_init(mp, NULL, index); 656 if (error) 657 return error; 658 pag = &mp->m_perag[index]; 659 ifree += pag->pagi_freecount; 660 ialloc += pag->pagi_count; 661 bfree += pag->pagf_freeblks; 662 bfreelst += pag->pagf_flcount; 663 btree += pag->pagf_btreeblks; 664 } 665 /* 666 * Overwrite incore superblock counters with just-read data 667 */ 668 spin_lock(&mp->m_sb_lock); 669 sbp->sb_ifree = ifree; 670 sbp->sb_icount = ialloc; 671 sbp->sb_fdblocks = bfree + bfreelst + btree; 672 spin_unlock(&mp->m_sb_lock); 673 674 /* Fixup the per-cpu counters as well. */ 675 xfs_icsb_reinit_counters(mp); 676 677 return 0; 678 } 679 680 /* 681 * Update alignment values based on mount options and sb values 682 */ 683 STATIC int 684 xfs_update_alignment(xfs_mount_t *mp) 685 { 686 xfs_sb_t *sbp = &(mp->m_sb); 687 688 if (mp->m_dalign) { 689 /* 690 * If stripe unit and stripe width are not multiples 691 * of the fs blocksize turn off alignment. 692 */ 693 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 694 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 695 if (mp->m_flags & XFS_MOUNT_RETERR) { 696 cmn_err(CE_WARN, 697 "XFS: alignment check 1 failed"); 698 return XFS_ERROR(EINVAL); 699 } 700 mp->m_dalign = mp->m_swidth = 0; 701 } else { 702 /* 703 * Convert the stripe unit and width to FSBs. 704 */ 705 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 706 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 707 if (mp->m_flags & XFS_MOUNT_RETERR) { 708 return XFS_ERROR(EINVAL); 709 } 710 xfs_fs_cmn_err(CE_WARN, mp, 711 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 712 mp->m_dalign, mp->m_swidth, 713 sbp->sb_agblocks); 714 715 mp->m_dalign = 0; 716 mp->m_swidth = 0; 717 } else if (mp->m_dalign) { 718 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 719 } else { 720 if (mp->m_flags & XFS_MOUNT_RETERR) { 721 xfs_fs_cmn_err(CE_WARN, mp, 722 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 723 mp->m_dalign, 724 mp->m_blockmask +1); 725 return XFS_ERROR(EINVAL); 726 } 727 mp->m_swidth = 0; 728 } 729 } 730 731 /* 732 * Update superblock with new values 733 * and log changes 734 */ 735 if (xfs_sb_version_hasdalign(sbp)) { 736 if (sbp->sb_unit != mp->m_dalign) { 737 sbp->sb_unit = mp->m_dalign; 738 mp->m_update_flags |= XFS_SB_UNIT; 739 } 740 if (sbp->sb_width != mp->m_swidth) { 741 sbp->sb_width = mp->m_swidth; 742 mp->m_update_flags |= XFS_SB_WIDTH; 743 } 744 } 745 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 746 xfs_sb_version_hasdalign(&mp->m_sb)) { 747 mp->m_dalign = sbp->sb_unit; 748 mp->m_swidth = sbp->sb_width; 749 } 750 751 return 0; 752 } 753 754 /* 755 * Set the maximum inode count for this filesystem 756 */ 757 STATIC void 758 xfs_set_maxicount(xfs_mount_t *mp) 759 { 760 xfs_sb_t *sbp = &(mp->m_sb); 761 __uint64_t icount; 762 763 if (sbp->sb_imax_pct) { 764 /* 765 * Make sure the maximum inode count is a multiple 766 * of the units we allocate inodes in. 767 */ 768 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 769 do_div(icount, 100); 770 do_div(icount, mp->m_ialloc_blks); 771 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 772 sbp->sb_inopblog; 773 } else { 774 mp->m_maxicount = 0; 775 } 776 } 777 778 /* 779 * Set the default minimum read and write sizes unless 780 * already specified in a mount option. 781 * We use smaller I/O sizes when the file system 782 * is being used for NFS service (wsync mount option). 783 */ 784 STATIC void 785 xfs_set_rw_sizes(xfs_mount_t *mp) 786 { 787 xfs_sb_t *sbp = &(mp->m_sb); 788 int readio_log, writeio_log; 789 790 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 791 if (mp->m_flags & XFS_MOUNT_WSYNC) { 792 readio_log = XFS_WSYNC_READIO_LOG; 793 writeio_log = XFS_WSYNC_WRITEIO_LOG; 794 } else { 795 readio_log = XFS_READIO_LOG_LARGE; 796 writeio_log = XFS_WRITEIO_LOG_LARGE; 797 } 798 } else { 799 readio_log = mp->m_readio_log; 800 writeio_log = mp->m_writeio_log; 801 } 802 803 if (sbp->sb_blocklog > readio_log) { 804 mp->m_readio_log = sbp->sb_blocklog; 805 } else { 806 mp->m_readio_log = readio_log; 807 } 808 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 809 if (sbp->sb_blocklog > writeio_log) { 810 mp->m_writeio_log = sbp->sb_blocklog; 811 } else { 812 mp->m_writeio_log = writeio_log; 813 } 814 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 815 } 816 817 /* 818 * Set whether we're using inode alignment. 819 */ 820 STATIC void 821 xfs_set_inoalignment(xfs_mount_t *mp) 822 { 823 if (xfs_sb_version_hasalign(&mp->m_sb) && 824 mp->m_sb.sb_inoalignmt >= 825 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 826 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 827 else 828 mp->m_inoalign_mask = 0; 829 /* 830 * If we are using stripe alignment, check whether 831 * the stripe unit is a multiple of the inode alignment 832 */ 833 if (mp->m_dalign && mp->m_inoalign_mask && 834 !(mp->m_dalign & mp->m_inoalign_mask)) 835 mp->m_sinoalign = mp->m_dalign; 836 else 837 mp->m_sinoalign = 0; 838 } 839 840 /* 841 * Check that the data (and log if separate) are an ok size. 842 */ 843 STATIC int 844 xfs_check_sizes(xfs_mount_t *mp) 845 { 846 xfs_buf_t *bp; 847 xfs_daddr_t d; 848 int error; 849 850 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 851 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 852 cmn_err(CE_WARN, "XFS: size check 1 failed"); 853 return XFS_ERROR(E2BIG); 854 } 855 error = xfs_read_buf(mp, mp->m_ddev_targp, 856 d - XFS_FSS_TO_BB(mp, 1), 857 XFS_FSS_TO_BB(mp, 1), 0, &bp); 858 if (!error) { 859 xfs_buf_relse(bp); 860 } else { 861 cmn_err(CE_WARN, "XFS: size check 2 failed"); 862 if (error == ENOSPC) 863 error = XFS_ERROR(E2BIG); 864 return error; 865 } 866 867 if (mp->m_logdev_targp != mp->m_ddev_targp) { 868 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 869 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 870 cmn_err(CE_WARN, "XFS: size check 3 failed"); 871 return XFS_ERROR(E2BIG); 872 } 873 error = xfs_read_buf(mp, mp->m_logdev_targp, 874 d - XFS_FSB_TO_BB(mp, 1), 875 XFS_FSB_TO_BB(mp, 1), 0, &bp); 876 if (!error) { 877 xfs_buf_relse(bp); 878 } else { 879 cmn_err(CE_WARN, "XFS: size check 3 failed"); 880 if (error == ENOSPC) 881 error = XFS_ERROR(E2BIG); 882 return error; 883 } 884 } 885 return 0; 886 } 887 888 /* 889 * xfs_mountfs 890 * 891 * This function does the following on an initial mount of a file system: 892 * - reads the superblock from disk and init the mount struct 893 * - if we're a 32-bit kernel, do a size check on the superblock 894 * so we don't mount terabyte filesystems 895 * - init mount struct realtime fields 896 * - allocate inode hash table for fs 897 * - init directory manager 898 * - perform recovery and init the log manager 899 */ 900 int 901 xfs_mountfs( 902 xfs_mount_t *mp) 903 { 904 xfs_sb_t *sbp = &(mp->m_sb); 905 xfs_inode_t *rip; 906 __uint64_t resblks; 907 uint quotamount, quotaflags; 908 int uuid_mounted = 0; 909 int error = 0; 910 911 xfs_mount_common(mp, sbp); 912 913 /* 914 * Check for a mismatched features2 values. Older kernels 915 * read & wrote into the wrong sb offset for sb_features2 916 * on some platforms due to xfs_sb_t not being 64bit size aligned 917 * when sb_features2 was added, which made older superblock 918 * reading/writing routines swap it as a 64-bit value. 