xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision b296a6d5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 #include "xfs_trace.h"
35 
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39 
40 void
41 xfs_uuid_table_free(void)
42 {
43 	if (xfs_uuid_table_size == 0)
44 		return;
45 	kmem_free(xfs_uuid_table);
46 	xfs_uuid_table = NULL;
47 	xfs_uuid_table_size = 0;
48 }
49 
50 /*
51  * See if the UUID is unique among mounted XFS filesystems.
52  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53  */
54 STATIC int
55 xfs_uuid_mount(
56 	struct xfs_mount	*mp)
57 {
58 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59 	int			hole, i;
60 
61 	/* Publish UUID in struct super_block */
62 	uuid_copy(&mp->m_super->s_uuid, uuid);
63 
64 	if (mp->m_flags & XFS_MOUNT_NOUUID)
65 		return 0;
66 
67 	if (uuid_is_null(uuid)) {
68 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 		return -EINVAL;
70 	}
71 
72 	mutex_lock(&xfs_uuid_table_mutex);
73 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 		if (uuid_is_null(&xfs_uuid_table[i])) {
75 			hole = i;
76 			continue;
77 		}
78 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 			goto out_duplicate;
80 	}
81 
82 	if (hole < 0) {
83 		xfs_uuid_table = krealloc(xfs_uuid_table,
84 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 			GFP_KERNEL | __GFP_NOFAIL);
86 		hole = xfs_uuid_table_size++;
87 	}
88 	xfs_uuid_table[hole] = *uuid;
89 	mutex_unlock(&xfs_uuid_table_mutex);
90 
91 	return 0;
92 
93  out_duplicate:
94 	mutex_unlock(&xfs_uuid_table_mutex);
95 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 	return -EINVAL;
97 }
98 
99 STATIC void
100 xfs_uuid_unmount(
101 	struct xfs_mount	*mp)
102 {
103 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
104 	int			i;
105 
106 	if (mp->m_flags & XFS_MOUNT_NOUUID)
107 		return;
108 
109 	mutex_lock(&xfs_uuid_table_mutex);
110 	for (i = 0; i < xfs_uuid_table_size; i++) {
111 		if (uuid_is_null(&xfs_uuid_table[i]))
112 			continue;
113 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 			continue;
115 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 		break;
117 	}
118 	ASSERT(i < xfs_uuid_table_size);
119 	mutex_unlock(&xfs_uuid_table_mutex);
120 }
121 
122 
123 STATIC void
124 __xfs_free_perag(
125 	struct rcu_head	*head)
126 {
127 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128 
129 	ASSERT(atomic_read(&pag->pag_ref) == 0);
130 	kmem_free(pag);
131 }
132 
133 /*
134  * Free up the per-ag resources associated with the mount structure.
135  */
136 STATIC void
137 xfs_free_perag(
138 	xfs_mount_t	*mp)
139 {
140 	xfs_agnumber_t	agno;
141 	struct xfs_perag *pag;
142 
143 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 		spin_lock(&mp->m_perag_lock);
145 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 		spin_unlock(&mp->m_perag_lock);
147 		ASSERT(pag);
148 		ASSERT(atomic_read(&pag->pag_ref) == 0);
149 		xfs_iunlink_destroy(pag);
150 		xfs_buf_hash_destroy(pag);
151 		call_rcu(&pag->rcu_head, __xfs_free_perag);
152 	}
153 }
154 
155 /*
156  * Check size of device based on the (data/realtime) block count.
157  * Note: this check is used by the growfs code as well as mount.
158  */
159 int
160 xfs_sb_validate_fsb_count(
161 	xfs_sb_t	*sbp,
162 	uint64_t	nblocks)
163 {
164 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
165 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
166 
167 	/* Limited by ULONG_MAX of page cache index */
168 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
169 		return -EFBIG;
170 	return 0;
171 }
172 
173 int
174 xfs_initialize_perag(
175 	xfs_mount_t	*mp,
176 	xfs_agnumber_t	agcount,
177 	xfs_agnumber_t	*maxagi)
178 {
179 	xfs_agnumber_t	index;
180 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
181 	xfs_perag_t	*pag;
182 	int		error = -ENOMEM;
183 
184 	/*
185 	 * Walk the current per-ag tree so we don't try to initialise AGs
186 	 * that already exist (growfs case). Allocate and insert all the
187 	 * AGs we don't find ready for initialisation.
