xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision b6dcefde)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 #include "xfs_trace.h"
48 
49 
50 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
51 
52 
53 #ifdef HAVE_PERCPU_SB
54 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
55 						int);
56 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
57 						int);
58 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
59 						int64_t, int);
60 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
61 
62 #else
63 
64 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
65 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
66 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
67 
68 #endif
69 
70 static const struct {
71 	short offset;
72 	short type;	/* 0 = integer
73 			 * 1 = binary / string (no translation)
74 			 */
75 } xfs_sb_info[] = {
76     { offsetof(xfs_sb_t, sb_magicnum),   0 },
77     { offsetof(xfs_sb_t, sb_blocksize),  0 },
78     { offsetof(xfs_sb_t, sb_dblocks),    0 },
79     { offsetof(xfs_sb_t, sb_rblocks),    0 },
80     { offsetof(xfs_sb_t, sb_rextents),   0 },
81     { offsetof(xfs_sb_t, sb_uuid),       1 },
82     { offsetof(xfs_sb_t, sb_logstart),   0 },
83     { offsetof(xfs_sb_t, sb_rootino),    0 },
84     { offsetof(xfs_sb_t, sb_rbmino),     0 },
85     { offsetof(xfs_sb_t, sb_rsumino),    0 },
86     { offsetof(xfs_sb_t, sb_rextsize),   0 },
87     { offsetof(xfs_sb_t, sb_agblocks),   0 },
88     { offsetof(xfs_sb_t, sb_agcount),    0 },
89     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
90     { offsetof(xfs_sb_t, sb_logblocks),  0 },
91     { offsetof(xfs_sb_t, sb_versionnum), 0 },
92     { offsetof(xfs_sb_t, sb_sectsize),   0 },
93     { offsetof(xfs_sb_t, sb_inodesize),  0 },
94     { offsetof(xfs_sb_t, sb_inopblock),  0 },
95     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
96     { offsetof(xfs_sb_t, sb_blocklog),   0 },
97     { offsetof(xfs_sb_t, sb_sectlog),    0 },
98     { offsetof(xfs_sb_t, sb_inodelog),   0 },
99     { offsetof(xfs_sb_t, sb_inopblog),   0 },
100     { offsetof(xfs_sb_t, sb_agblklog),   0 },
101     { offsetof(xfs_sb_t, sb_rextslog),   0 },
102     { offsetof(xfs_sb_t, sb_inprogress), 0 },
103     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
104     { offsetof(xfs_sb_t, sb_icount),     0 },
105     { offsetof(xfs_sb_t, sb_ifree),      0 },
106     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
107     { offsetof(xfs_sb_t, sb_frextents),  0 },
108     { offsetof(xfs_sb_t, sb_uquotino),   0 },
109     { offsetof(xfs_sb_t, sb_gquotino),   0 },
110     { offsetof(xfs_sb_t, sb_qflags),     0 },
111     { offsetof(xfs_sb_t, sb_flags),      0 },
112     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
113     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
114     { offsetof(xfs_sb_t, sb_unit),	 0 },
115     { offsetof(xfs_sb_t, sb_width),	 0 },
116     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
117     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
118     { offsetof(xfs_sb_t, sb_logsectsize),0 },
119     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
120     { offsetof(xfs_sb_t, sb_features2),	 0 },
121     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
122     { sizeof(xfs_sb_t),			 0 }
123 };
124 
125 static DEFINE_MUTEX(xfs_uuid_table_mutex);
126 static int xfs_uuid_table_size;
127 static uuid_t *xfs_uuid_table;
128 
129 /*
130  * See if the UUID is unique among mounted XFS filesystems.
131  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132  */
133 STATIC int
134 xfs_uuid_mount(
135 	struct xfs_mount	*mp)
136 {
137 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
138 	int			hole, i;
139 
140 	if (mp->m_flags & XFS_MOUNT_NOUUID)
141 		return 0;
142 
143 	if (uuid_is_nil(uuid)) {
144 		cmn_err(CE_WARN,
145 			"XFS: Filesystem %s has nil UUID - can't mount",
146 			mp->m_fsname);
147 		return XFS_ERROR(EINVAL);
148 	}
149 
150 	mutex_lock(&xfs_uuid_table_mutex);
151 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
152 		if (uuid_is_nil(&xfs_uuid_table[i])) {
153 			hole = i;
154 			continue;
155 		}
156 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
157 			goto out_duplicate;
158 	}
159 
160 	if (hole < 0) {
161 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
162 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
163 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
164 			KM_SLEEP);
165 		hole = xfs_uuid_table_size++;
166 	}
167 	xfs_uuid_table[hole] = *uuid;
168 	mutex_unlock(&xfs_uuid_table_mutex);
169 
170 	return 0;
171 
172  out_duplicate:
173 	mutex_unlock(&xfs_uuid_table_mutex);
174 	cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
175 			 mp->m_fsname);
176 	return XFS_ERROR(EINVAL);
177 }
178 
179 STATIC void
180 xfs_uuid_unmount(
181 	struct xfs_mount	*mp)
182 {
183 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
184 	int			i;
185 
186 	if (mp->m_flags & XFS_MOUNT_NOUUID)
187 		return;
188 
189 	mutex_lock(&xfs_uuid_table_mutex);
190 	for (i = 0; i < xfs_uuid_table_size; i++) {
191 		if (uuid_is_nil(&xfs_uuid_table[i]))
192 			continue;
193 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
194 			continue;
195 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
196 		break;
197 	}
198 	ASSERT(i < xfs_uuid_table_size);
199 	mutex_unlock(&xfs_uuid_table_mutex);
200 }
201 
202 
203 /*
204  * Free up the resources associated with a mount structure.  Assume that
205  * the structure was initially zeroed, so we can tell which fields got
206  * initialized.
207  */
208 STATIC void
209 xfs_free_perag(
210 	xfs_mount_t	*mp)
211 {
212 	if (mp->m_perag) {
213 		int	agno;
214 
215 		for (agno = 0; agno < mp->m_maxagi; agno++)
216 			if (mp->m_perag[agno].pagb_list)
217 				kmem_free(mp->m_perag[agno].pagb_list);
218 		kmem_free(mp->m_perag);
219 	}
220 }
221 
222 /*
223  * Check size of device based on the (data/realtime) block count.
224  * Note: this check is used by the growfs code as well as mount.
225  */
226 int
227 xfs_sb_validate_fsb_count(
228 	xfs_sb_t	*sbp,
229 	__uint64_t	nblocks)
230 {
231 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
232 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
233 
234 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
235 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
236 		return E2BIG;
237 #else                  /* Limited by UINT_MAX of sectors */
238 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
239 		return E2BIG;
240 #endif
241 	return 0;
242 }
243 
244 /*
245  * Check the validity of the SB found.
246  */
247 STATIC int
248 xfs_mount_validate_sb(
249 	xfs_mount_t	*mp,
250 	xfs_sb_t	*sbp,
251 	int		flags)
252 {
253 	/*
254 	 * If the log device and data device have the
255 	 * same device number, the log is internal.
256 	 * Consequently, the sb_logstart should be non-zero.  If
257 	 * we have a zero sb_logstart in this case, we may be trying to mount
258 	 * a volume filesystem in a non-volume manner.
259 	 */
260 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
261 		xfs_fs_mount_cmn_err(flags, "bad magic number");
262 		return XFS_ERROR(EWRONGFS);
263 	}
264 
265 	if (!xfs_sb_good_version(sbp)) {
266 		xfs_fs_mount_cmn_err(flags, "bad version");
267 		return XFS_ERROR(EWRONGFS);
268 	}
269 
270 	if (unlikely(
271 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
272 		xfs_fs_mount_cmn_err(flags,
273 			"filesystem is marked as having an external log; "
274 			"specify logdev on the\nmount command line.");
275 		return XFS_ERROR(EINVAL);
276 	}
277 
278 	if (unlikely(
279 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
280 		xfs_fs_mount_cmn_err(flags,
281 			"filesystem is marked as having an internal log; "
282 			"do not specify logdev on\nthe mount command line.");
283 		return XFS_ERROR(EINVAL);
284 	}
285 
286 	/*
287 	 * More sanity checking. These were stolen directly from
288 	 * xfs_repair.
289 	 */
290 	if (unlikely(
291 	    sbp->sb_agcount <= 0					||
292 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
293 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
294 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
295 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
296 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
297 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
298 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
299 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
300 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
301 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
302 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
303 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
304 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
305 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
306 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
307 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
308 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
309 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
310 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
311 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
312 		return XFS_ERROR(EFSCORRUPTED);
313 	}
314 
315 	/*
316 	 * Sanity check AG count, size fields against data size field
317 	 */
318 	if (unlikely(
319 	    sbp->sb_dblocks == 0 ||
320 	    sbp->sb_dblocks >
321 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
322 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
323 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
324 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
325 		return XFS_ERROR(EFSCORRUPTED);
326 	}
327 
328 	/*
329 	 * Until this is fixed only page-sized or smaller data blocks work.
330 	 */
331 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
332 		xfs_fs_mount_cmn_err(flags,
333 			"file system with blocksize %d bytes",
334 			sbp->sb_blocksize);
335 		xfs_fs_mount_cmn_err(flags,
336 			"only pagesize (%ld) or less will currently work.",
337 			PAGE_SIZE);
338 		return XFS_ERROR(ENOSYS);
339 	}
340 
341 	/*
342 	 * Currently only very few inode sizes are supported.
343 	 */
344 	switch (sbp->sb_inodesize) {
345 	case 256:
346 	case 512:
347 	case 1024:
348 	case 2048:
349 		break;
350 	default:
351 		xfs_fs_mount_cmn_err(flags,
352 			"inode size of %d bytes not supported",
353 			sbp->sb_inodesize);
354 		return XFS_ERROR(ENOSYS);
355 	}
356 
357 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
358 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
359 		xfs_fs_mount_cmn_err(flags,
360 			"file system too large to be mounted on this system.");
361 		return XFS_ERROR(E2BIG);
362 	}
363 
364 	if (unlikely(sbp->sb_inprogress)) {
365 		xfs_fs_mount_cmn_err(flags, "file system busy");
366 		return XFS_ERROR(EFSCORRUPTED);
367 	}
368 
369 	/*
370 	 * Version 1 directory format has never worked on Linux.