919 * 920 * For backwards compatibility, we make both slots equal. 921 * 922 * If we detect a mismatched field, we OR the set bits into the 923 * existing features2 field in case it has already been modified; we 924 * don't want to lose any features. We then update the bad location 925 * with the ORed value so that older kernels will see any features2 926 * flags, and mark the two fields as needing updates once the 927 * transaction subsystem is online. 928 */ 929 if (xfs_sb_has_mismatched_features2(sbp)) { 930 cmn_err(CE_WARN, 931 "XFS: correcting sb_features alignment problem"); 932 sbp->sb_features2 |= sbp->sb_bad_features2; 933 sbp->sb_bad_features2 = sbp->sb_features2; 934 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 935 936 /* 937 * Re-check for ATTR2 in case it was found in bad_features2 938 * slot. 939 */ 940 if (xfs_sb_version_hasattr2(&mp->m_sb) && 941 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 942 mp->m_flags |= XFS_MOUNT_ATTR2; 943 } 944 945 if (xfs_sb_version_hasattr2(&mp->m_sb) && 946 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 947 xfs_sb_version_removeattr2(&mp->m_sb); 948 mp->m_update_flags |= XFS_SB_FEATURES2; 949 950 /* update sb_versionnum for the clearing of the morebits */ 951 if (!sbp->sb_features2) 952 mp->m_update_flags |= XFS_SB_VERSIONNUM; 953 } 954 955 /* 956 * Check if sb_agblocks is aligned at stripe boundary 957 * If sb_agblocks is NOT aligned turn off m_dalign since 958 * allocator alignment is within an ag, therefore ag has 959 * to be aligned at stripe boundary. 960 */ 961 error = xfs_update_alignment(mp); 962 if (error) 963 goto error1; 964 965 xfs_alloc_compute_maxlevels(mp); 966 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 967 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 968 xfs_ialloc_compute_maxlevels(mp); 969 970 xfs_set_maxicount(mp); 971 972 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 973 974 /* 975 * XFS uses the uuid from the superblock as the unique 976 * identifier for fsid. We can not use the uuid from the volume 977 * since a single partition filesystem is identical to a single 978 * partition volume/filesystem. 979 */ 980 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) { 981 if (xfs_uuid_mount(mp)) { 982 error = XFS_ERROR(EINVAL); 983 goto error1; 984 } 985 uuid_mounted=1; 986 } 987 988 /* 989 * Set the minimum read and write sizes 990 */ 991 xfs_set_rw_sizes(mp); 992 993 /* 994 * Set the inode cluster size. 995 * This may still be overridden by the file system 996 * block size if it is larger than the chosen cluster size. 997 */ 998 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 999 1000 /* 1001 * Set inode alignment fields 1002 */ 1003 xfs_set_inoalignment(mp); 1004 1005 /* 1006 * Check that the data (and log if separate) are an ok size. 1007 */ 1008 error = xfs_check_sizes(mp); 1009 if (error) 1010 goto error1; 1011 1012 /* 1013 * Initialize realtime fields in the mount structure 1014 */ 1015 error = xfs_rtmount_init(mp); 1016 if (error) { 1017 cmn_err(CE_WARN, "XFS: RT mount failed"); 1018 goto error1; 1019 } 1020 1021 /* 1022 * Copies the low order bits of the timestamp and the randomly 1023 * set "sequence" number out of a UUID. 1024 */ 1025 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1026 1027 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1028 1029 xfs_dir_mount(mp); 1030 1031 /* 1032 * Initialize the attribute manager's entries. 1033 */ 1034 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1035 1036 /* 1037 * Initialize the precomputed transaction reservations values. 1038 */ 1039 xfs_trans_init(mp); 1040 1041 /* 1042 * Allocate and initialize the per-ag data. 1043 */ 1044 init_rwsem(&mp->m_peraglock); 1045 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), 1046 KM_MAYFAIL); 1047 if (!mp->m_perag) 1048 goto error1; 1049 1050 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1051 1052 /* 1053 * log's mount-time initialization. Perform 1st part recovery if needed 1054 */ 1055 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */ 1056 error = xfs_log_mount(mp, mp->m_logdev_targp, 1057 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1058 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1059 if (error) { 1060 cmn_err(CE_WARN, "XFS: log mount failed"); 1061 goto error2; 1062 } 1063 } else { /* No log has been defined */ 1064 cmn_err(CE_WARN, "XFS: no log defined"); 1065 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp); 1066 error = XFS_ERROR(EFSCORRUPTED); 1067 goto error2; 1068 } 1069 1070 /* 1071 * Now the log is mounted, we know if it was an unclean shutdown or 1072 * not. If it was, with the first phase of recovery has completed, we 1073 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1074 * but they are recovered transactionally in the second recovery phase 1075 * later. 1076 * 1077 * Hence we can safely re-initialise incore superblock counters from 1078 * the per-ag data. These may not be correct if the filesystem was not 1079 * cleanly unmounted, so we need to wait for recovery to finish before 1080 * doing this. 1081 * 1082 * If the filesystem was cleanly unmounted, then we can trust the 1083 * values in the superblock to be correct and we don't need to do 1084 * anything here. 1085 * 1086 * If we are currently making the filesystem, the initialisation will 1087 * fail as the perag data is in an undefined state. 