188 	 */
189 	for (index = 0; index < agcount; index++) {
190 		pag = xfs_perag_get(mp, index);
191 		if (pag) {
192 			xfs_perag_put(pag);
193 			continue;
194 		}
195 
196 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
197 		if (!pag)
198 			goto out_unwind_new_pags;
199 		pag->pag_agno = index;
200 		pag->pag_mount = mp;
201 		spin_lock_init(&pag->pag_ici_lock);
202 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
203 		if (xfs_buf_hash_init(pag))
204 			goto out_free_pag;
205 		init_waitqueue_head(&pag->pagb_wait);
206 		spin_lock_init(&pag->pagb_lock);
207 		pag->pagb_count = 0;
208 		pag->pagb_tree = RB_ROOT;
209 
210 		if (radix_tree_preload(GFP_NOFS))
211 			goto out_hash_destroy;
212 
213 		spin_lock(&mp->m_perag_lock);
214 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
215 			WARN_ON_ONCE(1);
216 			spin_unlock(&mp->m_perag_lock);
217 			radix_tree_preload_end();
218 			error = -EEXIST;
219 			goto out_hash_destroy;
220 		}
221 		spin_unlock(&mp->m_perag_lock);
222 		radix_tree_preload_end();
223 		/* first new pag is fully initialized */
224 		if (first_initialised == NULLAGNUMBER)
225 			first_initialised = index;
226 		error = xfs_iunlink_init(pag);
227 		if (error)
228 			goto out_hash_destroy;
229 		spin_lock_init(&pag->pag_state_lock);
230 	}
231 
232 	index = xfs_set_inode_alloc(mp, agcount);
233 
234 	if (maxagi)
235 		*maxagi = index;
236 
237 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
238 	return 0;
239 
240 out_hash_destroy:
241 	xfs_buf_hash_destroy(pag);
242 out_free_pag:
243 	kmem_free(pag);
244 out_unwind_new_pags:
245 	/* unwind any prior newly initialized pags */
246 	for (index = first_initialised; index < agcount; index++) {
247 		pag = radix_tree_delete(&mp->m_perag_tree, index);
248 		if (!pag)
249 			break;
250 		xfs_buf_hash_destroy(pag);
251 		xfs_iunlink_destroy(pag);
252 		kmem_free(pag);
253 	}
254 	return error;
255 }
256 
257 /*
258  * xfs_readsb
259  *
260  * Does the initial read of the superblock.
261  */
262 int
263 xfs_readsb(
264 	struct xfs_mount *mp,
265 	int		flags)
266 {
267 	unsigned int	sector_size;
268 	struct xfs_buf	*bp;
269 	struct xfs_sb	*sbp = &mp->m_sb;
270 	int		error;
271 	int		loud = !(flags & XFS_MFSI_QUIET);
272 	const struct xfs_buf_ops *buf_ops;
273 
274 	ASSERT(mp->m_sb_bp == NULL);
275 	ASSERT(mp->m_ddev_targp != NULL);
276 
277 	/*
278 	 * For the initial read, we must guess at the sector
279 	 * size based on the block device.  It's enough to
280 	 * get the sb_sectsize out of the superblock and
281 	 * then reread with the proper length.
282 	 * We don't verify it yet, because it may not be complete.
283 	 */
284 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
285 	buf_ops = NULL;
286 
287 	/*
288 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
289 	 * around at all times to optimize access to the superblock. Therefore,
290 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
291 	 * elevated.
292 	 */
293 reread:
294 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
295 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
296 				      buf_ops);
297 	if (error) {
298 		if (loud)
299 			xfs_warn(mp, "SB validate failed with error %d.", error);
300 		/* bad CRC means corrupted metadata */
301 		if (error == -EFSBADCRC)
302 			error = -EFSCORRUPTED;
303 		return error;
304 	}
305 
306 	/*
307 	 * Initialize the mount structure from the superblock.
308 	 */
309 	xfs_sb_from_disk(sbp, bp->b_addr);
310 
311 	/*
312 	 * If we haven't validated the superblock, do so now before we try
313 	 * to check the sector size and reread the superblock appropriately.
314 	 */
315 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
316 		if (loud)
317 			xfs_warn(mp, "Invalid superblock magic number");
318 		error = -EINVAL;
319 		goto release_buf;
320 	}
321 
322 	/*
323 	 * We must be able to do sector-sized and sector-aligned IO.
324 	 */
325 	if (sector_size > sbp->sb_sectsize) {
326 		if (loud)
327 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
328 				sector_size, sbp->sb_sectsize);
329 		error = -ENOSYS;
330 		goto release_buf;
331 	}
332 
333 	if (buf_ops == NULL) {
334 		/*
335 		 * Re-read the superblock so the buffer is correctly sized,
336 		 * and properly verified.
337 		 */
338 		xfs_buf_relse(bp);
339 		sector_size = sbp->sb_sectsize;
340 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
341 		goto reread;
342 	}
343 
344 	xfs_reinit_percpu_counters(mp);
345 
346 	/* no need to be quiet anymore, so reset the buf ops */
347 	bp->b_ops = &xfs_sb_buf_ops;
348 
349 	mp->m_sb_bp = bp;
350 	xfs_buf_unlock(bp);
351 	return 0;
352 
353 release_buf:
354 	xfs_buf_relse(bp);
355 	return error;
356 }
357 
358 /*
359  * If the sunit/swidth change would move the precomputed root inode value, we
360  * must reject the ondisk change because repair will stumble over that.
361  * However, we allow the mount to proceed because we never rejected this
362  * combination before.  Returns true to update the sb, false otherwise.
363  */
364 static inline int
365 xfs_check_new_dalign(
366 	struct xfs_mount	*mp,
367 	int			new_dalign,
368 	bool			*update_sb)
369 {
370 	struct xfs_sb		*sbp = &mp->m_sb;
371 	xfs_ino_t		calc_ino;
372 
373 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
374 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
375 
376 	if (sbp->sb_rootino == calc_ino) {
377 		*update_sb = true;
378 		return 0;
379 	}
380 
381 	xfs_warn(mp,
382 "Cannot change stripe alignment; would require moving root inode.");
383 
384 	/*
385 	 * XXX: Next time we add a new incompat feature, this should start
386 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
387 	 * that we're ignoring the administrator's instructions.
