1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 #include "xfs_trace.h" 35 36 static DEFINE_MUTEX(xfs_uuid_table_mutex); 37 static int xfs_uuid_table_size; 38 static uuid_t *xfs_uuid_table; 39 40 void 41 xfs_uuid_table_free(void) 42 { 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48 } 49 50 /* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54 STATIC int 55 xfs_uuid_mount( 56 struct xfs_mount *mp) 57 { 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = krealloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 GFP_KERNEL | __GFP_NOFAIL); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97 } 98 99 STATIC void 100 xfs_uuid_unmount( 101 struct xfs_mount *mp) 102 { 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120 } 121 122 123 STATIC void 124 __xfs_free_perag( 125 struct rcu_head *head) 126 { 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 ASSERT(atomic_read(&pag->pag_ref) == 0); 130 kmem_free(pag); 131 } 132 133 /* 134 * Free up the per-ag resources associated with the mount structure. 135 */ 136 STATIC void 137 xfs_free_perag( 138 xfs_mount_t *mp) 139 { 140 xfs_agnumber_t agno; 141 struct xfs_perag *pag; 142 143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 144 spin_lock(&mp->m_perag_lock); 145 pag = radix_tree_delete(&mp->m_perag_tree, agno); 146 spin_unlock(&mp->m_perag_lock); 147 ASSERT(pag); 148 ASSERT(atomic_read(&pag->pag_ref) == 0); 149 xfs_iunlink_destroy(pag); 150 xfs_buf_hash_destroy(pag); 151 call_rcu(&pag->rcu_head, __xfs_free_perag); 152 } 153 } 154 155 /* 156 * Check size of device based on the (data/realtime) block count. 157 * Note: this check is used by the growfs code as well as mount. 158 */ 159 int 160 xfs_sb_validate_fsb_count( 161 xfs_sb_t *sbp, 162 uint64_t nblocks) 163 { 164 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 165 ASSERT(sbp->sb_blocklog >= BBSHIFT); 166 167 /* Limited by ULONG_MAX of page cache index */ 168 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 169 return -EFBIG; 170 return 0; 171 } 172 173 int 174 xfs_initialize_perag( 175 xfs_mount_t *mp, 176 xfs_agnumber_t agcount, 177 xfs_agnumber_t *maxagi) 178 { 179 xfs_agnumber_t index; 180 xfs_agnumber_t first_initialised = NULLAGNUMBER; 181 xfs_perag_t *pag; 182 int error = -ENOMEM; 183 184 /* 185 * Walk the current per-ag tree so we don't try to initialise AGs 186 * that already exist (growfs case). Allocate and insert all the 187 * AGs we don't find ready for initialisation. 188 */ 189 for (index = 0; index < agcount; index++) { 190 pag = xfs_perag_get(mp, index); 191 if (pag) { 192 xfs_perag_put(pag); 193 continue; 194 } 195 196 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 197 if (!pag) 198 goto out_unwind_new_pags; 199 pag->pag_agno = index; 200 pag->pag_mount = mp; 201 spin_lock_init(&pag->pag_ici_lock); 202 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 203 if (xfs_buf_hash_init(pag)) 204 goto out_free_pag; 205 init_waitqueue_head(&pag->pagb_wait); 206 spin_lock_init(&pag->pagb_lock); 207 pag->pagb_count = 0; 208 pag->pagb_tree = RB_ROOT; 209 210 if (radix_tree_preload(GFP_NOFS)) 211 goto out_hash_destroy; 212 213 spin_lock(&mp->m_perag_lock); 214 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 215 WARN_ON_ONCE(1); 216 spin_unlock(&mp->m_perag_lock); 217 radix_tree_preload_end(); 218 error = -EEXIST; 219 goto out_hash_destroy; 220 } 221 spin_unlock(&mp->m_perag_lock); 222 radix_tree_preload_end(); 223 /* first new pag is fully initialized */ 224 if (first_initialised == NULLAGNUMBER) 225 first_initialised = index; 226 error = xfs_iunlink_init(pag); 227 if (error) 228 goto out_hash_destroy; 229 spin_lock_init(&pag->pag_state_lock); 230 } 231 232 index = xfs_set_inode_alloc(mp, agcount); 233 234 if (maxagi) 235 *maxagi = index; 236 237 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 238 return 0; 239 240 out_hash_destroy: 241 xfs_buf_hash_destroy(pag); 242 out_free_pag: 243 kmem_free(pag); 244 out_unwind_new_pags: 245 /* unwind any prior newly initialized pags */ 246 for (index = first_initialised; index < agcount; index++) { 247 pag = radix_tree_delete(&mp->m_perag_tree, index); 248 if (!pag) 249 break; 250 xfs_buf_hash_destroy(pag); 251 xfs_iunlink_destroy(pag); 252 kmem_free(pag); 253 } 254 return error; 255 } 256 257 /* 258 * xfs_readsb 259 * 260 * Does the initial read of the superblock. 261 */ 262 int 263 xfs_readsb( 264 struct xfs_mount *mp, 265 int flags) 266 { 267 unsigned int sector_size; 268 struct xfs_buf *bp; 269 struct xfs_sb *sbp = &mp->m_sb; 270 int error; 271 int loud = !