xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision afb46f79)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45 
46 
47 #ifdef HAVE_PERCPU_SB
48 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 						int);
50 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 						int);
52 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54 
55 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
57 #endif
58 
59 static DEFINE_MUTEX(xfs_uuid_table_mutex);
60 static int xfs_uuid_table_size;
61 static uuid_t *xfs_uuid_table;
62 
63 /*
64  * See if the UUID is unique among mounted XFS filesystems.
65  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66  */
67 STATIC int
68 xfs_uuid_mount(
69 	struct xfs_mount	*mp)
70 {
71 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
72 	int			hole, i;
73 
74 	if (mp->m_flags & XFS_MOUNT_NOUUID)
75 		return 0;
76 
77 	if (uuid_is_nil(uuid)) {
78 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 		return XFS_ERROR(EINVAL);
80 	}
81 
82 	mutex_lock(&xfs_uuid_table_mutex);
83 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 		if (uuid_is_nil(&xfs_uuid_table[i])) {
85 			hole = i;
86 			continue;
87 		}
88 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 			goto out_duplicate;
90 	}
91 
92 	if (hole < 0) {
93 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
96 			KM_SLEEP);
97 		hole = xfs_uuid_table_size++;
98 	}
99 	xfs_uuid_table[hole] = *uuid;
100 	mutex_unlock(&xfs_uuid_table_mutex);
101 
102 	return 0;
103 
104  out_duplicate:
105 	mutex_unlock(&xfs_uuid_table_mutex);
106 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 	return XFS_ERROR(EINVAL);
108 }
109 
110 STATIC void
111 xfs_uuid_unmount(
112 	struct xfs_mount	*mp)
113 {
114 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
115 	int			i;
116 
117 	if (mp->m_flags & XFS_MOUNT_NOUUID)
118 		return;
119 
120 	mutex_lock(&xfs_uuid_table_mutex);
121 	for (i = 0; i < xfs_uuid_table_size; i++) {
122 		if (uuid_is_nil(&xfs_uuid_table[i]))
123 			continue;
124 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 			continue;
126 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 		break;
128 	}
129 	ASSERT(i < xfs_uuid_table_size);
130 	mutex_unlock(&xfs_uuid_table_mutex);
131 }
132 
133 
134 STATIC void
135 __xfs_free_perag(
136 	struct rcu_head	*head)
137 {
138 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139 
140 	ASSERT(atomic_read(&pag->pag_ref) == 0);
141 	kmem_free(pag);
142 }
143 
144 /*
145  * Free up the per-ag resources associated with the mount structure.
146  */
147 STATIC void
148 xfs_free_perag(
149 	xfs_mount_t	*mp)
150 {
151 	xfs_agnumber_t	agno;
152 	struct xfs_perag *pag;
153 
154 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 		spin_lock(&mp->m_perag_lock);
156 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 		spin_unlock(&mp->m_perag_lock);
158 		ASSERT(pag);
159 		ASSERT(atomic_read(&pag->pag_ref) == 0);
160 		call_rcu(&pag->rcu_head, __xfs_free_perag);
161 	}
162 }
163 
164 /*
165  * Check size of device based on the (data/realtime) block count.
166  * Note: this check is used by the growfs code as well as mount.
167  */
168 int
169 xfs_sb_validate_fsb_count(
170 	xfs_sb_t	*sbp,
171 	__uint64_t	nblocks)
172 {
173 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
175 
176 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
177 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 		return EFBIG;
179 #else                  /* Limited by UINT_MAX of sectors */
180 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 		return EFBIG;
182 #endif
183 	return 0;
184 }
185 
186 int
187 xfs_initialize_perag(
188 	xfs_mount_t	*mp,
189 	xfs_agnumber_t	agcount,
190 	xfs_agnumber_t	*maxagi)
191 {
192 	xfs_agnumber_t	index;
193 	xfs_agnumber_t	first_initialised = 0;
194 	xfs_perag_t	*pag;
195 	xfs_agino_t	agino;
196 	xfs_ino_t	ino;
197 	xfs_sb_t	*sbp = &mp->m_sb;
198 	int		error = -ENOMEM;
199 
200 	/*
201 	 * Walk the current per-ag tree so we don't try to initialise AGs
202 	 * that already exist (growfs case). Allocate and insert all the
203 	 * AGs we don't find ready for initialisation.
204 	 */
205 	for (index = 0; index < agcount; index++) {
206 		pag = xfs_perag_get(mp, index);
207 		if (pag) {
208 			xfs_perag_put(pag);
209 			continue;
210 		}
211 		if (!first_initialised)
212 			first_initialised = index;
213 
214 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 		if (!pag)
216 			goto out_unwind;
217 		pag->pag_agno = index;
218 		pag->pag_mount = mp;
219 		spin_lock_init(&pag->pag_ici_lock);
220 		mutex_init(&pag->pag_ici_reclaim_lock);
221 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 		spin_lock_init(&pag->pag_buf_lock);
223 		pag->pag_buf_tree = RB_ROOT;
224 
225 		if (radix_tree_preload(GFP_NOFS))
226 			goto out_unwind;
227 
228 		spin_lock(&mp->m_perag_lock);
229 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 			BUG();
231 			spin_unlock(&mp->m_perag_lock);
232 			radix_tree_preload_end();
233 			error = -EEXIST;
234 			goto out_unwind;
235 		}
236 		spin_unlock(&mp->m_perag_lock);
237 		radix_tree_preload_end();
238 	}
239 
240 	/*
241 	 * If we mount with the inode64 option, or no inode overflows
242 	 * the legacy 32-bit address space clear the inode32 option.
243 	 */
244 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246 
247 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 		mp->m_flags |= XFS_MOUNT_32BITINODES;
249 	else
250 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251 
252 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 		index = xfs_set_inode32(mp);
254 	else
255 		index = xfs_set_inode64(mp);
256 
257 	if (maxagi)
258 		*maxagi = index;
259 	return 0;
260 
261 out_unwind:
262 	kmem_free(pag);
263 	for (; index > first_initialised; index--) {
264 		pag = radix_tree_delete(&mp->m_perag_tree, index);
265 		kmem_free(pag);
266 	}
267 	return error;
268 }
269 
270 /*
271  * xfs_readsb
272  *
273  * Does the initial read of the superblock.
274  */
275 int
276 xfs_readsb(
277 	struct xfs_mount *mp,
278 	int		flags)
279 {
280 	unsigned int	sector_size;
281 	struct xfs_buf	*bp;
282 	struct xfs_sb	*sbp = &mp->m_sb;
283 	int		error;
284 	int		loud = !(flags & XFS_MFSI_QUIET);
285 	const struct xfs_buf_ops *buf_ops;
286 
287 	ASSERT(mp->m_sb_bp == NULL);
288 	ASSERT(mp->m_ddev_targp != NULL);
289 
290 	/*
291 	 * For the initial read, we must guess at the sector
292 	 * size based on the block device.  It's enough to
293 	 * get the sb_sectsize out of the superblock and
294 	 * then reread with the proper length.
295 	 * We don't verify it yet, because it may not be complete.
296 	 */
297 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
298 	buf_ops = NULL;
299 
300 	/*
301 	 * Allocate a (locked) buffer to hold the superblock.
302 	 * This will be kept around at all times to optimize
303 	 * access to the superblock.
304 	 */
305 reread:
306 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
307 				   BTOBB(sector_size), 0, buf_ops);
308 	if (!bp) {
309 		if (loud)
310 			xfs_warn(mp, "SB buffer read failed");
311 		return EIO;
312 	}
313 	if (bp->b_error) {
314 		error = bp->b_error;
315 		if (loud)
316 			xfs_warn(mp, "SB validate failed with error %d.", error);
317 		/* bad CRC means corrupted metadata */
318 		if (error == EFSBADCRC)
319 			error = EFSCORRUPTED;
320 		goto release_buf;
321 	}
322 
323 	/*
324 	 * Initialize the mount structure from the superblock.