388 	 */
389 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
390 	*update_sb = false;
391 	return 0;
392 }
393 
394 /*
395  * If we were provided with new sunit/swidth values as mount options, make sure
396  * that they pass basic alignment and superblock feature checks, and convert
397  * them into the same units (FSB) that everything else expects.  This step
398  * /must/ be done before computing the inode geometry.
399  */
400 STATIC int
401 xfs_validate_new_dalign(
402 	struct xfs_mount	*mp)
403 {
404 	if (mp->m_dalign == 0)
405 		return 0;
406 
407 	/*
408 	 * If stripe unit and stripe width are not multiples
409 	 * of the fs blocksize turn off alignment.
410 	 */
411 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
412 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
413 		xfs_warn(mp,
414 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
415 			mp->m_sb.sb_blocksize);
416 		return -EINVAL;
417 	} else {
418 		/*
419 		 * Convert the stripe unit and width to FSBs.
420 		 */
421 		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
422 		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
423 			xfs_warn(mp,
424 		"alignment check failed: sunit/swidth vs. agsize(%d)",
425 				 mp->m_sb.sb_agblocks);
426 			return -EINVAL;
427 		} else if (mp->m_dalign) {
428 			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
429 		} else {
430 			xfs_warn(mp,
431 		"alignment check failed: sunit(%d) less than bsize(%d)",
432 				 mp->m_dalign, mp->m_sb.sb_blocksize);
433 			return -EINVAL;
434 		}
435 	}
436 
437 	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
438 		xfs_warn(mp,
439 "cannot change alignment: superblock does not support data alignment");
440 		return -EINVAL;
441 	}
442 
443 	return 0;
444 }
445 
446 /* Update alignment values based on mount options and sb values. */
447 STATIC int
448 xfs_update_alignment(
449 	struct xfs_mount	*mp)
450 {
451 	struct xfs_sb		*sbp = &mp->m_sb;
452 
453 	if (mp->m_dalign) {
454 		bool		update_sb;
455 		int		error;
456 
457 		if (sbp->sb_unit == mp->m_dalign &&
458 		    sbp->sb_width == mp->m_swidth)
459 			return 0;
460 
461 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
462 		if (error || !update_sb)
463 			return error;
464 
465 		sbp->sb_unit = mp->m_dalign;
466 		sbp->sb_width = mp->m_swidth;
467 		mp->m_update_sb = true;
468 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
469 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
470 		mp->m_dalign = sbp->sb_unit;
471 		mp->m_swidth = sbp->sb_width;
472 	}
473 
474 	return 0;
475 }
476 
477 /*
478  * precalculate the low space thresholds for dynamic speculative preallocation.
479  */
480 void
481 xfs_set_low_space_thresholds(
482 	struct xfs_mount	*mp)
483 {
484 	int i;
485 
486 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
487 		uint64_t space = mp->m_sb.sb_dblocks;
488 
489 		do_div(space, 100);
490 		mp->m_low_space[i] = space * (i + 1);
491 	}
492 }
493 
494 /*
495  * Check that the data (and log if separate) is an ok size.
496  */
497 STATIC int
498 xfs_check_sizes(
499 	struct xfs_mount *mp)
500 {
501 	struct xfs_buf	*bp;
502 	xfs_daddr_t	d;
503 	int		error;
504 
505 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
506 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
507 		xfs_warn(mp, "filesystem size mismatch detected");
508 		return -EFBIG;
509 	}
510 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
511 					d - XFS_FSS_TO_BB(mp, 1),
512 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
513 	if (error) {
514 		xfs_warn(mp, "last sector read failed");
515 		return error;
516 	}
517 	xfs_buf_relse(bp);
518 
519 	if (mp->m_logdev_targp == mp->m_ddev_targp)
520 		return 0;
521 
522 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
523 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
524 		xfs_warn(mp, "log size mismatch detected");
525 		return -EFBIG;
526 	}
527 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
528 					d - XFS_FSB_TO_BB(mp, 1),
529 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
530 	if (error) {
531 		xfs_warn(mp, "log device read failed");
532 		return error;
533 	}
534 	xfs_buf_relse(bp);
535 	return 0;
536 }
537 
538 /*
539  * Clear the quotaflags in memory and in the superblock.
540  */
541 int
542 xfs_mount_reset_sbqflags(
543 	struct xfs_mount	*mp)
544 {
545 	mp->m_qflags = 0;
546 
547 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
548 	if (mp->m_sb.sb_qflags == 0)
549 		return 0;
550 	spin_lock(&mp->m_sb_lock);
551 	mp->m_sb.sb_qflags = 0;
552 	spin_unlock(&mp->m_sb_lock);
553 
554 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
555 		return 0;
556 
557 	return xfs_sync_sb(mp, false);
558 }
559 
560 uint64_t
561 xfs_default_resblks(xfs_mount_t *mp)
562 {
563 	uint64_t resblks;
564 
565 	/*
566 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
567 	 * smaller.  This is intended to cover concurrent allocation
568 	 * transactions when we initially hit enospc. These each require a 4
569 	 * block reservation. Hence by default we cover roughly 2000 concurrent
570 	 * allocation reservations.