371 	 */
372 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
373 		xfs_fs_mount_cmn_err(flags,
374 			"file system using version 1 directory format");
375 		return XFS_ERROR(ENOSYS);
376 	}
377 
378 	return 0;
379 }
380 
381 STATIC void
382 xfs_initialize_perag_icache(
383 	xfs_perag_t	*pag)
384 {
385 	if (!pag->pag_ici_init) {
386 		rwlock_init(&pag->pag_ici_lock);
387 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
388 		pag->pag_ici_init = 1;
389 	}
390 }
391 
392 xfs_agnumber_t
393 xfs_initialize_perag(
394 	xfs_mount_t	*mp,
395 	xfs_agnumber_t	agcount)
396 {
397 	xfs_agnumber_t	index, max_metadata;
398 	xfs_perag_t	*pag;
399 	xfs_agino_t	agino;
400 	xfs_ino_t	ino;
401 	xfs_sb_t	*sbp = &mp->m_sb;
402 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32;
403 
404 	/* Check to see if the filesystem can overflow 32 bit inodes */
405 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
406 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
407 
408 	/* Clear the mount flag if no inode can overflow 32 bits
409 	 * on this filesystem, or if specifically requested..
410 	 */
411 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
412 		mp->m_flags |= XFS_MOUNT_32BITINODES;
413 	} else {
414 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
415 	}
416 
417 	/* If we can overflow then setup the ag headers accordingly */
418 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
419 		/* Calculate how much should be reserved for inodes to
420 		 * meet the max inode percentage.
421 		 */
422 		if (mp->m_maxicount) {
423 			__uint64_t	icount;
424 
425 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
426 			do_div(icount, 100);
427 			icount += sbp->sb_agblocks - 1;
428 			do_div(icount, sbp->sb_agblocks);
429 			max_metadata = icount;
430 		} else {
431 			max_metadata = agcount;
432 		}
433 		for (index = 0; index < agcount; index++) {
434 			ino = XFS_AGINO_TO_INO(mp, index, agino);
435 			if (ino > max_inum) {
436 				index++;
437 				break;
438 			}
439 
440 			/* This ag is preferred for inodes */
441 			pag = &mp->m_perag[index];
442 			pag->pagi_inodeok = 1;
443 			if (index < max_metadata)
444 				pag->pagf_metadata = 1;
445 			xfs_initialize_perag_icache(pag);
446 		}
447 	} else {
448 		/* Setup default behavior for smaller filesystems */
449 		for (index = 0; index < agcount; index++) {
450 			pag = &mp->m_perag[index];
451 			pag->pagi_inodeok = 1;
452 			xfs_initialize_perag_icache(pag);
453 		}
454 	}
455 	return index;
456 }
457 
458 void
459 xfs_sb_from_disk(
460 	xfs_sb_t	*to,
461 	xfs_dsb_t	*from)
462 {
463 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
464 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
465 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
466 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
467 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
468 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
469 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
470 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
471 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
472 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
473 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
474 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
475 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
476 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
477 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
478 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
479 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
480 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
481 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
482 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
483 	to->sb_blocklog = from->sb_blocklog;
484 	to->sb_sectlog = from->sb_sectlog;
485 	to->sb_inodelog = from->sb_inodelog;
486 	to->sb_inopblog = from->sb_inopblog;
487 	to->sb_agblklog = from->sb_agblklog;
488 	to->sb_rextslog = from->sb_rextslog;
489 	to->sb_inprogress = from->sb_inprogress;
490 	to->sb_imax_pct = from->sb_imax_pct;
491 	to->sb_icount = be64_to_cpu(from->sb_icount);
492 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
493 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
494 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
495 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
496 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
497 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
498 	to->sb_flags = from->sb_flags;
499 	to->sb_shared_vn = from->sb_shared_vn;
500 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
501 	to->sb_unit = be32_to_cpu(from->sb_unit);
502 	to->sb_width = be32_to_cpu(from->sb_width);
503 	to->sb_dirblklog = from->sb_dirblklog;
504 	to->sb_logsectlog = from->sb_logsectlog;
505 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
506 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
507 	to->sb_features2 = be32_to_cpu(from->sb_features2);
508 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
509 }
510 
511 /*
512  * Copy in core superblock to ondisk one.
513  *
514  * The fields argument is mask of superblock fields to copy.
515  */
516 void
517 xfs_sb_to_disk(
518 	xfs_dsb_t	*to,
519 	xfs_sb_t	*from,
520 	__int64_t	fields)
521 {
522 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
523 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
524 	xfs_sb_field_t	f;
525 	int		first;
526 	int		size;
527 
528 	ASSERT(fields);
529 	if (!fields)
530 		return;
531 
532 	while (fields) {
533 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
534 		first = xfs_sb_info[f].offset;
535 		size = xfs_sb_info[f + 1].offset - first;
536 
537 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
538 
539 		if (size == 1 || xfs_sb_info[f].type == 1) {
540 			memcpy(to_ptr + first, from_ptr + first, size);
541 		} else {
542 			switch (size) {
543 			case 2:
544 				*(__be16 *)(to_ptr + first) =
545 					cpu_to_be16(*(__u16 *)(from_ptr + first));
546 				break;
547 			case 4:
548 				*(__be32 *)(to_ptr + first) =
549 					cpu_to_be32(*(__u32 *)(from_ptr + first));
550 				break;
551 			case 8:
552 				*(__be64 *)(to_ptr + first) =
553 					cpu_to_be64(*(__u64 *)(from_ptr + first));
554 				break;
555 			default:
556 				ASSERT(0);
557 			}
558 		}
559 
560 		fields &= ~(1LL << f);
561 	}
562 }
563 
564 /*
565  * xfs_readsb
566  *
567  * Does the initial read of the superblock.
568  */
569 int
570 xfs_readsb(xfs_mount_t *mp, int flags)
571 {
572 	unsigned int	sector_size;
573 	unsigned int	extra_flags;
574 	xfs_buf_t	*bp;
575 	int		error;
576 
577 	ASSERT(mp->m_sb_bp == NULL);
578 	ASSERT(mp->m_ddev_targp != NULL);
579 
580 	/*
581 	 * Allocate a (locked) buffer to hold the superblock.
582 	 * This will be kept around at all times to optimize
583 	 * access to the superblock.
584 	 */
585 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
586 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
587 
588 	bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size),
589 			  extra_flags);
590 	if (!bp || XFS_BUF_ISERROR(bp)) {
591 		xfs_fs_mount_cmn_err(flags, "SB read failed");
592 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
593 		goto fail;
594 	}
595 	ASSERT(XFS_BUF_ISBUSY(bp));
596 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
597 
598 	/*
599 	 * Initialize the mount structure from the superblock.
600 	 * But first do some basic consistency checking.
601 	 */
602 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
603 
604 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
605 	if (error) {
606 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
607 		goto fail;
608 	}
609 
610 	/*
611 	 * We must be able to do sector-sized and sector-aligned IO.
612 	 */
613 	if (sector_size > mp->m_sb.sb_sectsize) {
614 		xfs_fs_mount_cmn_err(flags,
615 			"device supports only %u byte sectors (not %u)",
616 			sector_size, mp->m_sb.sb_sectsize);
617 		error = ENOSYS;
618 		goto fail;
619 	}
620 
621 	/*
622 	 * If device sector size is smaller than the superblock size,
623 	 * re-read the superblock so the buffer is correctly sized.
624 	 */
625 	if (sector_size < mp->m_sb.sb_sectsize) {
626 		XFS_BUF_UNMANAGE(bp);
627 		xfs_buf_relse(bp);
628 		sector_size = mp->m_sb.sb_sectsize;
629 		bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR,
630 				  BTOBB(sector_size), extra_flags);
631 		if (!bp || XFS_BUF_ISERROR(bp)) {
632 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
633 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
634 			goto fail;
635 		}
636 		ASSERT(XFS_BUF_ISBUSY(bp));
637 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
638 	}
639 
640 	/* Initialize per-cpu counters */
641 	xfs_icsb_reinit_counters(mp);
642 
643 	mp->m_sb_bp = bp;
644 	xfs_buf_relse(bp);
645 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
646 	return 0;
647 
648  fail:
649 	if (bp) {
650 		XFS_BUF_UNMANAGE(bp);
651 		xfs_buf_relse(bp);
652 	}
653 	return error;
654 }
655 
656 
657 /*
658  * xfs_mount_common
659  *
660  * Mount initialization code establishing various mount
661  * fields from the superblock associated with the given
662  * mount structure
663  */
664 STATIC void
665 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
666 {
667 	mp->m_agfrotor = mp->m_agirotor = 0;
668 	spin_lock_init(&mp->m_agirotor_lock);
669 	mp->m_maxagi = mp->m_sb.sb_agcount;
670 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
671 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
672 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
673 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
674 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
675 	mp->m_blockmask = sbp->sb_blocksize - 1;
676 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
677 	mp->m_blockwmask = mp->m_blockwsize - 1;
678 
679 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
680 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
681 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
682 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
683 
684 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
685 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
686 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
687 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
688 
689 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
690 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
691 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
692 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
693 
694 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
695 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
696 					sbp->sb_inopblock);
697 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
698 }
699 
700 /*
701  * xfs_initialize_perag_data
702  *
703  * Read in each per-ag structure so we can count up the number of
704  * allocated inodes, free inodes and used filesystem blocks as this
705  * information is no longer persistent in the superblock. Once we have
706  * this information, write it into the in-core superblock structure.