325 	 */
326 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
327 	xfs_sb_quota_from_disk(&mp->m_sb);
328 
329 	/*
330 	 * We must be able to do sector-sized and sector-aligned IO.
331 	 */
332 	if (sector_size > sbp->sb_sectsize) {
333 		if (loud)
334 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
335 				sector_size, sbp->sb_sectsize);
336 		error = ENOSYS;
337 		goto release_buf;
338 	}
339 
340 	/*
341 	 * Re-read the superblock so the buffer is correctly sized,
342 	 * and properly verified.
343 	 */
344 	if (buf_ops == NULL) {
345 		xfs_buf_relse(bp);
346 		sector_size = sbp->sb_sectsize;
347 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
348 		goto reread;
349 	}
350 
351 	/* Initialize per-cpu counters */
352 	xfs_icsb_reinit_counters(mp);
353 
354 	/* no need to be quiet anymore, so reset the buf ops */
355 	bp->b_ops = &xfs_sb_buf_ops;
356 
357 	mp->m_sb_bp = bp;
358 	xfs_buf_unlock(bp);
359 	return 0;
360 
361 release_buf:
362 	xfs_buf_relse(bp);
363 	return error;
364 }
365 
366 /*
367  * Update alignment values based on mount options and sb values
368  */
369 STATIC int
370 xfs_update_alignment(xfs_mount_t *mp)
371 {
372 	xfs_sb_t	*sbp = &(mp->m_sb);
373 
374 	if (mp->m_dalign) {
375 		/*
376 		 * If stripe unit and stripe width are not multiples
377 		 * of the fs blocksize turn off alignment.
378 		 */
379 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
380 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
381 			xfs_warn(mp,
382 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
383 				sbp->sb_blocksize);
384 			return XFS_ERROR(EINVAL);
385 		} else {
386 			/*
387 			 * Convert the stripe unit and width to FSBs.
388 			 */
389 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
390 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
391 				xfs_warn(mp,
392 			"alignment check failed: sunit/swidth vs. agsize(%d)",
393 					 sbp->sb_agblocks);
394 				return XFS_ERROR(EINVAL);
395 			} else if (mp->m_dalign) {
396 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
397 			} else {
398 				xfs_warn(mp,
399 			"alignment check failed: sunit(%d) less than bsize(%d)",
400 					 mp->m_dalign, sbp->sb_blocksize);
401 				return XFS_ERROR(EINVAL);
402 			}
403 		}
404 
405 		/*
406 		 * Update superblock with new values
407 		 * and log changes
408 		 */
409 		if (xfs_sb_version_hasdalign(sbp)) {
410 			if (sbp->sb_unit != mp->m_dalign) {
411 				sbp->sb_unit = mp->m_dalign;
412 				mp->m_update_flags |= XFS_SB_UNIT;
413 			}
414 			if (sbp->sb_width != mp->m_swidth) {
415 				sbp->sb_width = mp->m_swidth;
416 				mp->m_update_flags |= XFS_SB_WIDTH;
417 			}
418 		} else {
419 			xfs_warn(mp,
420 	"cannot change alignment: superblock does not support data alignment");
421 			return XFS_ERROR(EINVAL);
422 		}
423 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
424 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
425 			mp->m_dalign = sbp->sb_unit;
426 			mp->m_swidth = sbp->sb_width;
427 	}
428 
429 	return 0;
430 }
431 
432 /*
433  * Set the maximum inode count for this filesystem
434  */
435 STATIC void
436 xfs_set_maxicount(xfs_mount_t *mp)
437 {
438 	xfs_sb_t	*sbp = &(mp->m_sb);
439 	__uint64_t	icount;
440 
441 	if (sbp->sb_imax_pct) {
442 		/*
443 		 * Make sure the maximum inode count is a multiple
444 		 * of the units we allocate inodes in.
445 		 */
446 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
447 		do_div(icount, 100);
448 		do_div(icount, mp->m_ialloc_blks);
449 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
450 				   sbp->sb_inopblog;
451 	} else {
452 		mp->m_maxicount = 0;
453 	}
454 }
455 
456 /*
457  * Set the default minimum read and write sizes unless
458  * already specified in a mount option.
459  * We use smaller I/O sizes when the file system
460  * is being used for NFS service (wsync mount option).
461  */
462 STATIC void
463 xfs_set_rw_sizes(xfs_mount_t *mp)
464 {
465 	xfs_sb_t	*sbp = &(mp->m_sb);
466 	int		readio_log, writeio_log;
467 
468 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
469 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
470 			readio_log = XFS_WSYNC_READIO_LOG;
471 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
472 		} else {
473 			readio_log = XFS_READIO_LOG_LARGE;
474 			writeio_log = XFS_WRITEIO_LOG_LARGE;
475 		}
476 	} else {
477 		readio_log = mp->m_readio_log;
478 		writeio_log = mp->m_writeio_log;
479 	}
480 
481 	if (sbp->sb_blocklog > readio_log) {
482 		mp->m_readio_log = sbp->sb_blocklog;
483 	} else {
484 		mp->m_readio_log = readio_log;
485 	}
486 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
487 	if (sbp->sb_blocklog > writeio_log) {
488 		mp->m_writeio_log = sbp->sb_blocklog;
489 	} else {
490 		mp->m_writeio_log = writeio_log;
491 	}
492 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
493 }
494 
495 /*
496  * precalculate the low space thresholds for dynamic speculative preallocation.
497  */
498 void
499 xfs_set_low_space_thresholds(
500 	struct xfs_mount	*mp)
501 {
502 	int i;
503 
504 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
505 		__uint64_t space = mp->m_sb.sb_dblocks;
506 
507 		do_div(space, 100);
508 		mp->m_low_space[i] = space * (i + 1);
509 	}
510 }
511 
512 
513 /*
514  * Set whether we're using inode alignment.
515  */
516 STATIC void
517 xfs_set_inoalignment(xfs_mount_t *mp)
518 {
519 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
520 	    mp->m_sb.sb_inoalignmt >=
521 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
522 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
523 	else
524 		mp->m_inoalign_mask = 0;
525 	/*
526 	 * If we are using stripe alignment, check whether
527 	 * the stripe unit is a multiple of the inode alignment
528 	 */
529 	if (mp->m_dalign && mp->m_inoalign_mask &&
530 	    !(mp->m_dalign & mp->m_inoalign_mask))
531 		mp->m_sinoalign = mp->m_dalign;
532 	else
533 		mp->m_sinoalign = 0;
534 }
535 
536 /*
537  * Check that the data (and log if separate) is an ok size.
538  */
539 STATIC int
540 xfs_check_sizes(xfs_mount_t *mp)
541 {
542 	xfs_buf_t	*bp;
543 	xfs_daddr_t	d;
544 
545 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
546 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
547 		xfs_warn(mp, "filesystem size mismatch detected");
548 		return XFS_ERROR(EFBIG);
549 	}
550 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
551 					d - XFS_FSS_TO_BB(mp, 1),
552 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
553 	if (!bp) {
554 		xfs_warn(mp, "last sector read failed");
555 		return EIO;
556 	}
557 	xfs_buf_relse(bp);
558 
559 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
560 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
561 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
562 			xfs_warn(mp, "log size mismatch detected");
563 			return XFS_ERROR(EFBIG);
564 		}
565 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
566 					d - XFS_FSB_TO_BB(mp, 1),
567 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
568 		if (!bp) {
569 			xfs_warn(mp, "log device read failed");
570 			return EIO;
571 		}
572 		xfs_buf_relse(bp);
573 	}
574 	return 0;
575 }
576 
577 /*
578  * Clear the quotaflags in memory and in the superblock.