571 	 */
572 	resblks = mp->m_sb.sb_dblocks;
573 	do_div(resblks, 20);
574 	resblks = min_t(uint64_t, resblks, 8192);
575 	return resblks;
576 }
577 
578 /* Ensure the summary counts are correct. */
579 STATIC int
580 xfs_check_summary_counts(
581 	struct xfs_mount	*mp)
582 {
583 	/*
584 	 * The AG0 superblock verifier rejects in-progress filesystems,
585 	 * so we should never see the flag set this far into mounting.
586 	 */
587 	if (mp->m_sb.sb_inprogress) {
588 		xfs_err(mp, "sb_inprogress set after log recovery??");
589 		WARN_ON(1);
590 		return -EFSCORRUPTED;
591 	}
592 
593 	/*
594 	 * Now the log is mounted, we know if it was an unclean shutdown or
595 	 * not. If it was, with the first phase of recovery has completed, we
596 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
597 	 * but they are recovered transactionally in the second recovery phase
598 	 * later.
599 	 *
600 	 * If the log was clean when we mounted, we can check the summary
601 	 * counters.  If any of them are obviously incorrect, we can recompute
602 	 * them from the AGF headers in the next step.
603 	 */
604 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
605 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
606 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
607 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
608 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
609 
610 	/*
611 	 * We can safely re-initialise incore superblock counters from the
612 	 * per-ag data. These may not be correct if the filesystem was not
613 	 * cleanly unmounted, so we waited for recovery to finish before doing
614 	 * this.
615 	 *
616 	 * If the filesystem was cleanly unmounted or the previous check did
617 	 * not flag anything weird, then we can trust the values in the
618 	 * superblock to be correct and we don't need to do anything here.
619 	 * Otherwise, recalculate the summary counters.
620 	 */
621 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
622 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
623 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
624 		return 0;
625 
626 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
627 }
628 
629 /*
630  * This function does the following on an initial mount of a file system:
631  *	- reads the superblock from disk and init the mount struct
632  *	- if we're a 32-bit kernel, do a size check on the superblock
633  *		so we don't mount terabyte filesystems
634  *	- init mount struct realtime fields
635  *	- allocate inode hash table for fs
636  *	- init directory manager
637  *	- perform recovery and init the log manager
638  */
639 int
640 xfs_mountfs(
641 	struct xfs_mount	*mp)
642 {
643 	struct xfs_sb		*sbp = &(mp->m_sb);
644 	struct xfs_inode	*rip;
645 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
646 	uint64_t		resblks;
647 	uint			quotamount = 0;
648 	uint			quotaflags = 0;
649 	int			error = 0;
650 
651 	xfs_sb_mount_common(mp, sbp);
652 
653 	/*
654 	 * Check for a mismatched features2 values.  Older kernels read & wrote
655 	 * into the wrong sb offset for sb_features2 on some platforms due to
656 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
657 	 * which made older superblock reading/writing routines swap it as a
658 	 * 64-bit value.
659 	 *
660 	 * For backwards compatibility, we make both slots equal.
661 	 *
662 	 * If we detect a mismatched field, we OR the set bits into the existing
663 	 * features2 field in case it has already been modified; we don't want
664 	 * to lose any features.  We then update the bad location with the ORed
665 	 * value so that older kernels will see any features2 flags. The
666 	 * superblock writeback code ensures the new sb_features2 is copied to
667 	 * sb_bad_features2 before it is logged or written to disk.
668 	 */
669 	if (xfs_sb_has_mismatched_features2(sbp)) {
670 		xfs_warn(mp, "correcting sb_features alignment problem");
671 		sbp->sb_features2 |= sbp->sb_bad_features2;
672 		mp->m_update_sb = true;
673 
674 		/*
675 		 * Re-check for ATTR2 in case it was found in bad_features2
676 		 * slot.
677 		 */
678 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
679 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
680 			mp->m_flags |= XFS_MOUNT_ATTR2;
681 	}
682 
683 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
684 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
685 		xfs_sb_version_removeattr2(&mp->m_sb);
686 		mp->m_update_sb = true;
687 
688 		/* update sb_versionnum for the clearing of the morebits */
689 		if (!sbp->sb_features2)
690 			mp->m_update_sb = true;
691 	}
692 
693 	/* always use v2 inodes by default now */
694 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
695 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
696 		mp->m_update_sb = true;
697 	}
698 
699 	/*
700 	 * If we were given new sunit/swidth options, do some basic validation
701 	 * checks and convert the incore dalign and swidth values to the
702 	 * same units (FSB) that everything else uses.  This /must/ happen
703 	 * before computing the inode geometry.
704 	 */
705 	error = xfs_validate_new_dalign(mp);
706 	if (error)
707 		goto out;
708 
709 	xfs_alloc_compute_maxlevels(mp);
710 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
711 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
712 	xfs_ialloc_setup_geometry(mp);
713 	xfs_rmapbt_compute_maxlevels(mp);
714 	xfs_refcountbt_compute_maxlevels(mp);
715 
716 	/*
717 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
718 	 * is NOT aligned turn off m_dalign since allocator alignment is within
719 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
720 	 * we must compute the free space and rmap btree geometry before doing
721 	 * this.
