1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_inum.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_da_format.h" 30 #include "xfs_inode.h" 31 #include "xfs_dir2.h" 32 #include "xfs_ialloc.h" 33 #include "xfs_alloc.h" 34 #include "xfs_rtalloc.h" 35 #include "xfs_bmap.h" 36 #include "xfs_trans.h" 37 #include "xfs_trans_priv.h" 38 #include "xfs_log.h" 39 #include "xfs_error.h" 40 #include "xfs_quota.h" 41 #include "xfs_fsops.h" 42 #include "xfs_trace.h" 43 #include "xfs_icache.h" 44 #include "xfs_dinode.h" 45 46 47 #ifdef HAVE_PERCPU_SB 48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 49 int); 50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 51 int); 52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 53 #else 54 55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 57 #endif 58 59 static DEFINE_MUTEX(xfs_uuid_table_mutex); 60 static int xfs_uuid_table_size; 61 static uuid_t *xfs_uuid_table; 62 63 /* 64 * See if the UUID is unique among mounted XFS filesystems. 65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 66 */ 67 STATIC int 68 xfs_uuid_mount( 69 struct xfs_mount *mp) 70 { 71 uuid_t *uuid = &mp->m_sb.sb_uuid; 72 int hole, i; 73 74 if (mp->m_flags & XFS_MOUNT_NOUUID) 75 return 0; 76 77 if (uuid_is_nil(uuid)) { 78 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 79 return XFS_ERROR(EINVAL); 80 } 81 82 mutex_lock(&xfs_uuid_table_mutex); 83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 84 if (uuid_is_nil(&xfs_uuid_table[i])) { 85 hole = i; 86 continue; 87 } 88 if (uuid_equal(uuid, &xfs_uuid_table[i])) 89 goto out_duplicate; 90 } 91 92 if (hole < 0) { 93 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 95 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 96 KM_SLEEP); 97 hole = xfs_uuid_table_size++; 98 } 99 xfs_uuid_table[hole] = *uuid; 100 mutex_unlock(&xfs_uuid_table_mutex); 101 102 return 0; 103 104 out_duplicate: 105 mutex_unlock(&xfs_uuid_table_mutex); 106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 107 return XFS_ERROR(EINVAL); 108 } 109 110 STATIC void 111 xfs_uuid_unmount( 112 struct xfs_mount *mp) 113 { 114 uuid_t *uuid = &mp->m_sb.sb_uuid; 115 int i; 116 117 if (mp->m_flags & XFS_MOUNT_NOUUID) 118 return; 119 120 mutex_lock(&xfs_uuid_table_mutex); 121 for (i = 0; i < xfs_uuid_table_size; i++) { 122 if (uuid_is_nil(&xfs_uuid_table[i])) 123 continue; 124 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 125 continue; 126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 127 break; 128 } 129 ASSERT(i < xfs_uuid_table_size); 130 mutex_unlock(&xfs_uuid_table_mutex); 131 } 132 133 134 STATIC void 135 __xfs_free_perag( 136 struct rcu_head *head) 137 { 138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 139 140 ASSERT(atomic_read(&pag->pag_ref) == 0); 141 kmem_free(pag); 142 } 143 144 /* 145 * Free up the per-ag resources associated with the mount structure. 146 */ 147 STATIC void 148 xfs_free_perag( 149 xfs_mount_t *mp) 150 { 151 xfs_agnumber_t agno; 152 struct xfs_perag *pag; 153 154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 155 spin_lock(&mp->m_perag_lock); 156 pag = radix_tree_delete(&mp->m_perag_tree, agno); 157 spin_unlock(&mp->m_perag_lock); 158 ASSERT(pag); 159 ASSERT(atomic_read(&pag->pag_ref) == 0); 160 call_rcu(&pag->rcu_head, __xfs_free_perag); 161 } 162 } 163 164 /* 165 * Check size of device based on the (data/realtime) block count. 166 * Note: this check is used by the growfs code as well as mount. 167 */ 168 int 169 xfs_sb_validate_fsb_count( 170 xfs_sb_t *sbp, 171 __uint64_t nblocks) 172 { 173 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 174 ASSERT(sbp->sb_blocklog >= BBSHIFT); 175 176 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 177 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 178 return EFBIG; 179 #else /* Limited by UINT_MAX of sectors */ 180 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 181 return EFBIG; 182 #endif 183 return 0; 184 } 185 186 int 187 xfs_initialize_perag( 188 xfs_mount_t *mp, 189 xfs_agnumber_t agcount, 190 xfs_agnumber_t *maxagi) 191 { 192 xfs_agnumber_t index; 193 xfs_agnumber_t first_initialised = 0; 194 xfs_perag_t *pag; 195 xfs_agino_t agino; 196 xfs_ino_t ino; 197 xfs_sb_t *sbp = &mp->m_sb; 198 int error = -ENOMEM; 199 200 /* 201 * Walk the current per-ag tree so we don't try to initialise AGs 202 * that already exist (growfs case). Allocate and insert all the 203 * AGs we don't find ready for initialisation. 204 */ 205 for (index = 0; index < agcount; index++) { 206 pag = xfs_perag_get(mp, index); 207 if (pag) { 208 xfs_perag_put(pag); 209 continue; 210 } 211 if (!first_initialised) 212 first_initialised = index; 213 214 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 215 if (!pag) 216 goto out_unwind; 217 pag->pag_agno = index; 218 pag->pag_mount = mp; 219 spin_lock_init(&pag->pag_ici_lock); 220 mutex_init(&pag->pag_ici_reclaim_lock); 221 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 222 spin_lock_init(&pag->pag_buf_lock); 223 pag->pag_buf_tree = RB_ROOT; 224 225 if (radix_tree_preload(GFP_NOFS)) 226 goto out_unwind; 227 228 spin_lock(&mp->m_perag_lock); 229 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 230 BUG(); 231 spin_unlock(&mp->m_perag_lock); 232 radix_tree_preload_end(); 233 error = -EEXIST; 234 goto out_unwind; 235 } 236 spin_unlock(&mp->m_perag_lock); 237 radix_tree_preload_end(); 238 } 239 240 /* 241 * If we mount with the inode64 option, or no inode overflows 242 * the legacy 32-bit address space clear the inode32 option. 243 */ 244 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 245 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 246 247 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 248 mp->m_flags |= XFS_MOUNT_32BITINODES; 249 else 250 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 251 252 if (mp->m_flags & XFS_MOUNT_32BITINODES) 253 index = xfs_set_inode32(mp); 254 else 255 index = xfs_set_inode64(mp); 256 257 if (maxagi) 258 *maxagi = index; 259 return 0; 260 261 out_unwind: 262 kmem_free(pag); 263 for (; index > first_initialised; index--) { 264 pag = radix_tree_delete(&mp->m_perag_tree, index); 265 kmem_free(pag); 266 } 267 return error; 268 } 269 270 /* 271 * xfs_readsb 272 * 273 * Does the initial read of the superblock. 274 */ 275 int 276 xfs_readsb( 277 struct xfs_mount *mp, 278 int flags) 279 { 280 unsigned int sector_size; 281 struct xfs_buf *bp; 282 struct xfs_sb *sbp = &mp->m_sb; 283 int error; 284 int loud = !(flags & XFS_MFSI_QUIET); 285 const struct xfs_buf_ops *buf_ops; 286 287 ASSERT(mp->m_sb_bp == NULL); 288 ASSERT(mp->m_ddev_targp != NULL); 289 290 /* 291 * For the initial read, we must guess at the sector 292 * size based on the block device. It's enough to 293 * get the sb_sectsize out of the superblock and 294 * then reread with the proper length. 295 * We don't verify it yet, because it may not be complete. 296 */ 297 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 298 buf_ops = NULL; 299 300 /* 301 * Allocate a (locked) buffer to hold the superblock. 302 * This will be kept around at all times to optimize 303 * access to the superblock. 