1088 */ 1089 1090 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1091 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1092 !mp->m_sb.sb_inprogress) { 1093 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1094 if (error) { 1095 goto error2; 1096 } 1097 } 1098 /* 1099 * Get and sanity-check the root inode. 1100 * Save the pointer to it in the mount structure. 1101 */ 1102 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1103 if (error) { 1104 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1105 goto error3; 1106 } 1107 1108 ASSERT(rip != NULL); 1109 1110 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1111 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1112 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1113 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1114 (unsigned long long)rip->i_ino); 1115 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1116 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1117 mp); 1118 error = XFS_ERROR(EFSCORRUPTED); 1119 goto error4; 1120 } 1121 mp->m_rootip = rip; /* save it */ 1122 1123 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1124 1125 /* 1126 * Initialize realtime inode pointers in the mount structure 1127 */ 1128 error = xfs_rtmount_inodes(mp); 1129 if (error) { 1130 /* 1131 * Free up the root inode. 1132 */ 1133 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1134 goto error4; 1135 } 1136 1137 /* 1138 * If this is a read-only mount defer the superblock updates until 1139 * the next remount into writeable mode. Otherwise we would never 1140 * perform the update e.g. for the root filesystem. 1141 */ 1142 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1143 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1144 if (error) { 1145 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1146 goto error4; 1147 } 1148 } 1149 1150 /* 1151 * Initialise the XFS quota management subsystem for this mount 1152 */ 1153 error = XFS_QM_INIT(mp, "amount, "aflags); 1154 if (error) 1155 goto error4; 1156 1157 /* 1158 * Finish recovering the file system. This part needed to be 1159 * delayed until after the root and real-time bitmap inodes 1160 * were consistently read in. 1161 */ 1162 error = xfs_log_mount_finish(mp); 1163 if (error) { 1164 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1165 goto error4; 1166 } 1167 1168 /* 1169 * Complete the quota initialisation, post-log-replay component. 1170 */ 1171 error = XFS_QM_MOUNT(mp, quotamount, quotaflags); 1172 if (error) 1173 goto error4; 1174 1175 /* 1176 * Now we are mounted, reserve a small amount of unused space for 1177 * privileged transactions. This is needed so that transaction 1178 * space required for critical operations can dip into this pool 1179 * when at ENOSPC. This is needed for operations like create with 1180 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1181 * are not allowed to use this reserved space. 1182 * 1183 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1184 * This may drive us straight to ENOSPC on mount, but that implies 1185 * we were already there on the last unmount. Warn if this occurs. 1186 */ 1187 resblks = mp->m_sb.sb_dblocks; 1188 do_div(resblks, 20); 1189 resblks = min_t(__uint64_t, resblks, 1024); 1190 error = xfs_reserve_blocks(mp, &resblks, NULL); 1191 if (error) 1192 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1193 "Continuing without a reserve pool."); 1194 1195 return 0; 1196 1197 error4: 1198 /* 1199 * Free up the root inode. 1200 */ 1201 IRELE(rip); 1202 error3: 1203 xfs_log_unmount_dealloc(mp); 1204 error2: 1205 xfs_free_perag(mp); 1206 error1: 1207 if (uuid_mounted) 1208 uuid_table_remove(&mp->m_sb.sb_uuid); 1209 return error; 1210 } 1211 1212 /* 1213 * This flushes out the inodes,dquots and the superblock, unmounts the 1214 * log and makes sure that incore structures are freed. 1215 */ 1216 void 1217 xfs_unmountfs( 1218 struct xfs_mount *mp) 1219 { 1220 __uint64_t resblks; 1221 int error; 1222 1223 /* 1224 * Release dquot that rootinode, rbmino and rsumino might be holding, 1225 * and release the quota inodes. 1226 */ 1227 XFS_QM_UNMOUNT(mp); 1228 1229 if (mp->m_rbmip) 1230 IRELE(mp->m_rbmip); 1231 if (mp->m_rsumip) 1232 IRELE(mp->m_rsumip); 1233 IRELE(mp->m_rootip); 1234 1235 /* 1236 * We can potentially deadlock here if we have an inode cluster 1237 * that has been freed has it's buffer still pinned in memory because 1238 * the transaction is still sitting in a iclog. The stale inodes 1239 * on that buffer will have their flush locks held until the 1240 * transaction hits the disk and the callbacks run. the inode 1241 * flush takes the flush lock unconditionally and with nothing to 1242 * push out the iclog we will never get that unlocked. hence we 1243 * need to force the log first. 1244 */ 1245 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1246 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC); 1247 1248 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); 1249 1250 if (mp->m_quotainfo) 1251 XFS_QM_DONE(mp); 1252 1253 /* 1254 * Flush out the log synchronously so that we know for sure 1255 * that nothing is pinned. This is important because bflush() 1256 * will skip pinned buffers. 1257 */ 1258 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1259 1260 xfs_binval(mp->m_ddev_targp); 1261 if (mp->m_rtdev_targp) { 1262 xfs_binval(mp->m_rtdev_targp); 1263 } 1264 1265 /* 1266 * Unreserve any blocks we have so that when we unmount we don't account 1267 * the reserved free space as used. This is really only necessary for 1268 * lazy superblock counting because it trusts the incore superblock 1269 * counters to be aboslutely correct on clean unmount. 1270 * 1271 * We don't bother correcting this elsewhere for lazy superblock 1272 * counting because on mount of an unclean filesystem we reconstruct the 1273 * correct counter value and this is irrelevant. 1274 * 1275 * For non-lazy counter filesystems, this doesn't matter at all because 1276 * we only every apply deltas to the superblock and hence the incore 1277 * value does not matter.... 