722 	 */
723 	error = xfs_update_alignment(mp);
724 	if (error)
725 		goto out;
726 
727 	/* enable fail_at_unmount as default */
728 	mp->m_fail_unmount = true;
729 
730 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
731 			       NULL, mp->m_super->s_id);
732 	if (error)
733 		goto out;
734 
735 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
736 			       &mp->m_kobj, "stats");
737 	if (error)
738 		goto out_remove_sysfs;
739 
740 	error = xfs_error_sysfs_init(mp);
741 	if (error)
742 		goto out_del_stats;
743 
744 	error = xfs_errortag_init(mp);
745 	if (error)
746 		goto out_remove_error_sysfs;
747 
748 	error = xfs_uuid_mount(mp);
749 	if (error)
750 		goto out_remove_errortag;
751 
752 	/*
753 	 * Update the preferred write size based on the information from the
754 	 * on-disk superblock.
755 	 */
756 	mp->m_allocsize_log =
757 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
758 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
759 
760 	/* set the low space thresholds for dynamic preallocation */
761 	xfs_set_low_space_thresholds(mp);
762 
763 	/*
764 	 * If enabled, sparse inode chunk alignment is expected to match the
765 	 * cluster size. Full inode chunk alignment must match the chunk size,
766 	 * but that is checked on sb read verification...
767 	 */
768 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
769 	    mp->m_sb.sb_spino_align !=
770 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
771 		xfs_warn(mp,
772 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
773 			 mp->m_sb.sb_spino_align,
774 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
775 		error = -EINVAL;
776 		goto out_remove_uuid;
777 	}
778 
779 	/*
780 	 * Check that the data (and log if separate) is an ok size.
781 	 */
782 	error = xfs_check_sizes(mp);
783 	if (error)
784 		goto out_remove_uuid;
785 
786 	/*
787 	 * Initialize realtime fields in the mount structure
788 	 */
789 	error = xfs_rtmount_init(mp);
790 	if (error) {
791 		xfs_warn(mp, "RT mount failed");
792 		goto out_remove_uuid;
793 	}
794 
795 	/*
796 	 *  Copies the low order bits of the timestamp and the randomly
797 	 *  set "sequence" number out of a UUID.
798 	 */
799 	mp->m_fixedfsid[0] =
800 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
801 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
802 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
803 
804 	error = xfs_da_mount(mp);
805 	if (error) {
806 		xfs_warn(mp, "Failed dir/attr init: %d", error);
807 		goto out_remove_uuid;
808 	}
809 
810 	/*
811 	 * Initialize the precomputed transaction reservations values.
812 	 */
813 	xfs_trans_init(mp);
814 
815 	/*
816 	 * Allocate and initialize the per-ag data.
817 	 */
818 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
819 	if (error) {
820 		xfs_warn(mp, "Failed per-ag init: %d", error);
821 		goto out_free_dir;
822 	}
823 
824 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
825 		xfs_warn(mp, "no log defined");
826 		error = -EFSCORRUPTED;
827 		goto out_free_perag;
828 	}
829 
830 	/*
831 	 * Log's mount-time initialization. The first part of recovery can place
832 	 * some items on the AIL, to be handled when recovery is finished or
833 	 * cancelled.
834 	 */
835 	error = xfs_log_mount(mp, mp->m_logdev_targp,
836 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
837 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
838 	if (error) {
839 		xfs_warn(mp, "log mount failed");
840 		goto out_fail_wait;
841 	}
842 
843 	/* Make sure the summary counts are ok. */
844 	error = xfs_check_summary_counts(mp);
845 	if (error)
846 		goto out_log_dealloc;
847 
848 	/*
849 	 * Get and sanity-check the root inode.
850 	 * Save the pointer to it in the mount structure.
851 	 */
852 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
853 			 XFS_ILOCK_EXCL, &rip);
854 	if (error) {
855 		xfs_warn(mp,
856 			"Failed to read root inode 0x%llx, error %d",
857 			sbp->sb_rootino, -error);
858 		goto out_log_dealloc;
859 	}
860 
861 	ASSERT(rip != NULL);
862 
863 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
864 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
865 			(unsigned long long)rip->i_ino);
866 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
867 		error = -EFSCORRUPTED;
868 		goto out_rele_rip;
869 	}
870 	mp->m_rootip = rip;	/* save it */
871 
872 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
873 
874 	/*
875 	 * Initialize realtime inode pointers in the mount structure
876 	 */
877 	error = xfs_rtmount_inodes(mp);
878 	if (error) {
879 		/*
880 		 * Free up the root inode.
881 		 */
882 		xfs_warn(mp, "failed to read RT inodes");
883 		goto out_rele_rip;
884 	}
885 
886 	/*
887 	 * If this is a read-only mount defer the superblock updates until
888 	 * the next remount into writeable mode.  Otherwise we would never
889 	 * perform the update e.g. for the root filesystem.