579  */
580 int
581 xfs_mount_reset_sbqflags(
582 	struct xfs_mount	*mp)
583 {
584 	int			error;
585 	struct xfs_trans	*tp;
586 
587 	mp->m_qflags = 0;
588 
589 	/*
590 	 * It is OK to look at sb_qflags here in mount path,
591 	 * without m_sb_lock.
592 	 */
593 	if (mp->m_sb.sb_qflags == 0)
594 		return 0;
595 	spin_lock(&mp->m_sb_lock);
596 	mp->m_sb.sb_qflags = 0;
597 	spin_unlock(&mp->m_sb_lock);
598 
599 	/*
600 	 * If the fs is readonly, let the incore superblock run
601 	 * with quotas off but don't flush the update out to disk
602 	 */
603 	if (mp->m_flags & XFS_MOUNT_RDONLY)
604 		return 0;
605 
606 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
607 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
608 	if (error) {
609 		xfs_trans_cancel(tp, 0);
610 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
611 		return error;
612 	}
613 
614 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
615 	return xfs_trans_commit(tp, 0);
616 }
617 
618 __uint64_t
619 xfs_default_resblks(xfs_mount_t *mp)
620 {
621 	__uint64_t resblks;
622 
623 	/*
624 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
625 	 * smaller.  This is intended to cover concurrent allocation
626 	 * transactions when we initially hit enospc. These each require a 4
627 	 * block reservation. Hence by default we cover roughly 2000 concurrent
628 	 * allocation reservations.
629 	 */
630 	resblks = mp->m_sb.sb_dblocks;
631 	do_div(resblks, 20);
632 	resblks = min_t(__uint64_t, resblks, 8192);
633 	return resblks;
634 }
635 
636 /*
637  * This function does the following on an initial mount of a file system:
638  *	- reads the superblock from disk and init the mount struct
639  *	- if we're a 32-bit kernel, do a size check on the superblock
640  *		so we don't mount terabyte filesystems
641  *	- init mount struct realtime fields
642  *	- allocate inode hash table for fs
643  *	- init directory manager
644  *	- perform recovery and init the log manager
645  */
646 int
647 xfs_mountfs(
648 	xfs_mount_t	*mp)
649 {
650 	xfs_sb_t	*sbp = &(mp->m_sb);
651 	xfs_inode_t	*rip;
652 	__uint64_t	resblks;
653 	uint		quotamount = 0;
654 	uint		quotaflags = 0;
655 	int		error = 0;
656 
657 	xfs_sb_mount_common(mp, sbp);
658 
659 	/*
660 	 * Check for a mismatched features2 values.  Older kernels
661 	 * read & wrote into the wrong sb offset for sb_features2
662 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
663 	 * when sb_features2 was added, which made older superblock
664 	 * reading/writing routines swap it as a 64-bit value.
665 	 *
666 	 * For backwards compatibility, we make both slots equal.
667 	 *
668 	 * If we detect a mismatched field, we OR the set bits into the
669 	 * existing features2 field in case it has already been modified; we
670 	 * don't want to lose any features.  We then update the bad location
671 	 * with the ORed value so that older kernels will see any features2
672 	 * flags, and mark the two fields as needing updates once the
673 	 * transaction subsystem is online.
674 	 */
675 	if (xfs_sb_has_mismatched_features2(sbp)) {
676 		xfs_warn(mp, "correcting sb_features alignment problem");
677 		sbp->sb_features2 |= sbp->sb_bad_features2;
678 		sbp->sb_bad_features2 = sbp->sb_features2;
679 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
680 
681 		/*
682 		 * Re-check for ATTR2 in case it was found in bad_features2
683 		 * slot.
684 		 */
685 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
686 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
687 			mp->m_flags |= XFS_MOUNT_ATTR2;
688 	}
689 
690 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
691 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
692 		xfs_sb_version_removeattr2(&mp->m_sb);
693 		mp->m_update_flags |= XFS_SB_FEATURES2;
694 
695 		/* update sb_versionnum for the clearing of the morebits */
696 		if (!sbp->sb_features2)
697 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
698 	}
699 
700 	/*
701 	 * Check if sb_agblocks is aligned at stripe boundary
702 	 * If sb_agblocks is NOT aligned turn off m_dalign since
703 	 * allocator alignment is within an ag, therefore ag has
704 	 * to be aligned at stripe boundary.
705 	 */
706 	error = xfs_update_alignment(mp);
707 	if (error)
708 		goto out;
709 
710 	xfs_alloc_compute_maxlevels(mp);
711 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
712 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
713 	xfs_ialloc_compute_maxlevels(mp);
714 
715 	xfs_set_maxicount(mp);
716 
717 	error = xfs_uuid_mount(mp);
718 	if (error)
719 		goto out;
720 
721 	/*
722 	 * Set the minimum read and write sizes
723 	 */
724 	xfs_set_rw_sizes(mp);
725 
726 	/* set the low space thresholds for dynamic preallocation */
727 	xfs_set_low_space_thresholds(mp);
728 
729 	/*
730 	 * Set the inode cluster size.
731 	 * This may still be overridden by the file system
732 	 * block size if it is larger than the chosen cluster size.
733 	 *
734 	 * For v5 filesystems, scale the cluster size with the inode size to
735 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
736 	 * has set the inode alignment value appropriately for larger cluster
737 	 * sizes.
738 	 */
739 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
740 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
741 		int	new_size = mp->m_inode_cluster_size;
742 
743 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
744 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
745 			mp->m_inode_cluster_size = new_size;
746 		xfs_info(mp, "Using inode cluster size of %d bytes",
747 			 mp->m_inode_cluster_size);
748 	}
749 
750 	/*
751 	 * Set inode alignment fields
752 	 */
753 	xfs_set_inoalignment(mp);
754 
755 	/*
756 	 * Check that the data (and log if separate) is an ok size.
757 	 */
758 	error = xfs_check_sizes(mp);
759 	if (error)
760 		goto out_remove_uuid;
761 
762 	/*
763 	 * Initialize realtime fields in the mount structure
764 	 */
765 	error = xfs_rtmount_init(mp);
766 	if (error) {
767 		xfs_warn(mp, "RT mount failed");
768 		goto out_remove_uuid;
769 	}
770 
771 	/*
772 	 *  Copies the low order bits of the timestamp and the randomly
773 	 *  set "sequence" number out of a UUID.
774 	 */
775 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
776 
777 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
778 
779 	xfs_dir_mount(mp);
780 
781 	/*
782 	 * Initialize the attribute manager's entries.
783 	 */
784 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
785 
786 	/*
787 	 * Initialize the precomputed transaction reservations values.
788 	 */
789 	xfs_trans_init(mp);
790 
791 	/*
792 	 * Allocate and initialize the per-ag data.
793 	 */
794 	spin_lock_init(&mp->m_perag_lock);
795 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
796 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
797 	if (error) {
798 		xfs_warn(mp, "Failed per-ag init: %d", error);
799 		goto out_remove_uuid;
800 	}
801 
802 	if (!sbp->sb_logblocks) {
803 		xfs_warn(mp, "no log defined");
804 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
805 		error = XFS_ERROR(EFSCORRUPTED);
806 		goto out_free_perag;
807 	}
808 
809 	/*
810 	 * log's mount-time initialization. Perform 1st part recovery if needed
811 	 */
812 	error = xfs_log_mount(mp, mp->m_logdev_targp,
813 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
814 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
815 	if (error) {
816 		xfs_warn(mp, "log mount failed");
817 		goto out_fail_wait;
818 	}
819 
820 	/*
821 	 * Now the log is mounted, we know if it was an unclean shutdown or
822 	 * not. If it was, with the first phase of recovery has completed, we
823 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
824 	 * but they are recovered transactionally in the second recovery phase
825 	 * later.