1278 */ 1279 resblks = 0; 1280 error = xfs_reserve_blocks(mp, &resblks, NULL); 1281 if (error) 1282 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1283 "Freespace may not be correct on next mount."); 1284 1285 error = xfs_log_sbcount(mp, 1); 1286 if (error) 1287 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1288 "Freespace may not be correct on next mount."); 1289 xfs_unmountfs_writesb(mp); 1290 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1291 xfs_log_unmount(mp); /* Done! No more fs ops. */ 1292 1293 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) 1294 uuid_table_remove(&mp->m_sb.sb_uuid); 1295 1296 #if defined(DEBUG) 1297 xfs_errortag_clearall(mp, 0); 1298 #endif 1299 xfs_free_perag(mp); 1300 } 1301 1302 STATIC void 1303 xfs_unmountfs_wait(xfs_mount_t *mp) 1304 { 1305 if (mp->m_logdev_targp != mp->m_ddev_targp) 1306 xfs_wait_buftarg(mp->m_logdev_targp); 1307 if (mp->m_rtdev_targp) 1308 xfs_wait_buftarg(mp->m_rtdev_targp); 1309 xfs_wait_buftarg(mp->m_ddev_targp); 1310 } 1311 1312 int 1313 xfs_fs_writable(xfs_mount_t *mp) 1314 { 1315 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1316 (mp->m_flags & XFS_MOUNT_RDONLY)); 1317 } 1318 1319 /* 1320 * xfs_log_sbcount 1321 * 1322 * Called either periodically to keep the on disk superblock values 1323 * roughly up to date or from unmount to make sure the values are 1324 * correct on a clean unmount. 1325 * 1326 * Note this code can be called during the process of freezing, so 1327 * we may need to use the transaction allocator which does not not 1328 * block when the transaction subsystem is in its frozen state. 1329 */ 1330 int 1331 xfs_log_sbcount( 1332 xfs_mount_t *mp, 1333 uint sync) 1334 { 1335 xfs_trans_t *tp; 1336 int error; 1337 1338 if (!xfs_fs_writable(mp)) 1339 return 0; 1340 1341 xfs_icsb_sync_counters(mp, 0); 1342 1343 /* 1344 * we don't need to do this if we are updating the superblock 1345 * counters on every modification. 1346 */ 1347 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1348 return 0; 1349 1350 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); 1351 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1352 XFS_DEFAULT_LOG_COUNT); 1353 if (error) { 1354 xfs_trans_cancel(tp, 0); 1355 return error; 1356 } 1357 1358 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1359 if (sync) 1360 xfs_trans_set_sync(tp); 1361 error = xfs_trans_commit(tp, 0); 1362 return error; 1363 } 1364 1365 int 1366 xfs_unmountfs_writesb(xfs_mount_t *mp) 1367 { 1368 xfs_buf_t *sbp; 1369 int error = 0; 1370 1371 /* 1372 * skip superblock write if fs is read-only, or 1373 * if we are doing a forced umount. 1374 */ 1375 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1376 XFS_FORCED_SHUTDOWN(mp))) { 1377 1378 sbp = xfs_getsb(mp, 0); 1379 1380 XFS_BUF_UNDONE(sbp); 1381 XFS_BUF_UNREAD(sbp); 1382 XFS_BUF_UNDELAYWRITE(sbp); 1383 XFS_BUF_WRITE(sbp); 1384 XFS_BUF_UNASYNC(sbp); 1385 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1386 xfsbdstrat(mp, sbp); 1387 error = xfs_iowait(sbp); 1388 if (error) 1389 xfs_ioerror_alert("xfs_unmountfs_writesb", 1390 mp, sbp, XFS_BUF_ADDR(sbp)); 1391 xfs_buf_relse(sbp); 1392 } 1393 return error; 1394 } 1395 1396 /* 1397 * xfs_mod_sb() can be used to copy arbitrary changes to the 1398 * in-core superblock into the superblock buffer to be logged. 1399 * It does not provide the higher level of locking that is 1400 * needed to protect the in-core superblock from concurrent 1401 * access. 1402 */ 1403 void 1404 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1405 { 1406 xfs_buf_t *bp; 1407 int first; 1408 int last; 1409 xfs_mount_t *mp; 1410 xfs_sb_field_t f; 1411 1412 ASSERT(fields); 1413 if (!fields) 1414 return; 1415 mp = tp->t_mountp; 1416 bp = xfs_trans_getsb(tp, mp, 0); 1417 first = sizeof(xfs_sb_t); 1418 last = 0; 1419 1420 /* translate/copy */ 1421 1422 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1423 1424 /* find modified range */ 1425 1426 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1427 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1428 first = xfs_sb_info[f].offset; 1429 1430 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1431 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1432 last = xfs_sb_info[f + 1].offset - 1; 1433 1434 xfs_trans_log_buf(tp, bp, first, last); 1435 } 1436 1437 1438 /* 1439 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1440 * a delta to a specified field in the in-core superblock. Simply 1441 * switch on the field indicated and apply the delta to that field. 1442 * Fields are not allowed to dip below zero, so if the delta would 1443 * do this do not apply it and return EINVAL. 1444 * 1445 * The m_sb_lock must be held when this routine is called. 1446 */ 1447 int 1448 xfs_mod_incore_sb_unlocked( 1449 xfs_mount_t *mp, 1450 xfs_sb_field_t field, 1451 int64_t delta, 1452 int rsvd) 1453 { 1454 int scounter; /* short counter for 32 bit fields */ 1455 long long lcounter; /* long counter for 64 bit fields */ 1456 long long res_used, rem; 1457 1458 /* 1459 * With the in-core superblock spin lock held, switch 1460 * on the indicated field. Apply the delta to the 1461 * proper field. If the fields value would dip below 1462 * 0, then do not apply the delta and return EINVAL. 1463 */ 1464 switch (field) { 1465 case XFS_SBS_ICOUNT: 1466 lcounter = (long long)mp->m_sb.sb_icount; 1467 lcounter += delta; 1468 if (lcounter < 0) { 1469 ASSERT(0); 1470 return XFS_ERROR(EINVAL); 1471 } 1472 mp->m_sb.sb_icount = lcounter; 1473 return 0; 1474 case XFS_SBS_IFREE: 1475 lcounter = (long long)mp->m_sb.sb_ifree; 1476 lcounter += delta; 1477 if (lcounter < 0) { 1478 ASSERT(0); 1479 return XFS_ERROR(EINVAL); 1480 } 1481 mp->m_sb.sb_ifree = lcounter; 1482 return 0; 1483 case XFS_SBS_FDBLOCKS: 1484 lcounter = (long long) 1485 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1486 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1487 1488 if (delta > 0) { /* Putting blocks back */ 1489 if (res_used > delta) { 1490 mp->m_resblks_avail += delta; 1491 } else { 1492 rem = delta - res_used; 1493 mp->m_resblks_avail = mp->m_resblks; 1494 lcounter += rem; 1495 } 1496 } else { /* Taking blocks away */ 1497 1498 lcounter += delta; 1499 1500 /* 1501 * If were out of blocks, use any available reserved blocks if 1502 * were allowed to. 1503 */ 1504 1505 if (lcounter < 0) { 1506 if (rsvd) { 1507 lcounter = (long long)mp->m_resblks_avail + delta; 1508 if (lcounter < 0) { 1509 return XFS_ERROR(ENOSPC); 1510 } 1511 mp->m_resblks_avail = lcounter; 1512 return 0; 1513 } else { /* not reserved */ 1514 return XFS_ERROR(ENOSPC); 1515 } 1516 } 1517 } 1518 1519 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1520 return 0; 1521 case XFS_SBS_FREXTENTS: 1522 lcounter = (long long)mp->m_sb.sb_frextents; 