304 */ 305 reread: 306 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 307 BTOBB(sector_size), 0, buf_ops); 308 if (!bp) { 309 if (loud) 310 xfs_warn(mp, "SB buffer read failed"); 311 return EIO; 312 } 313 if (bp->b_error) { 314 error = bp->b_error; 315 if (loud) 316 xfs_warn(mp, "SB validate failed with error %d.", error); 317 /* bad CRC means corrupted metadata */ 318 if (error == EFSBADCRC) 319 error = EFSCORRUPTED; 320 goto release_buf; 321 } 322 323 /* 324 * Initialize the mount structure from the superblock. 325 */ 326 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 327 xfs_sb_quota_from_disk(sbp); 328 329 /* 330 * If we haven't validated the superblock, do so now before we try 331 * to check the sector size and reread the superblock appropriately. 332 */ 333 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 334 if (loud) 335 xfs_warn(mp, "Invalid superblock magic number"); 336 error = EINVAL; 337 goto release_buf; 338 } 339 340 /* 341 * We must be able to do sector-sized and sector-aligned IO. 342 */ 343 if (sector_size > sbp->sb_sectsize) { 344 if (loud) 345 xfs_warn(mp, "device supports %u byte sectors (not %u)", 346 sector_size, sbp->sb_sectsize); 347 error = ENOSYS; 348 goto release_buf; 349 } 350 351 if (buf_ops == NULL) { 352 /* 353 * Re-read the superblock so the buffer is correctly sized, 354 * and properly verified. 355 */ 356 xfs_buf_relse(bp); 357 sector_size = sbp->sb_sectsize; 358 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 359 goto reread; 360 } 361 362 /* Initialize per-cpu counters */ 363 xfs_icsb_reinit_counters(mp); 364 365 /* no need to be quiet anymore, so reset the buf ops */ 366 bp->b_ops = &xfs_sb_buf_ops; 367 368 mp->m_sb_bp = bp; 369 xfs_buf_unlock(bp); 370 return 0; 371 372 release_buf: 373 xfs_buf_relse(bp); 374 return error; 375 } 376 377 /* 378 * Update alignment values based on mount options and sb values 379 */ 380 STATIC int 381 xfs_update_alignment(xfs_mount_t *mp) 382 { 383 xfs_sb_t *sbp = &(mp->m_sb); 384 385 if (mp->m_dalign) { 386 /* 387 * If stripe unit and stripe width are not multiples 388 * of the fs blocksize turn off alignment. 389 */ 390 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 391 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 392 xfs_warn(mp, 393 "alignment check failed: sunit/swidth vs. blocksize(%d)", 394 sbp->sb_blocksize); 395 return XFS_ERROR(EINVAL); 396 } else { 397 /* 398 * Convert the stripe unit and width to FSBs. 399 */ 400 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 401 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 402 xfs_warn(mp, 403 "alignment check failed: sunit/swidth vs. agsize(%d)", 404 sbp->sb_agblocks); 405 return XFS_ERROR(EINVAL); 406 } else if (mp->m_dalign) { 407 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 408 } else { 409 xfs_warn(mp, 410 "alignment check failed: sunit(%d) less than bsize(%d)", 411 mp->m_dalign, sbp->sb_blocksize); 412 return XFS_ERROR(EINVAL); 413 } 414 } 415 416 /* 417 * Update superblock with new values 418 * and log changes 419 */ 420 if (xfs_sb_version_hasdalign(sbp)) { 421 if (sbp->sb_unit != mp->m_dalign) { 422 sbp->sb_unit = mp->m_dalign; 423 mp->m_update_flags |= XFS_SB_UNIT; 424 } 425 if (sbp->sb_width != mp->m_swidth) { 426 sbp->sb_width = mp->m_swidth; 427 mp->m_update_flags |= XFS_SB_WIDTH; 428 } 429 } else { 430 xfs_warn(mp, 431 "cannot change alignment: superblock does not support data alignment"); 432 return XFS_ERROR(EINVAL); 433 } 434 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 435 xfs_sb_version_hasdalign(&mp->m_sb)) { 436 mp->m_dalign = sbp->sb_unit; 437 mp->m_swidth = sbp->sb_width; 438 } 439 440 return 0; 441 } 442 443 /* 444 * Set the maximum inode count for this filesystem 445 */ 446 STATIC void 447 xfs_set_maxicount(xfs_mount_t *mp) 448 { 449 xfs_sb_t *sbp = &(mp->m_sb); 450 __uint64_t icount; 451 452 if (sbp->sb_imax_pct) { 453 /* 454 * Make sure the maximum inode count is a multiple 455 * of the units we allocate inodes in. 456 */ 457 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 458 do_div(icount, 100); 459 do_div(icount, mp->m_ialloc_blks); 460 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 461 sbp->sb_inopblog; 462 } else { 463 mp->m_maxicount = 0; 464 } 465 } 466 467 /* 468 * Set the default minimum read and write sizes unless 469 * already specified in a mount option. 470 * We use smaller I/O sizes when the file system 471 * is being used for NFS service (wsync mount option). 472 */ 473 STATIC void 474 xfs_set_rw_sizes(xfs_mount_t *mp) 475 { 476 xfs_sb_t *sbp = &(mp->m_sb); 477 int readio_log, writeio_log; 478 479 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 480 if (mp->m_flags & XFS_MOUNT_WSYNC) { 481 readio_log = XFS_WSYNC_READIO_LOG; 482 writeio_log = XFS_WSYNC_WRITEIO_LOG; 483 } else { 484 readio_log = XFS_READIO_LOG_LARGE; 485 writeio_log = XFS_WRITEIO_LOG_LARGE; 486 } 487 } else { 488 readio_log = mp->m_readio_log; 489 writeio_log = mp->m_writeio_log; 490 } 491 492 if (sbp->sb_blocklog > readio_log) { 493 mp->m_readio_log = sbp->sb_blocklog; 494 } else { 495 mp->m_readio_log = readio_log; 496 } 497 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 498 if (sbp->sb_blocklog > writeio_log) { 499 mp->m_writeio_log = sbp->sb_blocklog; 500 } else { 501 mp->m_writeio_log = writeio_log; 502 } 503 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 504 } 505 506 /* 507 * precalculate the low space thresholds for dynamic speculative preallocation. 508 */ 509 void 510 xfs_set_low_space_thresholds( 511 struct xfs_mount *mp) 512 { 513 int i; 514 515 for (i = 0; i < XFS_LOWSP_MAX; i++) { 516 __uint64_t space = mp->m_sb.sb_dblocks; 517 518 do_div(space, 100); 519 mp->m_low_space[i] = space * (i + 1); 520 } 521 } 522 523 524 /* 525 * Set whether we're using inode alignment. 526 */ 527 STATIC void 528 xfs_set_inoalignment(xfs_mount_t *mp) 529 { 530 if (xfs_sb_version_hasalign(&mp->m_sb) && 531 mp->m_sb.sb_inoalignmt >= 532 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 533 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 534 else 535 mp->m_inoalign_mask = 0; 536 /* 537 * If we are using stripe alignment, check whether 538 * the stripe unit is a multiple of the inode alignment 539 */ 540 if (mp->m_dalign && mp->m_inoalign_mask && 541 !(mp->m_dalign & mp->m_inoalign_mask)) 542 mp->m_sinoalign = mp->m_dalign; 543 else 544 mp->m_sinoalign = 0; 545 } 546 547 /* 548 * Check that the data (and log if separate) is an ok size. 549 */ 550 STATIC int 551 xfs_check_sizes(xfs_mount_t *mp) 552 { 553 xfs_buf_t *bp; 554 xfs_daddr_t d; 555 556 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 557 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 558 xfs_warn(mp, "filesystem size mismatch detected"); 559 return XFS_ERROR(EFBIG); 560 } 561 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 562 d - XFS_FSS_TO_BB(mp, 1), 563 XFS_FSS_TO_BB(mp, 1), 0, NULL); 564 if (!bp) { 565 xfs_warn(mp, "last sector read failed"); 566 return EIO; 567 } 568 xfs_buf_relse(bp); 569 570 if (mp->m_logdev_targp != mp->m_ddev_targp) { 571 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 572 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 573 xfs_warn(mp, "log size mismatch detected"); 574 return XFS_ERROR(EFBIG); 575 } 576 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 577 d - XFS_FSB_TO_BB(mp, 1), 578 XFS_FSB_TO_BB(mp, 1), 0, NULL); 579 if (!bp) { 580 xfs_warn(mp, "log device read failed"); 581 return EIO; 582 } 583 xfs_buf_relse(bp); 584 } 585 return 0; 586 } 587 588 /* 589 * Clear the quotaflags in memory and in the superblock. 