xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 93d90ad7)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44 
45 
46 #ifdef HAVE_PERCPU_SB
47 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
48 						int);
49 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
50 						int);
51 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
52 #else
53 
54 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
55 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
56 #endif
57 
58 static DEFINE_MUTEX(xfs_uuid_table_mutex);
59 static int xfs_uuid_table_size;
60 static uuid_t *xfs_uuid_table;
61 
62 /*
63  * See if the UUID is unique among mounted XFS filesystems.
64  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
65  */
66 STATIC int
67 xfs_uuid_mount(
68 	struct xfs_mount	*mp)
69 {
70 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
71 	int			hole, i;
72 
73 	if (mp->m_flags & XFS_MOUNT_NOUUID)
74 		return 0;
75 
76 	if (uuid_is_nil(uuid)) {
77 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
78 		return -EINVAL;
79 	}
80 
81 	mutex_lock(&xfs_uuid_table_mutex);
82 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 		if (uuid_is_nil(&xfs_uuid_table[i])) {
84 			hole = i;
85 			continue;
86 		}
87 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 			goto out_duplicate;
89 	}
90 
91 	if (hole < 0) {
92 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
95 			KM_SLEEP);
96 		hole = xfs_uuid_table_size++;
97 	}
98 	xfs_uuid_table[hole] = *uuid;
99 	mutex_unlock(&xfs_uuid_table_mutex);
100 
101 	return 0;
102 
103  out_duplicate:
104 	mutex_unlock(&xfs_uuid_table_mutex);
105 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
106 	return -EINVAL;
107 }
108 
109 STATIC void
110 xfs_uuid_unmount(
111 	struct xfs_mount	*mp)
112 {
113 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
114 	int			i;
115 
116 	if (mp->m_flags & XFS_MOUNT_NOUUID)
117 		return;
118 
119 	mutex_lock(&xfs_uuid_table_mutex);
120 	for (i = 0; i < xfs_uuid_table_size; i++) {
121 		if (uuid_is_nil(&xfs_uuid_table[i]))
122 			continue;
123 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 			continue;
125 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 		break;
127 	}
128 	ASSERT(i < xfs_uuid_table_size);
129 	mutex_unlock(&xfs_uuid_table_mutex);
130 }
131 
132 
133 STATIC void
134 __xfs_free_perag(
135 	struct rcu_head	*head)
136 {
137 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138 
139 	ASSERT(atomic_read(&pag->pag_ref) == 0);
140 	kmem_free(pag);
141 }
142 
143 /*
144  * Free up the per-ag resources associated with the mount structure.
145  */
146 STATIC void
147 xfs_free_perag(
148 	xfs_mount_t	*mp)
149 {
150 	xfs_agnumber_t	agno;
151 	struct xfs_perag *pag;
152 
153 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 		spin_lock(&mp->m_perag_lock);
155 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 		spin_unlock(&mp->m_perag_lock);
157 		ASSERT(pag);
158 		ASSERT(atomic_read(&pag->pag_ref) == 0);
159 		call_rcu(&pag->rcu_head, __xfs_free_perag);
160 	}
161 }
162 
163 /*
164  * Check size of device based on the (data/realtime) block count.
165  * Note: this check is used by the growfs code as well as mount.
166  */
167 int
168 xfs_sb_validate_fsb_count(
169 	xfs_sb_t	*sbp,
170 	__uint64_t	nblocks)
171 {
172 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
174 
175 	/* Limited by ULONG_MAX of page cache index */
176 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
177 		return -EFBIG;
178 	return 0;
179 }
180 
181 int
182 xfs_initialize_perag(
183 	xfs_mount_t	*mp,
184 	xfs_agnumber_t	agcount,
185 	xfs_agnumber_t	*maxagi)
186 {
187 	xfs_agnumber_t	index;
188 	xfs_agnumber_t	first_initialised = 0;
189 	xfs_perag_t	*pag;
190 	xfs_agino_t	agino;
191 	xfs_ino_t	ino;
192 	xfs_sb_t	*sbp = &mp->m_sb;
193 	int		error = -ENOMEM;
194 
195 	/*
196 	 * Walk the current per-ag tree so we don't try to initialise AGs
197 	 * that already exist (growfs case). Allocate and insert all the
198 	 * AGs we don't find ready for initialisation.