707  */
708 STATIC int
709 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
710 {
711 	xfs_agnumber_t	index;
712 	xfs_perag_t	*pag;
713 	xfs_sb_t	*sbp = &mp->m_sb;
714 	uint64_t	ifree = 0;
715 	uint64_t	ialloc = 0;
716 	uint64_t	bfree = 0;
717 	uint64_t	bfreelst = 0;
718 	uint64_t	btree = 0;
719 	int		error;
720 
721 	for (index = 0; index < agcount; index++) {
722 		/*
723 		 * read the agf, then the agi. This gets us
724 		 * all the information we need and populates the
725 		 * per-ag structures for us.
726 		 */
727 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
728 		if (error)
729 			return error;
730 
731 		error = xfs_ialloc_pagi_init(mp, NULL, index);
732 		if (error)
733 			return error;
734 		pag = &mp->m_perag[index];
735 		ifree += pag->pagi_freecount;
736 		ialloc += pag->pagi_count;
737 		bfree += pag->pagf_freeblks;
738 		bfreelst += pag->pagf_flcount;
739 		btree += pag->pagf_btreeblks;
740 	}
741 	/*
742 	 * Overwrite incore superblock counters with just-read data
743 	 */
744 	spin_lock(&mp->m_sb_lock);
745 	sbp->sb_ifree = ifree;
746 	sbp->sb_icount = ialloc;
747 	sbp->sb_fdblocks = bfree + bfreelst + btree;
748 	spin_unlock(&mp->m_sb_lock);
749 
750 	/* Fixup the per-cpu counters as well. */
751 	xfs_icsb_reinit_counters(mp);
752 
753 	return 0;
754 }
755 
756 /*
757  * Update alignment values based on mount options and sb values
758  */
759 STATIC int
760 xfs_update_alignment(xfs_mount_t *mp)
761 {
762 	xfs_sb_t	*sbp = &(mp->m_sb);
763 
764 	if (mp->m_dalign) {
765 		/*
766 		 * If stripe unit and stripe width are not multiples
767 		 * of the fs blocksize turn off alignment.
768 		 */
769 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
770 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
771 			if (mp->m_flags & XFS_MOUNT_RETERR) {
772 				cmn_err(CE_WARN,
773 					"XFS: alignment check 1 failed");
774 				return XFS_ERROR(EINVAL);
775 			}
776 			mp->m_dalign = mp->m_swidth = 0;
777 		} else {
778 			/*
779 			 * Convert the stripe unit and width to FSBs.
780 			 */
781 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
782 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
783 				if (mp->m_flags & XFS_MOUNT_RETERR) {
784 					return XFS_ERROR(EINVAL);
785 				}
786 				xfs_fs_cmn_err(CE_WARN, mp,
787 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
788 					mp->m_dalign, mp->m_swidth,
789 					sbp->sb_agblocks);
790 
791 				mp->m_dalign = 0;
792 				mp->m_swidth = 0;
793 			} else if (mp->m_dalign) {
794 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
795 			} else {
796 				if (mp->m_flags & XFS_MOUNT_RETERR) {
797 					xfs_fs_cmn_err(CE_WARN, mp,
798 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
799                                         	mp->m_dalign,
800 						mp->m_blockmask +1);
801 					return XFS_ERROR(EINVAL);
802 				}
803 				mp->m_swidth = 0;
804 			}
805 		}
806 
807 		/*
808 		 * Update superblock with new values
809 		 * and log changes
810 		 */
811 		if (xfs_sb_version_hasdalign(sbp)) {
812 			if (sbp->sb_unit != mp->m_dalign) {
813 				sbp->sb_unit = mp->m_dalign;
814 				mp->m_update_flags |= XFS_SB_UNIT;
815 			}
816 			if (sbp->sb_width != mp->m_swidth) {
817 				sbp->sb_width = mp->m_swidth;
818 				mp->m_update_flags |= XFS_SB_WIDTH;
819 			}
820 		}
821 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
822 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
823 			mp->m_dalign = sbp->sb_unit;
824 			mp->m_swidth = sbp->sb_width;
825 	}
826 
827 	return 0;
828 }
829 
830 /*
831  * Set the maximum inode count for this filesystem
832  */
833 STATIC void
834 xfs_set_maxicount(xfs_mount_t *mp)
835 {
836 	xfs_sb_t	*sbp = &(mp->m_sb);
837 	__uint64_t	icount;
838 
839 	if (sbp->sb_imax_pct) {
840 		/*
841 		 * Make sure the maximum inode count is a multiple
842 		 * of the units we allocate inodes in.
843 		 */
844 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
845 		do_div(icount, 100);
846 		do_div(icount, mp->m_ialloc_blks);
847 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
848 				   sbp->sb_inopblog;
849 	} else {
850 		mp->m_maxicount = 0;
851 	}
852 }
853 
854 /*
855  * Set the default minimum read and write sizes unless
856  * already specified in a mount option.
857  * We use smaller I/O sizes when the file system
858  * is being used for NFS service (wsync mount option).
859  */
860 STATIC void
861 xfs_set_rw_sizes(xfs_mount_t *mp)
862 {
863 	xfs_sb_t	*sbp = &(mp->m_sb);
864 	int		readio_log, writeio_log;
865 
866 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
867 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
868 			readio_log = XFS_WSYNC_READIO_LOG;
869 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
870 		} else {
871 			readio_log = XFS_READIO_LOG_LARGE;
872 			writeio_log = XFS_WRITEIO_LOG_LARGE;
873 		}
874 	} else {
875 		readio_log = mp->m_readio_log;
876 		writeio_log = mp->m_writeio_log;
877 	}
878 
879 	if (sbp->sb_blocklog > readio_log) {
880 		mp->m_readio_log = sbp->sb_blocklog;
881 	} else {
882 		mp->m_readio_log = readio_log;
883 	}
884 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
885 	if (sbp->sb_blocklog > writeio_log) {
886 		mp->m_writeio_log = sbp->sb_blocklog;
887 	} else {
888 		mp->m_writeio_log = writeio_log;
889 	}
890 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
891 }
892 
893 /*
894  * Set whether we're using inode alignment.
895  */
896 STATIC void
897 xfs_set_inoalignment(xfs_mount_t *mp)
898 {
899 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
900 	    mp->m_sb.sb_inoalignmt >=
901 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
902 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
903 	else
904 		mp->m_inoalign_mask = 0;
905 	/*
906 	 * If we are using stripe alignment, check whether
907 	 * the stripe unit is a multiple of the inode alignment
908 	 */
909 	if (mp->m_dalign && mp->m_inoalign_mask &&
910 	    !(mp->m_dalign & mp->m_inoalign_mask))
911 		mp->m_sinoalign = mp->m_dalign;
912 	else
913 		mp->m_sinoalign = 0;
914 }
915 
916 /*
917  * Check that the data (and log if separate) are an ok size.
918  */
919 STATIC int
920 xfs_check_sizes(xfs_mount_t *mp)
921 {
922 	xfs_buf_t	*bp;
923 	xfs_daddr_t	d;
924 	int		error;
925 
926 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
927 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
928 		cmn_err(CE_WARN, "XFS: size check 1 failed");
929 		return XFS_ERROR(E2BIG);
930 	}
931 	error = xfs_read_buf(mp, mp->m_ddev_targp,
932 			     d - XFS_FSS_TO_BB(mp, 1),
933 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
934 	if (!error) {
935 		xfs_buf_relse(bp);
936 	} else {
937 		cmn_err(CE_WARN, "XFS: size check 2 failed");
938 		if (error == ENOSPC)
939 			error = XFS_ERROR(E2BIG);
940 		return error;
941 	}
942 
943 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
944 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
945 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
946 			cmn_err(CE_WARN, "XFS: size check 3 failed");
947 			return XFS_ERROR(E2BIG);
948 		}
949 		error = xfs_read_buf(mp, mp->m_logdev_targp,
950 				     d - XFS_FSB_TO_BB(mp, 1),
951 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
952 		if (!error) {
953 			xfs_buf_relse(bp);
954 		} else {
955 			cmn_err(CE_WARN, "XFS: size check 3 failed");
956 			if (error == ENOSPC)
957 				error = XFS_ERROR(E2BIG);
958 			return error;
959 		}
960 	}
961 	return 0;
962 }
963 
964 /*
965  * Clear the quotaflags in memory and in the superblock.
966  */
967 int
968 xfs_mount_reset_sbqflags(
969 	struct xfs_mount	*mp)
970 {
971 	int			error;
972 	struct xfs_trans	*tp;
973 
974 	mp->m_qflags = 0;
975 
976 	/*
977 	 * It is OK to look at sb_qflags here in mount path,
978 	 * without m_sb_lock.
979 	 */
980 	if (mp->m_sb.sb_qflags == 0)
981 		return 0;
982 	spin_lock(&mp->m_sb_lock);
983 	mp->m_sb.sb_qflags = 0;
984 	spin_unlock(&mp->m_sb_lock);
985 
986 	/*
987 	 * If the fs is readonly, let the incore superblock run
988 	 * with quotas off but don't flush the update out to disk
989 	 */
990 	if (mp->m_flags & XFS_MOUNT_RDONLY)
991 		return 0;
992 
993 #ifdef QUOTADEBUG
994 	xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
995 #endif
996 
997 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
998 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
999 				      XFS_DEFAULT_LOG_COUNT);
1000 	if (error) {
1001 		xfs_trans_cancel(tp, 0);
1002 		xfs_fs_cmn_err(CE_ALERT, mp,
1003 			"xfs_mount_reset_sbqflags: Superblock update failed!");
1004 		return error;
1005 	}
1006 
1007 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1008 	return xfs_trans_commit(tp, 0);
1009 }
1010 
1011 /*
1012  * This function does the following on an initial mount of a file system:
1013  *	- reads the superblock from disk and init the mount struct
1014  *	- if we're a 32-bit kernel, do a size check on the superblock
1015  *		so we don't mount terabyte filesystems
1016  *	- init mount struct realtime fields
1017  *	- allocate inode hash table for fs
1018  *	- init directory manager
1019  *	- perform recovery and init the log manager
1020  */
1021 int
1022 xfs_mountfs(
1023 	xfs_mount_t	*mp)
1024 {
1025 	xfs_sb_t	*sbp = &(mp->m_sb);
1026 	xfs_inode_t	*rip;
1027 	__uint64_t	resblks;
1028 	uint		quotamount = 0;
1029 	uint		quotaflags = 0;
1030 	int		error = 0;
1031 
1032 	xfs_mount_common(mp, sbp);
1033 
1034 	/*
1035 	 * Check for a mismatched features2 values.  Older kernels
1036 	 * read & wrote into the wrong sb offset for sb_features2
1037 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1038 	 * when sb_features2 was added, which made older superblock
1039 	 * reading/writing routines swap it as a 64-bit value.
