xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision a8a28aff)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_dinode.h"
45 
46 
47 #ifdef HAVE_PERCPU_SB
48 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 						int);
50 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 						int);
52 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54 
55 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
57 #endif
58 
59 static DEFINE_MUTEX(xfs_uuid_table_mutex);
60 static int xfs_uuid_table_size;
61 static uuid_t *xfs_uuid_table;
62 
63 /*
64  * See if the UUID is unique among mounted XFS filesystems.
65  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66  */
67 STATIC int
68 xfs_uuid_mount(
69 	struct xfs_mount	*mp)
70 {
71 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
72 	int			hole, i;
73 
74 	if (mp->m_flags & XFS_MOUNT_NOUUID)
75 		return 0;
76 
77 	if (uuid_is_nil(uuid)) {
78 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
79 		return XFS_ERROR(EINVAL);
80 	}
81 
82 	mutex_lock(&xfs_uuid_table_mutex);
83 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 		if (uuid_is_nil(&xfs_uuid_table[i])) {
85 			hole = i;
86 			continue;
87 		}
88 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 			goto out_duplicate;
90 	}
91 
92 	if (hole < 0) {
93 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
95 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
96 			KM_SLEEP);
97 		hole = xfs_uuid_table_size++;
98 	}
99 	xfs_uuid_table[hole] = *uuid;
100 	mutex_unlock(&xfs_uuid_table_mutex);
101 
102 	return 0;
103 
104  out_duplicate:
105 	mutex_unlock(&xfs_uuid_table_mutex);
106 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 	return XFS_ERROR(EINVAL);
108 }
109 
110 STATIC void
111 xfs_uuid_unmount(
112 	struct xfs_mount	*mp)
113 {
114 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
115 	int			i;
116 
117 	if (mp->m_flags & XFS_MOUNT_NOUUID)
118 		return;
119 
120 	mutex_lock(&xfs_uuid_table_mutex);
121 	for (i = 0; i < xfs_uuid_table_size; i++) {
122 		if (uuid_is_nil(&xfs_uuid_table[i]))
123 			continue;
124 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 			continue;
126 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 		break;
128 	}
129 	ASSERT(i < xfs_uuid_table_size);
130 	mutex_unlock(&xfs_uuid_table_mutex);
131 }
132 
133 
134 STATIC void
135 __xfs_free_perag(
136 	struct rcu_head	*head)
137 {
138 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139 
140 	ASSERT(atomic_read(&pag->pag_ref) == 0);
141 	kmem_free(pag);
142 }
143 
144 /*
145  * Free up the per-ag resources associated with the mount structure.
146  */
147 STATIC void
148 xfs_free_perag(
149 	xfs_mount_t	*mp)
150 {
151 	xfs_agnumber_t	agno;
152 	struct xfs_perag *pag;
153 
154 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 		spin_lock(&mp->m_perag_lock);
156 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 		spin_unlock(&mp->m_perag_lock);
158 		ASSERT(pag);
159 		ASSERT(atomic_read(&pag->pag_ref) == 0);
160 		call_rcu(&pag->rcu_head, __xfs_free_perag);
161 	}
162 }
163 
164 /*
165  * Check size of device based on the (data/realtime) block count.
166  * Note: this check is used by the growfs code as well as mount.
167  */
168 int
169 xfs_sb_validate_fsb_count(
170 	xfs_sb_t	*sbp,
171 	__uint64_t	nblocks)
172 {
173 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
174 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
175 
176 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
177 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
178 		return EFBIG;
179 #else                  /* Limited by UINT_MAX of sectors */
180 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
181 		return EFBIG;
182 #endif
183 	return 0;
184 }
185 
186 int
187 xfs_initialize_perag(
188 	xfs_mount_t	*mp,
189 	xfs_agnumber_t	agcount,
190 	xfs_agnumber_t	*maxagi)
191 {
192 	xfs_agnumber_t	index;
193 	xfs_agnumber_t	first_initialised = 0;
194 	xfs_perag_t	*pag;
195 	xfs_agino_t	agino;
196 	xfs_ino_t	ino;
197 	xfs_sb_t	*sbp = &mp->m_sb;
198 	int		error = -ENOMEM;
199 
200 	/*
201 	 * Walk the current per-ag tree so we don't try to initialise AGs
202 	 * that already exist (growfs case). Allocate and insert all the
203 	 * AGs we don't find ready for initialisation.
204 	 */
205 	for (index = 0; index < agcount; index++) {
206 		pag = xfs_perag_get(mp, index);
207 		if (pag) {
208 			xfs_perag_put(pag);
209 			continue;
210 		}
211 		if (!first_initialised)
212 			first_initialised = index;
213 
214 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
215 		if (!pag)
216 			goto out_unwind;
217 		pag->pag_agno = index;
218 		pag->pag_mount = mp;
219 		spin_lock_init(&pag->pag_ici_lock);
220 		mutex_init(&pag->pag_ici_reclaim_lock);
221 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
222 		spin_lock_init(&pag->pag_buf_lock);
223 		pag->pag_buf_tree = RB_ROOT;
224 
225 		if (radix_tree_preload(GFP_NOFS))
226 			goto out_unwind;
227 
228 		spin_lock(&mp->m_perag_lock);
229 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
230 			BUG();
231 			spin_unlock(&mp->m_perag_lock);
232 			radix_tree_preload_end();
233 			error = -EEXIST;
234 			goto out_unwind;
235 		}
236 		spin_unlock(&mp->m_perag_lock);
237 		radix_tree_preload_end();
238 	}
239 
240 	/*
241 	 * If we mount with the inode64 option, or no inode overflows
242 	 * the legacy 32-bit address space clear the inode32 option.
243 	 */
244 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
245 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246 
247 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
248 		mp->m_flags |= XFS_MOUNT_32BITINODES;
249 	else
250 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251 
252 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
253 		index = xfs_set_inode32(mp);
254 	else
255 		index = xfs_set_inode64(mp);
256 
257 	if (maxagi)
258 		*maxagi = index;
259 	return 0;
260 
261 out_unwind:
262 	kmem_free(pag);
263 	for (; index > first_initialised; index--) {
264 		pag = radix_tree_delete(&mp->m_perag_tree, index);
265 		kmem_free(pag);
266 	}
267 	return error;
268 }
269 
270 /*
271  * xfs_readsb
272  *
273  * Does the initial read of the superblock.
274  */
275 int
276 xfs_readsb(
277 	struct xfs_mount *mp,
278 	int		flags)
279 {
280 	unsigned int	sector_size;
281 	struct xfs_buf	*bp;
282 	struct xfs_sb	*sbp = &mp->m_sb;
283 	int		error;
284 	int		loud = !(flags & XFS_MFSI_QUIET);
285 	const struct xfs_buf_ops *buf_ops;
286 
287 	ASSERT(mp->m_sb_bp == NULL);
288 	ASSERT(mp->m_ddev_targp != NULL);
289 
290 	/*
291 	 * For the initial read, we must guess at the sector
292 	 * size based on the block device.  It's enough to
293 	 * get the sb_sectsize out of the superblock and
294 	 * then reread with the proper length.
295 	 * We don't verify it yet, because it may not be complete.
296 	 */
297 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
298 	buf_ops = NULL;
299 
300 	/*
301 	 * Allocate a (locked) buffer to hold the superblock.
302 	 * This will be kept around at all times to optimize
303 	 * access to the superblock.
304 	 */
305 reread:
306 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
307 				   BTOBB(sector_size), 0, buf_ops);
308 	if (!bp) {
309 		if (loud)
310 			xfs_warn(mp, "SB buffer read failed");
311 		return EIO;
312 	}
313 	if (bp->b_error) {
314 		error = bp->b_error;
315 		if (loud)
316 			xfs_warn(mp, "SB validate failed with error %d.", error);
317 		/* bad CRC means corrupted metadata */
318 		if (error == EFSBADCRC)
319 			error = EFSCORRUPTED;
320 		goto release_buf;
321 	}
322 
323 	/*
324 	 * Initialize the mount structure from the superblock.