1523 lcounter += delta; 1524 if (lcounter < 0) { 1525 return XFS_ERROR(ENOSPC); 1526 } 1527 mp->m_sb.sb_frextents = lcounter; 1528 return 0; 1529 case XFS_SBS_DBLOCKS: 1530 lcounter = (long long)mp->m_sb.sb_dblocks; 1531 lcounter += delta; 1532 if (lcounter < 0) { 1533 ASSERT(0); 1534 return XFS_ERROR(EINVAL); 1535 } 1536 mp->m_sb.sb_dblocks = lcounter; 1537 return 0; 1538 case XFS_SBS_AGCOUNT: 1539 scounter = mp->m_sb.sb_agcount; 1540 scounter += delta; 1541 if (scounter < 0) { 1542 ASSERT(0); 1543 return XFS_ERROR(EINVAL); 1544 } 1545 mp->m_sb.sb_agcount = scounter; 1546 return 0; 1547 case XFS_SBS_IMAX_PCT: 1548 scounter = mp->m_sb.sb_imax_pct; 1549 scounter += delta; 1550 if (scounter < 0) { 1551 ASSERT(0); 1552 return XFS_ERROR(EINVAL); 1553 } 1554 mp->m_sb.sb_imax_pct = scounter; 1555 return 0; 1556 case XFS_SBS_REXTSIZE: 1557 scounter = mp->m_sb.sb_rextsize; 1558 scounter += delta; 1559 if (scounter < 0) { 1560 ASSERT(0); 1561 return XFS_ERROR(EINVAL); 1562 } 1563 mp->m_sb.sb_rextsize = scounter; 1564 return 0; 1565 case XFS_SBS_RBMBLOCKS: 1566 scounter = mp->m_sb.sb_rbmblocks; 1567 scounter += delta; 1568 if (scounter < 0) { 1569 ASSERT(0); 1570 return XFS_ERROR(EINVAL); 1571 } 1572 mp->m_sb.sb_rbmblocks = scounter; 1573 return 0; 1574 case XFS_SBS_RBLOCKS: 1575 lcounter = (long long)mp->m_sb.sb_rblocks; 1576 lcounter += delta; 1577 if (lcounter < 0) { 1578 ASSERT(0); 1579 return XFS_ERROR(EINVAL); 1580 } 1581 mp->m_sb.sb_rblocks = lcounter; 1582 return 0; 1583 case XFS_SBS_REXTENTS: 1584 lcounter = (long long)mp->m_sb.sb_rextents; 1585 lcounter += delta; 1586 if (lcounter < 0) { 1587 ASSERT(0); 1588 return XFS_ERROR(EINVAL); 1589 } 1590 mp->m_sb.sb_rextents = lcounter; 1591 return 0; 1592 case XFS_SBS_REXTSLOG: 1593 scounter = mp->m_sb.sb_rextslog; 1594 scounter += delta; 1595 if (scounter < 0) { 1596 ASSERT(0); 1597 return XFS_ERROR(EINVAL); 1598 } 1599 mp->m_sb.sb_rextslog = scounter; 1600 return 0; 1601 default: 1602 ASSERT(0); 1603 return XFS_ERROR(EINVAL); 1604 } 1605 } 1606 1607 /* 1608 * xfs_mod_incore_sb() is used to change a field in the in-core 1609 * superblock structure by the specified delta. This modification 1610 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1611 * routine to do the work. 1612 */ 1613 int 1614 xfs_mod_incore_sb( 1615 xfs_mount_t *mp, 1616 xfs_sb_field_t field, 1617 int64_t delta, 1618 int rsvd) 1619 { 1620 int status; 1621 1622 /* check for per-cpu counters */ 1623 switch (field) { 1624 #ifdef HAVE_PERCPU_SB 1625 case XFS_SBS_ICOUNT: 1626 case XFS_SBS_IFREE: 1627 case XFS_SBS_FDBLOCKS: 1628 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1629 status = xfs_icsb_modify_counters(mp, field, 1630 delta, rsvd); 1631 break; 1632 } 1633 /* FALLTHROUGH */ 1634 #endif 1635 default: 1636 spin_lock(&mp->m_sb_lock); 1637 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1638 spin_unlock(&mp->m_sb_lock); 1639 break; 1640 } 1641 1642 return status; 1643 } 1644 1645 /* 1646 * xfs_mod_incore_sb_batch() is used to change more than one field 1647 * in the in-core superblock structure at a time. This modification 1648 * is protected by a lock internal to this module. The fields and 1649 * changes to those fields are specified in the array of xfs_mod_sb 1650 * structures passed in. 1651 * 1652 * Either all of the specified deltas will be applied or none of 1653 * them will. If any modified field dips below 0, then all modifications 1654 * will be backed out and EINVAL will be returned. 1655 */ 1656 int 1657 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1658 { 1659 int status=0; 1660 xfs_mod_sb_t *msbp; 1661 1662 /* 1663 * Loop through the array of mod structures and apply each 1664 * individually. If any fail, then back out all those 1665 * which have already been applied. Do all of this within 1666 * the scope of the m_sb_lock so that all of the changes will 1667 * be atomic. 1668 */ 1669 spin_lock(&mp->m_sb_lock); 1670 msbp = &msb[0]; 1671 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1672 /* 1673 * Apply the delta at index n. If it fails, break 1674 * from the loop so we'll fall into the undo loop 1675 * below. 1676 */ 1677 switch (msbp->msb_field) { 1678 #ifdef HAVE_PERCPU_SB 1679 case XFS_SBS_ICOUNT: 1680 case XFS_SBS_IFREE: 1681 case XFS_SBS_FDBLOCKS: 1682 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1683 spin_unlock(&mp->m_sb_lock); 1684 status = xfs_icsb_modify_counters(mp, 1685 msbp->msb_field, 1686 msbp->msb_delta, rsvd); 1687 spin_lock(&mp->m_sb_lock); 1688 break; 1689 } 1690 /* FALLTHROUGH */ 1691 #endif 1692 default: 1693 status = xfs_mod_incore_sb_unlocked(mp, 1694 msbp->msb_field, 1695 msbp->msb_delta, rsvd); 1696 break; 1697 } 1698 1699 if (status != 0) { 1700 break; 1701 } 1702 } 1703 1704 /* 1705 * If we didn't complete the loop above, then back out 1706 * any changes made to the superblock. If you add code 1707 * between the loop above and here, make sure that you 1708 * preserve the value of status. Loop back until 1709 * we step below the beginning of the array. Make sure 1710 * we don't touch anything back there. 1711 */ 1712 if (status != 0) { 1713 msbp--; 1714 while (msbp >= msb) { 1715 switch (msbp->msb_field) { 1716 #ifdef HAVE_PERCPU_SB 1717 case XFS_SBS_ICOUNT: 1718 case XFS_SBS_IFREE: 1719 case XFS_SBS_FDBLOCKS: 1720 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1721 spin_unlock(&mp->m_sb_lock); 1722 status = xfs_icsb_modify_counters(mp, 1723 msbp->msb_field, 1724 -(msbp->msb_delta), 1725 rsvd); 1726 spin_lock(&mp->m_sb_lock); 1727 break; 1728 } 1729 /* FALLTHROUGH */ 1730 #endif 1731 default: 1732 status = xfs_mod_incore_sb_unlocked(mp, 1733 msbp->msb_field, 1734 -(msbp->msb_delta), 1735 rsvd); 1736 break; 1737 } 1738 ASSERT(status == 0); 1739 msbp--; 1740 } 1741 } 1742 spin_unlock(&mp->m_sb_lock); 1743 return status; 1744 } 1745 1746 /* 1747 * xfs_getsb() is called to obtain the buffer for the superblock. 1748 * The buffer is returned locked and read in from disk. 1749 * The buffer should be released with a call to xfs_brelse(). 1750 * 1751 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1752 * the superblock buffer if it can be locked without sleeping. 