(flags & XFS_MFSI_QUIET); 272 const struct xfs_buf_ops *buf_ops; 273 274 ASSERT(mp->m_sb_bp == NULL); 275 ASSERT(mp->m_ddev_targp != NULL); 276 277 /* 278 * For the initial read, we must guess at the sector 279 * size based on the block device. It's enough to 280 * get the sb_sectsize out of the superblock and 281 * then reread with the proper length. 282 * We don't verify it yet, because it may not be complete. 283 */ 284 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 285 buf_ops = NULL; 286 287 /* 288 * Allocate a (locked) buffer to hold the superblock. This will be kept 289 * around at all times to optimize access to the superblock. Therefore, 290 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 291 * elevated. 292 */ 293 reread: 294 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 295 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 296 buf_ops); 297 if (error) { 298 if (loud) 299 xfs_warn(mp, "SB validate failed with error %d.", error); 300 /* bad CRC means corrupted metadata */ 301 if (error == -EFSBADCRC) 302 error = -EFSCORRUPTED; 303 return error; 304 } 305 306 /* 307 * Initialize the mount structure from the superblock. 308 */ 309 xfs_sb_from_disk(sbp, bp->b_addr); 310 311 /* 312 * If we haven't validated the superblock, do so now before we try 313 * to check the sector size and reread the superblock appropriately. 314 */ 315 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 316 if (loud) 317 xfs_warn(mp, "Invalid superblock magic number"); 318 error = -EINVAL; 319 goto release_buf; 320 } 321 322 /* 323 * We must be able to do sector-sized and sector-aligned IO. 324 */ 325 if (sector_size > sbp->sb_sectsize) { 326 if (loud) 327 xfs_warn(mp, "device supports %u byte sectors (not %u)", 328 sector_size, sbp->sb_sectsize); 329 error = -ENOSYS; 330 goto release_buf; 331 } 332 333 if (buf_ops == NULL) { 334 /* 335 * Re-read the superblock so the buffer is correctly sized, 336 * and properly verified. 337 */ 338 xfs_buf_relse(bp); 339 sector_size = sbp->sb_sectsize; 340 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 341 goto reread; 342 } 343 344 xfs_reinit_percpu_counters(mp); 345 346 /* no need to be quiet anymore, so reset the buf ops */ 347 bp->b_ops = &xfs_sb_buf_ops; 348 349 mp->m_sb_bp = bp; 350 xfs_buf_unlock(bp); 351 return 0; 352 353 release_buf: 354 xfs_buf_relse(bp); 355 return error; 356 } 357 358 /* 359 * If the sunit/swidth change would move the precomputed root inode value, we 360 * must reject the ondisk change because repair will stumble over that. 361 * However, we allow the mount to proceed because we never rejected this 362 * combination before. Returns true to update the sb, false otherwise. 363 */ 364 static inline int 365 xfs_check_new_dalign( 366 struct xfs_mount *mp, 367 int new_dalign, 368 bool *update_sb) 369 { 370 struct xfs_sb *sbp = &mp->m_sb; 371 xfs_ino_t calc_ino; 372 373 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 374 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 375 376 if (sbp->sb_rootino == calc_ino) { 377 *update_sb = true; 378 return 0; 379 } 380 381 xfs_warn(mp, 382 "Cannot change stripe alignment; would require moving root inode."); 383 384 /* 385 * XXX: Next time we add a new incompat feature, this should start 386 * returning -EINVAL to fail the mount. Until then, spit out a warning 387 * that we're ignoring the administrator's instructions. 388 */ 389 xfs_warn(mp, "Skipping superblock stripe alignment update."); 390 *update_sb = false; 391 return 0; 392 } 393 394 /* 395 * If we were provided with new sunit/swidth values as mount options, make sure 396 * that they pass basic alignment and superblock feature checks, and convert 397 * them into the same units (FSB) that everything else expects. This step 398 * /must/ be done before computing the inode geometry. 399 */ 400 STATIC int 401 xfs_validate_new_dalign( 402 struct xfs_mount *mp) 403 { 404 if (mp->m_dalign == 0) 405 return 0; 406 407 /* 408 * If stripe unit and stripe width are not multiples 409 * of the fs blocksize turn off alignment. 410 */ 411 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 412 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 413 xfs_warn(mp, 414 "alignment check failed: sunit/swidth vs. blocksize(%d)", 415 mp->m_sb.sb_blocksize); 416 return -EINVAL; 417 } else { 418 /* 419 * Convert the stripe unit and width to FSBs. 420 */ 421 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 422 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 423 xfs_warn(mp, 424 "alignment check failed: sunit/swidth vs. agsize(%d)", 425 mp->m_sb.sb_agblocks); 426 return -EINVAL; 427 } else if (mp->m_dalign) { 428 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 429 } else { 430 xfs_warn(mp, 431 "alignment check