325 	 */
326 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
327 	xfs_sb_quota_from_disk(sbp);
328 
329 	/*
330 	 * If we haven't validated the superblock, do so now before we try
331 	 * to check the sector size and reread the superblock appropriately.
332 	 */
333 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
334 		if (loud)
335 			xfs_warn(mp, "Invalid superblock magic number");
336 		error = EINVAL;
337 		goto release_buf;
338 	}
339 
340 	/*
341 	 * We must be able to do sector-sized and sector-aligned IO.
342 	 */
343 	if (sector_size > sbp->sb_sectsize) {
344 		if (loud)
345 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
346 				sector_size, sbp->sb_sectsize);
347 		error = ENOSYS;
348 		goto release_buf;
349 	}
350 
351 	if (buf_ops == NULL) {
352 		/*
353 		 * Re-read the superblock so the buffer is correctly sized,
354 		 * and properly verified.
355 		 */
356 		xfs_buf_relse(bp);
357 		sector_size = sbp->sb_sectsize;
358 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
359 		goto reread;
360 	}
361 
362 	/* Initialize per-cpu counters */
363 	xfs_icsb_reinit_counters(mp);
364 
365 	/* no need to be quiet anymore, so reset the buf ops */
366 	bp->b_ops = &xfs_sb_buf_ops;
367 
368 	mp->m_sb_bp = bp;
369 	xfs_buf_unlock(bp);
370 	return 0;
371 
372 release_buf:
373 	xfs_buf_relse(bp);
374 	return error;
375 }
376 
377 /*
378  * Update alignment values based on mount options and sb values
379  */
380 STATIC int
381 xfs_update_alignment(xfs_mount_t *mp)
382 {
383 	xfs_sb_t	*sbp = &(mp->m_sb);
384 
385 	if (mp->m_dalign) {
386 		/*
387 		 * If stripe unit and stripe width are not multiples
388 		 * of the fs blocksize turn off alignment.
389 		 */
390 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
391 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
392 			xfs_warn(mp,
393 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
394 				sbp->sb_blocksize);
395 			return XFS_ERROR(EINVAL);
396 		} else {
397 			/*
398 			 * Convert the stripe unit and width to FSBs.
399 			 */
400 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
401 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
402 				xfs_warn(mp,
403 			"alignment check failed: sunit/swidth vs. agsize(%d)",
404 					 sbp->sb_agblocks);
405 				return XFS_ERROR(EINVAL);
406 			} else if (mp->m_dalign) {
407 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
408 			} else {
409 				xfs_warn(mp,
410 			"alignment check failed: sunit(%d) less than bsize(%d)",
411 					 mp->m_dalign, sbp->sb_blocksize);
412 				return XFS_ERROR(EINVAL);
413 			}
414 		}
415 
416 		/*
417 		 * Update superblock with new values
418 		 * and log changes
419 		 */
420 		if (xfs_sb_version_hasdalign(sbp)) {
421 			if (sbp->sb_unit != mp->m_dalign) {
422 				sbp->sb_unit = mp->m_dalign;
423 				mp->m_update_flags |= XFS_SB_UNIT;
424 			}
425 			if (sbp->sb_width != mp->m_swidth) {
426 				sbp->sb_width = mp->m_swidth;
427 				mp->m_update_flags |= XFS_SB_WIDTH;
428 			}
429 		} else {
430 			xfs_warn(mp,
431 	"cannot change alignment: superblock does not support data alignment");
432 			return XFS_ERROR(EINVAL);
433 		}
434 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
435 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
436 			mp->m_dalign = sbp->sb_unit;
437 			mp->m_swidth = sbp->sb_width;
438 	}
439 
440 	return 0;
441 }
442 
443 /*
444  * Set the maximum inode count for this filesystem
445  */
446 STATIC void
447 xfs_set_maxicount(xfs_mount_t *mp)
448 {
449 	xfs_sb_t	*sbp = &(mp->m_sb);
450 	__uint64_t	icount;
451 
452 	if (sbp->sb_imax_pct) {
453 		/*
454 		 * Make sure the maximum inode count is a multiple
455 		 * of the units we allocate inodes in.
456 		 */
457 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
458 		do_div(icount, 100);
459 		do_div(icount, mp->m_ialloc_blks);
460 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
461 				   sbp->sb_inopblog;
462 	} else {
463 		mp->m_maxicount = 0;
464 	}
465 }
466 
467 /*
468  * Set the default minimum read and write sizes unless
469  * already specified in a mount option.
470  * We use smaller I/O sizes when the file system
471  * is being used for NFS service (wsync mount option).
472  */
473 STATIC void
474 xfs_set_rw_sizes(xfs_mount_t *mp)
475 {
476 	xfs_sb_t	*sbp = &(mp->m_sb);
477 	int		readio_log, writeio_log;
478 
479 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
480 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
481 			readio_log = XFS_WSYNC_READIO_LOG;
482 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
483 		} else {
484 			readio_log = XFS_READIO_LOG_LARGE;
485 			writeio_log = XFS_WRITEIO_LOG_LARGE;
486 		}
487 	} else {
488 		readio_log = mp->m_readio_log;
489 		writeio_log = mp->m_writeio_log;
490 	}
491 
492 	if (sbp->sb_blocklog > readio_log) {
493 		mp->m_readio_log = sbp->sb_blocklog;
494 	} else {
495 		mp->m_readio_log = readio_log;
496 	}
497 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
498 	if (sbp->sb_blocklog > writeio_log) {
499 		mp->m_writeio_log = sbp->sb_blocklog;
500 	} else {
501 		mp->m_writeio_log = writeio_log;
502 	}
503 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
504 }
505 
506 /*
507  * precalculate the low space thresholds for dynamic speculative preallocation.
508  */
509 void
510 xfs_set_low_space_thresholds(
511 	struct xfs_mount	*mp)
512 {
513 	int i;
514 
515 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
516 		__uint64_t space = mp->m_sb.sb_dblocks;
517 
518 		do_div(space, 100);
519 		mp->m_low_space[i] = space * (i + 1);
520 	}
521 }
522 
523 
524 /*
525  * Set whether we're using inode alignment.
526  */
527 STATIC void
528 xfs_set_inoalignment(xfs_mount_t *mp)
529 {
530 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
531 	    mp->m_sb.sb_inoalignmt >=
532 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
533 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
534 	else
535 		mp->m_inoalign_mask = 0;
536 	/*
537 	 * If we are using stripe alignment, check whether
538 	 * the stripe unit is a multiple of the inode alignment
539 	 */
540 	if (mp->m_dalign && mp->m_inoalign_mask &&
541 	    !(mp->m_dalign & mp->m_inoalign_mask))
542 		mp->m_sinoalign = mp->m_dalign;
543 	else
544 		mp->m_sinoalign = 0;
545 }
546 
547 /*
548  * Check that the data (and log if separate) is an ok size.
549  */
550 STATIC int
551 xfs_check_sizes(xfs_mount_t *mp)
552 {
553 	xfs_buf_t	*bp;
554 	xfs_daddr_t	d;
555 
556 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
557 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
558 		xfs_warn(mp, "filesystem size mismatch detected");
559 		return XFS_ERROR(EFBIG);
560 	}
561 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
562 					d - XFS_FSS_TO_BB(mp, 1),
563 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
564 	if (!bp) {
565 		xfs_warn(mp, "last sector read failed");
566 		return EIO;
567 	}
568 	xfs_buf_relse(bp);
569 
570 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
571 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
572 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
573 			xfs_warn(mp, "log size mismatch detected");
574 			return XFS_ERROR(EFBIG);
575 		}
576 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
577 					d - XFS_FSB_TO_BB(mp, 1),
578 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
579 		if (!bp) {
580 			xfs_warn(mp, "log device read failed");
581 			return EIO;
582 		}
583 		xfs_buf_relse(bp);
584 	}
585 	return 0;
586 }
587 
588 /*
589  * Clear the quotaflags in memory and in the superblock.