826 	 *
827 	 * Hence we can safely re-initialise incore superblock counters from
828 	 * the per-ag data. These may not be correct if the filesystem was not
829 	 * cleanly unmounted, so we need to wait for recovery to finish before
830 	 * doing this.
831 	 *
832 	 * If the filesystem was cleanly unmounted, then we can trust the
833 	 * values in the superblock to be correct and we don't need to do
834 	 * anything here.
835 	 *
836 	 * If we are currently making the filesystem, the initialisation will
837 	 * fail as the perag data is in an undefined state.
838 	 */
839 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
840 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
841 	     !mp->m_sb.sb_inprogress) {
842 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
843 		if (error)
844 			goto out_fail_wait;
845 	}
846 
847 	/*
848 	 * Get and sanity-check the root inode.
849 	 * Save the pointer to it in the mount structure.
850 	 */
851 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
852 	if (error) {
853 		xfs_warn(mp, "failed to read root inode");
854 		goto out_log_dealloc;
855 	}
856 
857 	ASSERT(rip != NULL);
858 
859 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
860 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
861 			(unsigned long long)rip->i_ino);
862 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
863 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
864 				 mp);
865 		error = XFS_ERROR(EFSCORRUPTED);
866 		goto out_rele_rip;
867 	}
868 	mp->m_rootip = rip;	/* save it */
869 
870 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 
872 	/*
873 	 * Initialize realtime inode pointers in the mount structure
874 	 */
875 	error = xfs_rtmount_inodes(mp);
876 	if (error) {
877 		/*
878 		 * Free up the root inode.
879 		 */
880 		xfs_warn(mp, "failed to read RT inodes");
881 		goto out_rele_rip;
882 	}
883 
884 	/*
885 	 * If this is a read-only mount defer the superblock updates until
886 	 * the next remount into writeable mode.  Otherwise we would never
887 	 * perform the update e.g. for the root filesystem.
888 	 */
889 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
890 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
891 		if (error) {
892 			xfs_warn(mp, "failed to write sb changes");
893 			goto out_rtunmount;
894 		}
895 	}
896 
897 	/*
898 	 * Initialise the XFS quota management subsystem for this mount
899 	 */
900 	if (XFS_IS_QUOTA_RUNNING(mp)) {
901 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
902 		if (error)
903 			goto out_rtunmount;
904 	} else {
905 		ASSERT(!XFS_IS_QUOTA_ON(mp));
906 
907 		/*
908 		 * If a file system had quotas running earlier, but decided to
909 		 * mount without -o uquota/pquota/gquota options, revoke the
910 		 * quotachecked license.
911 		 */
912 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
913 			xfs_notice(mp, "resetting quota flags");
914 			error = xfs_mount_reset_sbqflags(mp);
915 			if (error)
916 				return error;
917 		}
918 	}
919 
920 	/*
921 	 * Finish recovering the file system.  This part needed to be
922 	 * delayed until after the root and real-time bitmap inodes
923 	 * were consistently read in.
924 	 */
925 	error = xfs_log_mount_finish(mp);
926 	if (error) {
927 		xfs_warn(mp, "log mount finish failed");
928 		goto out_rtunmount;
929 	}
930 
931 	/*
932 	 * Complete the quota initialisation, post-log-replay component.
933 	 */
934 	if (quotamount) {
935 		ASSERT(mp->m_qflags == 0);
936 		mp->m_qflags = quotaflags;
937 
938 		xfs_qm_mount_quotas(mp);
939 	}
940 
941 	/*
942 	 * Now we are mounted, reserve a small amount of unused space for
943 	 * privileged transactions. This is needed so that transaction
944 	 * space required for critical operations can dip into this pool
945 	 * when at ENOSPC. This is needed for operations like create with
946 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
947 	 * are not allowed to use this reserved space.
948 	 *
949 	 * This may drive us straight to ENOSPC on mount, but that implies
950 	 * we were already there on the last unmount. Warn if this occurs.
951 	 */
952 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
953 		resblks = xfs_default_resblks(mp);
954 		error = xfs_reserve_blocks(mp, &resblks, NULL);
955 		if (error)
956 			xfs_warn(mp,
957 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
958 	}
959 
960 	return 0;
961 
962  out_rtunmount:
963 	xfs_rtunmount_inodes(mp);
964  out_rele_rip:
965 	IRELE(rip);
966  out_log_dealloc:
967 	xfs_log_unmount(mp);
968  out_fail_wait:
969 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
970 		xfs_wait_buftarg(mp->m_logdev_targp);
971 	xfs_wait_buftarg(mp->m_ddev_targp);
972  out_free_perag:
973 	xfs_free_perag(mp);
974  out_remove_uuid:
975 	xfs_uuid_unmount(mp);
976  out:
977 	return error;
978 }
979 
980 /*
981  * This flushes out the inodes,dquots and the superblock, unmounts the
982  * log and makes sure that incore structures are freed.
983  */
984 void
985 xfs_unmountfs(
986 	struct xfs_mount	*mp)
987 {
988 	__uint64_t		resblks;
989 	int			error;
990 
991 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
992 
993 	xfs_qm_unmount_quotas(mp);
994 	xfs_rtunmount_inodes(mp);
995 	IRELE(mp->m_rootip);
996 
997 	/*
998 	 * We can potentially deadlock here if we have an inode cluster
999 	 * that has been freed has its buffer still pinned in memory because
1000 	 * the transaction is still sitting in a iclog. The stale inodes
1001 	 * on that buffer will have their flush locks held until the
1002 	 * transaction hits the disk and the callbacks run. the inode
1003 	 * flush takes the flush lock unconditionally and with nothing to
1004 	 * push out the iclog we will never get that unlocked. hence we
1005 	 * need to force the log first.
1006 	 */
1007 	xfs_log_force(mp, XFS_LOG_SYNC);
1008 
1009 	/*
1010 	 * Flush all pending changes from the AIL.
1011 	 */
1012 	xfs_ail_push_all_sync(mp->m_ail);
1013 
1014 	/*
1015 	 * And reclaim all inodes.  At this point there should be no dirty
1016 	 * inodes and none should be pinned or locked, but use synchronous
1017 	 * reclaim just to be sure. We can stop background inode reclaim
1018 	 * here as well if it is still running.
1019 	 */
1020 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1021 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1022 
1023 	xfs_qm_unmount(mp);
1024 
1025 	/*
1026 	 * Unreserve any blocks we have so that when we unmount we don't account
1027 	 * the reserved free space as used. This is really only necessary for
1028 	 * lazy superblock counting because it trusts the incore superblock
1029 	 * counters to be absolutely correct on clean unmount.
1030 	 *
1031 	 * We don't bother correcting this elsewhere for lazy superblock
1032 	 * counting because on mount of an unclean filesystem we reconstruct the
1033 	 * correct counter value and this is irrelevant.
1034 	 *
1035 	 * For non-lazy counter filesystems, this doesn't matter at all because
1036 	 * we only every apply deltas to the superblock and hence the incore
1037 	 * value does not matter....
1038 	 */
1039 	resblks = 0;
1040 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1041 	if (error)
1042 		xfs_warn(mp, "Unable to free reserved block pool. "
1043 				"Freespace may not be correct on next mount.");
1044 
1045 	error = xfs_log_sbcount(mp);
1046 	if (error)
1047 		xfs_warn(mp, "Unable to update superblock counters. "
1048 				"Freespace may not be correct on next mount.");
1049 
1050 	xfs_log_unmount(mp);
1051 	xfs_uuid_unmount(mp);
1052 
1053 #if defined(DEBUG)
1054 	xfs_errortag_clearall(mp, 0);
1055 #endif
1056 	xfs_free_perag(mp);
1057 }
1058 
1059 int
1060 xfs_fs_writable(xfs_mount_t *mp)
1061 {
1062 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1063 		(mp->m_flags & XFS_MOUNT_RDONLY));
1064 }
1065 
1066 /*
1067  * xfs_log_sbcount
1068  *
1069  * Sync the superblock counters to disk.