199 	 */
200 	for (index = 0; index < agcount; index++) {
201 		pag = xfs_perag_get(mp, index);
202 		if (pag) {
203 			xfs_perag_put(pag);
204 			continue;
205 		}
206 		if (!first_initialised)
207 			first_initialised = index;
208 
209 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
210 		if (!pag)
211 			goto out_unwind;
212 		pag->pag_agno = index;
213 		pag->pag_mount = mp;
214 		spin_lock_init(&pag->pag_ici_lock);
215 		mutex_init(&pag->pag_ici_reclaim_lock);
216 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
217 		spin_lock_init(&pag->pag_buf_lock);
218 		pag->pag_buf_tree = RB_ROOT;
219 
220 		if (radix_tree_preload(GFP_NOFS))
221 			goto out_unwind;
222 
223 		spin_lock(&mp->m_perag_lock);
224 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
225 			BUG();
226 			spin_unlock(&mp->m_perag_lock);
227 			radix_tree_preload_end();
228 			error = -EEXIST;
229 			goto out_unwind;
230 		}
231 		spin_unlock(&mp->m_perag_lock);
232 		radix_tree_preload_end();
233 	}
234 
235 	/*
236 	 * If we mount with the inode64 option, or no inode overflows
237 	 * the legacy 32-bit address space clear the inode32 option.
238 	 */
239 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
240 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
241 
242 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
243 		mp->m_flags |= XFS_MOUNT_32BITINODES;
244 	else
245 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
246 
247 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
248 		index = xfs_set_inode32(mp, agcount);
249 	else
250 		index = xfs_set_inode64(mp, agcount);
251 
252 	if (maxagi)
253 		*maxagi = index;
254 	return 0;
255 
256 out_unwind:
257 	kmem_free(pag);
258 	for (; index > first_initialised; index--) {
259 		pag = radix_tree_delete(&mp->m_perag_tree, index);
260 		kmem_free(pag);
261 	}
262 	return error;
263 }
264 
265 /*
266  * xfs_readsb
267  *
268  * Does the initial read of the superblock.
269  */
270 int
271 xfs_readsb(
272 	struct xfs_mount *mp,
273 	int		flags)
274 {
275 	unsigned int	sector_size;
276 	struct xfs_buf	*bp;
277 	struct xfs_sb	*sbp = &mp->m_sb;
278 	int		error;
279 	int		loud = !(flags & XFS_MFSI_QUIET);
280 	const struct xfs_buf_ops *buf_ops;
281 
282 	ASSERT(mp->m_sb_bp == NULL);
283 	ASSERT(mp->m_ddev_targp != NULL);
284 
285 	/*
286 	 * For the initial read, we must guess at the sector
287 	 * size based on the block device.  It's enough to
288 	 * get the sb_sectsize out of the superblock and
289 	 * then reread with the proper length.
290 	 * We don't verify it yet, because it may not be complete.
291 	 */
292 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
293 	buf_ops = NULL;
294 
295 	/*
296 	 * Allocate a (locked) buffer to hold the superblock.
297 	 * This will be kept around at all times to optimize
298 	 * access to the superblock.
299 	 */
300 reread:
301 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 				   BTOBB(sector_size), 0, &bp, buf_ops);
303 	if (error) {
304 		if (loud)
305 			xfs_warn(mp, "SB validate failed with error %d.", error);
306 		/* bad CRC means corrupted metadata */
307 		if (error == -EFSBADCRC)
308 			error = -EFSCORRUPTED;
309 		return error;
310 	}
311 
312 	/*
313 	 * Initialize the mount structure from the superblock.
314 	 */
315 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
316 
317 	/*
318 	 * If we haven't validated the superblock, do so now before we try
319 	 * to check the sector size and reread the superblock appropriately.
320 	 */
321 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
322 		if (loud)
323 			xfs_warn(mp, "Invalid superblock magic number");
324 		error = -EINVAL;
325 		goto release_buf;
326 	}
327 
328 	/*
329 	 * We must be able to do sector-sized and sector-aligned IO.
330 	 */
331 	if (sector_size > sbp->sb_sectsize) {
332 		if (loud)
333 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
334 				sector_size, sbp->sb_sectsize);
335 		error = -ENOSYS;
336 		goto release_buf;
337 	}
338 
339 	if (buf_ops == NULL) {
340 		/*
341 		 * Re-read the superblock so the buffer is correctly sized,
342 		 * and properly verified.
343 		 */
344 		xfs_buf_relse(bp);
345 		sector_size = sbp->sb_sectsize;
346 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
347 		goto reread;
348 	}
349 
350 	/* Initialize per-cpu counters */
351 	xfs_icsb_reinit_counters(mp);
352 
353 	/* no need to be quiet anymore, so reset the buf ops */
354 	bp->b_ops = &xfs_sb_buf_ops;
355 
356 	mp->m_sb_bp = bp;
357 	xfs_buf_unlock(bp);
358 	return 0;
359 
360 release_buf:
361 	xfs_buf_relse(bp);
362 	return error;
363 }
364 
365 /*
366  * Update alignment values based on mount options and sb values
367  */
368 STATIC int
369 xfs_update_alignment(xfs_mount_t *mp)
370 {
371 	xfs_sb_t	*sbp = &(mp->m_sb);
372 
373 	if (mp->m_dalign) {
374 		/*
375 		 * If stripe unit and stripe width are not multiples
376 		 * of the fs blocksize turn off alignment.