590  */
591 int
592 xfs_mount_reset_sbqflags(
593 	struct xfs_mount	*mp)
594 {
595 	int			error;
596 	struct xfs_trans	*tp;
597 
598 	mp->m_qflags = 0;
599 
600 	/*
601 	 * It is OK to look at sb_qflags here in mount path,
602 	 * without m_sb_lock.
603 	 */
604 	if (mp->m_sb.sb_qflags == 0)
605 		return 0;
606 	spin_lock(&mp->m_sb_lock);
607 	mp->m_sb.sb_qflags = 0;
608 	spin_unlock(&mp->m_sb_lock);
609 
610 	/*
611 	 * If the fs is readonly, let the incore superblock run
612 	 * with quotas off but don't flush the update out to disk
613 	 */
614 	if (mp->m_flags & XFS_MOUNT_RDONLY)
615 		return 0;
616 
617 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
618 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
619 	if (error) {
620 		xfs_trans_cancel(tp, 0);
621 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
622 		return error;
623 	}
624 
625 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
626 	return xfs_trans_commit(tp, 0);
627 }
628 
629 __uint64_t
630 xfs_default_resblks(xfs_mount_t *mp)
631 {
632 	__uint64_t resblks;
633 
634 	/*
635 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
636 	 * smaller.  This is intended to cover concurrent allocation
637 	 * transactions when we initially hit enospc. These each require a 4
638 	 * block reservation. Hence by default we cover roughly 2000 concurrent
639 	 * allocation reservations.
640 	 */
641 	resblks = mp->m_sb.sb_dblocks;
642 	do_div(resblks, 20);
643 	resblks = min_t(__uint64_t, resblks, 8192);
644 	return resblks;
645 }
646 
647 /*
648  * This function does the following on an initial mount of a file system:
649  *	- reads the superblock from disk and init the mount struct
650  *	- if we're a 32-bit kernel, do a size check on the superblock
651  *		so we don't mount terabyte filesystems
652  *	- init mount struct realtime fields
653  *	- allocate inode hash table for fs
654  *	- init directory manager
655  *	- perform recovery and init the log manager
656  */
657 int
658 xfs_mountfs(
659 	xfs_mount_t	*mp)
660 {
661 	xfs_sb_t	*sbp = &(mp->m_sb);
662 	xfs_inode_t	*rip;
663 	__uint64_t	resblks;
664 	uint		quotamount = 0;
665 	uint		quotaflags = 0;
666 	int		error = 0;
667 
668 	xfs_sb_mount_common(mp, sbp);
669 
670 	/*
671 	 * Check for a mismatched features2 values.  Older kernels
672 	 * read & wrote into the wrong sb offset for sb_features2
673 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
674 	 * when sb_features2 was added, which made older superblock
675 	 * reading/writing routines swap it as a 64-bit value.
676 	 *
677 	 * For backwards compatibility, we make both slots equal.
678 	 *
679 	 * If we detect a mismatched field, we OR the set bits into the
680 	 * existing features2 field in case it has already been modified; we
681 	 * don't want to lose any features.  We then update the bad location
682 	 * with the ORed value so that older kernels will see any features2
683 	 * flags, and mark the two fields as needing updates once the
684 	 * transaction subsystem is online.
685 	 */
686 	if (xfs_sb_has_mismatched_features2(sbp)) {
687 		xfs_warn(mp, "correcting sb_features alignment problem");
688 		sbp->sb_features2 |= sbp->sb_bad_features2;
689 		sbp->sb_bad_features2 = sbp->sb_features2;
690 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
691 
692 		/*
693 		 * Re-check for ATTR2 in case it was found in bad_features2
694 		 * slot.
695 		 */
696 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
697 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
698 			mp->m_flags |= XFS_MOUNT_ATTR2;
699 	}
700 
701 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
702 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
703 		xfs_sb_version_removeattr2(&mp->m_sb);
704 		mp->m_update_flags |= XFS_SB_FEATURES2;
705 
706 		/* update sb_versionnum for the clearing of the morebits */
707 		if (!sbp->sb_features2)
708 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
709 	}
710 
711 	/* always use v2 inodes by default now */
712 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
713 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
714 		mp->m_update_flags |= XFS_SB_VERSIONNUM;
715 	}
716 
717 	/*
718 	 * Check if sb_agblocks is aligned at stripe boundary
719 	 * If sb_agblocks is NOT aligned turn off m_dalign since
720 	 * allocator alignment is within an ag, therefore ag has
721 	 * to be aligned at stripe boundary.
722 	 */
723 	error = xfs_update_alignment(mp);
724 	if (error)
725 		goto out;
726 
727 	xfs_alloc_compute_maxlevels(mp);
728 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
729 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
730 	xfs_ialloc_compute_maxlevels(mp);
731 
732 	xfs_set_maxicount(mp);
733 
734 	error = xfs_uuid_mount(mp);
735 	if (error)
736 		goto out;
737 
738 	/*
739 	 * Set the minimum read and write sizes
740 	 */
741 	xfs_set_rw_sizes(mp);
742 
743 	/* set the low space thresholds for dynamic preallocation */
744 	xfs_set_low_space_thresholds(mp);
745 
746 	/*
747 	 * Set the inode cluster size.
748 	 * This may still be overridden by the file system
749 	 * block size if it is larger than the chosen cluster size.
750 	 *
751 	 * For v5 filesystems, scale the cluster size with the inode size to
752 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
753 	 * has set the inode alignment value appropriately for larger cluster
754 	 * sizes.
755 	 */
756 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
757 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
758 		int	new_size = mp->m_inode_cluster_size;
759 
760 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
761 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
762 			mp->m_inode_cluster_size = new_size;
763 	}
764 
765 	/*
766 	 * Set inode alignment fields
767 	 */
768 	xfs_set_inoalignment(mp);
769 
770 	/*
771 	 * Check that the data (and log if separate) is an ok size.
772 	 */
773 	error = xfs_check_sizes(mp);
774 	if (error)
775 		goto out_remove_uuid;
776 
777 	/*
778 	 * Initialize realtime fields in the mount structure
779 	 */
780 	error = xfs_rtmount_init(mp);
781 	if (error) {
782 		xfs_warn(mp, "RT mount failed");
783 		goto out_remove_uuid;
784 	}
785 
786 	/*
787 	 *  Copies the low order bits of the timestamp and the randomly
788 	 *  set "sequence" number out of a UUID.
789 	 */
790 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
791 
792 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
793 
794 	error = xfs_da_mount(mp);
795 	if (error) {
796 		xfs_warn(mp, "Failed dir/attr init: %d", error);
797 		goto out_remove_uuid;
798 	}
799 
800 	/*
801 	 * Initialize the precomputed transaction reservations values.
802 	 */
803 	xfs_trans_init(mp);
804 
805 	/*
806 	 * Allocate and initialize the per-ag data.
807 	 */
808 	spin_lock_init(&mp->m_perag_lock);
809 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
810 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
811 	if (error) {
812 		xfs_warn(mp, "Failed per-ag init: %d", error);
813 		goto out_free_dir;
814 	}
815 
816 	if (!sbp->sb_logblocks) {
817 		xfs_warn(mp, "no log defined");
818 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
819 		error = XFS_ERROR(EFSCORRUPTED);
820 		goto out_free_perag;
821 	}
822 
823 	/*
824 	 * log's mount-time initialization. Perform 1st part recovery if needed
825 	 */
826 	error = xfs_log_mount(mp, mp->m_logdev_targp,
827 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
828 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
829 	if (error) {
830 		xfs_warn(mp, "log mount failed");
831 		goto out_fail_wait;
832 	}
833 
834 	/*
835 	 * Now the log is mounted, we know if it was an unclean shutdown or
836 	 * not. If it was, with the first phase of recovery has completed, we
837 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
838 	 * but they are recovered transactionally in the second recovery phase
839 	 * later.