590 */ 591 int 592 xfs_mount_reset_sbqflags( 593 struct xfs_mount *mp) 594 { 595 int error; 596 struct xfs_trans *tp; 597 598 mp->m_qflags = 0; 599 600 /* 601 * It is OK to look at sb_qflags here in mount path, 602 * without m_sb_lock. 603 */ 604 if (mp->m_sb.sb_qflags == 0) 605 return 0; 606 spin_lock(&mp->m_sb_lock); 607 mp->m_sb.sb_qflags = 0; 608 spin_unlock(&mp->m_sb_lock); 609 610 /* 611 * If the fs is readonly, let the incore superblock run 612 * with quotas off but don't flush the update out to disk 613 */ 614 if (mp->m_flags & XFS_MOUNT_RDONLY) 615 return 0; 616 617 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 618 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0); 619 if (error) { 620 xfs_trans_cancel(tp, 0); 621 xfs_alert(mp, "%s: Superblock update failed!", __func__); 622 return error; 623 } 624 625 xfs_mod_sb(tp, XFS_SB_QFLAGS); 626 return xfs_trans_commit(tp, 0); 627 } 628 629 __uint64_t 630 xfs_default_resblks(xfs_mount_t *mp) 631 { 632 __uint64_t resblks; 633 634 /* 635 * We default to 5% or 8192 fsbs of space reserved, whichever is 636 * smaller. This is intended to cover concurrent allocation 637 * transactions when we initially hit enospc. These each require a 4 638 * block reservation. Hence by default we cover roughly 2000 concurrent 639 * allocation reservations. 640 */ 641 resblks = mp->m_sb.sb_dblocks; 642 do_div(resblks, 20); 643 resblks = min_t(__uint64_t, resblks, 8192); 644 return resblks; 645 } 646 647 /* 648 * This function does the following on an initial mount of a file system: 649 * - reads the superblock from disk and init the mount struct 650 * - if we're a 32-bit kernel, do a size check on the superblock 651 * so we don't mount terabyte filesystems 652 * - init mount struct realtime fields 653 * - allocate inode hash table for fs 654 * - init directory manager 655 * - perform recovery and init the log manager 656 */ 657 int 658 xfs_mountfs( 659 xfs_mount_t *mp) 660 { 661 xfs_sb_t *sbp = &(mp->m_sb); 662 xfs_inode_t *rip; 663 __uint64_t resblks; 664 uint quotamount = 0; 665 uint quotaflags = 0; 666 int error = 0; 667 668 xfs_sb_mount_common(mp, sbp); 669 670 /* 671 * Check for a mismatched features2 values. Older kernels 672 * read & wrote into the wrong sb offset for sb_features2 673 * on some platforms due to xfs_sb_t not being 64bit size aligned 674 * when sb_features2 was added, which made older superblock 675 * reading/writing routines swap it as a 64-bit value. 676 * 677 * For backwards compatibility, we make both slots equal. 678 * 679 * If we detect a mismatched field, we OR the set bits into the 680 * existing features2 field in case it has already been modified; we 681 * don't want to lose any features. We then update the bad location 682 * with the ORed value so that older kernels will see any features2 683 * flags, and mark the two fields as needing updates once the 684 * transaction subsystem is online. 685 */ 686 if (xfs_sb_has_mismatched_features2(sbp)) { 687 xfs_warn(mp, "correcting sb_features alignment problem"); 688 sbp->sb_features2 |= sbp->sb_bad_features2; 689 sbp->sb_bad_features2 = sbp->sb_features2; 690 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 691 692 /* 693 * Re-check for ATTR2 in case it was found in bad_features2 694 * slot. 695 */ 696 if (xfs_sb_version_hasattr2(&mp->m_sb) && 697 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 698 mp->m_flags |= XFS_MOUNT_ATTR2; 699 } 700 701 if (xfs_sb_version_hasattr2(&mp->m_sb) && 702 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 703 xfs_sb_version_removeattr2(&mp->m_sb); 704 mp->m_update_flags |= XFS_SB_FEATURES2; 705 706 /* update sb_versionnum for the clearing of the morebits */ 707 if (!sbp->sb_features2) 708 mp->m_update_flags |= XFS_SB_VERSIONNUM; 709 } 710 711 /* always use v2 inodes by default now */ 712 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 713 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 714 mp->m_update_flags |= XFS_SB_VERSIONNUM; 715 } 716 717 /* 718 * Check if sb_agblocks is aligned at stripe boundary 719 * If sb_agblocks is NOT aligned turn off m_dalign since 720 * allocator alignment is within an ag, therefore ag has 721 * to be aligned at stripe boundary. 722 */ 723 error = xfs_update_alignment(mp); 724 if (error) 725 goto out; 726 727 xfs_alloc_compute_maxlevels(mp); 728 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 729 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 730 xfs_ialloc_compute_maxlevels(mp); 731 732 xfs_set_maxicount(mp); 733 734 error = xfs_uuid_mount(mp); 735 if (error) 736 goto out; 737 738 /* 739 * Set the minimum read and write sizes 740 */ 741 xfs_set_rw_sizes(mp); 742 743 /* set the low space thresholds for dynamic preallocation */ 744 xfs_set_low_space_thresholds(mp); 745 746 /* 747 * Set the inode cluster size. 748 * This may still be overridden by the file system 749 * block size if it is larger than the chosen cluster size. 750 * 751 * For v5 filesystems, scale the cluster size with the inode size to 752 * keep a constant ratio of inode per cluster buffer, but only if mkfs 753 * has set the inode alignment value appropriately for larger cluster 754 * sizes. 755 */ 756 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 757 if (xfs_sb_version_hascrc(&mp->m_sb)) { 758 int new_size = mp->m_inode_cluster_size; 759 760 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 761 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 762 mp->m_inode_cluster_size = new_size; 763 } 764 765 /* 766 * Set inode alignment fields 767 */ 768 xfs_set_inoalignment(mp); 769 770 /* 771 * Check that the data (and log if separate) is an ok size. 772 */ 773 error = xfs_check_sizes(mp); 774 if (error) 775 goto out_remove_uuid; 776 777 /* 778 * Initialize realtime fields in the mount structure 779 */ 780 error = xfs_rtmount_init(mp); 781 if (error) { 782 xfs_warn(mp, "RT mount failed"); 783 goto out_remove_uuid; 784 } 785 786 /* 787 * Copies the low order bits of the timestamp and the randomly 788 * set "sequence" number out of a UUID. 789 */ 790 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 791 792 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 793 794 error = xfs_da_mount(mp); 795 if (error) { 796 xfs_warn(mp, "Failed dir/attr init: %d", error); 797 goto out_remove_uuid; 798 } 799 800 /* 801 * Initialize the precomputed transaction reservations values. 