failed: sunit(%d) less than bsize(%d)", 432 mp->m_dalign, mp->m_sb.sb_blocksize); 433 return -EINVAL; 434 } 435 } 436 437 if (!xfs_sb_version_hasdalign(&mp->m_sb)) { 438 xfs_warn(mp, 439 "cannot change alignment: superblock does not support data alignment"); 440 return -EINVAL; 441 } 442 443 return 0; 444 } 445 446 /* Update alignment values based on mount options and sb values. */ 447 STATIC int 448 xfs_update_alignment( 449 struct xfs_mount *mp) 450 { 451 struct xfs_sb *sbp = &mp->m_sb; 452 453 if (mp->m_dalign) { 454 bool update_sb; 455 int error; 456 457 if (sbp->sb_unit == mp->m_dalign && 458 sbp->sb_width == mp->m_swidth) 459 return 0; 460 461 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 462 if (error || !update_sb) 463 return error; 464 465 sbp->sb_unit = mp->m_dalign; 466 sbp->sb_width = mp->m_swidth; 467 mp->m_update_sb = true; 468 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 469 xfs_sb_version_hasdalign(&mp->m_sb)) { 470 mp->m_dalign = sbp->sb_unit; 471 mp->m_swidth = sbp->sb_width; 472 } 473 474 return 0; 475 } 476 477 /* 478 * precalculate the low space thresholds for dynamic speculative preallocation. 479 */ 480 void 481 xfs_set_low_space_thresholds( 482 struct xfs_mount *mp) 483 { 484 int i; 485 486 for (i = 0; i < XFS_LOWSP_MAX; i++) { 487 uint64_t space = mp->m_sb.sb_dblocks; 488 489 do_div(space, 100); 490 mp->m_low_space[i] = space * (i + 1); 491 } 492 } 493 494 /* 495 * Check that the data (and log if separate) is an ok size. 496 */ 497 STATIC int 498 xfs_check_sizes( 499 struct xfs_mount *mp) 500 { 501 struct xfs_buf *bp; 502 xfs_daddr_t d; 503 int error; 504 505 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 506 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 507 xfs_warn(mp, "filesystem size mismatch detected"); 508 return -EFBIG; 509 } 510 error = xfs_buf_read_uncached(mp->m_ddev_targp, 511 d - XFS_FSS_TO_BB(mp, 1), 512 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 513 if (error) { 514 xfs_warn(mp, "last sector read failed"); 515 return error; 516 } 517 xfs_buf_relse(bp); 518 519 if (mp->m_logdev_targp == mp->m_ddev_targp) 520 return 0; 521 522 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 523 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 524 xfs_warn(mp, "log size mismatch detected"); 525 return -EFBIG; 526 } 527 error = xfs_buf_read_uncached(mp->m_logdev_targp, 528 d - XFS_FSB_TO_BB(mp, 1), 529 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 530 if (error) { 531 xfs_warn(mp, "log device read failed"); 532 return error; 533 } 534 xfs_buf_relse(bp); 535 return 0; 536 } 537 538 /* 539 * Clear the quotaflags in memory and in the superblock. 540 */ 541 int 542 xfs_mount_reset_sbqflags( 543 struct xfs_mount *mp) 544 { 545 mp->m_qflags = 0; 546 547 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 548 if (mp->m_sb.sb_qflags == 0) 549 return 0; 550 spin_lock(&mp->m_sb_lock); 551 mp->m_sb.sb_qflags = 0; 552 spin_unlock(&mp->m_sb_lock); 553 554 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 555 return 0; 556 557 return xfs_sync_sb(mp, false); 558 } 559 560 uint64_t 561 xfs_default_resblks(xfs_mount_t *mp) 562 { 563 uint64_t resblks; 564 565 /* 566 * We default to 5% or 8192 fsbs of space reserved, whichever is 567 * smaller. This is intended to cover concurrent allocation 568 * transactions when we initially hit enospc. These each require a 4 569 * block reservation. Hence by default we cover roughly 2000 concurrent 570 * allocation reservations. 571 */ 572 resblks = mp->m_sb.sb_dblocks; 573 do_div(resblks, 20); 574 resblks = min_t(uint64_t, resblks, 8192); 575 return resblks; 576 } 577 578 /* Ensure the summary counts are correct. */ 579 STATIC int 580 xfs_check_summary_counts( 581 struct xfs_mount *mp) 582 { 583 /* 584 * The AG0 superblock verifier rejects in-progress filesystems, 585 * so we should never see the flag set this far into mounting. 586 */ 587 if (mp->m_sb.sb_inprogress) { 588 xfs_err(mp, "sb_inprogress set after log recovery??"); 589 WARN_ON(1); 590 return -EFSCORRUPTED; 591 } 592 593 /* 594 * Now the log is mounted, we know if it was an unclean shutdown or 595 * not. If it was, with the first phase of recovery has completed, we 596 * have consistent AG blocks on disk. We have not recovered EFIs yet, 597 * but they are recovered transactionally in the second recovery phase 598 * later. 