840 	 *
841 	 * Hence we can safely re-initialise incore superblock counters from
842 	 * the per-ag data. These may not be correct if the filesystem was not
843 	 * cleanly unmounted, so we need to wait for recovery to finish before
844 	 * doing this.
845 	 *
846 	 * If the filesystem was cleanly unmounted, then we can trust the
847 	 * values in the superblock to be correct and we don't need to do
848 	 * anything here.
849 	 *
850 	 * If we are currently making the filesystem, the initialisation will
851 	 * fail as the perag data is in an undefined state.
852 	 */
853 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
854 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
855 	     !mp->m_sb.sb_inprogress) {
856 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
857 		if (error)
858 			goto out_fail_wait;
859 	}
860 
861 	/*
862 	 * Get and sanity-check the root inode.
863 	 * Save the pointer to it in the mount structure.
864 	 */
865 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
866 	if (error) {
867 		xfs_warn(mp, "failed to read root inode");
868 		goto out_log_dealloc;
869 	}
870 
871 	ASSERT(rip != NULL);
872 
873 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
874 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
875 			(unsigned long long)rip->i_ino);
876 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
877 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
878 				 mp);
879 		error = XFS_ERROR(EFSCORRUPTED);
880 		goto out_rele_rip;
881 	}
882 	mp->m_rootip = rip;	/* save it */
883 
884 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
885 
886 	/*
887 	 * Initialize realtime inode pointers in the mount structure
888 	 */
889 	error = xfs_rtmount_inodes(mp);
890 	if (error) {
891 		/*
892 		 * Free up the root inode.
893 		 */
894 		xfs_warn(mp, "failed to read RT inodes");
895 		goto out_rele_rip;
896 	}
897 
898 	/*
899 	 * If this is a read-only mount defer the superblock updates until
900 	 * the next remount into writeable mode.  Otherwise we would never
901 	 * perform the update e.g. for the root filesystem.
902 	 */
903 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
904 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
905 		if (error) {
906 			xfs_warn(mp, "failed to write sb changes");
907 			goto out_rtunmount;
908 		}
909 	}
910 
911 	/*
912 	 * Initialise the XFS quota management subsystem for this mount
913 	 */
914 	if (XFS_IS_QUOTA_RUNNING(mp)) {
915 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
916 		if (error)
917 			goto out_rtunmount;
918 	} else {
919 		ASSERT(!XFS_IS_QUOTA_ON(mp));
920 
921 		/*
922 		 * If a file system had quotas running earlier, but decided to
923 		 * mount without -o uquota/pquota/gquota options, revoke the
924 		 * quotachecked license.
925 		 */
926 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
927 			xfs_notice(mp, "resetting quota flags");
928 			error = xfs_mount_reset_sbqflags(mp);
929 			if (error)
930 				return error;
931 		}
932 	}
933 
934 	/*
935 	 * Finish recovering the file system.  This part needed to be
936 	 * delayed until after the root and real-time bitmap inodes
937 	 * were consistently read in.
938 	 */
939 	error = xfs_log_mount_finish(mp);
940 	if (error) {
941 		xfs_warn(mp, "log mount finish failed");
942 		goto out_rtunmount;
943 	}
944 
945 	/*
946 	 * Complete the quota initialisation, post-log-replay component.
947 	 */
948 	if (quotamount) {
949 		ASSERT(mp->m_qflags == 0);
950 		mp->m_qflags = quotaflags;
951 
952 		xfs_qm_mount_quotas(mp);
953 	}
954 
955 	/*
956 	 * Now we are mounted, reserve a small amount of unused space for
957 	 * privileged transactions. This is needed so that transaction
958 	 * space required for critical operations can dip into this pool
959 	 * when at ENOSPC. This is needed for operations like create with
960 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
961 	 * are not allowed to use this reserved space.
962 	 *
963 	 * This may drive us straight to ENOSPC on mount, but that implies
964 	 * we were already there on the last unmount. Warn if this occurs.
965 	 */
966 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
967 		resblks = xfs_default_resblks(mp);
968 		error = xfs_reserve_blocks(mp, &resblks, NULL);
969 		if (error)
970 			xfs_warn(mp,
971 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
972 	}
973 
974 	return 0;
975 
976  out_rtunmount:
977 	xfs_rtunmount_inodes(mp);
978  out_rele_rip:
979 	IRELE(rip);
980  out_log_dealloc:
981 	xfs_log_unmount(mp);
982  out_fail_wait:
983 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
984 		xfs_wait_buftarg(mp->m_logdev_targp);
985 	xfs_wait_buftarg(mp->m_ddev_targp);
986  out_free_perag:
987 	xfs_free_perag(mp);
988  out_free_dir:
989 	xfs_da_unmount(mp);
990  out_remove_uuid:
991 	xfs_uuid_unmount(mp);
992  out:
993 	return error;
994 }
995 
996 /*
997  * This flushes out the inodes,dquots and the superblock, unmounts the
998  * log and makes sure that incore structures are freed.
999  */
1000 void
1001 xfs_unmountfs(
1002 	struct xfs_mount	*mp)
1003 {
1004 	__uint64_t		resblks;
1005 	int			error;
1006 
1007 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1008 
1009 	xfs_qm_unmount_quotas(mp);
1010 	xfs_rtunmount_inodes(mp);
1011 	IRELE(mp->m_rootip);
1012 
1013 	/*
1014 	 * We can potentially deadlock here if we have an inode cluster
1015 	 * that has been freed has its buffer still pinned in memory because
1016 	 * the transaction is still sitting in a iclog. The stale inodes
1017 	 * on that buffer will have their flush locks held until the
1018 	 * transaction hits the disk and the callbacks run. the inode
1019 	 * flush takes the flush lock unconditionally and with nothing to
1020 	 * push out the iclog we will never get that unlocked. hence we
1021 	 * need to force the log first.
1022 	 */
1023 	xfs_log_force(mp, XFS_LOG_SYNC);
1024 
1025 	/*
1026 	 * Flush all pending changes from the AIL.
1027 	 */
1028 	xfs_ail_push_all_sync(mp->m_ail);
1029 
1030 	/*
1031 	 * And reclaim all inodes.  At this point there should be no dirty
1032 	 * inodes and none should be pinned or locked, but use synchronous
1033 	 * reclaim just to be sure. We can stop background inode reclaim
1034 	 * here as well if it is still running.
1035 	 */
1036 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1037 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1038 
1039 	xfs_qm_unmount(mp);
1040 
1041 	/*
1042 	 * Unreserve any blocks we have so that when we unmount we don't account
1043 	 * the reserved free space as used. This is really only necessary for
1044 	 * lazy superblock counting because it trusts the incore superblock
1045 	 * counters to be absolutely correct on clean unmount.
1046 	 *
1047 	 * We don't bother correcting this elsewhere for lazy superblock
1048 	 * counting because on mount of an unclean filesystem we reconstruct the
1049 	 * correct counter value and this is irrelevant.
1050 	 *
1051 	 * For non-lazy counter filesystems, this doesn't matter at all because
1052 	 * we only every apply deltas to the superblock and hence the incore
1053 	 * value does not matter....
1054 	 */
1055 	resblks = 0;
1056 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1057 	if (error)
1058 		xfs_warn(mp, "Unable to free reserved block pool. "
1059 				"Freespace may not be correct on next mount.");
1060 
1061 	error = xfs_log_sbcount(mp);
1062 	if (error)
1063 		xfs_warn(mp, "Unable to update superblock counters. "
1064 				"Freespace may not be correct on next mount.");
1065 
1066 	xfs_log_unmount(mp);
1067 	xfs_da_unmount(mp);
1068 	xfs_uuid_unmount(mp);
1069 
1070 #if defined(DEBUG)
1071 	xfs_errortag_clearall(mp, 0);
1072 #endif
1073 	xfs_free_perag(mp);
1074 }
1075 
1076 int
1077 xfs_fs_writable(xfs_mount_t *mp)
1078 {
1079 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1080 		(mp->m_flags & XFS_MOUNT_RDONLY));
1081 }
1082 
1083 /*
1084  * xfs_log_sbcount
1085  *
1086  * Sync the superblock counters to disk.