802 */ 803 xfs_trans_init(mp); 804 805 /* 806 * Allocate and initialize the per-ag data. 807 */ 808 spin_lock_init(&mp->m_perag_lock); 809 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 810 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 811 if (error) { 812 xfs_warn(mp, "Failed per-ag init: %d", error); 813 goto out_free_dir; 814 } 815 816 if (!sbp->sb_logblocks) { 817 xfs_warn(mp, "no log defined"); 818 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 819 error = XFS_ERROR(EFSCORRUPTED); 820 goto out_free_perag; 821 } 822 823 /* 824 * log's mount-time initialization. Perform 1st part recovery if needed 825 */ 826 error = xfs_log_mount(mp, mp->m_logdev_targp, 827 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 828 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 829 if (error) { 830 xfs_warn(mp, "log mount failed"); 831 goto out_fail_wait; 832 } 833 834 /* 835 * Now the log is mounted, we know if it was an unclean shutdown or 836 * not. If it was, with the first phase of recovery has completed, we 837 * have consistent AG blocks on disk. We have not recovered EFIs yet, 838 * but they are recovered transactionally in the second recovery phase 839 * later. 840 * 841 * Hence we can safely re-initialise incore superblock counters from 842 * the per-ag data. These may not be correct if the filesystem was not 843 * cleanly unmounted, so we need to wait for recovery to finish before 844 * doing this. 845 * 846 * If the filesystem was cleanly unmounted, then we can trust the 847 * values in the superblock to be correct and we don't need to do 848 * anything here. 849 * 850 * If we are currently making the filesystem, the initialisation will 851 * fail as the perag data is in an undefined state. 852 */ 853 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 854 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 855 !mp->m_sb.sb_inprogress) { 856 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 857 if (error) 858 goto out_fail_wait; 859 } 860 861 /* 862 * Get and sanity-check the root inode. 863 * Save the pointer to it in the mount structure. 864 */ 865 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 866 if (error) { 867 xfs_warn(mp, "failed to read root inode"); 868 goto out_log_dealloc; 869 } 870 871 ASSERT(rip != NULL); 872 873 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 874 xfs_warn(mp, "corrupted root inode %llu: not a directory", 875 (unsigned long long)rip->i_ino); 876 xfs_iunlock(rip, XFS_ILOCK_EXCL); 877 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 878 mp); 879 error = XFS_ERROR(EFSCORRUPTED); 880 goto out_rele_rip; 881 } 882 mp->m_rootip = rip; /* save it */ 883 884 xfs_iunlock(rip, XFS_ILOCK_EXCL); 885 886 /* 887 * Initialize realtime inode pointers in the mount structure 888 */ 889 error = xfs_rtmount_inodes(mp); 890 if (error) { 891 /* 892 * Free up the root inode. 893 */ 894 xfs_warn(mp, "failed to read RT inodes"); 895 goto out_rele_rip; 896 } 897 898 /* 899 * If this is a read-only mount defer the superblock updates until 900 * the next remount into writeable mode. Otherwise we would never 901 * perform the update e.g. for the root filesystem. 902 */ 903 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 904 error = xfs_mount_log_sb(mp, mp->m_update_flags); 905 if (error) { 906 xfs_warn(mp, "failed to write sb changes"); 907 goto out_rtunmount; 908 } 909 } 910 911 /* 912 * Initialise the XFS quota management subsystem for this mount 913 */ 914 if (XFS_IS_QUOTA_RUNNING(mp)) { 915 error = xfs_qm_newmount(mp, "amount, "aflags); 916 if (error) 917 goto out_rtunmount; 918 } else { 919 ASSERT(!XFS_IS_QUOTA_ON(mp)); 920 921 /* 922 * If a file system had quotas running earlier, but decided to 923 * mount without -o uquota/pquota/gquota options, revoke the 924 * quotachecked license. 925 */ 926 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 927 xfs_notice(mp, "resetting quota flags"); 928 error = xfs_mount_reset_sbqflags(mp); 929 if (error) 930 return error; 931 } 932 } 933 934 /* 935 * Finish recovering the file system. This part needed to be 936 * delayed until after the root and real-time bitmap inodes 937 * were consistently read in. 938 */ 939 error = xfs_log_mount_finish(mp); 940 if (error) { 941 xfs_warn(mp, "log mount finish failed"); 942 goto out_rtunmount; 943 } 944 945 /* 946 * Complete the quota initialisation, post-log-replay component. 947 */ 948 if (quotamount) { 949 ASSERT(mp->m_qflags == 0); 950 mp->m_qflags = quotaflags; 951 952 xfs_qm_mount_quotas(mp); 953 } 954 955 /* 956 * Now we are mounted, reserve a small amount of unused space for 957 * privileged transactions. This is needed so that transaction 958 * space required for critical operations can dip into this pool 959 * when at ENOSPC. This is needed for operations like create with 960 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 961 * are not allowed to use this reserved space. 962 * 963 * This may drive us straight to ENOSPC on mount, but that implies 964 * we were already there on the last unmount. Warn if this occurs. 965 */ 966 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 967 resblks = xfs_default_resblks(mp); 968 error = xfs_reserve_blocks(mp, &resblks, NULL); 969 if (error) 970 xfs_warn(mp, 971 "Unable to allocate reserve blocks. Continuing without reserve pool."); 972 } 973 974 return 0; 975 976 out_rtunmount: 977 xfs_rtunmount_inodes(mp); 978 out_rele_rip: 979 IRELE(rip); 980 out_log_dealloc: 981 xfs_log_unmount(mp); 982 out_fail_wait: 983 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 984 xfs_wait_buftarg(mp->m_logdev_targp); 985 xfs_wait_buftarg(mp->m_ddev_targp); 986 out_free_perag: 987 xfs_free_perag(mp); 988 out_free_dir: 989 xfs_da_unmount(mp); 990 out_remove_uuid: 991 xfs_uuid_unmount(mp); 992 out: 993 return error; 994 } 995 996 /* 997 * This flushes out the inodes,dquots and the superblock, unmounts the 998 * log and makes sure that incore structures are freed. 999 */ 1000 void 1001 xfs_unmountfs( 1002 struct xfs_mount *mp) 1003 { 1004 __uint64_t resblks; 1005 int error; 1006 1007 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1008 1009 xfs_qm_unmount_quotas(mp); 1010 xfs_rtunmount_inodes(mp); 1011 IRELE(mp->m_rootip); 1012 1013 /* 1014 * We can potentially deadlock here if we have an inode cluster 1015 * that has been freed has its buffer still pinned in memory because 1016 * the transaction is still sitting in a iclog. The stale inodes 1017 * on that buffer will have their flush locks held until the 1018 * transaction hits the disk and the callbacks run. the inode 1019 * flush takes the flush lock unconditionally and with nothing to 1020 * push out the iclog we will never get that unlocked. hence we 1021 * need to force the log first. 1022 */ 1023 xfs_log_force(mp, XFS_LOG_SYNC); 1024 1025 /* 1026 * Flush all pending changes from the AIL. 1027 */ 1028 xfs_ail_push_all_sync(mp->m_ail); 1029 1030 /* 1031 * And reclaim all inodes. At this point there should be no dirty 1032 * inodes and none should be pinned or locked, but use synchronous 1033 * reclaim just to be sure. We can stop background inode reclaim 1034 * here as well if it is still running. 1035 */ 1036 cancel_delayed_work_sync(&mp->m_reclaim_work); 1037 xfs_reclaim_inodes(mp, SYNC_WAIT); 1038 1039 xfs_qm_unmount(mp); 1040 1041 /* 1042 * Unreserve any blocks we have so that when we unmount we don't account 1043 * the reserved free space as used. This is really only necessary for 1044 * lazy superblock counting because it trusts the incore superblock 1045 * counters to be absolutely correct on clean unmount. 