599 * 600 * If the log was clean when we mounted, we can check the summary 601 * counters. If any of them are obviously incorrect, we can recompute 602 * them from the AGF headers in the next step. 603 */ 604 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 605 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 606 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 607 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 608 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 609 610 /* 611 * We can safely re-initialise incore superblock counters from the 612 * per-ag data. These may not be correct if the filesystem was not 613 * cleanly unmounted, so we waited for recovery to finish before doing 614 * this. 615 * 616 * If the filesystem was cleanly unmounted or the previous check did 617 * not flag anything weird, then we can trust the values in the 618 * superblock to be correct and we don't need to do anything here. 619 * Otherwise, recalculate the summary counters. 620 */ 621 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 622 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 623 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 624 return 0; 625 626 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 627 } 628 629 /* 630 * This function does the following on an initial mount of a file system: 631 * - reads the superblock from disk and init the mount struct 632 * - if we're a 32-bit kernel, do a size check on the superblock 633 * so we don't mount terabyte filesystems 634 * - init mount struct realtime fields 635 * - allocate inode hash table for fs 636 * - init directory manager 637 * - perform recovery and init the log manager 638 */ 639 int 640 xfs_mountfs( 641 struct xfs_mount *mp) 642 { 643 struct xfs_sb *sbp = &(mp->m_sb); 644 struct xfs_inode *rip; 645 struct xfs_ino_geometry *igeo = M_IGEO(mp); 646 uint64_t resblks; 647 uint quotamount = 0; 648 uint quotaflags = 0; 649 int error = 0; 650 651 xfs_sb_mount_common(mp, sbp); 652 653 /* 654 * Check for a mismatched features2 values. Older kernels read & wrote 655 * into the wrong sb offset for sb_features2 on some platforms due to 656 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 657 * which made older superblock reading/writing routines swap it as a 658 * 64-bit value. 659 * 660 * For backwards compatibility, we make both slots equal. 661 * 662 * If we detect a mismatched field, we OR the set bits into the existing 663 * features2 field in case it has already been modified; we don't want 664 * to lose any features. We then update the bad location with the ORed 665 * value so that older kernels will see any features2 flags. The 666 * superblock writeback code ensures the new sb_features2 is copied to 667 * sb_bad_features2 before it is logged or written to disk. 668 */ 669 if (xfs_sb_has_mismatched_features2(sbp)) { 670 xfs_warn(mp, "correcting sb_features alignment problem"); 671 sbp->sb_features2 |= sbp->sb_bad_features2; 672 mp->m_update_sb = true; 673 674 /* 675 * Re-check for ATTR2 in case it was found in bad_features2 676 * slot. 677 */ 678 if (xfs_sb_version_hasattr2(&mp->m_sb) && 679 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 680 mp->m_flags |= XFS_MOUNT_ATTR2; 681 } 682 683 if (xfs_sb_version_hasattr2(&mp->m_sb) && 684 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 685 xfs_sb_version_removeattr2(&mp->m_sb); 686 mp->m_update_sb = true; 687 688 /* update sb_versionnum for the clearing of the morebits */ 689 if (!sbp->sb_features2) 690 mp->m_update_sb = true; 691 } 692 693 /* always use v2 inodes by default now */ 694 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 695 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 696 mp->m_update_sb = true; 697 } 698 699 /* 700 * If we were given new sunit/swidth options, do some basic validation 701 * checks and convert the incore dalign and swidth values to the 702 * same units (FSB) that everything else uses. This /must/ happen 703 * before computing the inode geometry. 704 */ 705 error = xfs_validate_new_dalign(mp); 706 if (error) 707 goto out; 708 709 xfs_alloc_compute_maxlevels(mp); 710 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 711 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 712 xfs_ialloc_setup_geometry(mp); 713 xfs_rmapbt_compute_maxlevels(mp); 714 xfs_refcountbt_compute_maxlevels(mp); 715 716 /* 717 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 718 * is NOT aligned turn off m_dalign since allocator alignment is within 719 * an ag, therefore ag has to be aligned at stripe boundary. Note that 720 * we must compute the free space and rmap btree geometry before doing 721 * this. 722 */ 723 error = xfs_update_alignment(mp); 724 if (error) 725 goto out; 726 727 /* enable fail_at_unmount as default */ 728 mp->m_fail_unmount = true; 729 730 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 731 NULL, mp->m_super->s_id); 732 if (error) 733 goto out; 734 735 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 736 &mp->m_kobj, "stats"); 737 if (error) 738 goto out_remove_sysfs; 739 740 error = xfs_error_sysfs_init(mp); 741 if (error) 742 goto out_del_stats; 743 744 error = xfs_errortag_init(mp); 745 if (error) 746 goto out_remove_error_sysfs; 747 748 error = xfs_uuid_mount(mp); 749 if (error) 750 goto out_remove_errortag; 751 752 /* 753 * Update the preferred write size based on the information from the 754 * on-disk superblock. 