1087  *
1088  * Note this code can be called during the process of freezing, so
1089  * we may need to use the transaction allocator which does not
1090  * block when the transaction subsystem is in its frozen state.
1091  */
1092 int
1093 xfs_log_sbcount(xfs_mount_t *mp)
1094 {
1095 	xfs_trans_t	*tp;
1096 	int		error;
1097 
1098 	if (!xfs_fs_writable(mp))
1099 		return 0;
1100 
1101 	xfs_icsb_sync_counters(mp, 0);
1102 
1103 	/*
1104 	 * we don't need to do this if we are updating the superblock
1105 	 * counters on every modification.
1106 	 */
1107 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1108 		return 0;
1109 
1110 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1111 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1112 	if (error) {
1113 		xfs_trans_cancel(tp, 0);
1114 		return error;
1115 	}
1116 
1117 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1118 	xfs_trans_set_sync(tp);
1119 	error = xfs_trans_commit(tp, 0);
1120 	return error;
1121 }
1122 
1123 /*
1124  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1125  * a delta to a specified field in the in-core superblock.  Simply
1126  * switch on the field indicated and apply the delta to that field.
1127  * Fields are not allowed to dip below zero, so if the delta would
1128  * do this do not apply it and return EINVAL.
1129  *
1130  * The m_sb_lock must be held when this routine is called.
1131  */
1132 STATIC int
1133 xfs_mod_incore_sb_unlocked(
1134 	xfs_mount_t	*mp,
1135 	xfs_sb_field_t	field,
1136 	int64_t		delta,
1137 	int		rsvd)
1138 {
1139 	int		scounter;	/* short counter for 32 bit fields */
1140 	long long	lcounter;	/* long counter for 64 bit fields */
1141 	long long	res_used, rem;
1142 
1143 	/*
1144 	 * With the in-core superblock spin lock held, switch
1145 	 * on the indicated field.  Apply the delta to the
1146 	 * proper field.  If the fields value would dip below
1147 	 * 0, then do not apply the delta and return EINVAL.
1148 	 */
1149 	switch (field) {
1150 	case XFS_SBS_ICOUNT:
1151 		lcounter = (long long)mp->m_sb.sb_icount;
1152 		lcounter += delta;
1153 		if (lcounter < 0) {
1154 			ASSERT(0);
1155 			return XFS_ERROR(EINVAL);
1156 		}
1157 		mp->m_sb.sb_icount = lcounter;
1158 		return 0;
1159 	case XFS_SBS_IFREE:
1160 		lcounter = (long long)mp->m_sb.sb_ifree;
1161 		lcounter += delta;
1162 		if (lcounter < 0) {
1163 			ASSERT(0);
1164 			return XFS_ERROR(EINVAL);
1165 		}
1166 		mp->m_sb.sb_ifree = lcounter;
1167 		return 0;
1168 	case XFS_SBS_FDBLOCKS:
1169 		lcounter = (long long)
1170 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1171 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1172 
1173 		if (delta > 0) {		/* Putting blocks back */
1174 			if (res_used > delta) {
1175 				mp->m_resblks_avail += delta;
1176 			} else {
1177 				rem = delta - res_used;
1178 				mp->m_resblks_avail = mp->m_resblks;
1179 				lcounter += rem;
1180 			}
1181 		} else {				/* Taking blocks away */
1182 			lcounter += delta;
1183 			if (lcounter >= 0) {
1184 				mp->m_sb.sb_fdblocks = lcounter +
1185 							XFS_ALLOC_SET_ASIDE(mp);
1186 				return 0;
1187 			}
1188 
1189 			/*
1190 			 * We are out of blocks, use any available reserved
1191 			 * blocks if were allowed to.
1192 			 */
1193 			if (!rsvd)
1194 				return XFS_ERROR(ENOSPC);
1195 
1196 			lcounter = (long long)mp->m_resblks_avail + delta;
1197 			if (lcounter >= 0) {
1198 				mp->m_resblks_avail = lcounter;
1199 				return 0;
1200 			}
1201 			printk_once(KERN_WARNING
1202 				"Filesystem \"%s\": reserve blocks depleted! "
1203 				"Consider increasing reserve pool size.",
1204 				mp->m_fsname);
1205 			return XFS_ERROR(ENOSPC);
1206 		}
1207 
1208 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1209 		return 0;
1210 	case XFS_SBS_FREXTENTS:
1211 		lcounter = (long long)mp->m_sb.sb_frextents;
1212 		lcounter += delta;
1213 		if (lcounter < 0) {
1214 			return XFS_ERROR(ENOSPC);
1215 		}
1216 		mp->m_sb.sb_frextents = lcounter;
1217 		return 0;
1218 	case XFS_SBS_DBLOCKS:
1219 		lcounter = (long long)mp->m_sb.sb_dblocks;
1220 		lcounter += delta;
1221 		if (lcounter < 0) {
1222 			ASSERT(0);
1223 			return XFS_ERROR(EINVAL);
1224 		}
1225 		mp->m_sb.sb_dblocks = lcounter;
1226 		return 0;
1227 	case XFS_SBS_AGCOUNT:
1228 		scounter = mp->m_sb.sb_agcount;
1229 		scounter += delta;
1230 		if (scounter < 0) {
1231 			ASSERT(0);
1232 			return XFS_ERROR(EINVAL);
1233 		}
1234 		mp->m_sb.sb_agcount = scounter;
1235 		return 0;
1236 	case XFS_SBS_IMAX_PCT:
1237 		scounter = mp->m_sb.sb_imax_pct;
1238 		scounter += delta;
1239 		if (scounter < 0) {
1240 			ASSERT(0);
1241 			return XFS_ERROR(EINVAL);
1242 		}
1243 		mp->m_sb.sb_imax_pct = scounter;
1244 		return 0;
1245 	case XFS_SBS_REXTSIZE:
1246 		scounter = mp->m_sb.sb_rextsize;
1247 		scounter += delta;
1248 		if (scounter < 0) {
1249 			ASSERT(0);
1250 			return XFS_ERROR(EINVAL);
1251 		}
1252 		mp->m_sb.sb_rextsize = scounter;
1253 		return 0;
1254 	case XFS_SBS_RBMBLOCKS:
1255 		scounter = mp->m_sb.sb_rbmblocks;
1256 		scounter += delta;
1257 		if (scounter < 0) {
1258 			ASSERT(0);
1259 			return XFS_ERROR(EINVAL);
1260 		}
1261 		mp->m_sb.sb_rbmblocks = scounter;
1262 		return 0;
1263 	case XFS_SBS_RBLOCKS:
1264 		lcounter = (long long)mp->m_sb.sb_rblocks;
1265 		lcounter += delta;
1266 		if (lcounter < 0) {
1267 			ASSERT(0);
1268 			return XFS_ERROR(EINVAL);
1269 		}
1270 		mp->m_sb.sb_rblocks = lcounter;
1271 		return 0;
1272 	case XFS_SBS_REXTENTS:
1273 		lcounter = (long long)mp->m_sb.sb_rextents;
1274 		lcounter += delta;
1275 		if (lcounter < 0) {
1276 			ASSERT(0);
1277 			return XFS_ERROR(EINVAL);
1278 		}
1279 		mp->m_sb.sb_rextents = lcounter;
1280 		return 0;
1281 	case XFS_SBS_REXTSLOG:
1282 		scounter = mp->m_sb.sb_rextslog;
1283 		scounter += delta;
1284 		if (scounter < 0) {
1285 			ASSERT(0);
1286 			return XFS_ERROR(EINVAL);
1287 		}
1288 		mp->m_sb.sb_rextslog = scounter;
1289 		return 0;
1290 	default:
1291 		ASSERT(0);
1292 		return XFS_ERROR(EINVAL);
1293 	}
1294 }
1295 
1296 /*
1297  * xfs_mod_incore_sb() is used to change a field in the in-core
1298  * superblock structure by the specified delta.  This modification
1299  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1300  * routine to do the work.