1046 * 1047 * We don't bother correcting this elsewhere for lazy superblock 1048 * counting because on mount of an unclean filesystem we reconstruct the 1049 * correct counter value and this is irrelevant. 1050 * 1051 * For non-lazy counter filesystems, this doesn't matter at all because 1052 * we only every apply deltas to the superblock and hence the incore 1053 * value does not matter.... 1054 */ 1055 resblks = 0; 1056 error = xfs_reserve_blocks(mp, &resblks, NULL); 1057 if (error) 1058 xfs_warn(mp, "Unable to free reserved block pool. " 1059 "Freespace may not be correct on next mount."); 1060 1061 error = xfs_log_sbcount(mp); 1062 if (error) 1063 xfs_warn(mp, "Unable to update superblock counters. " 1064 "Freespace may not be correct on next mount."); 1065 1066 xfs_log_unmount(mp); 1067 xfs_da_unmount(mp); 1068 xfs_uuid_unmount(mp); 1069 1070 #if defined(DEBUG) 1071 xfs_errortag_clearall(mp, 0); 1072 #endif 1073 xfs_free_perag(mp); 1074 } 1075 1076 int 1077 xfs_fs_writable(xfs_mount_t *mp) 1078 { 1079 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1080 (mp->m_flags & XFS_MOUNT_RDONLY)); 1081 } 1082 1083 /* 1084 * xfs_log_sbcount 1085 * 1086 * Sync the superblock counters to disk. 1087 * 1088 * Note this code can be called during the process of freezing, so 1089 * we may need to use the transaction allocator which does not 1090 * block when the transaction subsystem is in its frozen state. 1091 */ 1092 int 1093 xfs_log_sbcount(xfs_mount_t *mp) 1094 { 1095 xfs_trans_t *tp; 1096 int error; 1097 1098 if (!xfs_fs_writable(mp)) 1099 return 0; 1100 1101 xfs_icsb_sync_counters(mp, 0); 1102 1103 /* 1104 * we don't need to do this if we are updating the superblock 1105 * counters on every modification. 1106 */ 1107 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1108 return 0; 1109 1110 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1111 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1112 if (error) { 1113 xfs_trans_cancel(tp, 0); 1114 return error; 1115 } 1116 1117 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1118 xfs_trans_set_sync(tp); 1119 error = xfs_trans_commit(tp, 0); 1120 return error; 1121 } 1122 1123 /* 1124 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply 1125 * a delta to a specified field in the in-core superblock. Simply 1126 * switch on the field indicated and apply the delta to that field. 1127 * Fields are not allowed to dip below zero, so if the delta would 1128 * do this do not apply it and return EINVAL. 1129 * 1130 * The m_sb_lock must be held when this routine is called. 1131 */ 1132 STATIC int 1133 xfs_mod_incore_sb_unlocked( 1134 xfs_mount_t *mp, 1135 xfs_sb_field_t field, 1136 int64_t delta, 1137 int rsvd) 1138 { 1139 int scounter; /* short counter for 32 bit fields */ 1140 long long lcounter; /* long counter for 64 bit fields */ 1141 long long res_used, rem; 1142 1143 /* 1144 * With the in-core superblock spin lock held, switch 1145 * on the indicated field. Apply the delta to the 1146 * proper field. If the fields value would dip below 1147 * 0, then do not apply the delta and return EINVAL. 1148 */ 1149 switch (field) { 1150 case XFS_SBS_ICOUNT: 1151 lcounter = (long long)mp->m_sb.sb_icount; 1152 lcounter += delta; 1153 if (lcounter < 0) { 1154 ASSERT(0); 1155 return XFS_ERROR(EINVAL); 1156 } 1157 mp->m_sb.sb_icount = lcounter; 1158 return 0; 1159 case XFS_SBS_IFREE: 1160 lcounter = (long long)mp->m_sb.sb_ifree; 1161 lcounter += delta; 1162 if (lcounter < 0) { 1163 ASSERT(0); 1164 return XFS_ERROR(EINVAL); 1165 } 1166 mp->m_sb.sb_ifree = lcounter; 1167 return 0; 1168 case XFS_SBS_FDBLOCKS: 1169 lcounter = (long long) 1170 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1171 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1172 1173 if (delta > 0) { /* Putting blocks back */ 1174 if (res_used > delta) { 1175 mp->m_resblks_avail += delta; 1176 } else { 1177 rem = delta - res_used; 1178 mp->m_resblks_avail = mp->m_resblks; 1179 lcounter += rem; 1180 } 1181 } else { /* Taking blocks away */ 1182 lcounter += delta; 1183 if (lcounter >= 0) { 1184 mp->m_sb.sb_fdblocks = lcounter + 1185 XFS_ALLOC_SET_ASIDE(mp); 1186 return 0; 1187 } 1188 1189 /* 1190 * We are out of blocks, use any available reserved 1191 * blocks if were allowed to. 1192 */ 1193 if (!rsvd) 1194 return XFS_ERROR(ENOSPC); 1195 1196 lcounter = (long long)mp->m_resblks_avail + delta; 1197 if (lcounter >= 0) { 1198 mp->m_resblks_avail = lcounter; 1199 return 0; 1200 } 1201 printk_once(KERN_WARNING 1202 "Filesystem \"%s\": reserve blocks depleted! " 1203 "Consider increasing reserve pool size.", 1204 mp->m_fsname); 1205 return XFS_ERROR(ENOSPC); 1206 } 1207 1208 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1209 return 0; 1210 case XFS_SBS_FREXTENTS: 1211 lcounter = (long long)mp->m_sb.sb_frextents; 1212 lcounter += delta; 1213 if (lcounter < 0) { 1214 return XFS_ERROR(ENOSPC); 1215 } 1216 mp->m_sb.sb_frextents = lcounter; 1217 return 0; 1218 case XFS_SBS_DBLOCKS: 1219 lcounter = (long long)mp->m_sb.sb_dblocks; 1220 lcounter += delta; 1221 if (lcounter < 0) { 1222 ASSERT(0); 1223 return XFS_ERROR(EINVAL); 1224 } 1225 mp->m_sb.sb_dblocks = lcounter; 1226 return 0; 1227 case XFS_SBS_AGCOUNT: 1228 scounter = mp->m_sb.sb_agcount; 1229 scounter += delta; 1230 if (scounter < 0) { 1231 ASSERT(0); 1232 return XFS_ERROR(EINVAL); 1233 } 1234 mp->m_sb.sb_agcount = scounter; 1235 return 0; 1236 case XFS_SBS_IMAX_PCT: 1237 scounter = mp->m_sb.sb_imax_pct; 1238 scounter += delta; 1239 if (scounter < 0) { 1240 ASSERT(0); 1241 return XFS_ERROR(EINVAL); 1242 } 1243 mp->m_sb.sb_imax_pct = scounter; 1244 return 0; 1245 case XFS_SBS_REXTSIZE: 1246 scounter = mp->m_sb.sb_rextsize; 1247 scounter += delta; 1248 if (scounter < 0) { 1249 ASSERT(0); 1250 return XFS_ERROR(EINVAL); 1251 } 1252 mp->m_sb.sb_rextsize = scounter; 1253 return 0; 1254 case XFS_SBS_RBMBLOCKS: 1255 scounter = mp->m_sb.sb_rbmblocks; 1256 scounter += delta; 1257 if (scounter < 0) { 1258 ASSERT(0); 1259 return XFS_ERROR(EINVAL); 1260 } 1261 mp->m_sb.sb_rbmblocks = scounter; 1262 return 0; 1263 case XFS_SBS_RBLOCKS: 1264 lcounter = (long long)mp->m_sb.sb_rblocks; 1265 lcounter += delta; 1266 if (lcounter < 0) { 1267 ASSERT(0); 1268 return XFS_ERROR(EINVAL); 1269 } 1270 mp->m_sb.sb_rblocks = lcounter; 1271 return 0; 1272 case XFS_SBS_REXTENTS: 1273 lcounter = (long long)mp->m_sb.sb_rextents; 1274 lcounter += delta; 1275 if (lcounter < 0) { 1276 ASSERT(0); 1277 return XFS_ERROR(EINVAL); 1278 } 1279 mp->m_sb.sb_rextents = lcounter; 1280 return 0; 1281 case XFS_SBS_REXTSLOG: 1282 scounter = mp->m_sb.sb_rextslog; 1283 scounter += delta; 1284 if (scounter < 0) { 1285 ASSERT(0); 1286 return XFS_ERROR(EINVAL); 1287 } 1288 mp->m_sb.sb_rextslog = scounter; 1289 return 0; 1290 default: 1291 ASSERT(0); 1292 return XFS_ERROR(EINVAL); 1293 } 1294 } 1295 1296 /* 1297 * xfs_mod_incore_sb() is used to change a field in the in-core 1298 * superblock structure by the specified delta. This modification 1299 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1300 * routine to do the work. 1301 */ 1302 int 1303 xfs_mod_incore_sb( 1304 struct xfs_mount *mp, 1305 xfs_sb_field_t field, 1306 int64_t delta, 1307 int rsvd) 1308 { 1309 int status; 1310 1311 #ifdef HAVE_PERCPU_SB 1312 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1313 #endif 1314 spin_lock(&mp->m_sb_lock); 1315 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1316 spin_unlock(&mp->m_sb_lock); 1317 1318 return status; 1319 } 1320 1321 /* 1322 * Change more than one field in the in-core superblock structure at a time. 1323 * 1324 * The fields and changes to those fields are specified in the array of 1325 * xfs_mod_sb structures passed in. Either all of the specified deltas 1326 * will be applied or none of them will. If any modified field dips below 0, 1327 * then all modifications will be backed out and EINVAL will be returned. 