1070  *
1071  * Note this code can be called during the process of freezing, so
1072  * we may need to use the transaction allocator which does not
1073  * block when the transaction subsystem is in its frozen state.
1074  */
1075 int
1076 xfs_log_sbcount(xfs_mount_t *mp)
1077 {
1078 	xfs_trans_t	*tp;
1079 	int		error;
1080 
1081 	if (!xfs_fs_writable(mp))
1082 		return 0;
1083 
1084 	xfs_icsb_sync_counters(mp, 0);
1085 
1086 	/*
1087 	 * we don't need to do this if we are updating the superblock
1088 	 * counters on every modification.
1089 	 */
1090 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1091 		return 0;
1092 
1093 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1094 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1095 	if (error) {
1096 		xfs_trans_cancel(tp, 0);
1097 		return error;
1098 	}
1099 
1100 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1101 	xfs_trans_set_sync(tp);
1102 	error = xfs_trans_commit(tp, 0);
1103 	return error;
1104 }
1105 
1106 /*
1107  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1108  * a delta to a specified field in the in-core superblock.  Simply
1109  * switch on the field indicated and apply the delta to that field.
1110  * Fields are not allowed to dip below zero, so if the delta would
1111  * do this do not apply it and return EINVAL.
1112  *
1113  * The m_sb_lock must be held when this routine is called.
1114  */
1115 STATIC int
1116 xfs_mod_incore_sb_unlocked(
1117 	xfs_mount_t	*mp,
1118 	xfs_sb_field_t	field,
1119 	int64_t		delta,
1120 	int		rsvd)
1121 {
1122 	int		scounter;	/* short counter for 32 bit fields */
1123 	long long	lcounter;	/* long counter for 64 bit fields */
1124 	long long	res_used, rem;
1125 
1126 	/*
1127 	 * With the in-core superblock spin lock held, switch
1128 	 * on the indicated field.  Apply the delta to the
1129 	 * proper field.  If the fields value would dip below
1130 	 * 0, then do not apply the delta and return EINVAL.
1131 	 */
1132 	switch (field) {
1133 	case XFS_SBS_ICOUNT:
1134 		lcounter = (long long)mp->m_sb.sb_icount;
1135 		lcounter += delta;
1136 		if (lcounter < 0) {
1137 			ASSERT(0);
1138 			return XFS_ERROR(EINVAL);
1139 		}
1140 		mp->m_sb.sb_icount = lcounter;
1141 		return 0;
1142 	case XFS_SBS_IFREE:
1143 		lcounter = (long long)mp->m_sb.sb_ifree;
1144 		lcounter += delta;
1145 		if (lcounter < 0) {
1146 			ASSERT(0);
1147 			return XFS_ERROR(EINVAL);
1148 		}
1149 		mp->m_sb.sb_ifree = lcounter;
1150 		return 0;
1151 	case XFS_SBS_FDBLOCKS:
1152 		lcounter = (long long)
1153 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1154 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1155 
1156 		if (delta > 0) {		/* Putting blocks back */
1157 			if (res_used > delta) {
1158 				mp->m_resblks_avail += delta;
1159 			} else {
1160 				rem = delta - res_used;
1161 				mp->m_resblks_avail = mp->m_resblks;
1162 				lcounter += rem;
1163 			}
1164 		} else {				/* Taking blocks away */
1165 			lcounter += delta;
1166 			if (lcounter >= 0) {
1167 				mp->m_sb.sb_fdblocks = lcounter +
1168 							XFS_ALLOC_SET_ASIDE(mp);
1169 				return 0;
1170 			}
1171 
1172 			/*
1173 			 * We are out of blocks, use any available reserved
1174 			 * blocks if were allowed to.
1175 			 */
1176 			if (!rsvd)
1177 				return XFS_ERROR(ENOSPC);
1178 
1179 			lcounter = (long long)mp->m_resblks_avail + delta;
1180 			if (lcounter >= 0) {
1181 				mp->m_resblks_avail = lcounter;
1182 				return 0;
1183 			}
1184 			printk_once(KERN_WARNING
1185 				"Filesystem \"%s\": reserve blocks depleted! "
1186 				"Consider increasing reserve pool size.",
1187 				mp->m_fsname);
1188 			return XFS_ERROR(ENOSPC);
1189 		}
1190 
1191 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1192 		return 0;
1193 	case XFS_SBS_FREXTENTS:
1194 		lcounter = (long long)mp->m_sb.sb_frextents;
1195 		lcounter += delta;
1196 		if (lcounter < 0) {
1197 			return XFS_ERROR(ENOSPC);
1198 		}
1199 		mp->m_sb.sb_frextents = lcounter;
1200 		return 0;
1201 	case XFS_SBS_DBLOCKS:
1202 		lcounter = (long long)mp->m_sb.sb_dblocks;
1203 		lcounter += delta;
1204 		if (lcounter < 0) {
1205 			ASSERT(0);
1206 			return XFS_ERROR(EINVAL);
1207 		}
1208 		mp->m_sb.sb_dblocks = lcounter;
1209 		return 0;
1210 	case XFS_SBS_AGCOUNT:
1211 		scounter = mp->m_sb.sb_agcount;
1212 		scounter += delta;
1213 		if (scounter < 0) {
1214 			ASSERT(0);
1215 			return XFS_ERROR(EINVAL);
1216 		}
1217 		mp->m_sb.sb_agcount = scounter;
1218 		return 0;
1219 	case XFS_SBS_IMAX_PCT:
1220 		scounter = mp->m_sb.sb_imax_pct;
1221 		scounter += delta;
1222 		if (scounter < 0) {
1223 			ASSERT(0);
1224 			return XFS_ERROR(EINVAL);
1225 		}
1226 		mp->m_sb.sb_imax_pct = scounter;
1227 		return 0;
1228 	case XFS_SBS_REXTSIZE:
1229 		scounter = mp->m_sb.sb_rextsize;
1230 		scounter += delta;
1231 		if (scounter < 0) {
1232 			ASSERT(0);
1233 			return XFS_ERROR(EINVAL);
1234 		}
1235 		mp->m_sb.sb_rextsize = scounter;
1236 		return 0;
1237 	case XFS_SBS_RBMBLOCKS:
1238 		scounter = mp->m_sb.sb_rbmblocks;
1239 		scounter += delta;
1240 		if (scounter < 0) {
1241 			ASSERT(0);
1242 			return XFS_ERROR(EINVAL);
1243 		}
1244 		mp->m_sb.sb_rbmblocks = scounter;
1245 		return 0;
1246 	case XFS_SBS_RBLOCKS:
1247 		lcounter = (long long)mp->m_sb.sb_rblocks;
1248 		lcounter += delta;
1249 		if (lcounter < 0) {
1250 			ASSERT(0);
1251 			return XFS_ERROR(EINVAL);
1252 		}
1253 		mp->m_sb.sb_rblocks = lcounter;
1254 		return 0;
1255 	case XFS_SBS_REXTENTS:
1256 		lcounter = (long long)mp->m_sb.sb_rextents;
1257 		lcounter += delta;
1258 		if (lcounter < 0) {
1259 			ASSERT(0);
1260 			return XFS_ERROR(EINVAL);
1261 		}
1262 		mp->m_sb.sb_rextents = lcounter;
1263 		return 0;
1264 	case XFS_SBS_REXTSLOG:
1265 		scounter = mp->m_sb.sb_rextslog;
1266 		scounter += delta;
1267 		if (scounter < 0) {
1268 			ASSERT(0);
1269 			return XFS_ERROR(EINVAL);
1270 		}
1271 		mp->m_sb.sb_rextslog = scounter;
1272 		return 0;
1273 	default:
1274 		ASSERT(0);
1275 		return XFS_ERROR(EINVAL);
1276 	}
1277 }
1278 
1279 /*
1280  * xfs_mod_incore_sb() is used to change a field in the in-core
1281  * superblock structure by the specified delta.  This modification
1282  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1283  * routine to do the work.