890 	 */
891 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
892 		error = xfs_sync_sb(mp, false);
893 		if (error) {
894 			xfs_warn(mp, "failed to write sb changes");
895 			goto out_rtunmount;
896 		}
897 	}
898 
899 	/*
900 	 * Initialise the XFS quota management subsystem for this mount
901 	 */
902 	if (XFS_IS_QUOTA_RUNNING(mp)) {
903 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
904 		if (error)
905 			goto out_rtunmount;
906 	} else {
907 		ASSERT(!XFS_IS_QUOTA_ON(mp));
908 
909 		/*
910 		 * If a file system had quotas running earlier, but decided to
911 		 * mount without -o uquota/pquota/gquota options, revoke the
912 		 * quotachecked license.
913 		 */
914 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
915 			xfs_notice(mp, "resetting quota flags");
916 			error = xfs_mount_reset_sbqflags(mp);
917 			if (error)
918 				goto out_rtunmount;
919 		}
920 	}
921 
922 	/*
923 	 * Finish recovering the file system.  This part needed to be delayed
924 	 * until after the root and real-time bitmap inodes were consistently
925 	 * read in.
926 	 */
927 	error = xfs_log_mount_finish(mp);
928 	if (error) {
929 		xfs_warn(mp, "log mount finish failed");
930 		goto out_rtunmount;
931 	}
932 
933 	/*
934 	 * Now the log is fully replayed, we can transition to full read-only
935 	 * mode for read-only mounts. This will sync all the metadata and clean
936 	 * the log so that the recovery we just performed does not have to be
937 	 * replayed again on the next mount.
938 	 *
939 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
940 	 * semantically identical operations.
941 	 */
942 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
943 							XFS_MOUNT_RDONLY) {
944 		xfs_quiesce_attr(mp);
945 	}
946 
947 	/*
948 	 * Complete the quota initialisation, post-log-replay component.
949 	 */
950 	if (quotamount) {
951 		ASSERT(mp->m_qflags == 0);
952 		mp->m_qflags = quotaflags;
953 
954 		xfs_qm_mount_quotas(mp);
955 	}
956 
957 	/*
958 	 * Now we are mounted, reserve a small amount of unused space for
959 	 * privileged transactions. This is needed so that transaction
960 	 * space required for critical operations can dip into this pool
961 	 * when at ENOSPC. This is needed for operations like create with
962 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
963 	 * are not allowed to use this reserved space.
964 	 *
965 	 * This may drive us straight to ENOSPC on mount, but that implies
966 	 * we were already there on the last unmount. Warn if this occurs.
967 	 */
968 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
969 		resblks = xfs_default_resblks(mp);
970 		error = xfs_reserve_blocks(mp, &resblks, NULL);
971 		if (error)
972 			xfs_warn(mp,
973 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
974 
975 		/* Recover any CoW blocks that never got remapped. */
976 		error = xfs_reflink_recover_cow(mp);
977 		if (error) {
978 			xfs_err(mp,
979 	"Error %d recovering leftover CoW allocations.", error);
980 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
981 			goto out_quota;
982 		}
983 
984 		/* Reserve AG blocks for future btree expansion. */
985 		error = xfs_fs_reserve_ag_blocks(mp);
986 		if (error && error != -ENOSPC)
987 			goto out_agresv;
988 	}
989 
990 	return 0;
991 
992  out_agresv:
993 	xfs_fs_unreserve_ag_blocks(mp);
994  out_quota:
995 	xfs_qm_unmount_quotas(mp);
996  out_rtunmount:
997 	xfs_rtunmount_inodes(mp);
998  out_rele_rip:
999 	xfs_irele(rip);
1000 	/* Clean out dquots that might be in memory after quotacheck. */
1001 	xfs_qm_unmount(mp);
1002 	/*
1003 	 * Cancel all delayed reclaim work and reclaim the inodes directly.
1004 	 * We have to do this /after/ rtunmount and qm_unmount because those
1005 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1006 	 *
1007 	 * This is slightly different from the unmountfs call sequence
1008 	 * because we could be tearing down a partially set up mount.  In
1009 	 * particular, if log_mount_finish fails we bail out without calling
1010 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1011 	 * quota inodes.
1012 	 */
1013 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1014 	xfs_reclaim_inodes(mp);
1015 	xfs_health_unmount(mp);
1016  out_log_dealloc:
1017 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1018 	xfs_log_mount_cancel(mp);
1019  out_fail_wait:
1020 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1021 		xfs_wait_buftarg(mp->m_logdev_targp);
1022 	xfs_wait_buftarg(mp->m_ddev_targp);
1023  out_free_perag:
1024 	xfs_free_perag(mp);
1025  out_free_dir:
1026 	xfs_da_unmount(mp);
1027  out_remove_uuid:
1028 	xfs_uuid_unmount(mp);
1029  out_remove_errortag:
1030 	xfs_errortag_del(mp);
1031  out_remove_error_sysfs:
1032 	xfs_error_sysfs_del(mp);
1033  out_del_stats:
1034 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1035  out_remove_sysfs:
1036 	xfs_sysfs_del(&mp->m_kobj);
1037  out:
1038 	return error;
1039 }
1040 
1041 /*
1042  * This flushes out the inodes,dquots and the superblock, unmounts the
1043  * log and makes sure that incore structures are freed.