1753 * If it can't then we'll return NULL. 1754 */ 1755 xfs_buf_t * 1756 xfs_getsb( 1757 xfs_mount_t *mp, 1758 int flags) 1759 { 1760 xfs_buf_t *bp; 1761 1762 ASSERT(mp->m_sb_bp != NULL); 1763 bp = mp->m_sb_bp; 1764 if (flags & XFS_BUF_TRYLOCK) { 1765 if (!XFS_BUF_CPSEMA(bp)) { 1766 return NULL; 1767 } 1768 } else { 1769 XFS_BUF_PSEMA(bp, PRIBIO); 1770 } 1771 XFS_BUF_HOLD(bp); 1772 ASSERT(XFS_BUF_ISDONE(bp)); 1773 return bp; 1774 } 1775 1776 /* 1777 * Used to free the superblock along various error paths. 1778 */ 1779 void 1780 xfs_freesb( 1781 xfs_mount_t *mp) 1782 { 1783 xfs_buf_t *bp; 1784 1785 /* 1786 * Use xfs_getsb() so that the buffer will be locked 1787 * when we call xfs_buf_relse(). 1788 */ 1789 bp = xfs_getsb(mp, 0); 1790 XFS_BUF_UNMANAGE(bp); 1791 xfs_buf_relse(bp); 1792 mp->m_sb_bp = NULL; 1793 } 1794 1795 /* 1796 * See if the UUID is unique among mounted XFS filesystems. 1797 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 1798 */ 1799 STATIC int 1800 xfs_uuid_mount( 1801 xfs_mount_t *mp) 1802 { 1803 if (uuid_is_nil(&mp->m_sb.sb_uuid)) { 1804 cmn_err(CE_WARN, 1805 "XFS: Filesystem %s has nil UUID - can't mount", 1806 mp->m_fsname); 1807 return -1; 1808 } 1809 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) { 1810 cmn_err(CE_WARN, 1811 "XFS: Filesystem %s has duplicate UUID - can't mount", 1812 mp->m_fsname); 1813 return -1; 1814 } 1815 return 0; 1816 } 1817 1818 /* 1819 * Used to log changes to the superblock unit and width fields which could 1820 * be altered by the mount options, as well as any potential sb_features2 1821 * fixup. Only the first superblock is updated. 1822 */ 1823 int 1824 xfs_mount_log_sb( 1825 xfs_mount_t *mp, 1826 __int64_t fields) 1827 { 1828 xfs_trans_t *tp; 1829 int error; 1830 1831 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1832 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1833 XFS_SB_VERSIONNUM)); 1834 1835 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1836 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1837 XFS_DEFAULT_LOG_COUNT); 1838 if (error) { 1839 xfs_trans_cancel(tp, 0); 1840 return error; 1841 } 1842 xfs_mod_sb(tp, fields); 1843 error = xfs_trans_commit(tp, 0); 1844 return error; 1845 } 1846 1847 1848 #ifdef HAVE_PERCPU_SB 1849 /* 1850 * Per-cpu incore superblock counters 1851 * 1852 * Simple concept, difficult implementation 1853 * 1854 * Basically, replace the incore superblock counters with a distributed per cpu 1855 * counter for contended fields (e.g. free block count). 1856 * 1857 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1858 * hence needs to be accurately read when we are running low on space. Hence 1859 * there is a method to enable and disable the per-cpu counters based on how 1860 * much "stuff" is available in them. 1861 * 1862 * Basically, a counter is enabled if there is enough free resource to justify 1863 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1864 * ENOSPC), then we disable the counters to synchronise all callers and 1865 * re-distribute the available resources. 1866 * 1867 * If, once we redistributed the available resources, we still get a failure, 1868 * we disable the per-cpu counter and go through the slow path. 1869 * 1870 * The slow path is the current xfs_mod_incore_sb() function. This means that 1871 * when we disable a per-cpu counter, we need to drain it's resources back to 1872 * the global superblock. We do this after disabling the counter to prevent 1873 * more threads from queueing up on the counter. 1874 * 1875 * Essentially, this means that we still need a lock in the fast path to enable 1876 * synchronisation between the global counters and the per-cpu counters. This 1877 * is not a problem because the lock will be local to a CPU almost all the time 1878 * and have little contention except when we get to ENOSPC conditions. 1879 * 1880 * Basically, this lock becomes a barrier that enables us to lock out the fast 1881 * path while we do things like enabling and disabling counters and 1882 * synchronising the counters. 1883 * 1884 * Locking rules: 1885 * 1886 * 1. m_sb_lock before picking up per-cpu locks 1887 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1888 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1889 * 4. modifying per-cpu counters requires holding per-cpu lock 1890 * 5. modifying global counters requires holding m_sb_lock 1891 * 6. enabling or disabling a counter requires holding the m_sb_lock 1892 * and _none_ of the per-cpu locks. 1893 * 1894 * Disabled counters are only ever re-enabled by a balance operation 1895 * that results in more free resources per CPU than a given threshold. 1896 * To ensure counters don't remain disabled, they are rebalanced when 1897 * the global resource goes above a higher threshold (i.e. some hysteresis 1898 * is present to prevent thrashing). 1899 */ 1900 1901 #ifdef CONFIG_HOTPLUG_CPU 1902 /* 1903 * hot-plug CPU notifier support. 1904 * 1905 * We need a notifier per filesystem as we need to be able to identify 1906 * the filesystem to balance the counters out. This is achieved by 1907 * having a notifier block embedded in the xfs_mount_t and doing pointer 1908 * magic to get the mount pointer from the notifier block address. 1909 */ 1910 STATIC int 1911 xfs_icsb_cpu_notify( 1912 struct notifier_block *nfb, 1913 unsigned long action, 1914 void *hcpu) 1915 { 1916 xfs_icsb_cnts_t *cntp; 1917 xfs_mount_t *mp; 1918 1919 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1920 cntp = (xfs_icsb_cnts_t *) 1921 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1922 switch (action) { 1923 case CPU_UP_PREPARE: 1924 case CPU_UP_PREPARE_FROZEN: 1925 /* Easy Case - initialize the area and locks, and 1926 * then rebalance when online does everything else for us. */ 1927 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1928 break; 1929 case CPU_ONLINE: 1930 case CPU_ONLINE_FROZEN: 1931 xfs_icsb_lock(mp); 1932 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1933 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1934 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1935 xfs_icsb_unlock(mp); 1936 break; 1937 case CPU_DEAD: 1938 case CPU_DEAD_FROZEN: 1939 /* Disable all the counters, then fold the dead cpu's 1940 * count into the total on the global superblock and 1941 * re-enable the counters. */ 1942 xfs_icsb_lock(mp); 1943 spin_lock(&mp->m_sb_lock); 1944 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1945 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1946 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1947 1948 mp->m_sb.sb_icount += cntp->icsb_icount; 1949 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1950 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1951 1952 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1953 1954 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1955 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1956 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1957 spin_unlock(&mp->m_sb_lock); 1958 xfs_icsb_unlock(mp); 1959 break; 1960 } 1961 1962 return NOTIFY_OK; 1963 } 1964 #endif /* CONFIG_HOTPLUG_CPU */ 1965 1966 int 1967 xfs_icsb_init_counters( 1968 xfs_mount_t *mp) 1969 { 1970 xfs_icsb_cnts_t *cntp; 1971 int i; 1972 1973 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1974 if (mp->m_sb_cnts == NULL) 1975 return -ENOMEM; 1976 1977 #ifdef CONFIG_HOTPLUG_CPU 1978 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1979 mp->m_icsb_notifier.priority = 0; 1980 register_hotcpu_notifier(&mp->m_icsb_notifier); 1981 #endif /* CONFIG_HOTPLUG_CPU */ 1982 1983 for_each_online_cpu(i) { 1984 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1985 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1986 } 1987 1988 mutex_init(&mp->m_icsb_mutex); 1989 1990 /* 1991 * start with all counters disabled so that the 1992 * initial balance kicks us off correctly 1993 */ 1994 mp->m_icsb_counters = -1; 1995 return 0; 1996 } 1997 1998 void 1999 xfs_icsb_reinit_counters( 2000 xfs_mount_t *mp) 2001 { 2002 xfs_icsb_lock(mp); 2003 /* 2004 * start with all counters disabled so that the 2005 * initial balance kicks us off correctly 2006 */ 2007 mp->m_icsb_counters = -1; 2008 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2009 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2010 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2011 xfs_icsb_unlock(mp); 2012 } 2013 2014 void 2015 xfs_icsb_destroy_counters( 2016 xfs_mount_t *mp) 2017 { 2018 if (mp->m_sb_cnts) { 2019 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2020 free_percpu(mp->m_sb_cnts); 2021 } 2022 mutex_destroy(&mp->m_icsb_mutex); 2023 } 2024 2025 STATIC_INLINE void 2026 xfs_icsb_lock_cntr( 2027 xfs_icsb_cnts_t *icsbp) 2028 { 2029 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2030 ndelay(1000); 2031 } 2032 } 2033 2034 STATIC_INLINE void 2035 xfs_icsb_unlock_cntr( 2036 xfs_icsb_cnts_t *icsbp) 2037 { 2038 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2039 } 2040 2041 2042 STATIC_INLINE void 2043 xfs_icsb_lock_all_counters( 2044 xfs_mount_t *mp) 2045 { 2046 xfs_icsb_cnts_t *cntp; 2047 int i; 2048 2049 for_each_online_cpu(i) { 2050 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2051 xfs_icsb_lock_cntr(cntp); 2052 } 2053 } 2054 2055 STATIC_INLINE void 2056 xfs_icsb_unlock_all_counters( 2057 xfs_mount_t *mp) 2058 { 2059 xfs_icsb_cnts_t *cntp; 2060 int i; 2061 2062 for_each_online_cpu(i) { 2063 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2064 xfs_icsb_unlock_cntr(cntp); 2065 } 2066 } 2067 2068 STATIC void 2069 xfs_icsb_count( 2070 xfs_mount_t *mp, 2071 xfs_icsb_cnts_t *cnt, 2072 int flags) 2073 { 2074 xfs_icsb_cnts_t *cntp; 2075 int i; 2076 2077 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2078 2079 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2080 xfs_icsb_lock_all_counters(mp); 2081 2082 for_each_online_cpu(i) { 2083 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2084 cnt->icsb_icount += cntp->icsb_icount; 2085 cnt->icsb_ifree += cntp->icsb_ifree; 2086 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2087 } 2088 2089 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2090 xfs_icsb_unlock_all_counters(mp); 2091 } 2092 2093 STATIC int 2094 xfs_icsb_counter_disabled( 2095 xfs_mount_t *mp, 2096 xfs_sb_field_t field) 2097 { 2098 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2099 return test_bit(field, &mp->m_icsb_counters); 2100 } 2101 2102 STATIC void 2103 xfs_icsb_disable_counter( 2104 xfs_mount_t *mp, 2105 xfs_sb_field_t field) 2106 { 2107 xfs_icsb_cnts_t cnt; 2108 2109 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2110 2111 /* 2112 * If we are already disabled, then there is nothing to do 2113 * here. We check before locking all the counters to avoid 2114 * the expensive lock operation when being called in the 2115 * slow path and the counter is already disabled. This is 2116 * safe because the only time we set or clear this state is under 2117 * the m_icsb_mutex. 2118 */ 2119 if (xfs_icsb_counter_disabled(mp, field)) 2120 return; 2121 2122 xfs_icsb_lock_all_counters(mp); 2123 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2124 /* drain back to superblock */ 2125 2126 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2127 switch(field) { 2128 case XFS_SBS_ICOUNT: 2129 mp->m_sb.sb_icount = cnt.icsb_icount; 2130 break; 2131 case XFS_SBS_IFREE: 2132 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2133 break; 2134 case XFS_SBS_FDBLOCKS: 2135 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2136 break; 2137 default: 2138 BUG(); 2139 } 2140 } 2141 2142 xfs_icsb_unlock_all_counters(mp); 2143 } 2144 2145 STATIC void 2146 xfs_icsb_enable_counter( 2147 xfs_mount_t *mp, 2148 xfs_sb_field_t field, 2149 uint64_t count, 2150 uint64_t resid) 2151 { 2152 xfs_icsb_cnts_t *cntp; 2153 int i; 2154 2155 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2156 2157 xfs_icsb_lock_all_counters(mp); 2158 for_each_online_cpu(i) { 2159 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2160 switch (field) { 2161 case XFS_SBS_ICOUNT: 2162 cntp->icsb_icount = count + resid; 2163 break; 2164 case XFS_SBS_IFREE: 2165 cntp->icsb_ifree = count + resid; 2166 break; 2167 case XFS_SBS_FDBLOCKS: 2168 cntp->icsb_fdblocks = count + resid; 2169 break; 2170 default: 2171 BUG(); 2172 break; 2173 } 2174 resid = 0; 2175 } 2176 clear_bit(field, &mp->m_icsb_counters); 2177 xfs_icsb_unlock_all_counters(mp); 2178 } 2179 2180 void 2181 xfs_icsb_sync_counters_locked( 2182 xfs_mount_t *mp, 2183 int flags) 2184 { 2185 xfs_icsb_cnts_t cnt; 2186 2187 xfs_icsb_count(mp, &cnt, flags); 2188 2189 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2190 mp->m_sb.sb_icount = cnt.icsb_icount; 2191 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2192 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2193 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2194 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2195 } 2196 2197 /* 2198 * Accurate update of per-cpu counters to incore superblock 2199 */ 2200 void 2201 xfs_icsb_sync_counters( 2202 xfs_mount_t *mp, 2203 int flags) 2204 { 2205 spin_lock(&mp->m_sb_lock); 2206 xfs_icsb_sync_counters_locked(mp, flags); 2207 spin_unlock(&mp->m_sb_lock); 2208 } 2209 2210 /* 2211 * Balance and enable/disable counters as necessary. 