1284  */
1285 int
1286 xfs_mod_incore_sb(
1287 	struct xfs_mount	*mp,
1288 	xfs_sb_field_t		field,
1289 	int64_t			delta,
1290 	int			rsvd)
1291 {
1292 	int			status;
1293 
1294 #ifdef HAVE_PERCPU_SB
1295 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1296 #endif
1297 	spin_lock(&mp->m_sb_lock);
1298 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1299 	spin_unlock(&mp->m_sb_lock);
1300 
1301 	return status;
1302 }
1303 
1304 /*
1305  * Change more than one field in the in-core superblock structure at a time.
1306  *
1307  * The fields and changes to those fields are specified in the array of
1308  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1309  * will be applied or none of them will.  If any modified field dips below 0,
1310  * then all modifications will be backed out and EINVAL will be returned.
1311  *
1312  * Note that this function may not be used for the superblock values that
1313  * are tracked with the in-memory per-cpu counters - a direct call to
1314  * xfs_icsb_modify_counters is required for these.
1315  */
1316 int
1317 xfs_mod_incore_sb_batch(
1318 	struct xfs_mount	*mp,
1319 	xfs_mod_sb_t		*msb,
1320 	uint			nmsb,
1321 	int			rsvd)
1322 {
1323 	xfs_mod_sb_t		*msbp;
1324 	int			error = 0;
1325 
1326 	/*
1327 	 * Loop through the array of mod structures and apply each individually.
1328 	 * If any fail, then back out all those which have already been applied.
1329 	 * Do all of this within the scope of the m_sb_lock so that all of the
1330 	 * changes will be atomic.
1331 	 */
1332 	spin_lock(&mp->m_sb_lock);
1333 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1334 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1335 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1336 
1337 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1338 						   msbp->msb_delta, rsvd);
1339 		if (error)
1340 			goto unwind;
1341 	}
1342 	spin_unlock(&mp->m_sb_lock);
1343 	return 0;
1344 
1345 unwind:
1346 	while (--msbp >= msb) {
1347 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1348 						   -msbp->msb_delta, rsvd);
1349 		ASSERT(error == 0);
1350 	}
1351 	spin_unlock(&mp->m_sb_lock);
1352 	return error;
1353 }
1354 
1355 /*
1356  * xfs_getsb() is called to obtain the buffer for the superblock.
1357  * The buffer is returned locked and read in from disk.
1358  * The buffer should be released with a call to xfs_brelse().
1359  *
1360  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1361  * the superblock buffer if it can be locked without sleeping.
1362  * If it can't then we'll return NULL.
1363  */
1364 struct xfs_buf *
1365 xfs_getsb(
1366 	struct xfs_mount	*mp,
1367 	int			flags)
1368 {
1369 	struct xfs_buf		*bp = mp->m_sb_bp;
1370 
1371 	if (!xfs_buf_trylock(bp)) {
1372 		if (flags & XBF_TRYLOCK)
1373 			return NULL;
1374 		xfs_buf_lock(bp);
1375 	}
1376 
1377 	xfs_buf_hold(bp);
1378 	ASSERT(XFS_BUF_ISDONE(bp));
1379 	return bp;
1380 }
1381 
1382 /*
1383  * Used to free the superblock along various error paths.
1384  */
1385 void
1386 xfs_freesb(
1387 	struct xfs_mount	*mp)
1388 {
1389 	struct xfs_buf		*bp = mp->m_sb_bp;
1390 
1391 	xfs_buf_lock(bp);
1392 	mp->m_sb_bp = NULL;
1393 	xfs_buf_relse(bp);
1394 }
1395 
1396 /*
1397  * Used to log changes to the superblock unit and width fields which could
1398  * be altered by the mount options, as well as any potential sb_features2
1399  * fixup. Only the first superblock is updated.
1400  */
1401 int
1402 xfs_mount_log_sb(
1403 	xfs_mount_t	*mp,
1404 	__int64_t	fields)
1405 {
1406 	xfs_trans_t	*tp;
1407 	int		error;
1408 
1409 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1410 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1411 			 XFS_SB_VERSIONNUM));
1412 
1413 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1414 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1415 	if (error) {
1416 		xfs_trans_cancel(tp, 0);
1417 		return error;
1418 	}
1419 	xfs_mod_sb(tp, fields);
1420 	error = xfs_trans_commit(tp, 0);
1421 	return error;
1422 }
1423 
1424 /*
1425  * If the underlying (data/log/rt) device is readonly, there are some
1426  * operations that cannot proceed.
1427  */
1428 int
1429 xfs_dev_is_read_only(
1430 	struct xfs_mount	*mp,
1431 	char			*message)
1432 {
1433 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1434 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1435 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1436 		xfs_notice(mp, "%s required on read-only device.", message);
1437 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1438 		return EROFS;
1439 	}
1440 	return 0;
1441 }
1442 
1443 #ifdef HAVE_PERCPU_SB
1444 /*
1445  * Per-cpu incore superblock counters
1446  *
1447  * Simple concept, difficult implementation
1448  *
1449  * Basically, replace the incore superblock counters with a distributed per cpu
1450  * counter for contended fields (e.g.  free block count).
1451  *
1452  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1453  * hence needs to be accurately read when we are running low on space. Hence
1454  * there is a method to enable and disable the per-cpu counters based on how
1455  * much "stuff" is available in them.
1456  *
1457  * Basically, a counter is enabled if there is enough free resource to justify
1458  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1459  * ENOSPC), then we disable the counters to synchronise all callers and
1460  * re-distribute the available resources.
1461  *
1462  * If, once we redistributed the available resources, we still get a failure,
1463  * we disable the per-cpu counter and go through the slow path.
1464  *
1465  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1466  * when we disable a per-cpu counter, we need to drain its resources back to
1467  * the global superblock. We do this after disabling the counter to prevent
1468  * more threads from queueing up on the counter.
1469  *
1470  * Essentially, this means that we still need a lock in the fast path to enable
1471  * synchronisation between the global counters and the per-cpu counters. This
1472  * is not a problem because the lock will be local to a CPU almost all the time
1473  * and have little contention except when we get to ENOSPC conditions.
1474  *
1475  * Basically, this lock becomes a barrier that enables us to lock out the fast
1476  * path while we do things like enabling and disabling counters and
1477  * synchronising the counters.
1478  *
1479  * Locking rules:
1480  *
1481  * 	1. m_sb_lock before picking up per-cpu locks
1482  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1483  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1484  * 	4. modifying per-cpu counters requires holding per-cpu lock
1485  * 	5. modifying global counters requires holding m_sb_lock
1486  *	6. enabling or disabling a counter requires holding the m_sb_lock
1487  *	   and _none_ of the per-cpu locks.
1488  *
1489  * Disabled counters are only ever re-enabled by a balance operation
1490  * that results in more free resources per CPU than a given threshold.
1491  * To ensure counters don't remain disabled, they are rebalanced when
1492  * the global resource goes above a higher threshold (i.e. some hysteresis
1493  * is present to prevent thrashing).
1494  */
1495 
1496 #ifdef CONFIG_HOTPLUG_CPU
1497 /*
1498  * hot-plug CPU notifier support.
1499  *
1500  * We need a notifier per filesystem as we need to be able to identify
1501  * the filesystem to balance the counters out. This is achieved by
1502  * having a notifier block embedded in the xfs_mount_t and doing pointer
1503  * magic to get the mount pointer from the notifier block address.