755 */ 756 mp->m_allocsize_log = 757 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 758 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 759 760 /* set the low space thresholds for dynamic preallocation */ 761 xfs_set_low_space_thresholds(mp); 762 763 /* 764 * If enabled, sparse inode chunk alignment is expected to match the 765 * cluster size. Full inode chunk alignment must match the chunk size, 766 * but that is checked on sb read verification... 767 */ 768 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 769 mp->m_sb.sb_spino_align != 770 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 771 xfs_warn(mp, 772 "Sparse inode block alignment (%u) must match cluster size (%llu).", 773 mp->m_sb.sb_spino_align, 774 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 775 error = -EINVAL; 776 goto out_remove_uuid; 777 } 778 779 /* 780 * Check that the data (and log if separate) is an ok size. 781 */ 782 error = xfs_check_sizes(mp); 783 if (error) 784 goto out_remove_uuid; 785 786 /* 787 * Initialize realtime fields in the mount structure 788 */ 789 error = xfs_rtmount_init(mp); 790 if (error) { 791 xfs_warn(mp, "RT mount failed"); 792 goto out_remove_uuid; 793 } 794 795 /* 796 * Copies the low order bits of the timestamp and the randomly 797 * set "sequence" number out of a UUID. 798 */ 799 mp->m_fixedfsid[0] = 800 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 801 get_unaligned_be16(&sbp->sb_uuid.b[4]); 802 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 803 804 error = xfs_da_mount(mp); 805 if (error) { 806 xfs_warn(mp, "Failed dir/attr init: %d", error); 807 goto out_remove_uuid; 808 } 809 810 /* 811 * Initialize the precomputed transaction reservations values. 812 */ 813 xfs_trans_init(mp); 814 815 /* 816 * Allocate and initialize the per-ag data. 817 */ 818 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 819 if (error) { 820 xfs_warn(mp, "Failed per-ag init: %d", error); 821 goto out_free_dir; 822 } 823 824 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 825 xfs_warn(mp, "no log defined"); 826 error = -EFSCORRUPTED; 827 goto out_free_perag; 828 } 829 830 /* 831 * Log's mount-time initialization. The first part of recovery can place 832 * some items on the AIL, to be handled when recovery is finished or 833 * cancelled. 834 */ 835 error = xfs_log_mount(mp, mp->m_logdev_targp, 836 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 837 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 838 if (error) { 839 xfs_warn(mp, "log mount failed"); 840 goto out_fail_wait; 841 } 842 843 /* Make sure the summary counts are ok. */ 844 error = xfs_check_summary_counts(mp); 845 if (error) 846 goto out_log_dealloc; 847 848 /* 849 * Get and sanity-check the root inode. 850 * Save the pointer to it in the mount structure. 851 */ 852 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 853 XFS_ILOCK_EXCL, &rip); 854 if (error) { 855 xfs_warn(mp, 856 "Failed to read root inode 0x%llx, error %d", 857 sbp->sb_rootino, -error); 858 goto out_log_dealloc; 859 } 860 861 ASSERT(rip != NULL); 862 863 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 864 xfs_warn(mp, "corrupted root inode %llu: not a directory", 865 (unsigned long long)rip->i_ino); 866 xfs_iunlock(rip, XFS_ILOCK_EXCL); 867 error = -EFSCORRUPTED; 868 goto out_rele_rip; 869 } 870 mp->m_rootip = rip; /* save it */ 871 872 xfs_iunlock(rip, XFS_ILOCK_EXCL); 873 874 /* 875 * Initialize realtime inode pointers in the mount structure 876 */ 877 error = xfs_rtmount_inodes(mp); 878 if (error) { 879 /* 880 * Free up the root inode. 881 */ 882 xfs_warn(mp, "failed to read RT inodes"); 883 goto out_rele_rip; 884 } 885 886 /* 887 * If this is a read-only mount defer the superblock updates until 888 * the next remount into writeable mode. Otherwise we would never 889 * perform the update e.g. for the root filesystem. 