1040 	 *
1041 	 * For backwards compatibility, we make both slots equal.
1042 	 *
1043 	 * If we detect a mismatched field, we OR the set bits into the
1044 	 * existing features2 field in case it has already been modified; we
1045 	 * don't want to lose any features.  We then update the bad location
1046 	 * with the ORed value so that older kernels will see any features2
1047 	 * flags, and mark the two fields as needing updates once the
1048 	 * transaction subsystem is online.
1049 	 */
1050 	if (xfs_sb_has_mismatched_features2(sbp)) {
1051 		cmn_err(CE_WARN,
1052 			"XFS: correcting sb_features alignment problem");
1053 		sbp->sb_features2 |= sbp->sb_bad_features2;
1054 		sbp->sb_bad_features2 = sbp->sb_features2;
1055 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1056 
1057 		/*
1058 		 * Re-check for ATTR2 in case it was found in bad_features2
1059 		 * slot.
1060 		 */
1061 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1062 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1063 			mp->m_flags |= XFS_MOUNT_ATTR2;
1064 	}
1065 
1066 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1067 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1068 		xfs_sb_version_removeattr2(&mp->m_sb);
1069 		mp->m_update_flags |= XFS_SB_FEATURES2;
1070 
1071 		/* update sb_versionnum for the clearing of the morebits */
1072 		if (!sbp->sb_features2)
1073 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1074 	}
1075 
1076 	/*
1077 	 * Check if sb_agblocks is aligned at stripe boundary
1078 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1079 	 * allocator alignment is within an ag, therefore ag has
1080 	 * to be aligned at stripe boundary.
1081 	 */
1082 	error = xfs_update_alignment(mp);
1083 	if (error)
1084 		goto out;
1085 
1086 	xfs_alloc_compute_maxlevels(mp);
1087 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1088 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1089 	xfs_ialloc_compute_maxlevels(mp);
1090 
1091 	xfs_set_maxicount(mp);
1092 
1093 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1094 
1095 	error = xfs_uuid_mount(mp);
1096 	if (error)
1097 		goto out;
1098 
1099 	/*
1100 	 * Set the minimum read and write sizes
1101 	 */
1102 	xfs_set_rw_sizes(mp);
1103 
1104 	/*
1105 	 * Set the inode cluster size.
1106 	 * This may still be overridden by the file system
1107 	 * block size if it is larger than the chosen cluster size.
1108 	 */
1109 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1110 
1111 	/*
1112 	 * Set inode alignment fields
1113 	 */
1114 	xfs_set_inoalignment(mp);
1115 
1116 	/*
1117 	 * Check that the data (and log if separate) are an ok size.
1118 	 */
1119 	error = xfs_check_sizes(mp);
1120 	if (error)
1121 		goto out_remove_uuid;
1122 
1123 	/*
1124 	 * Initialize realtime fields in the mount structure
1125 	 */
1126 	error = xfs_rtmount_init(mp);
1127 	if (error) {
1128 		cmn_err(CE_WARN, "XFS: RT mount failed");
1129 		goto out_remove_uuid;
1130 	}
1131 
1132 	/*
1133 	 *  Copies the low order bits of the timestamp and the randomly
1134 	 *  set "sequence" number out of a UUID.
1135 	 */
1136 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1137 
1138 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1139 
1140 	xfs_dir_mount(mp);
1141 
1142 	/*
1143 	 * Initialize the attribute manager's entries.
1144 	 */
1145 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1146 
1147 	/*
1148 	 * Initialize the precomputed transaction reservations values.
1149 	 */
1150 	xfs_trans_init(mp);
1151 
1152 	/*
1153 	 * Allocate and initialize the per-ag data.
1154 	 */
1155 	init_rwsem(&mp->m_peraglock);
1156 	mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1157 				  KM_MAYFAIL);
1158 	if (!mp->m_perag)
1159 		goto out_remove_uuid;
1160 
1161 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1162 
1163 	if (!sbp->sb_logblocks) {
1164 		cmn_err(CE_WARN, "XFS: no log defined");
1165 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1166 		error = XFS_ERROR(EFSCORRUPTED);
1167 		goto out_free_perag;
1168 	}
1169 
1170 	/*
1171 	 * log's mount-time initialization. Perform 1st part recovery if needed
1172 	 */
1173 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1174 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1175 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1176 	if (error) {
1177 		cmn_err(CE_WARN, "XFS: log mount failed");
1178 		goto out_free_perag;
1179 	}
1180 
1181 	/*
1182 	 * Now the log is mounted, we know if it was an unclean shutdown or
1183 	 * not. If it was, with the first phase of recovery has completed, we
1184 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1185 	 * but they are recovered transactionally in the second recovery phase
1186 	 * later.
1187 	 *
1188 	 * Hence we can safely re-initialise incore superblock counters from
1189 	 * the per-ag data. These may not be correct if the filesystem was not
1190 	 * cleanly unmounted, so we need to wait for recovery to finish before
1191 	 * doing this.
1192 	 *
1193 	 * If the filesystem was cleanly unmounted, then we can trust the
1194 	 * values in the superblock to be correct and we don't need to do
1195 	 * anything here.
1196 	 *
1197 	 * If we are currently making the filesystem, the initialisation will
1198 	 * fail as the perag data is in an undefined state.
1199 	 */
1200 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1201 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1202 	     !mp->m_sb.sb_inprogress) {
1203 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1204 		if (error)
1205 			goto out_free_perag;
1206 	}
1207 
1208 	/*
1209 	 * Get and sanity-check the root inode.
1210 	 * Save the pointer to it in the mount structure.
1211 	 */
1212 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1213 	if (error) {
1214 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1215 		goto out_log_dealloc;
1216 	}
1217 
1218 	ASSERT(rip != NULL);
1219 
1220 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1221 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1222 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1223 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1224 			(unsigned long long)rip->i_ino);
1225 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1226 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1227 				 mp);
1228 		error = XFS_ERROR(EFSCORRUPTED);
1229 		goto out_rele_rip;
1230 	}
1231 	mp->m_rootip = rip;	/* save it */
1232 
1233 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1234 
1235 	/*
1236 	 * Initialize realtime inode pointers in the mount structure
1237 	 */
1238 	error = xfs_rtmount_inodes(mp);
1239 	if (error) {
1240 		/*
1241 		 * Free up the root inode.
1242 		 */
1243 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1244 		goto out_rele_rip;
1245 	}
1246 
1247 	/*
1248 	 * If this is a read-only mount defer the superblock updates until
1249 	 * the next remount into writeable mode.  Otherwise we would never
1250 	 * perform the update e.g. for the root filesystem.
1251 	 */
1252 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1253 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1254 		if (error) {
1255 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1256 			goto out_rtunmount;
1257 		}
1258 	}
1259 
1260 	/*
1261 	 * Initialise the XFS quota management subsystem for this mount
1262 	 */
1263 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1264 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1265 		if (error)
1266 			goto out_rtunmount;
1267 	} else {
1268 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1269 
1270 		/*
1271 		 * If a file system had quotas running earlier, but decided to
1272 		 * mount without -o uquota/pquota/gquota options, revoke the
1273 		 * quotachecked license.
1274 		 */
1275 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1276 			cmn_err(CE_NOTE,
1277 				"XFS: resetting qflags for filesystem %s",
1278 				mp->m_fsname);
1279 
1280 			error = xfs_mount_reset_sbqflags(mp);
1281 			if (error)
1282 				return error;
1283 		}
1284 	}
1285 
1286 	/*
1287 	 * Finish recovering the file system.  This part needed to be
1288 	 * delayed until after the root and real-time bitmap inodes
1289 	 * were consistently read in.
1290 	 */
1291 	error = xfs_log_mount_finish(mp);
1292 	if (error) {
1293 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1294 		goto out_rtunmount;
1295 	}
1296 
1297 	/*
1298 	 * Complete the quota initialisation, post-log-replay component.
1299 	 */
1300 	if (quotamount) {
1301 		ASSERT(mp->m_qflags == 0);
1302 		mp->m_qflags = quotaflags;
1303 
1304 		xfs_qm_mount_quotas(mp);
1305 	}
1306 
1307 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
1308 	if (XFS_IS_QUOTA_ON(mp))
1309 		xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on");
1310 	else
1311 		xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on");
1312 #endif
1313 
1314 	/*
1315 	 * Now we are mounted, reserve a small amount of unused space for
1316 	 * privileged transactions. This is needed so that transaction
1317 	 * space required for critical operations can dip into this pool
1318 	 * when at ENOSPC. This is needed for operations like create with
1319 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1320 	 * are not allowed to use this reserved space.
1321 	 *
1322 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1323 	 * This may drive us straight to ENOSPC on mount, but that implies
1324 	 * we were already there on the last unmount. Warn if this occurs.