1301  */
1302 int
1303 xfs_mod_incore_sb(
1304 	struct xfs_mount	*mp,
1305 	xfs_sb_field_t		field,
1306 	int64_t			delta,
1307 	int			rsvd)
1308 {
1309 	int			status;
1310 
1311 #ifdef HAVE_PERCPU_SB
1312 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1313 #endif
1314 	spin_lock(&mp->m_sb_lock);
1315 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1316 	spin_unlock(&mp->m_sb_lock);
1317 
1318 	return status;
1319 }
1320 
1321 /*
1322  * Change more than one field in the in-core superblock structure at a time.
1323  *
1324  * The fields and changes to those fields are specified in the array of
1325  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1326  * will be applied or none of them will.  If any modified field dips below 0,
1327  * then all modifications will be backed out and EINVAL will be returned.
1328  *
1329  * Note that this function may not be used for the superblock values that
1330  * are tracked with the in-memory per-cpu counters - a direct call to
1331  * xfs_icsb_modify_counters is required for these.
1332  */
1333 int
1334 xfs_mod_incore_sb_batch(
1335 	struct xfs_mount	*mp,
1336 	xfs_mod_sb_t		*msb,
1337 	uint			nmsb,
1338 	int			rsvd)
1339 {
1340 	xfs_mod_sb_t		*msbp;
1341 	int			error = 0;
1342 
1343 	/*
1344 	 * Loop through the array of mod structures and apply each individually.
1345 	 * If any fail, then back out all those which have already been applied.
1346 	 * Do all of this within the scope of the m_sb_lock so that all of the
1347 	 * changes will be atomic.
1348 	 */
1349 	spin_lock(&mp->m_sb_lock);
1350 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1351 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1352 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1353 
1354 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1355 						   msbp->msb_delta, rsvd);
1356 		if (error)
1357 			goto unwind;
1358 	}
1359 	spin_unlock(&mp->m_sb_lock);
1360 	return 0;
1361 
1362 unwind:
1363 	while (--msbp >= msb) {
1364 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1365 						   -msbp->msb_delta, rsvd);
1366 		ASSERT(error == 0);
1367 	}
1368 	spin_unlock(&mp->m_sb_lock);
1369 	return error;
1370 }
1371 
1372 /*
1373  * xfs_getsb() is called to obtain the buffer for the superblock.
1374  * The buffer is returned locked and read in from disk.
1375  * The buffer should be released with a call to xfs_brelse().
1376  *
1377  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1378  * the superblock buffer if it can be locked without sleeping.
1379  * If it can't then we'll return NULL.
1380  */
1381 struct xfs_buf *
1382 xfs_getsb(
1383 	struct xfs_mount	*mp,
1384 	int			flags)
1385 {
1386 	struct xfs_buf		*bp = mp->m_sb_bp;
1387 
1388 	if (!xfs_buf_trylock(bp)) {
1389 		if (flags & XBF_TRYLOCK)
1390 			return NULL;
1391 		xfs_buf_lock(bp);
1392 	}
1393 
1394 	xfs_buf_hold(bp);
1395 	ASSERT(XFS_BUF_ISDONE(bp));
1396 	return bp;
1397 }
1398 
1399 /*
1400  * Used to free the superblock along various error paths.
1401  */
1402 void
1403 xfs_freesb(
1404 	struct xfs_mount	*mp)
1405 {
1406 	struct xfs_buf		*bp = mp->m_sb_bp;
1407 
1408 	xfs_buf_lock(bp);
1409 	mp->m_sb_bp = NULL;
1410 	xfs_buf_relse(bp);
1411 }
1412 
1413 /*
1414  * Used to log changes to the superblock unit and width fields which could
1415  * be altered by the mount options, as well as any potential sb_features2
1416  * fixup. Only the first superblock is updated.
1417  */
1418 int
1419 xfs_mount_log_sb(
1420 	xfs_mount_t	*mp,
1421 	__int64_t	fields)
1422 {
1423 	xfs_trans_t	*tp;
1424 	int		error;
1425 
1426 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1427 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1428 			 XFS_SB_VERSIONNUM));
1429 
1430 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1431 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1432 	if (error) {
1433 		xfs_trans_cancel(tp, 0);
1434 		return error;
1435 	}
1436 	xfs_mod_sb(tp, fields);
1437 	error = xfs_trans_commit(tp, 0);
1438 	return error;
1439 }
1440 
1441 /*
1442  * If the underlying (data/log/rt) device is readonly, there are some
1443  * operations that cannot proceed.
1444  */
1445 int
1446 xfs_dev_is_read_only(
1447 	struct xfs_mount	*mp,
1448 	char			*message)
1449 {
1450 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1451 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1452 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1453 		xfs_notice(mp, "%s required on read-only device.", message);
1454 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1455 		return EROFS;
1456 	}
1457 	return 0;
1458 }
1459 
1460 #ifdef HAVE_PERCPU_SB
1461 /*
1462  * Per-cpu incore superblock counters
1463  *
1464  * Simple concept, difficult implementation
1465  *
1466  * Basically, replace the incore superblock counters with a distributed per cpu
1467  * counter for contended fields (e.g.  free block count).
1468  *
1469  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1470  * hence needs to be accurately read when we are running low on space. Hence
1471  * there is a method to enable and disable the per-cpu counters based on how
1472  * much "stuff" is available in them.
1473  *
1474  * Basically, a counter is enabled if there is enough free resource to justify
1475  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1476  * ENOSPC), then we disable the counters to synchronise all callers and
1477  * re-distribute the available resources.
1478  *
1479  * If, once we redistributed the available resources, we still get a failure,
1480  * we disable the per-cpu counter and go through the slow path.
1481  *
1482  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1483  * when we disable a per-cpu counter, we need to drain its resources back to
1484  * the global superblock. We do this after disabling the counter to prevent
1485  * more threads from queueing up on the counter.
1486  *
1487  * Essentially, this means that we still need a lock in the fast path to enable
1488  * synchronisation between the global counters and the per-cpu counters. This
1489  * is not a problem because the lock will be local to a CPU almost all the time
1490  * and have little contention except when we get to ENOSPC conditions.
1491  *
1492  * Basically, this lock becomes a barrier that enables us to lock out the fast
1493  * path while we do things like enabling and disabling counters and
1494  * synchronising the counters.
1495  *
1496  * Locking rules:
1497  *
1498  * 	1. m_sb_lock before picking up per-cpu locks
1499  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1500  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1501  * 	4. modifying per-cpu counters requires holding per-cpu lock
1502  * 	5. modifying global counters requires holding m_sb_lock
1503  *	6. enabling or disabling a counter requires holding the m_sb_lock
1504  *	   and _none_ of the per-cpu locks.
1505  *
1506  * Disabled counters are only ever re-enabled by a balance operation
1507  * that results in more free resources per CPU than a given threshold.
1508  * To ensure counters don't remain disabled, they are rebalanced when
1509  * the global resource goes above a higher threshold (i.e. some hysteresis
1510  * is present to prevent thrashing).
1511  */
1512 
1513 #ifdef CONFIG_HOTPLUG_CPU
1514 /*
1515  * hot-plug CPU notifier support.
1516  *
1517  * We need a notifier per filesystem as we need to be able to identify
1518  * the filesystem to balance the counters out. This is achieved by
1519  * having a notifier block embedded in the xfs_mount_t and doing pointer
1520  * magic to get the mount pointer from the notifier block address.