890 */ 891 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 892 error = xfs_sync_sb(mp, false); 893 if (error) { 894 xfs_warn(mp, "failed to write sb changes"); 895 goto out_rtunmount; 896 } 897 } 898 899 /* 900 * Initialise the XFS quota management subsystem for this mount 901 */ 902 if (XFS_IS_QUOTA_RUNNING(mp)) { 903 error = xfs_qm_newmount(mp, "amount, "aflags); 904 if (error) 905 goto out_rtunmount; 906 } else { 907 ASSERT(!XFS_IS_QUOTA_ON(mp)); 908 909 /* 910 * If a file system had quotas running earlier, but decided to 911 * mount without -o uquota/pquota/gquota options, revoke the 912 * quotachecked license. 913 */ 914 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 915 xfs_notice(mp, "resetting quota flags"); 916 error = xfs_mount_reset_sbqflags(mp); 917 if (error) 918 goto out_rtunmount; 919 } 920 } 921 922 /* 923 * Finish recovering the file system. This part needed to be delayed 924 * until after the root and real-time bitmap inodes were consistently 925 * read in. 926 */ 927 error = xfs_log_mount_finish(mp); 928 if (error) { 929 xfs_warn(mp, "log mount finish failed"); 930 goto out_rtunmount; 931 } 932 933 /* 934 * Now the log is fully replayed, we can transition to full read-only 935 * mode for read-only mounts. This will sync all the metadata and clean 936 * the log so that the recovery we just performed does not have to be 937 * replayed again on the next mount. 938 * 939 * We use the same quiesce mechanism as the rw->ro remount, as they are 940 * semantically identical operations. 941 */ 942 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 943 XFS_MOUNT_RDONLY) { 944 xfs_quiesce_attr(mp); 945 } 946 947 /* 948 * Complete the quota initialisation, post-log-replay component. 949 */ 950 if (quotamount) { 951 ASSERT(mp->m_qflags == 0); 952 mp->m_qflags = quotaflags; 953 954 xfs_qm_mount_quotas(mp); 955 } 956 957 /* 958 * Now we are mounted, reserve a small amount of unused space for 959 * privileged transactions. This is needed so that transaction 960 * space required for critical operations can dip into this pool 961 * when at ENOSPC. This is needed for operations like create with 962 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 963 * are not allowed to use this reserved space. 964 * 965 * This may drive us straight to ENOSPC on mount, but that implies 966 * we were already there on the last unmount. Warn if this occurs. 967 */ 968 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 969 resblks = xfs_default_resblks(mp); 970 error = xfs_reserve_blocks(mp, &resblks, NULL); 971 if (error) 972 xfs_warn(mp, 973 "Unable to allocate reserve blocks. Continuing without reserve pool."); 974 975 /* Recover any CoW blocks that never got remapped. */ 976 error = xfs_reflink_recover_cow(mp); 977 if (error) { 978 xfs_err(mp, 979 "Error %d recovering leftover CoW allocations.", error); 980 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 981 goto out_quota; 982 } 983 984 /* Reserve AG blocks for future btree expansion. */ 985 error = xfs_fs_reserve_ag_blocks(mp); 986 if (error && error != -ENOSPC) 987 goto out_agresv; 988 } 989 990 return 0; 991 992 out_agresv: 993 xfs_fs_unreserve_ag_blocks(mp); 994 out_quota: 995 xfs_qm_unmount_quotas(mp); 996 out_rtunmount: 997 xfs_rtunmount_inodes(mp); 998 out_rele_rip: 999 xfs_irele(rip); 1000 /* Clean out dquots that might be in memory after quotacheck. */ 1001 xfs_qm_unmount(mp); 1002 /* 1003 * Cancel all delayed reclaim work and reclaim the inodes directly. 1004 * We have to do this /after/ rtunmount and qm_unmount because those 1005 * two will have scheduled delayed reclaim for the rt/quota inodes. 1006 * 1007 * This is slightly different from the unmountfs call sequence 1008 * because we could be tearing down a partially set up mount. In 1009 * particular, if log_mount_finish fails we bail out without calling 1010 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1011 * quota inodes. 1012 */ 1013 cancel_delayed_work_sync(&mp->m_reclaim_work); 1014 xfs_reclaim_inodes(mp); 1015 xfs_health_unmount(mp); 1016 out_log_dealloc: 1017 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1018 xfs_log_mount_cancel(mp); 1019 out_fail_wait: 1020 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1021 xfs_wait_buftarg(mp->m_logdev_targp); 1022 xfs_wait_buftarg(mp->m_ddev_targp); 1023 out_free_perag: 1024 xfs_free_perag(mp); 1025 out_free_dir: 1026 xfs_da_unmount(mp); 1027 out_remove_uuid: 1028 xfs_uuid_unmount(mp); 1029 out_remove_errortag: 1030 xfs_errortag_del(mp); 1031 out_remove_error_sysfs: 1032 xfs_error_sysfs_del(mp); 1033 out_del_stats: 1034 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1035 out_remove_sysfs: 1036 xfs_sysfs_del(&mp->m_kobj); 1037 out: 1038 return error; 1039 } 1040 1041 /* 1042 * This flushes out the inodes,dquots and the superblock, unmounts the 1043 * log and makes sure that incore structures are freed. 