1328 * 1329 * Note that this function may not be used for the superblock values that 1330 * are tracked with the in-memory per-cpu counters - a direct call to 1331 * xfs_icsb_modify_counters is required for these. 1332 */ 1333 int 1334 xfs_mod_incore_sb_batch( 1335 struct xfs_mount *mp, 1336 xfs_mod_sb_t *msb, 1337 uint nmsb, 1338 int rsvd) 1339 { 1340 xfs_mod_sb_t *msbp; 1341 int error = 0; 1342 1343 /* 1344 * Loop through the array of mod structures and apply each individually. 1345 * If any fail, then back out all those which have already been applied. 1346 * Do all of this within the scope of the m_sb_lock so that all of the 1347 * changes will be atomic. 1348 */ 1349 spin_lock(&mp->m_sb_lock); 1350 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1351 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1352 msbp->msb_field > XFS_SBS_FDBLOCKS); 1353 1354 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1355 msbp->msb_delta, rsvd); 1356 if (error) 1357 goto unwind; 1358 } 1359 spin_unlock(&mp->m_sb_lock); 1360 return 0; 1361 1362 unwind: 1363 while (--msbp >= msb) { 1364 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1365 -msbp->msb_delta, rsvd); 1366 ASSERT(error == 0); 1367 } 1368 spin_unlock(&mp->m_sb_lock); 1369 return error; 1370 } 1371 1372 /* 1373 * xfs_getsb() is called to obtain the buffer for the superblock. 1374 * The buffer is returned locked and read in from disk. 1375 * The buffer should be released with a call to xfs_brelse(). 1376 * 1377 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1378 * the superblock buffer if it can be locked without sleeping. 1379 * If it can't then we'll return NULL. 1380 */ 1381 struct xfs_buf * 1382 xfs_getsb( 1383 struct xfs_mount *mp, 1384 int flags) 1385 { 1386 struct xfs_buf *bp = mp->m_sb_bp; 1387 1388 if (!xfs_buf_trylock(bp)) { 1389 if (flags & XBF_TRYLOCK) 1390 return NULL; 1391 xfs_buf_lock(bp); 1392 } 1393 1394 xfs_buf_hold(bp); 1395 ASSERT(XFS_BUF_ISDONE(bp)); 1396 return bp; 1397 } 1398 1399 /* 1400 * Used to free the superblock along various error paths. 1401 */ 1402 void 1403 xfs_freesb( 1404 struct xfs_mount *mp) 1405 { 1406 struct xfs_buf *bp = mp->m_sb_bp; 1407 1408 xfs_buf_lock(bp); 1409 mp->m_sb_bp = NULL; 1410 xfs_buf_relse(bp); 1411 } 1412 1413 /* 1414 * Used to log changes to the superblock unit and width fields which could 1415 * be altered by the mount options, as well as any potential sb_features2 1416 * fixup. Only the first superblock is updated. 1417 */ 1418 int 1419 xfs_mount_log_sb( 1420 xfs_mount_t *mp, 1421 __int64_t fields) 1422 { 1423 xfs_trans_t *tp; 1424 int error; 1425 1426 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1427 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1428 XFS_SB_VERSIONNUM)); 1429 1430 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1431 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1432 if (error) { 1433 xfs_trans_cancel(tp, 0); 1434 return error; 1435 } 1436 xfs_mod_sb(tp, fields); 1437 error = xfs_trans_commit(tp, 0); 1438 return error; 1439 } 1440 1441 /* 1442 * If the underlying (data/log/rt) device is readonly, there are some 1443 * operations that cannot proceed. 1444 */ 1445 int 1446 xfs_dev_is_read_only( 1447 struct xfs_mount *mp, 1448 char *message) 1449 { 1450 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1451 xfs_readonly_buftarg(mp->m_logdev_targp) || 1452 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1453 xfs_notice(mp, "%s required on read-only device.", message); 1454 xfs_notice(mp, "write access unavailable, cannot proceed."); 1455 return EROFS; 1456 } 1457 return 0; 1458 } 1459 1460 #ifdef HAVE_PERCPU_SB 1461 /* 1462 * Per-cpu incore superblock counters 1463 * 1464 * Simple concept, difficult implementation 1465 * 1466 * Basically, replace the incore superblock counters with a distributed per cpu 1467 * counter for contended fields (e.g. free block count). 1468 * 1469 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1470 * hence needs to be accurately read when we are running low on space. Hence 1471 * there is a method to enable and disable the per-cpu counters based on how 1472 * much "stuff" is available in them. 1473 * 1474 * Basically, a counter is enabled if there is enough free resource to justify 1475 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1476 * ENOSPC), then we disable the counters to synchronise all callers and 1477 * re-distribute the available resources. 1478 * 1479 * If, once we redistributed the available resources, we still get a failure, 1480 * we disable the per-cpu counter and go through the slow path. 1481 * 1482 * The slow path is the current xfs_mod_incore_sb() function. This means that 1483 * when we disable a per-cpu counter, we need to drain its resources back to 1484 * the global superblock. We do this after disabling the counter to prevent 1485 * more threads from queueing up on the counter. 1486 * 1487 * Essentially, this means that we still need a lock in the fast path to enable 1488 * synchronisation between the global counters and the per-cpu counters. This 1489 * is not a problem because the lock will be local to a CPU almost all the time 1490 * and have little contention except when we get to ENOSPC conditions. 1491 * 1492 * Basically, this lock becomes a barrier that enables us to lock out the fast 1493 * path while we do things like enabling and disabling counters and 1494 * synchronising the counters. 1495 * 1496 * Locking rules: 1497 * 1498 * 1. m_sb_lock before picking up per-cpu locks 1499 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1500 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1501 * 4. modifying per-cpu counters requires holding per-cpu lock 1502 * 5. modifying global counters requires holding m_sb_lock 1503 * 6. enabling or disabling a counter requires holding the m_sb_lock 1504 * and _none_ of the per-cpu locks. 1505 * 1506 * Disabled counters are only ever re-enabled by a balance operation 1507 * that results in more free resources per CPU than a given threshold. 1508 * To ensure counters don't remain disabled, they are rebalanced when 1509 * the global resource goes above a higher threshold (i.e. some hysteresis 1510 * is present to prevent thrashing). 1511 */ 1512 1513 #ifdef CONFIG_HOTPLUG_CPU 1514 /* 1515 * hot-plug CPU notifier support. 