1504  */
1505 STATIC int
1506 xfs_icsb_cpu_notify(
1507 	struct notifier_block *nfb,
1508 	unsigned long action,
1509 	void *hcpu)
1510 {
1511 	xfs_icsb_cnts_t *cntp;
1512 	xfs_mount_t	*mp;
1513 
1514 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1515 	cntp = (xfs_icsb_cnts_t *)
1516 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1517 	switch (action) {
1518 	case CPU_UP_PREPARE:
1519 	case CPU_UP_PREPARE_FROZEN:
1520 		/* Easy Case - initialize the area and locks, and
1521 		 * then rebalance when online does everything else for us. */
1522 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1523 		break;
1524 	case CPU_ONLINE:
1525 	case CPU_ONLINE_FROZEN:
1526 		xfs_icsb_lock(mp);
1527 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1528 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1529 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1530 		xfs_icsb_unlock(mp);
1531 		break;
1532 	case CPU_DEAD:
1533 	case CPU_DEAD_FROZEN:
1534 		/* Disable all the counters, then fold the dead cpu's
1535 		 * count into the total on the global superblock and
1536 		 * re-enable the counters. */
1537 		xfs_icsb_lock(mp);
1538 		spin_lock(&mp->m_sb_lock);
1539 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1540 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1541 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1542 
1543 		mp->m_sb.sb_icount += cntp->icsb_icount;
1544 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1545 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1546 
1547 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1548 
1549 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1550 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1551 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1552 		spin_unlock(&mp->m_sb_lock);
1553 		xfs_icsb_unlock(mp);
1554 		break;
1555 	}
1556 
1557 	return NOTIFY_OK;
1558 }
1559 #endif /* CONFIG_HOTPLUG_CPU */
1560 
1561 int
1562 xfs_icsb_init_counters(
1563 	xfs_mount_t	*mp)
1564 {
1565 	xfs_icsb_cnts_t *cntp;
1566 	int		i;
1567 
1568 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1569 	if (mp->m_sb_cnts == NULL)
1570 		return -ENOMEM;
1571 
1572 	for_each_online_cpu(i) {
1573 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1574 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1575 	}
1576 
1577 	mutex_init(&mp->m_icsb_mutex);
1578 
1579 	/*
1580 	 * start with all counters disabled so that the
1581 	 * initial balance kicks us off correctly
1582 	 */
1583 	mp->m_icsb_counters = -1;
1584 
1585 #ifdef CONFIG_HOTPLUG_CPU
1586 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1587 	mp->m_icsb_notifier.priority = 0;
1588 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1589 #endif /* CONFIG_HOTPLUG_CPU */
1590 
1591 	return 0;
1592 }
1593 
1594 void
1595 xfs_icsb_reinit_counters(
1596 	xfs_mount_t	*mp)
1597 {
1598 	xfs_icsb_lock(mp);
1599 	/*
1600 	 * start with all counters disabled so that the
1601 	 * initial balance kicks us off correctly
1602 	 */
1603 	mp->m_icsb_counters = -1;
1604 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1605 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1606 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1607 	xfs_icsb_unlock(mp);
1608 }
1609 
1610 void
1611 xfs_icsb_destroy_counters(
1612 	xfs_mount_t	*mp)
1613 {
1614 	if (mp->m_sb_cnts) {
1615 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1616 		free_percpu(mp->m_sb_cnts);
1617 	}
1618 	mutex_destroy(&mp->m_icsb_mutex);
1619 }
1620 
1621 STATIC void
1622 xfs_icsb_lock_cntr(
1623 	xfs_icsb_cnts_t	*icsbp)
1624 {
1625 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1626 		ndelay(1000);
1627 	}
1628 }
1629 
1630 STATIC void
1631 xfs_icsb_unlock_cntr(
1632 	xfs_icsb_cnts_t	*icsbp)
1633 {
1634 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1635 }
1636 
1637 
1638 STATIC void
1639 xfs_icsb_lock_all_counters(
1640 	xfs_mount_t	*mp)
1641 {
1642 	xfs_icsb_cnts_t *cntp;
1643 	int		i;
1644 
1645 	for_each_online_cpu(i) {
1646 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1647 		xfs_icsb_lock_cntr(cntp);
1648 	}
1649 }
1650 
1651 STATIC void
1652 xfs_icsb_unlock_all_counters(
1653 	xfs_mount_t	*mp)
1654 {
1655 	xfs_icsb_cnts_t *cntp;
1656 	int		i;
1657 
1658 	for_each_online_cpu(i) {
1659 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1660 		xfs_icsb_unlock_cntr(cntp);
1661 	}
1662 }
1663 
1664 STATIC void
1665 xfs_icsb_count(
1666 	xfs_mount_t	*mp,
1667 	xfs_icsb_cnts_t	*cnt,
1668 	int		flags)
1669 {
1670 	xfs_icsb_cnts_t *cntp;
1671 	int		i;
1672 
1673 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1674 
1675 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1676 		xfs_icsb_lock_all_counters(mp);
1677 
1678 	for_each_online_cpu(i) {
1679 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1680 		cnt->icsb_icount += cntp->icsb_icount;
1681 		cnt->icsb_ifree += cntp->icsb_ifree;
1682 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1683 	}
1684 
1685 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1686 		xfs_icsb_unlock_all_counters(mp);
1687 }
1688 
1689 STATIC int
1690 xfs_icsb_counter_disabled(
1691 	xfs_mount_t	*mp,
1692 	xfs_sb_field_t	field)
1693 {
1694 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1695 	return test_bit(field, &mp->m_icsb_counters);
1696 }
1697 
1698 STATIC void
1699 xfs_icsb_disable_counter(
1700 	xfs_mount_t	*mp,
1701 	xfs_sb_field_t	field)
1702 {
1703 	xfs_icsb_cnts_t	cnt;
1704 
1705 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1706 
1707 	/*
1708 	 * If we are already disabled, then there is nothing to do
1709 	 * here. We check before locking all the counters to avoid
1710 	 * the expensive lock operation when being called in the
1711 	 * slow path and the counter is already disabled. This is
1712 	 * safe because the only time we set or clear this state is under
1713 	 * the m_icsb_mutex.
1714 	 */
1715 	if (xfs_icsb_counter_disabled(mp, field))
1716 		return;
1717 
1718 	xfs_icsb_lock_all_counters(mp);
1719 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1720 		/* drain back to superblock */
1721 
1722 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1723 		switch(field) {
1724 		case XFS_SBS_ICOUNT:
1725 			mp->m_sb.sb_icount = cnt.icsb_icount;
1726 			break;
1727 		case XFS_SBS_IFREE:
1728 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1729 			break;
1730 		case XFS_SBS_FDBLOCKS:
1731 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1732 			break;
1733 		default:
1734 			BUG();
1735 		}
1736 	}
1737 
1738 	xfs_icsb_unlock_all_counters(mp);
1739 }
1740 
1741 STATIC void
1742 xfs_icsb_enable_counter(
1743 	xfs_mount_t	*mp,
1744 	xfs_sb_field_t	field,
1745 	uint64_t	count,
1746 	uint64_t	resid)
1747 {
1748 	xfs_icsb_cnts_t	*cntp;
1749 	int		i;
1750 
1751 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1752 
1753 	xfs_icsb_lock_all_counters(mp);
1754 	for_each_online_cpu(i) {
1755 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1756 		switch (field) {
1757 		case XFS_SBS_ICOUNT:
1758 			cntp->icsb_icount = count + resid;
1759 			break;
1760 		case XFS_SBS_IFREE:
1761 			cntp->icsb_ifree = count + resid;
1762 			break;
1763 		case XFS_SBS_FDBLOCKS:
1764 			cntp->icsb_fdblocks = count + resid;
1765 			break;
1766 		default:
1767 			BUG();
1768 			break;
1769 		}
1770 		resid = 0;
1771 	}
1772 	clear_bit(field, &mp->m_icsb_counters);
1773 	xfs_icsb_unlock_all_counters(mp);
1774 }
1775 
1776 void
1777 xfs_icsb_sync_counters_locked(
1778 	xfs_mount_t	*mp,
1779 	int		flags)
1780 {
1781 	xfs_icsb_cnts_t	cnt;
1782 
1783 	xfs_icsb_count(mp, &cnt, flags);
1784 
1785 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1786 		mp->m_sb.sb_icount = cnt.icsb_icount;
1787 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1788 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1789 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1790 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1791 }
1792 
1793 /*
1794  * Accurate update of per-cpu counters to incore superblock
1795  */
1796 void
1797 xfs_icsb_sync_counters(
1798 	xfs_mount_t	*mp,
1799 	int		flags)
1800 {
1801 	spin_lock(&mp->m_sb_lock);
1802 	xfs_icsb_sync_counters_locked(mp, flags);
1803 	spin_unlock(&mp->m_sb_lock);
1804 }
1805 
1806 /*
1807  * Balance and enable/disable counters as necessary.