1521  */
1522 STATIC int
1523 xfs_icsb_cpu_notify(
1524 	struct notifier_block *nfb,
1525 	unsigned long action,
1526 	void *hcpu)
1527 {
1528 	xfs_icsb_cnts_t *cntp;
1529 	xfs_mount_t	*mp;
1530 
1531 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1532 	cntp = (xfs_icsb_cnts_t *)
1533 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1534 	switch (action) {
1535 	case CPU_UP_PREPARE:
1536 	case CPU_UP_PREPARE_FROZEN:
1537 		/* Easy Case - initialize the area and locks, and
1538 		 * then rebalance when online does everything else for us. */
1539 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1540 		break;
1541 	case CPU_ONLINE:
1542 	case CPU_ONLINE_FROZEN:
1543 		xfs_icsb_lock(mp);
1544 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1545 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1546 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1547 		xfs_icsb_unlock(mp);
1548 		break;
1549 	case CPU_DEAD:
1550 	case CPU_DEAD_FROZEN:
1551 		/* Disable all the counters, then fold the dead cpu's
1552 		 * count into the total on the global superblock and
1553 		 * re-enable the counters. */
1554 		xfs_icsb_lock(mp);
1555 		spin_lock(&mp->m_sb_lock);
1556 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1557 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1558 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1559 
1560 		mp->m_sb.sb_icount += cntp->icsb_icount;
1561 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1562 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1563 
1564 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1565 
1566 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1567 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1568 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1569 		spin_unlock(&mp->m_sb_lock);
1570 		xfs_icsb_unlock(mp);
1571 		break;
1572 	}
1573 
1574 	return NOTIFY_OK;
1575 }
1576 #endif /* CONFIG_HOTPLUG_CPU */
1577 
1578 int
1579 xfs_icsb_init_counters(
1580 	xfs_mount_t	*mp)
1581 {
1582 	xfs_icsb_cnts_t *cntp;
1583 	int		i;
1584 
1585 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1586 	if (mp->m_sb_cnts == NULL)
1587 		return -ENOMEM;
1588 
1589 	for_each_online_cpu(i) {
1590 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1591 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1592 	}
1593 
1594 	mutex_init(&mp->m_icsb_mutex);
1595 
1596 	/*
1597 	 * start with all counters disabled so that the
1598 	 * initial balance kicks us off correctly
1599 	 */
1600 	mp->m_icsb_counters = -1;
1601 
1602 #ifdef CONFIG_HOTPLUG_CPU
1603 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1604 	mp->m_icsb_notifier.priority = 0;
1605 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1606 #endif /* CONFIG_HOTPLUG_CPU */
1607 
1608 	return 0;
1609 }
1610 
1611 void
1612 xfs_icsb_reinit_counters(
1613 	xfs_mount_t	*mp)
1614 {
1615 	xfs_icsb_lock(mp);
1616 	/*
1617 	 * start with all counters disabled so that the
1618 	 * initial balance kicks us off correctly
1619 	 */
1620 	mp->m_icsb_counters = -1;
1621 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1622 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1623 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1624 	xfs_icsb_unlock(mp);
1625 }
1626 
1627 void
1628 xfs_icsb_destroy_counters(
1629 	xfs_mount_t	*mp)
1630 {
1631 	if (mp->m_sb_cnts) {
1632 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1633 		free_percpu(mp->m_sb_cnts);
1634 	}
1635 	mutex_destroy(&mp->m_icsb_mutex);
1636 }
1637 
1638 STATIC void
1639 xfs_icsb_lock_cntr(
1640 	xfs_icsb_cnts_t	*icsbp)
1641 {
1642 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1643 		ndelay(1000);
1644 	}
1645 }
1646 
1647 STATIC void
1648 xfs_icsb_unlock_cntr(
1649 	xfs_icsb_cnts_t	*icsbp)
1650 {
1651 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1652 }
1653 
1654 
1655 STATIC void
1656 xfs_icsb_lock_all_counters(
1657 	xfs_mount_t	*mp)
1658 {
1659 	xfs_icsb_cnts_t *cntp;
1660 	int		i;
1661 
1662 	for_each_online_cpu(i) {
1663 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1664 		xfs_icsb_lock_cntr(cntp);
1665 	}
1666 }
1667 
1668 STATIC void
1669 xfs_icsb_unlock_all_counters(
1670 	xfs_mount_t	*mp)
1671 {
1672 	xfs_icsb_cnts_t *cntp;
1673 	int		i;
1674 
1675 	for_each_online_cpu(i) {
1676 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1677 		xfs_icsb_unlock_cntr(cntp);
1678 	}
1679 }
1680 
1681 STATIC void
1682 xfs_icsb_count(
1683 	xfs_mount_t	*mp,
1684 	xfs_icsb_cnts_t	*cnt,
1685 	int		flags)
1686 {
1687 	xfs_icsb_cnts_t *cntp;
1688 	int		i;
1689 
1690 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1691 
1692 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1693 		xfs_icsb_lock_all_counters(mp);
1694 
1695 	for_each_online_cpu(i) {
1696 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1697 		cnt->icsb_icount += cntp->icsb_icount;
1698 		cnt->icsb_ifree += cntp->icsb_ifree;
1699 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1700 	}
1701 
1702 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1703 		xfs_icsb_unlock_all_counters(mp);
1704 }
1705 
1706 STATIC int
1707 xfs_icsb_counter_disabled(
1708 	xfs_mount_t	*mp,
1709 	xfs_sb_field_t	field)
1710 {
1711 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1712 	return test_bit(field, &mp->m_icsb_counters);
1713 }
1714 
1715 STATIC void
1716 xfs_icsb_disable_counter(
1717 	xfs_mount_t	*mp,
1718 	xfs_sb_field_t	field)
1719 {
1720 	xfs_icsb_cnts_t	cnt;
1721 
1722 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1723 
1724 	/*
1725 	 * If we are already disabled, then there is nothing to do
1726 	 * here. We check before locking all the counters to avoid
1727 	 * the expensive lock operation when being called in the
1728 	 * slow path and the counter is already disabled. This is
1729 	 * safe because the only time we set or clear this state is under
1730 	 * the m_icsb_mutex.
1731 	 */
1732 	if (xfs_icsb_counter_disabled(mp, field))
1733 		return;
1734 
1735 	xfs_icsb_lock_all_counters(mp);
1736 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1737 		/* drain back to superblock */
1738 
1739 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1740 		switch(field) {
1741 		case XFS_SBS_ICOUNT:
1742 			mp->m_sb.sb_icount = cnt.icsb_icount;
1743 			break;
1744 		case XFS_SBS_IFREE:
1745 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1746 			break;
1747 		case XFS_SBS_FDBLOCKS:
1748 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1749 			break;
1750 		default:
1751 			BUG();
1752 		}
1753 	}
1754 
1755 	xfs_icsb_unlock_all_counters(mp);
1756 }
1757 
1758 STATIC void
1759 xfs_icsb_enable_counter(
1760 	xfs_mount_t	*mp,
1761 	xfs_sb_field_t	field,
1762 	uint64_t	count,
1763 	uint64_t	resid)
1764 {
1765 	xfs_icsb_cnts_t	*cntp;
1766 	int		i;
1767 
1768 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1769 
1770 	xfs_icsb_lock_all_counters(mp);
1771 	for_each_online_cpu(i) {
1772 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1773 		switch (field) {
1774 		case XFS_SBS_ICOUNT:
1775 			cntp->icsb_icount = count + resid;
1776 			break;
1777 		case XFS_SBS_IFREE:
1778 			cntp->icsb_ifree = count + resid;
1779 			break;
1780 		case XFS_SBS_FDBLOCKS:
1781 			cntp->icsb_fdblocks = count + resid;
1782 			break;
1783 		default:
1784 			BUG();
1785 			break;
1786 		}
1787 		resid = 0;
1788 	}
1789 	clear_bit(field, &mp->m_icsb_counters);
1790 	xfs_icsb_unlock_all_counters(mp);
1791 }
1792 
1793 void
1794 xfs_icsb_sync_counters_locked(
1795 	xfs_mount_t	*mp,
1796 	int		flags)
1797 {
1798 	xfs_icsb_cnts_t	cnt;
1799 
1800 	xfs_icsb_count(mp, &cnt, flags);
1801 
1802 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1803 		mp->m_sb.sb_icount = cnt.icsb_icount;
1804 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1805 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1806 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1807 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1808 }
1809 
1810 /*
1811  * Accurate update of per-cpu counters to incore superblock
1812  */
1813 void
1814 xfs_icsb_sync_counters(
1815 	xfs_mount_t	*mp,
1816 	int		flags)
1817 {
1818 	spin_lock(&mp->m_sb_lock);
1819 	xfs_icsb_sync_counters_locked(mp, flags);
1820 	spin_unlock(&mp->m_sb_lock);
1821 }
1822 
1823 /*
1824  * Balance and enable/disable counters as necessary.