1516 * 1517 * We need a notifier per filesystem as we need to be able to identify 1518 * the filesystem to balance the counters out. This is achieved by 1519 * having a notifier block embedded in the xfs_mount_t and doing pointer 1520 * magic to get the mount pointer from the notifier block address. 1521 */ 1522 STATIC int 1523 xfs_icsb_cpu_notify( 1524 struct notifier_block *nfb, 1525 unsigned long action, 1526 void *hcpu) 1527 { 1528 xfs_icsb_cnts_t *cntp; 1529 xfs_mount_t *mp; 1530 1531 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1532 cntp = (xfs_icsb_cnts_t *) 1533 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1534 switch (action) { 1535 case CPU_UP_PREPARE: 1536 case CPU_UP_PREPARE_FROZEN: 1537 /* Easy Case - initialize the area and locks, and 1538 * then rebalance when online does everything else for us. */ 1539 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1540 break; 1541 case CPU_ONLINE: 1542 case CPU_ONLINE_FROZEN: 1543 xfs_icsb_lock(mp); 1544 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1545 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1546 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1547 xfs_icsb_unlock(mp); 1548 break; 1549 case CPU_DEAD: 1550 case CPU_DEAD_FROZEN: 1551 /* Disable all the counters, then fold the dead cpu's 1552 * count into the total on the global superblock and 1553 * re-enable the counters. */ 1554 xfs_icsb_lock(mp); 1555 spin_lock(&mp->m_sb_lock); 1556 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1557 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1558 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1559 1560 mp->m_sb.sb_icount += cntp->icsb_icount; 1561 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1562 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1563 1564 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1565 1566 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1567 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1568 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1569 spin_unlock(&mp->m_sb_lock); 1570 xfs_icsb_unlock(mp); 1571 break; 1572 } 1573 1574 return NOTIFY_OK; 1575 } 1576 #endif /* CONFIG_HOTPLUG_CPU */ 1577 1578 int 1579 xfs_icsb_init_counters( 1580 xfs_mount_t *mp) 1581 { 1582 xfs_icsb_cnts_t *cntp; 1583 int i; 1584 1585 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1586 if (mp->m_sb_cnts == NULL) 1587 return -ENOMEM; 1588 1589 for_each_online_cpu(i) { 1590 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1591 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1592 } 1593 1594 mutex_init(&mp->m_icsb_mutex); 1595 1596 /* 1597 * start with all counters disabled so that the 1598 * initial balance kicks us off correctly 1599 */ 1600 mp->m_icsb_counters = -1; 1601 1602 #ifdef CONFIG_HOTPLUG_CPU 1603 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1604 mp->m_icsb_notifier.priority = 0; 1605 register_hotcpu_notifier(&mp->m_icsb_notifier); 1606 #endif /* CONFIG_HOTPLUG_CPU */ 1607 1608 return 0; 1609 } 1610 1611 void 1612 xfs_icsb_reinit_counters( 1613 xfs_mount_t *mp) 1614 { 1615 xfs_icsb_lock(mp); 1616 /* 1617 * start with all counters disabled so that the 1618 * initial balance kicks us off correctly 1619 */ 1620 mp->m_icsb_counters = -1; 1621 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1622 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1623 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1624 xfs_icsb_unlock(mp); 1625 } 1626 1627 void 1628 xfs_icsb_destroy_counters( 1629 xfs_mount_t *mp) 1630 { 1631 if (mp->m_sb_cnts) { 1632 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 1633 free_percpu(mp->m_sb_cnts); 1634 } 1635 mutex_destroy(&mp->m_icsb_mutex); 1636 } 1637 1638 STATIC void 1639 xfs_icsb_lock_cntr( 1640 xfs_icsb_cnts_t *icsbp) 1641 { 1642 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 1643 ndelay(1000); 1644 } 1645 } 1646 1647 STATIC void 1648 xfs_icsb_unlock_cntr( 1649 xfs_icsb_cnts_t *icsbp) 1650 { 1651 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 1652 } 1653 1654 1655 STATIC void 1656 xfs_icsb_lock_all_counters( 1657 xfs_mount_t *mp) 1658 { 1659 xfs_icsb_cnts_t *cntp; 1660 int i; 1661 1662 for_each_online_cpu(i) { 1663 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1664 xfs_icsb_lock_cntr(cntp); 1665 } 1666 } 1667 1668 STATIC void 1669 xfs_icsb_unlock_all_counters( 1670 xfs_mount_t *mp) 1671 { 1672 xfs_icsb_cnts_t *cntp; 1673 int i; 1674 1675 for_each_online_cpu(i) { 1676 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1677 xfs_icsb_unlock_cntr(cntp); 1678 } 1679 } 1680 1681 STATIC void 1682 xfs_icsb_count( 1683 xfs_mount_t *mp, 1684 xfs_icsb_cnts_t *cnt, 1685 int flags) 1686 { 1687 xfs_icsb_cnts_t *cntp; 1688 int i; 1689 1690 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 1691 1692 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1693 xfs_icsb_lock_all_counters(mp); 1694 1695 for_each_online_cpu(i) { 1696 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1697 cnt->icsb_icount += cntp->icsb_icount; 1698 cnt->icsb_ifree += cntp->icsb_ifree; 1699 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 1700 } 1701 1702 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1703 xfs_icsb_unlock_all_counters(mp); 1704 } 1705 1706 STATIC int 1707 xfs_icsb_counter_disabled( 1708 xfs_mount_t *mp, 1709 xfs_sb_field_t field) 1710 { 1711 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1712 return test_bit(field, &mp->m_icsb_counters); 1713 } 1714 1715 STATIC void 1716 xfs_icsb_disable_counter( 1717 xfs_mount_t *mp, 1718 xfs_sb_field_t field) 1719 { 1720 xfs_icsb_cnts_t cnt; 1721 1722 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1723 1724 /* 1725 * If we are already disabled, then there is nothing to do 1726 * here. We check before locking all the counters to avoid 1727 * the expensive lock operation when being called in the 1728 * slow path and the counter is already disabled. This is 1729 * safe because the only time we set or clear this state is under 1730 * the m_icsb_mutex. 1731 */ 1732 if (xfs_icsb_counter_disabled(mp, field)) 1733 return; 1734 1735 xfs_icsb_lock_all_counters(mp); 1736 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 1737 /* drain back to superblock */ 1738 1739 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 1740 switch(field) { 1741 case XFS_SBS_ICOUNT: 1742 mp->m_sb.sb_icount = cnt.icsb_icount; 1743 break; 1744 case XFS_SBS_IFREE: 1745 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1746 break; 1747 case XFS_SBS_FDBLOCKS: 1748 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1749 break; 1750 default: 1751 BUG(); 1752 } 1753 } 1754 1755 xfs_icsb_unlock_all_counters(mp); 1756 } 1757 1758 STATIC void 1759 xfs_icsb_enable_counter( 1760 xfs_mount_t *mp, 1761 xfs_sb_field_t field, 1762 uint64_t count, 1763 uint64_t resid) 1764 { 1765 xfs_icsb_cnts_t *cntp; 1766 int i; 1767 1768 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1769 1770 xfs_icsb_lock_all_counters(mp); 1771 for_each_online_cpu(i) { 1772 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 1773 switch (field) { 1774 case XFS_SBS_ICOUNT: 1775 cntp->icsb_icount = count + resid; 1776 break; 1777 case XFS_SBS_IFREE: 1778 cntp->icsb_ifree = count + resid; 1779 break; 1780 case XFS_SBS_FDBLOCKS: 1781 cntp->icsb_fdblocks = count + resid; 1782 break; 1783 default: 1784 BUG(); 1785 break; 1786 } 1787 resid = 0; 1788 } 1789 clear_bit(field, &mp->m_icsb_counters); 1790 xfs_icsb_unlock_all_counters(mp); 1791 } 1792 1793 void 1794 xfs_icsb_sync_counters_locked( 1795 xfs_mount_t *mp, 1796 int flags) 1797 { 1798 xfs_icsb_cnts_t cnt; 1799 1800 xfs_icsb_count(mp, &cnt, flags); 1801 1802 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 1803 mp->m_sb.sb_icount = cnt.icsb_icount; 1804 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 1805 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1806 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 1807 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1808 } 1809 1810 /* 1811 * Accurate update of per-cpu counters to incore superblock 1812 */ 1813 void 1814 xfs_icsb_sync_counters( 1815 xfs_mount_t *mp, 1816 int flags) 1817 { 1818 spin_lock(&mp->m_sb_lock); 1819 xfs_icsb_sync_counters_locked(mp, flags); 1820 spin_unlock(&mp->m_sb_lock); 1821 } 1822 1823 /* 1824 * Balance and enable/disable counters as necessary. 