1325 	 */
1326 	resblks = mp->m_sb.sb_dblocks;
1327 	do_div(resblks, 20);
1328 	resblks = min_t(__uint64_t, resblks, 1024);
1329 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1330 	if (error)
1331 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1332 				"Continuing without a reserve pool.");
1333 
1334 	return 0;
1335 
1336  out_rtunmount:
1337 	xfs_rtunmount_inodes(mp);
1338  out_rele_rip:
1339 	IRELE(rip);
1340  out_log_dealloc:
1341 	xfs_log_unmount(mp);
1342  out_free_perag:
1343 	xfs_free_perag(mp);
1344  out_remove_uuid:
1345 	xfs_uuid_unmount(mp);
1346  out:
1347 	return error;
1348 }
1349 
1350 /*
1351  * This flushes out the inodes,dquots and the superblock, unmounts the
1352  * log and makes sure that incore structures are freed.
1353  */
1354 void
1355 xfs_unmountfs(
1356 	struct xfs_mount	*mp)
1357 {
1358 	__uint64_t		resblks;
1359 	int			error;
1360 
1361 	xfs_qm_unmount_quotas(mp);
1362 	xfs_rtunmount_inodes(mp);
1363 	IRELE(mp->m_rootip);
1364 
1365 	/*
1366 	 * We can potentially deadlock here if we have an inode cluster
1367 	 * that has been freed has its buffer still pinned in memory because
1368 	 * the transaction is still sitting in a iclog. The stale inodes
1369 	 * on that buffer will have their flush locks held until the
1370 	 * transaction hits the disk and the callbacks run. the inode
1371 	 * flush takes the flush lock unconditionally and with nothing to
1372 	 * push out the iclog we will never get that unlocked. hence we
1373 	 * need to force the log first.
1374 	 */
1375 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1376 	xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC);
1377 
1378 	xfs_qm_unmount(mp);
1379 
1380 	/*
1381 	 * Flush out the log synchronously so that we know for sure
1382 	 * that nothing is pinned.  This is important because bflush()
1383 	 * will skip pinned buffers.
1384 	 */
1385 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1386 
1387 	xfs_binval(mp->m_ddev_targp);
1388 	if (mp->m_rtdev_targp) {
1389 		xfs_binval(mp->m_rtdev_targp);
1390 	}
1391 
1392 	/*
1393 	 * Unreserve any blocks we have so that when we unmount we don't account
1394 	 * the reserved free space as used. This is really only necessary for
1395 	 * lazy superblock counting because it trusts the incore superblock
1396 	 * counters to be absolutely correct on clean unmount.
1397 	 *
1398 	 * We don't bother correcting this elsewhere for lazy superblock
1399 	 * counting because on mount of an unclean filesystem we reconstruct the
1400 	 * correct counter value and this is irrelevant.
1401 	 *
1402 	 * For non-lazy counter filesystems, this doesn't matter at all because
1403 	 * we only every apply deltas to the superblock and hence the incore
1404 	 * value does not matter....
1405 	 */
1406 	resblks = 0;
1407 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1408 	if (error)
1409 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1410 				"Freespace may not be correct on next mount.");
1411 
1412 	error = xfs_log_sbcount(mp, 1);
1413 	if (error)
1414 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1415 				"Freespace may not be correct on next mount.");
1416 	xfs_unmountfs_writesb(mp);
1417 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1418 	xfs_log_unmount_write(mp);
1419 	xfs_log_unmount(mp);
1420 	xfs_uuid_unmount(mp);
1421 
1422 #if defined(DEBUG)
1423 	xfs_errortag_clearall(mp, 0);
1424 #endif
1425 	xfs_free_perag(mp);
1426 }
1427 
1428 STATIC void
1429 xfs_unmountfs_wait(xfs_mount_t *mp)
1430 {
1431 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1432 		xfs_wait_buftarg(mp->m_logdev_targp);
1433 	if (mp->m_rtdev_targp)
1434 		xfs_wait_buftarg(mp->m_rtdev_targp);
1435 	xfs_wait_buftarg(mp->m_ddev_targp);
1436 }
1437 
1438 int
1439 xfs_fs_writable(xfs_mount_t *mp)
1440 {
1441 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1442 		(mp->m_flags & XFS_MOUNT_RDONLY));
1443 }
1444 
1445 /*
1446  * xfs_log_sbcount
1447  *
1448  * Called either periodically to keep the on disk superblock values
1449  * roughly up to date or from unmount to make sure the values are
1450  * correct on a clean unmount.
1451  *
1452  * Note this code can be called during the process of freezing, so
1453  * we may need to use the transaction allocator which does not not
1454  * block when the transaction subsystem is in its frozen state.
1455  */
1456 int
1457 xfs_log_sbcount(
1458 	xfs_mount_t	*mp,
1459 	uint		sync)
1460 {
1461 	xfs_trans_t	*tp;
1462 	int		error;
1463 
1464 	if (!xfs_fs_writable(mp))
1465 		return 0;
1466 
1467 	xfs_icsb_sync_counters(mp, 0);
1468 
1469 	/*
1470 	 * we don't need to do this if we are updating the superblock
1471 	 * counters on every modification.
1472 	 */
1473 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1474 		return 0;
1475 
1476 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1477 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1478 					XFS_DEFAULT_LOG_COUNT);
1479 	if (error) {
1480 		xfs_trans_cancel(tp, 0);
1481 		return error;
1482 	}
1483 
1484 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1485 	if (sync)
1486 		xfs_trans_set_sync(tp);
1487 	error = xfs_trans_commit(tp, 0);
1488 	return error;
1489 }
1490 
1491 int
1492 xfs_unmountfs_writesb(xfs_mount_t *mp)
1493 {
1494 	xfs_buf_t	*sbp;
1495 	int		error = 0;
1496 
1497 	/*
1498 	 * skip superblock write if fs is read-only, or
1499 	 * if we are doing a forced umount.
1500 	 */
1501 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1502 		XFS_FORCED_SHUTDOWN(mp))) {
1503 
1504 		sbp = xfs_getsb(mp, 0);
1505 
1506 		XFS_BUF_UNDONE(sbp);
1507 		XFS_BUF_UNREAD(sbp);
1508 		XFS_BUF_UNDELAYWRITE(sbp);
1509 		XFS_BUF_WRITE(sbp);
1510 		XFS_BUF_UNASYNC(sbp);
1511 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1512 		xfsbdstrat(mp, sbp);
1513 		error = xfs_iowait(sbp);
1514 		if (error)
1515 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1516 					  mp, sbp, XFS_BUF_ADDR(sbp));
1517 		xfs_buf_relse(sbp);
1518 	}
1519 	return error;
1520 }
1521 
1522 /*
1523  * xfs_mod_sb() can be used to copy arbitrary changes to the
1524  * in-core superblock into the superblock buffer to be logged.
1525  * It does not provide the higher level of locking that is
1526  * needed to protect the in-core superblock from concurrent
1527  * access.
1528  */
1529 void
1530 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1531 {
1532 	xfs_buf_t	*bp;
1533 	int		first;
1534 	int		last;
1535 	xfs_mount_t	*mp;
1536 	xfs_sb_field_t	f;
1537 
1538 	ASSERT(fields);
1539 	if (!fields)
1540 		return;
1541 	mp = tp->t_mountp;
1542 	bp = xfs_trans_getsb(tp, mp, 0);
1543 	first = sizeof(xfs_sb_t);
1544 	last = 0;
1545 
1546 	/* translate/copy */
1547 
1548 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1549 
1550 	/* find modified range */
1551 
1552 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1553 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1554 	first = xfs_sb_info[f].offset;
1555 
1556 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1557 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1558 	last = xfs_sb_info[f + 1].offset - 1;
1559 
1560 	xfs_trans_log_buf(tp, bp, first, last);
1561 }
1562 
1563 
1564 /*
1565  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1566  * a delta to a specified field in the in-core superblock.  Simply
1567  * switch on the field indicated and apply the delta to that field.
1568  * Fields are not allowed to dip below zero, so if the delta would
1569  * do this do not apply it and return EINVAL.
1570  *
1571  * The m_sb_lock must be held when this routine is called.
1572  */
1573 STATIC int
1574 xfs_mod_incore_sb_unlocked(
1575 	xfs_mount_t	*mp,
1576 	xfs_sb_field_t	field,
1577 	int64_t		delta,
1578 	int		rsvd)
1579 {
1580 	int		scounter;	/* short counter for 32 bit fields */
1581 	long long	lcounter;	/* long counter for 64 bit fields */
1582 	long long	res_used, rem;
1583 
1584 	/*
1585 	 * With the in-core superblock spin lock held, switch
1586 	 * on the indicated field.  Apply the delta to the
1587 	 * proper field.  If the fields value would dip below
1588 	 * 0, then do not apply the delta and return EINVAL.
1589 	 */
1590 	switch (field) {
1591 	case XFS_SBS_ICOUNT:
1592 		lcounter = (long long)mp->m_sb.sb_icount;
1593 		lcounter += delta;
1594 		if (lcounter < 0) {
1595 			ASSERT(0);
1596 			return XFS_ERROR(EINVAL);
1597 		}
1598 		mp->m_sb.sb_icount = lcounter;
1599 		return 0;
1600 	case XFS_SBS_IFREE:
1601 		lcounter = (long long)mp->m_sb.sb_ifree;
1602 		lcounter += delta;
1603 		if (lcounter < 0) {
1604 			ASSERT(0);
1605 			return XFS_ERROR(EINVAL);
1606 		}
1607 		mp->m_sb.sb_ifree = lcounter;
1608 		return 0;
1609 	case XFS_SBS_FDBLOCKS:
1610 		lcounter = (long long)
1611 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1612 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1613 
1614 		if (delta > 0) {		/* Putting blocks back */
1615 			if (res_used > delta) {
1616 				mp->m_resblks_avail += delta;
1617 			} else {
1618 				rem = delta - res_used;
1619 				mp->m_resblks_avail = mp->m_resblks;
1620 				lcounter += rem;
1621 			}
1622 		} else {				/* Taking blocks away */
1623 
1624 			lcounter += delta;
1625 
1626 		/*
1627 		 * If were out of blocks, use any available reserved blocks if
1628 		 * were allowed to.