1808  *
1809  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1810  * chosen to be the same number as single on disk allocation chunk per CPU, and
1811  * free blocks is something far enough zero that we aren't going thrash when we
1812  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1813  * prevent looping endlessly when xfs_alloc_space asks for more than will
1814  * be distributed to a single CPU but each CPU has enough blocks to be
1815  * reenabled.
1816  *
1817  * Note that we can be called when counters are already disabled.
1818  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1819  * prevent locking every per-cpu counter needlessly.
1820  */
1821 
1822 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1823 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1824 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1825 STATIC void
1826 xfs_icsb_balance_counter_locked(
1827 	xfs_mount_t	*mp,
1828 	xfs_sb_field_t  field,
1829 	int		min_per_cpu)
1830 {
1831 	uint64_t	count, resid;
1832 	int		weight = num_online_cpus();
1833 	uint64_t	min = (uint64_t)min_per_cpu;
1834 
1835 	/* disable counter and sync counter */
1836 	xfs_icsb_disable_counter(mp, field);
1837 
1838 	/* update counters  - first CPU gets residual*/
1839 	switch (field) {
1840 	case XFS_SBS_ICOUNT:
1841 		count = mp->m_sb.sb_icount;
1842 		resid = do_div(count, weight);
1843 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1844 			return;
1845 		break;
1846 	case XFS_SBS_IFREE:
1847 		count = mp->m_sb.sb_ifree;
1848 		resid = do_div(count, weight);
1849 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1850 			return;
1851 		break;
1852 	case XFS_SBS_FDBLOCKS:
1853 		count = mp->m_sb.sb_fdblocks;
1854 		resid = do_div(count, weight);
1855 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1856 			return;
1857 		break;
1858 	default:
1859 		BUG();
1860 		count = resid = 0;	/* quiet, gcc */
1861 		break;
1862 	}
1863 
1864 	xfs_icsb_enable_counter(mp, field, count, resid);
1865 }
1866 
1867 STATIC void
1868 xfs_icsb_balance_counter(
1869 	xfs_mount_t	*mp,
1870 	xfs_sb_field_t  fields,
1871 	int		min_per_cpu)
1872 {
1873 	spin_lock(&mp->m_sb_lock);
1874 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1875 	spin_unlock(&mp->m_sb_lock);
1876 }
1877 
1878 int
1879 xfs_icsb_modify_counters(
1880 	xfs_mount_t	*mp,
1881 	xfs_sb_field_t	field,
1882 	int64_t		delta,
1883 	int		rsvd)
1884 {
1885 	xfs_icsb_cnts_t	*icsbp;
1886 	long long	lcounter;	/* long counter for 64 bit fields */
1887 	int		ret = 0;
1888 
1889 	might_sleep();
1890 again:
1891 	preempt_disable();
1892 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1893 
1894 	/*
1895 	 * if the counter is disabled, go to slow path
1896 	 */
1897 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1898 		goto slow_path;
1899 	xfs_icsb_lock_cntr(icsbp);
1900 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1901 		xfs_icsb_unlock_cntr(icsbp);
1902 		goto slow_path;
1903 	}
1904 
1905 	switch (field) {
1906 	case XFS_SBS_ICOUNT:
1907 		lcounter = icsbp->icsb_icount;
1908 		lcounter += delta;
1909 		if (unlikely(lcounter < 0))
1910 			goto balance_counter;
1911 		icsbp->icsb_icount = lcounter;
1912 		break;
1913 
1914 	case XFS_SBS_IFREE:
1915 		lcounter = icsbp->icsb_ifree;
1916 		lcounter += delta;
1917 		if (unlikely(lcounter < 0))
1918 			goto balance_counter;
1919 		icsbp->icsb_ifree = lcounter;
1920 		break;
1921 
1922 	case XFS_SBS_FDBLOCKS:
1923 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1924 
1925 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1926 		lcounter += delta;
1927 		if (unlikely(lcounter < 0))
1928 			goto balance_counter;
1929 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1930 		break;
1931 	default:
1932 		BUG();
1933 		break;
1934 	}
1935 	xfs_icsb_unlock_cntr(icsbp);
1936 	preempt_enable();
1937 	return 0;
1938 
1939 slow_path:
1940 	preempt_enable();
1941 
1942 	/*
1943 	 * serialise with a mutex so we don't burn lots of cpu on
1944 	 * the superblock lock. We still need to hold the superblock
1945 	 * lock, however, when we modify the global structures.
1946 	 */
1947 	xfs_icsb_lock(mp);
1948 
1949 	/*
1950 	 * Now running atomically.
1951 	 *
1952 	 * If the counter is enabled, someone has beaten us to rebalancing.
1953 	 * Drop the lock and try again in the fast path....
1954 	 */
1955 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1956 		xfs_icsb_unlock(mp);
1957 		goto again;
1958 	}
1959 
1960 	/*
1961 	 * The counter is currently disabled. Because we are
1962 	 * running atomically here, we know a rebalance cannot
1963 	 * be in progress. Hence we can go straight to operating
1964 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1965 	 * here even though we need to get the m_sb_lock. Doing so
1966 	 * will cause us to re-enter this function and deadlock.
1967 	 * Hence we get the m_sb_lock ourselves and then call
1968 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1969 	 * directly on the global counters.
1970 	 */
1971 	spin_lock(&mp->m_sb_lock);
1972 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1973 	spin_unlock(&mp->m_sb_lock);
1974 
1975 	/*
1976 	 * Now that we've modified the global superblock, we
1977 	 * may be able to re-enable the distributed counters
1978 	 * (e.g. lots of space just got freed). After that
1979 	 * we are done.
1980 	 */
1981 	if (ret != ENOSPC)
1982 		xfs_icsb_balance_counter(mp, field, 0);
1983 	xfs_icsb_unlock(mp);
1984 	return ret;
1985 
1986 balance_counter:
1987 	xfs_icsb_unlock_cntr(icsbp);
1988 	preempt_enable();
1989 
1990 	/*
1991 	 * We may have multiple threads here if multiple per-cpu
1992 	 * counters run dry at the same time. This will mean we can
1993 	 * do more balances than strictly necessary but it is not
1994 	 * the common slowpath case.
1995 	 */
1996 	xfs_icsb_lock(mp);
1997 
1998 	/*
1999 	 * running atomically.
2000 	 *
2001 	 * This will leave the counter in the correct state for future
2002 	 * accesses. After the rebalance, we simply try again and our retry
2003 	 * will either succeed through the fast path or slow path without
2004 	 * another balance operation being required.
2005 	 */
2006 	xfs_icsb_balance_counter(mp, field, delta);
2007 	xfs_icsb_unlock(mp);
2008 	goto again;
2009 }
2010 
2011 #endif
2012