2212 * 2213 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2214 * chosen to be the same number as single on disk allocation chunk per CPU, and 2215 * free blocks is something far enough zero that we aren't going thrash when we 2216 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2217 * prevent looping endlessly when xfs_alloc_space asks for more than will 2218 * be distributed to a single CPU but each CPU has enough blocks to be 2219 * reenabled. 2220 * 2221 * Note that we can be called when counters are already disabled. 2222 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2223 * prevent locking every per-cpu counter needlessly. 2224 */ 2225 2226 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2227 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2228 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2229 STATIC void 2230 xfs_icsb_balance_counter_locked( 2231 xfs_mount_t *mp, 2232 xfs_sb_field_t field, 2233 int min_per_cpu) 2234 { 2235 uint64_t count, resid; 2236 int weight = num_online_cpus(); 2237 uint64_t min = (uint64_t)min_per_cpu; 2238 2239 /* disable counter and sync counter */ 2240 xfs_icsb_disable_counter(mp, field); 2241 2242 /* update counters - first CPU gets residual*/ 2243 switch (field) { 2244 case XFS_SBS_ICOUNT: 2245 count = mp->m_sb.sb_icount; 2246 resid = do_div(count, weight); 2247 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2248 return; 2249 break; 2250 case XFS_SBS_IFREE: 2251 count = mp->m_sb.sb_ifree; 2252 resid = do_div(count, weight); 2253 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2254 return; 2255 break; 2256 case XFS_SBS_FDBLOCKS: 2257 count = mp->m_sb.sb_fdblocks; 2258 resid = do_div(count, weight); 2259 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2260 return; 2261 break; 2262 default: 2263 BUG(); 2264 count = resid = 0; /* quiet, gcc */ 2265 break; 2266 } 2267 2268 xfs_icsb_enable_counter(mp, field, count, resid); 2269 } 2270 2271 STATIC void 2272 xfs_icsb_balance_counter( 2273 xfs_mount_t *mp, 2274 xfs_sb_field_t fields, 2275 int min_per_cpu) 2276 { 2277 spin_lock(&mp->m_sb_lock); 2278 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2279 spin_unlock(&mp->m_sb_lock); 2280 } 2281 2282 STATIC int 2283 xfs_icsb_modify_counters( 2284 xfs_mount_t *mp, 2285 xfs_sb_field_t field, 2286 int64_t delta, 2287 int rsvd) 2288 { 2289 xfs_icsb_cnts_t *icsbp; 2290 long long lcounter; /* long counter for 64 bit fields */ 2291 int cpu, ret = 0; 2292 2293 might_sleep(); 2294 again: 2295 cpu = get_cpu(); 2296 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); 2297 2298 /* 2299 * if the counter is disabled, go to slow path 2300 */ 2301 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2302 goto slow_path; 2303 xfs_icsb_lock_cntr(icsbp); 2304 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2305 xfs_icsb_unlock_cntr(icsbp); 2306 goto slow_path; 2307 } 2308 2309 switch (field) { 2310 case XFS_SBS_ICOUNT: 2311 lcounter = icsbp->icsb_icount; 2312 lcounter += delta; 2313 if (unlikely(lcounter < 0)) 2314 goto balance_counter; 2315 icsbp->icsb_icount = lcounter; 2316 break; 2317 2318 case XFS_SBS_IFREE: 2319 lcounter = icsbp->icsb_ifree; 2320 lcounter += delta; 2321 if (unlikely(lcounter < 0)) 2322 goto balance_counter; 2323 icsbp->icsb_ifree = lcounter; 2324 break; 2325 2326 case XFS_SBS_FDBLOCKS: 2327 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2328 2329 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2330 lcounter += delta; 2331 if (unlikely(lcounter < 0)) 2332 goto balance_counter; 2333 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2334 break; 2335 default: 2336 BUG(); 2337 break; 2338 } 2339 xfs_icsb_unlock_cntr(icsbp); 2340 put_cpu(); 2341 return 0; 2342 2343 slow_path: 2344 put_cpu(); 2345 2346 /* 2347 * serialise with a mutex so we don't burn lots of cpu on 2348 * the superblock lock. We still need to hold the superblock 2349 * lock, however, when we modify the global structures. 2350 */ 2351 xfs_icsb_lock(mp); 2352 2353 /* 2354 * Now running atomically. 2355 * 2356 * If the counter is enabled, someone has beaten us to rebalancing. 2357 * Drop the lock and try again in the fast path.... 2358 */ 2359 if (!(xfs_icsb_counter_disabled(mp, field))) { 2360 xfs_icsb_unlock(mp); 2361 goto again; 2362 } 2363 2364 /* 2365 * The counter is currently disabled. Because we are 2366 * running atomically here, we know a rebalance cannot 2367 * be in progress. Hence we can go straight to operating 2368 * on the global superblock. We do not call xfs_mod_incore_sb() 2369 * here even though we need to get the m_sb_lock. Doing so 2370 * will cause us to re-enter this function and deadlock. 2371 * Hence we get the m_sb_lock ourselves and then call 2372 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2373 * directly on the global counters. 2374 */ 2375 spin_lock(&mp->m_sb_lock); 2376 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2377 spin_unlock(&mp->m_sb_lock); 2378 2379 /* 2380 * Now that we've modified the global superblock, we 2381 * may be able to re-enable the distributed counters 2382 * (e.g. lots of space just got freed). After that 2383 * we are done. 2384 */ 2385 if (ret != ENOSPC) 2386 xfs_icsb_balance_counter(mp, field, 0); 2387 xfs_icsb_unlock(mp); 2388 return ret; 2389 2390 balance_counter: 2391 xfs_icsb_unlock_cntr(icsbp); 2392 put_cpu(); 2393 2394 /* 2395 * We may have multiple threads here if multiple per-cpu 2396 * counters run dry at the same time. This will mean we can 2397 * do more balances than strictly necessary but it is not 2398 * the common slowpath case. 2399 */ 2400 xfs_icsb_lock(mp); 2401 2402 /* 2403 * running atomically. 2404 * 2405 * This will leave the counter in the correct state for future 2406 * accesses. After the rebalance, we simply try again and our retry 2407 * will either succeed through the fast path or slow path without 2408 * another balance operation being required. 2409 */ 2410 xfs_icsb_balance_counter(mp, field, delta); 2411 xfs_icsb_unlock(mp); 2412 goto again; 2413 } 2414 2415 #endif 2416