1629 		 */
1630 
1631 			if (lcounter < 0) {
1632 				if (rsvd) {
1633 					lcounter = (long long)mp->m_resblks_avail + delta;
1634 					if (lcounter < 0) {
1635 						return XFS_ERROR(ENOSPC);
1636 					}
1637 					mp->m_resblks_avail = lcounter;
1638 					return 0;
1639 				} else {	/* not reserved */
1640 					return XFS_ERROR(ENOSPC);
1641 				}
1642 			}
1643 		}
1644 
1645 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1646 		return 0;
1647 	case XFS_SBS_FREXTENTS:
1648 		lcounter = (long long)mp->m_sb.sb_frextents;
1649 		lcounter += delta;
1650 		if (lcounter < 0) {
1651 			return XFS_ERROR(ENOSPC);
1652 		}
1653 		mp->m_sb.sb_frextents = lcounter;
1654 		return 0;
1655 	case XFS_SBS_DBLOCKS:
1656 		lcounter = (long long)mp->m_sb.sb_dblocks;
1657 		lcounter += delta;
1658 		if (lcounter < 0) {
1659 			ASSERT(0);
1660 			return XFS_ERROR(EINVAL);
1661 		}
1662 		mp->m_sb.sb_dblocks = lcounter;
1663 		return 0;
1664 	case XFS_SBS_AGCOUNT:
1665 		scounter = mp->m_sb.sb_agcount;
1666 		scounter += delta;
1667 		if (scounter < 0) {
1668 			ASSERT(0);
1669 			return XFS_ERROR(EINVAL);
1670 		}
1671 		mp->m_sb.sb_agcount = scounter;
1672 		return 0;
1673 	case XFS_SBS_IMAX_PCT:
1674 		scounter = mp->m_sb.sb_imax_pct;
1675 		scounter += delta;
1676 		if (scounter < 0) {
1677 			ASSERT(0);
1678 			return XFS_ERROR(EINVAL);
1679 		}
1680 		mp->m_sb.sb_imax_pct = scounter;
1681 		return 0;
1682 	case XFS_SBS_REXTSIZE:
1683 		scounter = mp->m_sb.sb_rextsize;
1684 		scounter += delta;
1685 		if (scounter < 0) {
1686 			ASSERT(0);
1687 			return XFS_ERROR(EINVAL);
1688 		}
1689 		mp->m_sb.sb_rextsize = scounter;
1690 		return 0;
1691 	case XFS_SBS_RBMBLOCKS:
1692 		scounter = mp->m_sb.sb_rbmblocks;
1693 		scounter += delta;
1694 		if (scounter < 0) {
1695 			ASSERT(0);
1696 			return XFS_ERROR(EINVAL);
1697 		}
1698 		mp->m_sb.sb_rbmblocks = scounter;
1699 		return 0;
1700 	case XFS_SBS_RBLOCKS:
1701 		lcounter = (long long)mp->m_sb.sb_rblocks;
1702 		lcounter += delta;
1703 		if (lcounter < 0) {
1704 			ASSERT(0);
1705 			return XFS_ERROR(EINVAL);
1706 		}
1707 		mp->m_sb.sb_rblocks = lcounter;
1708 		return 0;
1709 	case XFS_SBS_REXTENTS:
1710 		lcounter = (long long)mp->m_sb.sb_rextents;
1711 		lcounter += delta;
1712 		if (lcounter < 0) {
1713 			ASSERT(0);
1714 			return XFS_ERROR(EINVAL);
1715 		}
1716 		mp->m_sb.sb_rextents = lcounter;
1717 		return 0;
1718 	case XFS_SBS_REXTSLOG:
1719 		scounter = mp->m_sb.sb_rextslog;
1720 		scounter += delta;
1721 		if (scounter < 0) {
1722 			ASSERT(0);
1723 			return XFS_ERROR(EINVAL);
1724 		}
1725 		mp->m_sb.sb_rextslog = scounter;
1726 		return 0;
1727 	default:
1728 		ASSERT(0);
1729 		return XFS_ERROR(EINVAL);
1730 	}
1731 }
1732 
1733 /*
1734  * xfs_mod_incore_sb() is used to change a field in the in-core
1735  * superblock structure by the specified delta.  This modification
1736  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1737  * routine to do the work.
1738  */
1739 int
1740 xfs_mod_incore_sb(
1741 	xfs_mount_t	*mp,
1742 	xfs_sb_field_t	field,
1743 	int64_t		delta,
1744 	int		rsvd)
1745 {
1746 	int	status;
1747 
1748 	/* check for per-cpu counters */
1749 	switch (field) {
1750 #ifdef HAVE_PERCPU_SB
1751 	case XFS_SBS_ICOUNT:
1752 	case XFS_SBS_IFREE:
1753 	case XFS_SBS_FDBLOCKS:
1754 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1755 			status = xfs_icsb_modify_counters(mp, field,
1756 							delta, rsvd);
1757 			break;
1758 		}
1759 		/* FALLTHROUGH */
1760 #endif
1761 	default:
1762 		spin_lock(&mp->m_sb_lock);
1763 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1764 		spin_unlock(&mp->m_sb_lock);
1765 		break;
1766 	}
1767 
1768 	return status;
1769 }
1770 
1771 /*
1772  * xfs_mod_incore_sb_batch() is used to change more than one field
1773  * in the in-core superblock structure at a time.  This modification
1774  * is protected by a lock internal to this module.  The fields and
1775  * changes to those fields are specified in the array of xfs_mod_sb
1776  * structures passed in.
1777  *
1778  * Either all of the specified deltas will be applied or none of
1779  * them will.  If any modified field dips below 0, then all modifications
1780  * will be backed out and EINVAL will be returned.
1781  */
1782 int
1783 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1784 {
1785 	int		status=0;
1786 	xfs_mod_sb_t	*msbp;
1787 
1788 	/*
1789 	 * Loop through the array of mod structures and apply each
1790 	 * individually.  If any fail, then back out all those
1791 	 * which have already been applied.  Do all of this within
1792 	 * the scope of the m_sb_lock so that all of the changes will
1793 	 * be atomic.
1794 	 */
1795 	spin_lock(&mp->m_sb_lock);
1796 	msbp = &msb[0];
1797 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1798 		/*
1799 		 * Apply the delta at index n.  If it fails, break
1800 		 * from the loop so we'll fall into the undo loop
1801 		 * below.
1802 		 */
1803 		switch (msbp->msb_field) {
1804 #ifdef HAVE_PERCPU_SB
1805 		case XFS_SBS_ICOUNT:
1806 		case XFS_SBS_IFREE:
1807 		case XFS_SBS_FDBLOCKS:
1808 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1809 				spin_unlock(&mp->m_sb_lock);
1810 				status = xfs_icsb_modify_counters(mp,
1811 							msbp->msb_field,
1812 							msbp->msb_delta, rsvd);
1813 				spin_lock(&mp->m_sb_lock);
1814 				break;
1815 			}
1816 			/* FALLTHROUGH */
1817 #endif
1818 		default:
1819 			status = xfs_mod_incore_sb_unlocked(mp,
1820 						msbp->msb_field,
1821 						msbp->msb_delta, rsvd);
1822 			break;
1823 		}
1824 
1825 		if (status != 0) {
1826 			break;
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * If we didn't complete the loop above, then back out
1832 	 * any changes made to the superblock.  If you add code
1833 	 * between the loop above and here, make sure that you
1834 	 * preserve the value of status. Loop back until
1835 	 * we step below the beginning of the array.  Make sure
1836 	 * we don't touch anything back there.
1837 	 */
1838 	if (status != 0) {
1839 		msbp--;
1840 		while (msbp >= msb) {
1841 			switch (msbp->msb_field) {
1842 #ifdef HAVE_PERCPU_SB
1843 			case XFS_SBS_ICOUNT:
1844 			case XFS_SBS_IFREE:
1845 			case XFS_SBS_FDBLOCKS:
1846 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1847 					spin_unlock(&mp->m_sb_lock);
1848 					status = xfs_icsb_modify_counters(mp,
1849 							msbp->msb_field,
1850 							-(msbp->msb_delta),
1851 							rsvd);
1852 					spin_lock(&mp->m_sb_lock);
1853 					break;
1854 				}
1855 				/* FALLTHROUGH */
1856 #endif
1857 			default:
1858 				status = xfs_mod_incore_sb_unlocked(mp,
1859 							msbp->msb_field,
1860 							-(msbp->msb_delta),
1861 							rsvd);
1862 				break;
1863 			}
1864 			ASSERT(status == 0);
1865 			msbp--;
1866 		}
1867 	}
1868 	spin_unlock(&mp->m_sb_lock);
1869 	return status;
1870 }
1871 
1872 /*
1873  * xfs_getsb() is called to obtain the buffer for the superblock.
1874  * The buffer is returned locked and read in from disk.
1875  * The buffer should be released with a call to xfs_brelse().
1876  *
1877  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1878  * the superblock buffer if it can be locked without sleeping.
1879  * If it can't then we'll return NULL.
1880  */
1881 xfs_buf_t *
1882 xfs_getsb(
1883 	xfs_mount_t	*mp,
1884 	int		flags)
1885 {
1886 	xfs_buf_t	*bp;
1887 
1888 	ASSERT(mp->m_sb_bp != NULL);
1889 	bp = mp->m_sb_bp;
1890 	if (flags & XFS_BUF_TRYLOCK) {
1891 		if (!XFS_BUF_CPSEMA(bp)) {
1892 			return NULL;
1893 		}
1894 	} else {
1895 		XFS_BUF_PSEMA(bp, PRIBIO);
1896 	}
1897 	XFS_BUF_HOLD(bp);
1898 	ASSERT(XFS_BUF_ISDONE(bp));
1899 	return bp;
1900 }
1901 
1902 /*
1903  * Used to free the superblock along various error paths.