1825 * 1826 * Thresholds for re-enabling counters are somewhat magic. inode counts are 1827 * chosen to be the same number as single on disk allocation chunk per CPU, and 1828 * free blocks is something far enough zero that we aren't going thrash when we 1829 * get near ENOSPC. We also need to supply a minimum we require per cpu to 1830 * prevent looping endlessly when xfs_alloc_space asks for more than will 1831 * be distributed to a single CPU but each CPU has enough blocks to be 1832 * reenabled. 1833 * 1834 * Note that we can be called when counters are already disabled. 1835 * xfs_icsb_disable_counter() optimises the counter locking in this case to 1836 * prevent locking every per-cpu counter needlessly. 1837 */ 1838 1839 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 1840 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 1841 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 1842 STATIC void 1843 xfs_icsb_balance_counter_locked( 1844 xfs_mount_t *mp, 1845 xfs_sb_field_t field, 1846 int min_per_cpu) 1847 { 1848 uint64_t count, resid; 1849 int weight = num_online_cpus(); 1850 uint64_t min = (uint64_t)min_per_cpu; 1851 1852 /* disable counter and sync counter */ 1853 xfs_icsb_disable_counter(mp, field); 1854 1855 /* update counters - first CPU gets residual*/ 1856 switch (field) { 1857 case XFS_SBS_ICOUNT: 1858 count = mp->m_sb.sb_icount; 1859 resid = do_div(count, weight); 1860 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1861 return; 1862 break; 1863 case XFS_SBS_IFREE: 1864 count = mp->m_sb.sb_ifree; 1865 resid = do_div(count, weight); 1866 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1867 return; 1868 break; 1869 case XFS_SBS_FDBLOCKS: 1870 count = mp->m_sb.sb_fdblocks; 1871 resid = do_div(count, weight); 1872 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 1873 return; 1874 break; 1875 default: 1876 BUG(); 1877 count = resid = 0; /* quiet, gcc */ 1878 break; 1879 } 1880 1881 xfs_icsb_enable_counter(mp, field, count, resid); 1882 } 1883 1884 STATIC void 1885 xfs_icsb_balance_counter( 1886 xfs_mount_t *mp, 1887 xfs_sb_field_t fields, 1888 int min_per_cpu) 1889 { 1890 spin_lock(&mp->m_sb_lock); 1891 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 1892 spin_unlock(&mp->m_sb_lock); 1893 } 1894 1895 int 1896 xfs_icsb_modify_counters( 1897 xfs_mount_t *mp, 1898 xfs_sb_field_t field, 1899 int64_t delta, 1900 int rsvd) 1901 { 1902 xfs_icsb_cnts_t *icsbp; 1903 long long lcounter; /* long counter for 64 bit fields */ 1904 int ret = 0; 1905 1906 might_sleep(); 1907 again: 1908 preempt_disable(); 1909 icsbp = this_cpu_ptr(mp->m_sb_cnts); 1910 1911 /* 1912 * if the counter is disabled, go to slow path 1913 */ 1914 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 1915 goto slow_path; 1916 xfs_icsb_lock_cntr(icsbp); 1917 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 1918 xfs_icsb_unlock_cntr(icsbp); 1919 goto slow_path; 1920 } 1921 1922 switch (field) { 1923 case XFS_SBS_ICOUNT: 1924 lcounter = icsbp->icsb_icount; 1925 lcounter += delta; 1926 if (unlikely(lcounter < 0)) 1927 goto balance_counter; 1928 icsbp->icsb_icount = lcounter; 1929 break; 1930 1931 case XFS_SBS_IFREE: 1932 lcounter = icsbp->icsb_ifree; 1933 lcounter += delta; 1934 if (unlikely(lcounter < 0)) 1935 goto balance_counter; 1936 icsbp->icsb_ifree = lcounter; 1937 break; 1938 1939 case XFS_SBS_FDBLOCKS: 1940 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 1941 1942 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1943 lcounter += delta; 1944 if (unlikely(lcounter < 0)) 1945 goto balance_counter; 1946 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1947 break; 1948 default: 1949 BUG(); 1950 break; 1951 } 1952 xfs_icsb_unlock_cntr(icsbp); 1953 preempt_enable(); 1954 return 0; 1955 1956 slow_path: 1957 preempt_enable(); 1958 1959 /* 1960 * serialise with a mutex so we don't burn lots of cpu on 1961 * the superblock lock. We still need to hold the superblock 1962 * lock, however, when we modify the global structures. 1963 */ 1964 xfs_icsb_lock(mp); 1965 1966 /* 1967 * Now running atomically. 1968 * 1969 * If the counter is enabled, someone has beaten us to rebalancing. 1970 * Drop the lock and try again in the fast path.... 1971 */ 1972 if (!(xfs_icsb_counter_disabled(mp, field))) { 1973 xfs_icsb_unlock(mp); 1974 goto again; 1975 } 1976 1977 /* 1978 * The counter is currently disabled. Because we are 1979 * running atomically here, we know a rebalance cannot 1980 * be in progress. Hence we can go straight to operating 1981 * on the global superblock. We do not call xfs_mod_incore_sb() 1982 * here even though we need to get the m_sb_lock. Doing so 1983 * will cause us to re-enter this function and deadlock. 1984 * Hence we get the m_sb_lock ourselves and then call 1985 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 1986 * directly on the global counters. 1987 */ 1988 spin_lock(&mp->m_sb_lock); 1989 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1990 spin_unlock(&mp->m_sb_lock); 1991 1992 /* 1993 * Now that we've modified the global superblock, we 1994 * may be able to re-enable the distributed counters 1995 * (e.g. lots of space just got freed). After that 1996 * we are done. 1997 */ 1998 if (ret != ENOSPC) 1999 xfs_icsb_balance_counter(mp, field, 0); 2000 xfs_icsb_unlock(mp); 2001 return ret; 2002 2003 balance_counter: 2004 xfs_icsb_unlock_cntr(icsbp); 2005 preempt_enable(); 2006 2007 /* 2008 * We may have multiple threads here if multiple per-cpu 2009 * counters run dry at the same time. This will mean we can 2010 * do more balances than strictly necessary but it is not 2011 * the common slowpath case. 2012 */ 2013 xfs_icsb_lock(mp); 2014 2015 /* 2016 * running atomically. 2017 * 2018 * This will leave the counter in the correct state for future 2019 * accesses. After the rebalance, we simply try again and our retry 2020 * will either succeed through the fast path or slow path without 2021 * another balance operation being required. 2022 */ 2023 xfs_icsb_balance_counter(mp, field, delta); 2024 xfs_icsb_unlock(mp); 2025 goto again; 2026 } 2027 2028 #endif 2029