1044  */
1045 void
1046 xfs_unmountfs(
1047 	struct xfs_mount	*mp)
1048 {
1049 	uint64_t		resblks;
1050 	int			error;
1051 
1052 	xfs_stop_block_reaping(mp);
1053 	xfs_fs_unreserve_ag_blocks(mp);
1054 	xfs_qm_unmount_quotas(mp);
1055 	xfs_rtunmount_inodes(mp);
1056 	xfs_irele(mp->m_rootip);
1057 
1058 	/*
1059 	 * We can potentially deadlock here if we have an inode cluster
1060 	 * that has been freed has its buffer still pinned in memory because
1061 	 * the transaction is still sitting in a iclog. The stale inodes
1062 	 * on that buffer will be pinned to the buffer until the
1063 	 * transaction hits the disk and the callbacks run. Pushing the AIL will
1064 	 * skip the stale inodes and may never see the pinned buffer, so
1065 	 * nothing will push out the iclog and unpin the buffer. Hence we
1066 	 * need to force the log here to ensure all items are flushed into the
1067 	 * AIL before we go any further.
1068 	 */
1069 	xfs_log_force(mp, XFS_LOG_SYNC);
1070 
1071 	/*
1072 	 * Wait for all busy extents to be freed, including completion of
1073 	 * any discard operation.
1074 	 */
1075 	xfs_extent_busy_wait_all(mp);
1076 	flush_workqueue(xfs_discard_wq);
1077 
1078 	/*
1079 	 * We now need to tell the world we are unmounting. This will allow
1080 	 * us to detect that the filesystem is going away and we should error
1081 	 * out anything that we have been retrying in the background. This will
1082 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1083 	 */
1084 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1085 
1086 	/*
1087 	 * Flush all pending changes from the AIL.
1088 	 */
1089 	xfs_ail_push_all_sync(mp->m_ail);
1090 
1091 	/*
1092 	 * Reclaim all inodes. At this point there should be no dirty inodes and
1093 	 * none should be pinned or locked. Stop background inode reclaim here
1094 	 * if it is still running.
1095 	 */
1096 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1097 	xfs_reclaim_inodes(mp);
1098 	xfs_health_unmount(mp);
1099 
1100 	xfs_qm_unmount(mp);
1101 
1102 	/*
1103 	 * Unreserve any blocks we have so that when we unmount we don't account
1104 	 * the reserved free space as used. This is really only necessary for
1105 	 * lazy superblock counting because it trusts the incore superblock
1106 	 * counters to be absolutely correct on clean unmount.
1107 	 *
1108 	 * We don't bother correcting this elsewhere for lazy superblock
1109 	 * counting because on mount of an unclean filesystem we reconstruct the
1110 	 * correct counter value and this is irrelevant.
1111 	 *
1112 	 * For non-lazy counter filesystems, this doesn't matter at all because
1113 	 * we only every apply deltas to the superblock and hence the incore
1114 	 * value does not matter....
1115 	 */
1116 	resblks = 0;
1117 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1118 	if (error)
1119 		xfs_warn(mp, "Unable to free reserved block pool. "
1120 				"Freespace may not be correct on next mount.");
1121 
1122 	error = xfs_log_sbcount(mp);
1123 	if (error)
1124 		xfs_warn(mp, "Unable to update superblock counters. "
1125 				"Freespace may not be correct on next mount.");
1126 
1127 
1128 	xfs_log_unmount(mp);
1129 	xfs_da_unmount(mp);
1130 	xfs_uuid_unmount(mp);
1131 
1132 #if defined(DEBUG)
1133 	xfs_errortag_clearall(mp);
1134 #endif
1135 	xfs_free_perag(mp);
1136 
1137 	xfs_errortag_del(mp);
1138 	xfs_error_sysfs_del(mp);
1139 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1140 	xfs_sysfs_del(&mp->m_kobj);
1141 }
1142 
1143 /*
1144  * Determine whether modifications can proceed. The caller specifies the minimum
1145  * freeze level for which modifications should not be allowed. This allows
1146  * certain operations to proceed while the freeze sequence is in progress, if
1147  * necessary.
1148  */
1149 bool
1150 xfs_fs_writable(
1151 	struct xfs_mount	*mp,
1152 	int			level)
1153 {
1154 	ASSERT(level > SB_UNFROZEN);
1155 	if ((mp->m_super->s_writers.frozen >= level) ||
1156 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1157 		return false;
1158 
1159 	return true;
1160 }
1161 
1162 /*
1163  * xfs_log_sbcount
1164  *
1165  * Sync the superblock counters to disk.
1166  *
1167  * Note this code can be called during the process of freezing, so we use the
1168  * transaction allocator that does not block when the transaction subsystem is
1169  * in its frozen state.
1170  */
1171 int
1172 xfs_log_sbcount(xfs_mount_t *mp)
1173 {
1174 	/* allow this to proceed during the freeze sequence... */
1175 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1176 		return 0;
1177 
1178 	/*
1179 	 * we don't need to do this if we are updating the superblock
1180 	 * counters on every modification.
1181 	 */
1182 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1183 		return 0;
1184 
1185 	return xfs_sync_sb(mp, true);
1186 }
1187 
1188 /*
1189  * Deltas for the block count can vary from 1 to very large, but lock contention
1190  * only occurs on frequent small block count updates such as in the delayed
1191  * allocation path for buffered writes (page a time updates). Hence we set
1192  * a large batch count (1024) to minimise global counter updates except when
1193  * we get near to ENOSPC and we have to be very accurate with our updates.