1825  *
1826  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1827  * chosen to be the same number as single on disk allocation chunk per CPU, and
1828  * free blocks is something far enough zero that we aren't going thrash when we
1829  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1830  * prevent looping endlessly when xfs_alloc_space asks for more than will
1831  * be distributed to a single CPU but each CPU has enough blocks to be
1832  * reenabled.
1833  *
1834  * Note that we can be called when counters are already disabled.
1835  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1836  * prevent locking every per-cpu counter needlessly.
1837  */
1838 
1839 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1840 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1841 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1842 STATIC void
1843 xfs_icsb_balance_counter_locked(
1844 	xfs_mount_t	*mp,
1845 	xfs_sb_field_t  field,
1846 	int		min_per_cpu)
1847 {
1848 	uint64_t	count, resid;
1849 	int		weight = num_online_cpus();
1850 	uint64_t	min = (uint64_t)min_per_cpu;
1851 
1852 	/* disable counter and sync counter */
1853 	xfs_icsb_disable_counter(mp, field);
1854 
1855 	/* update counters  - first CPU gets residual*/
1856 	switch (field) {
1857 	case XFS_SBS_ICOUNT:
1858 		count = mp->m_sb.sb_icount;
1859 		resid = do_div(count, weight);
1860 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1861 			return;
1862 		break;
1863 	case XFS_SBS_IFREE:
1864 		count = mp->m_sb.sb_ifree;
1865 		resid = do_div(count, weight);
1866 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1867 			return;
1868 		break;
1869 	case XFS_SBS_FDBLOCKS:
1870 		count = mp->m_sb.sb_fdblocks;
1871 		resid = do_div(count, weight);
1872 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1873 			return;
1874 		break;
1875 	default:
1876 		BUG();
1877 		count = resid = 0;	/* quiet, gcc */
1878 		break;
1879 	}
1880 
1881 	xfs_icsb_enable_counter(mp, field, count, resid);
1882 }
1883 
1884 STATIC void
1885 xfs_icsb_balance_counter(
1886 	xfs_mount_t	*mp,
1887 	xfs_sb_field_t  fields,
1888 	int		min_per_cpu)
1889 {
1890 	spin_lock(&mp->m_sb_lock);
1891 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1892 	spin_unlock(&mp->m_sb_lock);
1893 }
1894 
1895 int
1896 xfs_icsb_modify_counters(
1897 	xfs_mount_t	*mp,
1898 	xfs_sb_field_t	field,
1899 	int64_t		delta,
1900 	int		rsvd)
1901 {
1902 	xfs_icsb_cnts_t	*icsbp;
1903 	long long	lcounter;	/* long counter for 64 bit fields */
1904 	int		ret = 0;
1905 
1906 	might_sleep();
1907 again:
1908 	preempt_disable();
1909 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1910 
1911 	/*
1912 	 * if the counter is disabled, go to slow path
1913 	 */
1914 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1915 		goto slow_path;
1916 	xfs_icsb_lock_cntr(icsbp);
1917 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1918 		xfs_icsb_unlock_cntr(icsbp);
1919 		goto slow_path;
1920 	}
1921 
1922 	switch (field) {
1923 	case XFS_SBS_ICOUNT:
1924 		lcounter = icsbp->icsb_icount;
1925 		lcounter += delta;
1926 		if (unlikely(lcounter < 0))
1927 			goto balance_counter;
1928 		icsbp->icsb_icount = lcounter;
1929 		break;
1930 
1931 	case XFS_SBS_IFREE:
1932 		lcounter = icsbp->icsb_ifree;
1933 		lcounter += delta;
1934 		if (unlikely(lcounter < 0))
1935 			goto balance_counter;
1936 		icsbp->icsb_ifree = lcounter;
1937 		break;
1938 
1939 	case XFS_SBS_FDBLOCKS:
1940 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1941 
1942 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1943 		lcounter += delta;
1944 		if (unlikely(lcounter < 0))
1945 			goto balance_counter;
1946 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1947 		break;
1948 	default:
1949 		BUG();
1950 		break;
1951 	}
1952 	xfs_icsb_unlock_cntr(icsbp);
1953 	preempt_enable();
1954 	return 0;
1955 
1956 slow_path:
1957 	preempt_enable();
1958 
1959 	/*
1960 	 * serialise with a mutex so we don't burn lots of cpu on
1961 	 * the superblock lock. We still need to hold the superblock
1962 	 * lock, however, when we modify the global structures.
1963 	 */
1964 	xfs_icsb_lock(mp);
1965 
1966 	/*
1967 	 * Now running atomically.
1968 	 *
1969 	 * If the counter is enabled, someone has beaten us to rebalancing.
1970 	 * Drop the lock and try again in the fast path....
1971 	 */
1972 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1973 		xfs_icsb_unlock(mp);
1974 		goto again;
1975 	}
1976 
1977 	/*
1978 	 * The counter is currently disabled. Because we are
1979 	 * running atomically here, we know a rebalance cannot
1980 	 * be in progress. Hence we can go straight to operating
1981 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1982 	 * here even though we need to get the m_sb_lock. Doing so
1983 	 * will cause us to re-enter this function and deadlock.
1984 	 * Hence we get the m_sb_lock ourselves and then call
1985 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1986 	 * directly on the global counters.
1987 	 */
1988 	spin_lock(&mp->m_sb_lock);
1989 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1990 	spin_unlock(&mp->m_sb_lock);
1991 
1992 	/*
1993 	 * Now that we've modified the global superblock, we
1994 	 * may be able to re-enable the distributed counters
1995 	 * (e.g. lots of space just got freed). After that
1996 	 * we are done.
1997 	 */
1998 	if (ret != ENOSPC)
1999 		xfs_icsb_balance_counter(mp, field, 0);
2000 	xfs_icsb_unlock(mp);
2001 	return ret;
2002 
2003 balance_counter:
2004 	xfs_icsb_unlock_cntr(icsbp);
2005 	preempt_enable();
2006 
2007 	/*
2008 	 * We may have multiple threads here if multiple per-cpu
2009 	 * counters run dry at the same time. This will mean we can
2010 	 * do more balances than strictly necessary but it is not
2011 	 * the common slowpath case.
2012 	 */
2013 	xfs_icsb_lock(mp);
2014 
2015 	/*
2016 	 * running atomically.
2017 	 *
2018 	 * This will leave the counter in the correct state for future
2019 	 * accesses. After the rebalance, we simply try again and our retry
2020 	 * will either succeed through the fast path or slow path without
2021 	 * another balance operation being required.
2022 	 */
2023 	xfs_icsb_balance_counter(mp, field, delta);
2024 	xfs_icsb_unlock(mp);
2025 	goto again;
2026 }
2027 
2028 #endif
2029