1904  */
1905 void
1906 xfs_freesb(
1907 	xfs_mount_t	*mp)
1908 {
1909 	xfs_buf_t	*bp;
1910 
1911 	/*
1912 	 * Use xfs_getsb() so that the buffer will be locked
1913 	 * when we call xfs_buf_relse().
1914 	 */
1915 	bp = xfs_getsb(mp, 0);
1916 	XFS_BUF_UNMANAGE(bp);
1917 	xfs_buf_relse(bp);
1918 	mp->m_sb_bp = NULL;
1919 }
1920 
1921 /*
1922  * Used to log changes to the superblock unit and width fields which could
1923  * be altered by the mount options, as well as any potential sb_features2
1924  * fixup. Only the first superblock is updated.
1925  */
1926 int
1927 xfs_mount_log_sb(
1928 	xfs_mount_t	*mp,
1929 	__int64_t	fields)
1930 {
1931 	xfs_trans_t	*tp;
1932 	int		error;
1933 
1934 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1935 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1936 			 XFS_SB_VERSIONNUM));
1937 
1938 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1939 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1940 				XFS_DEFAULT_LOG_COUNT);
1941 	if (error) {
1942 		xfs_trans_cancel(tp, 0);
1943 		return error;
1944 	}
1945 	xfs_mod_sb(tp, fields);
1946 	error = xfs_trans_commit(tp, 0);
1947 	return error;
1948 }
1949 
1950 
1951 #ifdef HAVE_PERCPU_SB
1952 /*
1953  * Per-cpu incore superblock counters
1954  *
1955  * Simple concept, difficult implementation
1956  *
1957  * Basically, replace the incore superblock counters with a distributed per cpu
1958  * counter for contended fields (e.g.  free block count).
1959  *
1960  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1961  * hence needs to be accurately read when we are running low on space. Hence
1962  * there is a method to enable and disable the per-cpu counters based on how
1963  * much "stuff" is available in them.
1964  *
1965  * Basically, a counter is enabled if there is enough free resource to justify
1966  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1967  * ENOSPC), then we disable the counters to synchronise all callers and
1968  * re-distribute the available resources.
1969  *
1970  * If, once we redistributed the available resources, we still get a failure,
1971  * we disable the per-cpu counter and go through the slow path.
1972  *
1973  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1974  * when we disable a per-cpu counter, we need to drain its resources back to
1975  * the global superblock. We do this after disabling the counter to prevent
1976  * more threads from queueing up on the counter.
1977  *
1978  * Essentially, this means that we still need a lock in the fast path to enable
1979  * synchronisation between the global counters and the per-cpu counters. This
1980  * is not a problem because the lock will be local to a CPU almost all the time
1981  * and have little contention except when we get to ENOSPC conditions.
1982  *
1983  * Basically, this lock becomes a barrier that enables us to lock out the fast
1984  * path while we do things like enabling and disabling counters and
1985  * synchronising the counters.
1986  *
1987  * Locking rules:
1988  *
1989  * 	1. m_sb_lock before picking up per-cpu locks
1990  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1991  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1992  * 	4. modifying per-cpu counters requires holding per-cpu lock
1993  * 	5. modifying global counters requires holding m_sb_lock
1994  *	6. enabling or disabling a counter requires holding the m_sb_lock
1995  *	   and _none_ of the per-cpu locks.
1996  *
1997  * Disabled counters are only ever re-enabled by a balance operation
1998  * that results in more free resources per CPU than a given threshold.
1999  * To ensure counters don't remain disabled, they are rebalanced when
2000  * the global resource goes above a higher threshold (i.e. some hysteresis
2001  * is present to prevent thrashing).
2002  */
2003 
2004 #ifdef CONFIG_HOTPLUG_CPU
2005 /*
2006  * hot-plug CPU notifier support.
2007  *
2008  * We need a notifier per filesystem as we need to be able to identify
2009  * the filesystem to balance the counters out. This is achieved by
2010  * having a notifier block embedded in the xfs_mount_t and doing pointer
2011  * magic to get the mount pointer from the notifier block address.
2012  */
2013 STATIC int
2014 xfs_icsb_cpu_notify(
2015 	struct notifier_block *nfb,
2016 	unsigned long action,
2017 	void *hcpu)
2018 {
2019 	xfs_icsb_cnts_t *cntp;
2020 	xfs_mount_t	*mp;
2021 
2022 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2023 	cntp = (xfs_icsb_cnts_t *)
2024 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2025 	switch (action) {
2026 	case CPU_UP_PREPARE:
2027 	case CPU_UP_PREPARE_FROZEN:
2028 		/* Easy Case - initialize the area and locks, and
2029 		 * then rebalance when online does everything else for us. */
2030 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2031 		break;
2032 	case CPU_ONLINE:
2033 	case CPU_ONLINE_FROZEN:
2034 		xfs_icsb_lock(mp);
2035 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2036 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2037 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2038 		xfs_icsb_unlock(mp);
2039 		break;
2040 	case CPU_DEAD:
2041 	case CPU_DEAD_FROZEN:
2042 		/* Disable all the counters, then fold the dead cpu's
2043 		 * count into the total on the global superblock and
2044 		 * re-enable the counters. */
2045 		xfs_icsb_lock(mp);
2046 		spin_lock(&mp->m_sb_lock);
2047 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2048 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2049 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2050 
2051 		mp->m_sb.sb_icount += cntp->icsb_icount;
2052 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2053 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2054 
2055 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2056 
2057 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2058 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2059 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2060 		spin_unlock(&mp->m_sb_lock);
2061 		xfs_icsb_unlock(mp);
2062 		break;
2063 	}
2064 
2065 	return NOTIFY_OK;
2066 }
2067 #endif /* CONFIG_HOTPLUG_CPU */
2068 
2069 int
2070 xfs_icsb_init_counters(
2071 	xfs_mount_t	*mp)
2072 {
2073 	xfs_icsb_cnts_t *cntp;
2074 	int		i;
2075 
2076 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2077 	if (mp->m_sb_cnts == NULL)
2078 		return -ENOMEM;
2079 
2080 #ifdef CONFIG_HOTPLUG_CPU
2081 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2082 	mp->m_icsb_notifier.priority = 0;
2083 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2084 #endif /* CONFIG_HOTPLUG_CPU */
2085 
2086 	for_each_online_cpu(i) {
2087 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2088 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2089 	}
2090 
2091 	mutex_init(&mp->m_icsb_mutex);
2092 
2093 	/*
2094 	 * start with all counters disabled so that the
2095 	 * initial balance kicks us off correctly
2096 	 */
2097 	mp->m_icsb_counters = -1;
2098 	return 0;
2099 }
2100 
2101 void
2102 xfs_icsb_reinit_counters(
2103 	xfs_mount_t	*mp)
2104 {
2105 	xfs_icsb_lock(mp);
2106 	/*
2107 	 * start with all counters disabled so that the
2108 	 * initial balance kicks us off correctly
2109 	 */
2110 	mp->m_icsb_counters = -1;
2111 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2112 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2113 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2114 	xfs_icsb_unlock(mp);
2115 }
2116 
2117 void
2118 xfs_icsb_destroy_counters(
2119 	xfs_mount_t	*mp)
2120 {
2121 	if (mp->m_sb_cnts) {
2122 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2123 		free_percpu(mp->m_sb_cnts);
2124 	}
2125 	mutex_destroy(&mp->m_icsb_mutex);
2126 }
2127 
2128 STATIC void
2129 xfs_icsb_lock_cntr(
2130 	xfs_icsb_cnts_t	*icsbp)
2131 {
2132 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2133 		ndelay(1000);
2134 	}
2135 }
2136 
2137 STATIC void
2138 xfs_icsb_unlock_cntr(
2139 	xfs_icsb_cnts_t	*icsbp)
2140 {
2141 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2142 }
2143 
2144 
2145 STATIC void
2146 xfs_icsb_lock_all_counters(
2147 	xfs_mount_t	*mp)
2148 {
2149 	xfs_icsb_cnts_t *cntp;
2150 	int		i;
2151 
2152 	for_each_online_cpu(i) {
2153 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2154 		xfs_icsb_lock_cntr(cntp);
2155 	}
2156 }
2157 
2158 STATIC void
2159 xfs_icsb_unlock_all_counters(
2160 	xfs_mount_t	*mp)
2161 {
2162 	xfs_icsb_cnts_t *cntp;
2163 	int		i;
2164 
2165 	for_each_online_cpu(i) {
2166 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2167 		xfs_icsb_unlock_cntr(cntp);
2168 	}
2169 }
2170 
2171 STATIC void
2172 xfs_icsb_count(
2173 	xfs_mount_t	*mp,
2174 	xfs_icsb_cnts_t	*cnt,
2175 	int		flags)
2176 {
2177 	xfs_icsb_cnts_t *cntp;
2178 	int		i;
2179 
2180 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2181 
2182 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2183 		xfs_icsb_lock_all_counters(mp);
2184 
2185 	for_each_online_cpu(i) {
2186 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2187 		cnt->icsb_icount += cntp->icsb_icount;
2188 		cnt->icsb_ifree += cntp->icsb_ifree;
2189 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2190 	}
2191 
2192 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2193 		xfs_icsb_unlock_all_counters(mp);
2194 }
2195 
2196 STATIC int
2197 xfs_icsb_counter_disabled(
2198 	xfs_mount_t	*mp,
2199 	xfs_sb_field_t	field)
2200 {
2201 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2202 	return test_bit(field, &mp->m_icsb_counters);
2203 }
2204 
2205 STATIC void
2206 xfs_icsb_disable_counter(
2207 	xfs_mount_t	*mp,
2208 	xfs_sb_field_t	field)
2209 {
2210 	xfs_icsb_cnts_t	cnt;
2211 
2212 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2213 
2214 	/*
2215 	 * If we are already disabled, then there is nothing to do
2216 	 * here. We check before locking all the counters to avoid
2217 	 * the expensive lock operation when being called in the
2218 	 * slow path and the counter is already disabled. This is
2219 	 * safe because the only time we set or clear this state is under
2220 	 * the m_icsb_mutex.