1194  */
1195 #define XFS_FDBLOCKS_BATCH	1024
1196 int
1197 xfs_mod_fdblocks(
1198 	struct xfs_mount	*mp,
1199 	int64_t			delta,
1200 	bool			rsvd)
1201 {
1202 	int64_t			lcounter;
1203 	long long		res_used;
1204 	s32			batch;
1205 
1206 	if (delta > 0) {
1207 		/*
1208 		 * If the reserve pool is depleted, put blocks back into it
1209 		 * first. Most of the time the pool is full.
1210 		 */
1211 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1212 			percpu_counter_add(&mp->m_fdblocks, delta);
1213 			return 0;
1214 		}
1215 
1216 		spin_lock(&mp->m_sb_lock);
1217 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1218 
1219 		if (res_used > delta) {
1220 			mp->m_resblks_avail += delta;
1221 		} else {
1222 			delta -= res_used;
1223 			mp->m_resblks_avail = mp->m_resblks;
1224 			percpu_counter_add(&mp->m_fdblocks, delta);
1225 		}
1226 		spin_unlock(&mp->m_sb_lock);
1227 		return 0;
1228 	}
1229 
1230 	/*
1231 	 * Taking blocks away, need to be more accurate the closer we
1232 	 * are to zero.
1233 	 *
1234 	 * If the counter has a value of less than 2 * max batch size,
1235 	 * then make everything serialise as we are real close to
1236 	 * ENOSPC.
1237 	 */
1238 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1239 				     XFS_FDBLOCKS_BATCH) < 0)
1240 		batch = 1;
1241 	else
1242 		batch = XFS_FDBLOCKS_BATCH;
1243 
1244 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1245 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1246 				     XFS_FDBLOCKS_BATCH) >= 0) {
1247 		/* we had space! */
1248 		return 0;
1249 	}
1250 
1251 	/*
1252 	 * lock up the sb for dipping into reserves before releasing the space
1253 	 * that took us to ENOSPC.
1254 	 */
1255 	spin_lock(&mp->m_sb_lock);
1256 	percpu_counter_add(&mp->m_fdblocks, -delta);
1257 	if (!rsvd)
1258 		goto fdblocks_enospc;
1259 
1260 	lcounter = (long long)mp->m_resblks_avail + delta;
1261 	if (lcounter >= 0) {
1262 		mp->m_resblks_avail = lcounter;
1263 		spin_unlock(&mp->m_sb_lock);
1264 		return 0;
1265 	}
1266 	xfs_warn_once(mp,
1267 "Reserve blocks depleted! Consider increasing reserve pool size.");
1268 
1269 fdblocks_enospc:
1270 	spin_unlock(&mp->m_sb_lock);
1271 	return -ENOSPC;
1272 }
1273 
1274 int
1275 xfs_mod_frextents(
1276 	struct xfs_mount	*mp,
1277 	int64_t			delta)
1278 {
1279 	int64_t			lcounter;
1280 	int			ret = 0;
1281 
1282 	spin_lock(&mp->m_sb_lock);
1283 	lcounter = mp->m_sb.sb_frextents + delta;
1284 	if (lcounter < 0)
1285 		ret = -ENOSPC;
1286 	else
1287 		mp->m_sb.sb_frextents = lcounter;
1288 	spin_unlock(&mp->m_sb_lock);
1289 	return ret;
1290 }
1291 
1292 /*
1293  * Used to free the superblock along various error paths.
1294  */
1295 void
1296 xfs_freesb(
1297 	struct xfs_mount	*mp)
1298 {
1299 	struct xfs_buf		*bp = mp->m_sb_bp;
1300 
1301 	xfs_buf_lock(bp);
1302 	mp->m_sb_bp = NULL;
1303 	xfs_buf_relse(bp);
1304 }
1305 
1306 /*
1307  * If the underlying (data/log/rt) device is readonly, there are some
1308  * operations that cannot proceed.
1309  */
1310 int
1311 xfs_dev_is_read_only(
1312 	struct xfs_mount	*mp,
1313 	char			*message)
1314 {
1315 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1316 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1317 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1318 		xfs_notice(mp, "%s required on read-only device.", message);
1319 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1320 		return -EROFS;
1321 	}
1322 	return 0;
1323 }
1324 
1325 /* Force the summary counters to be recalculated at next mount. */
1326 void
1327 xfs_force_summary_recalc(
1328 	struct xfs_mount	*mp)
1329 {
1330 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1331 		return;
1332 
1333 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1334 }
1335 
1336 /*
1337  * Update the in-core delayed block counter.
1338  *
1339  * We prefer to update the counter without having to take a spinlock for every
1340  * counter update (i.e. batching).  Each change to delayed allocation
1341  * reservations can change can easily exceed the default percpu counter
1342  * batching, so we use a larger batch factor here.
1343  *
1344  * Note that we don't currently have any callers requiring fast summation
1345  * (e.g. percpu_counter_read) so we can use a big batch value here.
1346  */
1347 #define XFS_DELALLOC_BATCH	(4096)
1348 void
1349 xfs_mod_delalloc(
1350 	struct xfs_mount	*mp,
1351 	int64_t			delta)
1352 {
1353 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1354 			XFS_DELALLOC_BATCH);
1355 }
1356