1044 */ 1045 void 1046 xfs_unmountfs( 1047 struct xfs_mount *mp) 1048 { 1049 uint64_t resblks; 1050 int error; 1051 1052 xfs_stop_block_reaping(mp); 1053 xfs_fs_unreserve_ag_blocks(mp); 1054 xfs_qm_unmount_quotas(mp); 1055 xfs_rtunmount_inodes(mp); 1056 xfs_irele(mp->m_rootip); 1057 1058 /* 1059 * We can potentially deadlock here if we have an inode cluster 1060 * that has been freed has its buffer still pinned in memory because 1061 * the transaction is still sitting in a iclog. The stale inodes 1062 * on that buffer will be pinned to the buffer until the 1063 * transaction hits the disk and the callbacks run. Pushing the AIL will 1064 * skip the stale inodes and may never see the pinned buffer, so 1065 * nothing will push out the iclog and unpin the buffer. Hence we 1066 * need to force the log here to ensure all items are flushed into the 1067 * AIL before we go any further. 1068 */ 1069 xfs_log_force(mp, XFS_LOG_SYNC); 1070 1071 /* 1072 * Wait for all busy extents to be freed, including completion of 1073 * any discard operation. 1074 */ 1075 xfs_extent_busy_wait_all(mp); 1076 flush_workqueue(xfs_discard_wq); 1077 1078 /* 1079 * We now need to tell the world we are unmounting. This will allow 1080 * us to detect that the filesystem is going away and we should error 1081 * out anything that we have been retrying in the background. This will 1082 * prevent neverending retries in AIL pushing from hanging the unmount. 1083 */ 1084 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1085 1086 /* 1087 * Flush all pending changes from the AIL. 1088 */ 1089 xfs_ail_push_all_sync(mp->m_ail); 1090 1091 /* 1092 * Reclaim all inodes. At this point there should be no dirty inodes and 1093 * none should be pinned or locked. Stop background inode reclaim here 1094 * if it is still running. 1095 */ 1096 cancel_delayed_work_sync(&mp->m_reclaim_work); 1097 xfs_reclaim_inodes(mp); 1098 xfs_health_unmount(mp); 1099 1100 xfs_qm_unmount(mp); 1101 1102 /* 1103 * Unreserve any blocks we have so that when we unmount we don't account 1104 * the reserved free space as used. This is really only necessary for 1105 * lazy superblock counting because it trusts the incore superblock 1106 * counters to be absolutely correct on clean unmount. 1107 * 1108 * We don't bother correcting this elsewhere for lazy superblock 1109 * counting because on mount of an unclean filesystem we reconstruct the 1110 * correct counter value and this is irrelevant. 1111 * 1112 * For non-lazy counter filesystems, this doesn't matter at all because 1113 * we only every apply deltas to the superblock and hence the incore 1114 * value does not matter.... 1115 */ 1116 resblks = 0; 1117 error = xfs_reserve_blocks(mp, &resblks, NULL); 1118 if (error) 1119 xfs_warn(mp, "Unable to free reserved block pool. " 1120 "Freespace may not be correct on next mount."); 1121 1122 error = xfs_log_sbcount(mp); 1123 if (error) 1124 xfs_warn(mp, "Unable to update superblock counters. " 1125 "Freespace may not be correct on next mount."); 1126 1127 1128 xfs_log_unmount(mp); 1129 xfs_da_unmount(mp); 1130 xfs_uuid_unmount(mp); 1131 1132 #if defined(DEBUG) 1133 xfs_errortag_clearall(mp); 1134 #endif 1135 xfs_free_perag(mp); 1136 1137 xfs_errortag_del(mp); 1138 xfs_error_sysfs_del(mp); 1139 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1140 xfs_sysfs_del(&mp->m_kobj); 1141 } 1142 1143 /* 1144 * Determine whether modifications can proceed. The caller specifies the minimum 1145 * freeze level for which modifications should not be allowed. This allows 1146 * certain operations to proceed while the freeze sequence is in progress, if 1147 * necessary. 1148 */ 1149 bool 1150 xfs_fs_writable( 1151 struct xfs_mount *mp, 1152 int level) 1153 { 1154 ASSERT(level > SB_UNFROZEN); 1155 if ((mp->m_super->s_writers.frozen >= level) || 1156 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1157 return false; 1158 1159 return true; 1160 } 1161 1162 /* 1163 * xfs_log_sbcount 1164 * 1165 * Sync the superblock counters to disk. 1166 * 1167 * Note this code can be called during the process of freezing, so we use the 1168 * transaction allocator that does not block when the transaction subsystem is 1169 * in its frozen state. 1170 */ 1171 int 1172 xfs_log_sbcount(xfs_mount_t *mp) 1173 { 1174 /* allow this to proceed during the freeze sequence... */ 1175 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1176 return 0; 1177 1178 /* 1179 * we don't need to do this if we are updating the superblock 1180 * counters on every modification. 