2221 	 */
2222 	if (xfs_icsb_counter_disabled(mp, field))
2223 		return;
2224 
2225 	xfs_icsb_lock_all_counters(mp);
2226 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2227 		/* drain back to superblock */
2228 
2229 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2230 		switch(field) {
2231 		case XFS_SBS_ICOUNT:
2232 			mp->m_sb.sb_icount = cnt.icsb_icount;
2233 			break;
2234 		case XFS_SBS_IFREE:
2235 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2236 			break;
2237 		case XFS_SBS_FDBLOCKS:
2238 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2239 			break;
2240 		default:
2241 			BUG();
2242 		}
2243 	}
2244 
2245 	xfs_icsb_unlock_all_counters(mp);
2246 }
2247 
2248 STATIC void
2249 xfs_icsb_enable_counter(
2250 	xfs_mount_t	*mp,
2251 	xfs_sb_field_t	field,
2252 	uint64_t	count,
2253 	uint64_t	resid)
2254 {
2255 	xfs_icsb_cnts_t	*cntp;
2256 	int		i;
2257 
2258 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2259 
2260 	xfs_icsb_lock_all_counters(mp);
2261 	for_each_online_cpu(i) {
2262 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2263 		switch (field) {
2264 		case XFS_SBS_ICOUNT:
2265 			cntp->icsb_icount = count + resid;
2266 			break;
2267 		case XFS_SBS_IFREE:
2268 			cntp->icsb_ifree = count + resid;
2269 			break;
2270 		case XFS_SBS_FDBLOCKS:
2271 			cntp->icsb_fdblocks = count + resid;
2272 			break;
2273 		default:
2274 			BUG();
2275 			break;
2276 		}
2277 		resid = 0;
2278 	}
2279 	clear_bit(field, &mp->m_icsb_counters);
2280 	xfs_icsb_unlock_all_counters(mp);
2281 }
2282 
2283 void
2284 xfs_icsb_sync_counters_locked(
2285 	xfs_mount_t	*mp,
2286 	int		flags)
2287 {
2288 	xfs_icsb_cnts_t	cnt;
2289 
2290 	xfs_icsb_count(mp, &cnt, flags);
2291 
2292 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2293 		mp->m_sb.sb_icount = cnt.icsb_icount;
2294 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2295 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2296 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2297 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2298 }
2299 
2300 /*
2301  * Accurate update of per-cpu counters to incore superblock
2302  */
2303 void
2304 xfs_icsb_sync_counters(
2305 	xfs_mount_t	*mp,
2306 	int		flags)
2307 {
2308 	spin_lock(&mp->m_sb_lock);
2309 	xfs_icsb_sync_counters_locked(mp, flags);
2310 	spin_unlock(&mp->m_sb_lock);
2311 }
2312 
2313 /*
2314  * Balance and enable/disable counters as necessary.
2315  *
2316  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2317  * chosen to be the same number as single on disk allocation chunk per CPU, and
2318  * free blocks is something far enough zero that we aren't going thrash when we
2319  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2320  * prevent looping endlessly when xfs_alloc_space asks for more than will
2321  * be distributed to a single CPU but each CPU has enough blocks to be
2322  * reenabled.
2323  *
2324  * Note that we can be called when counters are already disabled.
2325  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2326  * prevent locking every per-cpu counter needlessly.
2327  */
2328 
2329 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2330 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2331 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2332 STATIC void
2333 xfs_icsb_balance_counter_locked(
2334 	xfs_mount_t	*mp,
2335 	xfs_sb_field_t  field,
2336 	int		min_per_cpu)
2337 {
2338 	uint64_t	count, resid;
2339 	int		weight = num_online_cpus();
2340 	uint64_t	min = (uint64_t)min_per_cpu;
2341 
2342 	/* disable counter and sync counter */
2343 	xfs_icsb_disable_counter(mp, field);
2344 
2345 	/* update counters  - first CPU gets residual*/
2346 	switch (field) {
2347 	case XFS_SBS_ICOUNT:
2348 		count = mp->m_sb.sb_icount;
2349 		resid = do_div(count, weight);
2350 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2351 			return;
2352 		break;
2353 	case XFS_SBS_IFREE:
2354 		count = mp->m_sb.sb_ifree;
2355 		resid = do_div(count, weight);
2356 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2357 			return;
2358 		break;
2359 	case XFS_SBS_FDBLOCKS:
2360 		count = mp->m_sb.sb_fdblocks;
2361 		resid = do_div(count, weight);
2362 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2363 			return;
2364 		break;
2365 	default:
2366 		BUG();
2367 		count = resid = 0;	/* quiet, gcc */
2368 		break;
2369 	}
2370 
2371 	xfs_icsb_enable_counter(mp, field, count, resid);
2372 }
2373 
2374 STATIC void
2375 xfs_icsb_balance_counter(
2376 	xfs_mount_t	*mp,
2377 	xfs_sb_field_t  fields,
2378 	int		min_per_cpu)
2379 {
2380 	spin_lock(&mp->m_sb_lock);
2381 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2382 	spin_unlock(&mp->m_sb_lock);
2383 }
2384 
2385 STATIC int
2386 xfs_icsb_modify_counters(
2387 	xfs_mount_t	*mp,
2388 	xfs_sb_field_t	field,
2389 	int64_t		delta,
2390 	int		rsvd)
2391 {
2392 	xfs_icsb_cnts_t	*icsbp;
2393 	long long	lcounter;	/* long counter for 64 bit fields */
2394 	int		ret = 0;
2395 
2396 	might_sleep();
2397 again:
2398 	preempt_disable();
2399 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2400 
2401 	/*
2402 	 * if the counter is disabled, go to slow path
2403 	 */
2404 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2405 		goto slow_path;
2406 	xfs_icsb_lock_cntr(icsbp);
2407 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2408 		xfs_icsb_unlock_cntr(icsbp);
2409 		goto slow_path;
2410 	}
2411 
2412 	switch (field) {
2413 	case XFS_SBS_ICOUNT:
2414 		lcounter = icsbp->icsb_icount;
2415 		lcounter += delta;
2416 		if (unlikely(lcounter < 0))
2417 			goto balance_counter;
2418 		icsbp->icsb_icount = lcounter;
2419 		break;
2420 
2421 	case XFS_SBS_IFREE:
2422 		lcounter = icsbp->icsb_ifree;
2423 		lcounter += delta;
2424 		if (unlikely(lcounter < 0))
2425 			goto balance_counter;
2426 		icsbp->icsb_ifree = lcounter;
2427 		break;
2428 
2429 	case XFS_SBS_FDBLOCKS:
2430 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2431 
2432 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2433 		lcounter += delta;
2434 		if (unlikely(lcounter < 0))
2435 			goto balance_counter;
2436 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2437 		break;
2438 	default:
2439 		BUG();
2440 		break;
2441 	}
2442 	xfs_icsb_unlock_cntr(icsbp);
2443 	preempt_enable();
2444 	return 0;
2445 
2446 slow_path:
2447 	preempt_enable();
2448 
2449 	/*
2450 	 * serialise with a mutex so we don't burn lots of cpu on
2451 	 * the superblock lock. We still need to hold the superblock
2452 	 * lock, however, when we modify the global structures.
2453 	 */
2454 	xfs_icsb_lock(mp);
2455 
2456 	/*
2457 	 * Now running atomically.
2458 	 *
2459 	 * If the counter is enabled, someone has beaten us to rebalancing.
2460 	 * Drop the lock and try again in the fast path....
2461 	 */
2462 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2463 		xfs_icsb_unlock(mp);
2464 		goto again;
2465 	}
2466 
2467 	/*
2468 	 * The counter is currently disabled. Because we are
2469 	 * running atomically here, we know a rebalance cannot
2470 	 * be in progress. Hence we can go straight to operating
2471 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2472 	 * here even though we need to get the m_sb_lock. Doing so
2473 	 * will cause us to re-enter this function and deadlock.
2474 	 * Hence we get the m_sb_lock ourselves and then call
2475 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2476 	 * directly on the global counters.
2477 	 */
2478 	spin_lock(&mp->m_sb_lock);
2479 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2480 	spin_unlock(&mp->m_sb_lock);
2481 
2482 	/*
2483 	 * Now that we've modified the global superblock, we
2484 	 * may be able to re-enable the distributed counters
2485 	 * (e.g. lots of space just got freed). After that
2486 	 * we are done.
2487 	 */
2488 	if (ret != ENOSPC)
2489 		xfs_icsb_balance_counter(mp, field, 0);
2490 	xfs_icsb_unlock(mp);
2491 	return ret;
2492 
2493 balance_counter:
2494 	xfs_icsb_unlock_cntr(icsbp);
2495 	preempt_enable();
2496 
2497 	/*
2498 	 * We may have multiple threads here if multiple per-cpu
2499 	 * counters run dry at the same time. This will mean we can
2500 	 * do more balances than strictly necessary but it is not
2501 	 * the common slowpath case.
2502 	 */
2503 	xfs_icsb_lock(mp);
2504 
2505 	/*
2506 	 * running atomically.
2507 	 *
2508 	 * This will leave the counter in the correct state for future
2509 	 * accesses. After the rebalance, we simply try again and our retry
2510 	 * will either succeed through the fast path or slow path without
2511 	 * another balance operation being required.
2512 	 */
2513 	xfs_icsb_balance_counter(mp, field, delta);
2514 	xfs_icsb_unlock(mp);
2515 	goto again;
2516 }
2517 
2518 #endif
2519