1181 */ 1182 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1183 return 0; 1184 1185 return xfs_sync_sb(mp, true); 1186 } 1187 1188 /* 1189 * Deltas for the block count can vary from 1 to very large, but lock contention 1190 * only occurs on frequent small block count updates such as in the delayed 1191 * allocation path for buffered writes (page a time updates). Hence we set 1192 * a large batch count (1024) to minimise global counter updates except when 1193 * we get near to ENOSPC and we have to be very accurate with our updates. 1194 */ 1195 #define XFS_FDBLOCKS_BATCH 1024 1196 int 1197 xfs_mod_fdblocks( 1198 struct xfs_mount *mp, 1199 int64_t delta, 1200 bool rsvd) 1201 { 1202 int64_t lcounter; 1203 long long res_used; 1204 s32 batch; 1205 1206 if (delta > 0) { 1207 /* 1208 * If the reserve pool is depleted, put blocks back into it 1209 * first. Most of the time the pool is full. 1210 */ 1211 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1212 percpu_counter_add(&mp->m_fdblocks, delta); 1213 return 0; 1214 } 1215 1216 spin_lock(&mp->m_sb_lock); 1217 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1218 1219 if (res_used > delta) { 1220 mp->m_resblks_avail += delta; 1221 } else { 1222 delta -= res_used; 1223 mp->m_resblks_avail = mp->m_resblks; 1224 percpu_counter_add(&mp->m_fdblocks, delta); 1225 } 1226 spin_unlock(&mp->m_sb_lock); 1227 return 0; 1228 } 1229 1230 /* 1231 * Taking blocks away, need to be more accurate the closer we 1232 * are to zero. 1233 * 1234 * If the counter has a value of less than 2 * max batch size, 1235 * then make everything serialise as we are real close to 1236 * ENOSPC. 1237 */ 1238 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1239 XFS_FDBLOCKS_BATCH) < 0) 1240 batch = 1; 1241 else 1242 batch = XFS_FDBLOCKS_BATCH; 1243 1244 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1245 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1246 XFS_FDBLOCKS_BATCH) >= 0) { 1247 /* we had space! */ 1248 return 0; 1249 } 1250 1251 /* 1252 * lock up the sb for dipping into reserves before releasing the space 1253 * that took us to ENOSPC. 1254 */ 1255 spin_lock(&mp->m_sb_lock); 1256 percpu_counter_add(&mp->m_fdblocks, -delta); 1257 if (!rsvd) 1258 goto fdblocks_enospc; 1259 1260 lcounter = (long long)mp->m_resblks_avail + delta; 1261 if (lcounter >= 0) { 1262 mp->m_resblks_avail = lcounter; 1263 spin_unlock(&mp->m_sb_lock); 1264 return 0; 1265 } 1266 xfs_warn_once(mp, 1267 "Reserve blocks depleted! Consider increasing reserve pool size."); 1268 1269 fdblocks_enospc: 1270 spin_unlock(&mp->m_sb_lock); 1271 return -ENOSPC; 1272 } 1273 1274 int 1275 xfs_mod_frextents( 1276 struct xfs_mount *mp, 1277 int64_t delta) 1278 { 1279 int64_t lcounter; 1280 int ret = 0; 1281 1282 spin_lock(&mp->m_sb_lock); 1283 lcounter = mp->m_sb.sb_frextents + delta; 1284 if (lcounter < 0) 1285 ret = -ENOSPC; 1286 else 1287 mp->m_sb.sb_frextents = lcounter; 1288 spin_unlock(&mp->m_sb_lock); 1289 return ret; 1290 } 1291 1292 /* 1293 * Used to free the superblock along various error paths. 1294 */ 1295 void 1296 xfs_freesb( 1297 struct xfs_mount *mp) 1298 { 1299 struct xfs_buf *bp = mp->m_sb_bp; 1300 1301 xfs_buf_lock(bp); 1302 mp->m_sb_bp = NULL; 1303 xfs_buf_relse(bp); 1304 } 1305 1306 /* 1307 * If the underlying (data/log/rt) device is readonly, there are some 1308 * operations that cannot proceed. 1309 */ 1310 int 1311 xfs_dev_is_read_only( 1312 struct xfs_mount *mp, 1313 char *message) 1314 { 1315 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1316 xfs_readonly_buftarg(mp->m_logdev_targp) || 1317 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1318 xfs_notice(mp, "%s required on read-only device.", message); 1319 xfs_notice(mp, "write access unavailable, cannot proceed."); 1320 return -EROFS; 1321 } 1322 return 0; 1323 } 1324 1325 /* Force the summary counters to be recalculated at next mount. */ 1326 void 1327 xfs_force_summary_recalc( 1328 struct xfs_mount *mp) 1329 { 1330 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1331 return; 1332 1333 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1334 } 1335 1336 /* 1337 * Update the in-core delayed block counter. 1338 * 1339 * We prefer to update the counter without having to take a spinlock for every 1340 * counter update (i.e. batching). Each change to delayed allocation 1341 * reservations can change can easily exceed the default percpu counter 1342 * batching, so we use a larger batch factor here. 1343 * 1344 * Note that we don't currently have any callers requiring fast summation 1345 * (e.g. percpu_counter_read) so we can use a big batch value here. 1346 */ 1347 #define XFS_DELALLOC_BATCH (4096) 1348 void 1349 xfs_mod_delalloc( 1350 struct xfs_mount *mp, 1351 int64_t delta) 1352 { 1353 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1354 XFS_DELALLOC_BATCH); 1355 } 1356