377 		 */
378 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
379 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
380 			xfs_warn(mp,
381 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
382 				sbp->sb_blocksize);
383 			return -EINVAL;
384 		} else {
385 			/*
386 			 * Convert the stripe unit and width to FSBs.
387 			 */
388 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
389 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
390 				xfs_warn(mp,
391 			"alignment check failed: sunit/swidth vs. agsize(%d)",
392 					 sbp->sb_agblocks);
393 				return -EINVAL;
394 			} else if (mp->m_dalign) {
395 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
396 			} else {
397 				xfs_warn(mp,
398 			"alignment check failed: sunit(%d) less than bsize(%d)",
399 					 mp->m_dalign, sbp->sb_blocksize);
400 				return -EINVAL;
401 			}
402 		}
403 
404 		/*
405 		 * Update superblock with new values
406 		 * and log changes
407 		 */
408 		if (xfs_sb_version_hasdalign(sbp)) {
409 			if (sbp->sb_unit != mp->m_dalign) {
410 				sbp->sb_unit = mp->m_dalign;
411 				mp->m_update_flags |= XFS_SB_UNIT;
412 			}
413 			if (sbp->sb_width != mp->m_swidth) {
414 				sbp->sb_width = mp->m_swidth;
415 				mp->m_update_flags |= XFS_SB_WIDTH;
416 			}
417 		} else {
418 			xfs_warn(mp,
419 	"cannot change alignment: superblock does not support data alignment");
420 			return -EINVAL;
421 		}
422 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
423 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
424 			mp->m_dalign = sbp->sb_unit;
425 			mp->m_swidth = sbp->sb_width;
426 	}
427 
428 	return 0;
429 }
430 
431 /*
432  * Set the maximum inode count for this filesystem
433  */
434 STATIC void
435 xfs_set_maxicount(xfs_mount_t *mp)
436 {
437 	xfs_sb_t	*sbp = &(mp->m_sb);
438 	__uint64_t	icount;
439 
440 	if (sbp->sb_imax_pct) {
441 		/*
442 		 * Make sure the maximum inode count is a multiple
443 		 * of the units we allocate inodes in.
444 		 */
445 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
446 		do_div(icount, 100);
447 		do_div(icount, mp->m_ialloc_blks);
448 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
449 				   sbp->sb_inopblog;
450 	} else {
451 		mp->m_maxicount = 0;
452 	}
453 }
454 
455 /*
456  * Set the default minimum read and write sizes unless
457  * already specified in a mount option.
458  * We use smaller I/O sizes when the file system
459  * is being used for NFS service (wsync mount option).
460  */
461 STATIC void
462 xfs_set_rw_sizes(xfs_mount_t *mp)
463 {
464 	xfs_sb_t	*sbp = &(mp->m_sb);
465 	int		readio_log, writeio_log;
466 
467 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
468 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
469 			readio_log = XFS_WSYNC_READIO_LOG;
470 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
471 		} else {
472 			readio_log = XFS_READIO_LOG_LARGE;
473 			writeio_log = XFS_WRITEIO_LOG_LARGE;
474 		}
475 	} else {
476 		readio_log = mp->m_readio_log;
477 		writeio_log = mp->m_writeio_log;
478 	}
479 
480 	if (sbp->sb_blocklog > readio_log) {
481 		mp->m_readio_log = sbp->sb_blocklog;
482 	} else {
483 		mp->m_readio_log = readio_log;
484 	}
485 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
486 	if (sbp->sb_blocklog > writeio_log) {
487 		mp->m_writeio_log = sbp->sb_blocklog;
488 	} else {
489 		mp->m_writeio_log = writeio_log;
490 	}
491 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
492 }
493 
494 /*
495  * precalculate the low space thresholds for dynamic speculative preallocation.
496  */
497 void
498 xfs_set_low_space_thresholds(
499 	struct xfs_mount	*mp)
500 {
501 	int i;
502 
503 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
504 		__uint64_t space = mp->m_sb.sb_dblocks;
505 
506 		do_div(space, 100);
507 		mp->m_low_space[i] = space * (i + 1);
508 	}
509 }
510 
511 
512 /*
513  * Set whether we're using inode alignment.
514  */
515 STATIC void
516 xfs_set_inoalignment(xfs_mount_t *mp)
517 {
518 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
519 	    mp->m_sb.sb_inoalignmt >=
520 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
521 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
522 	else
523 		mp->m_inoalign_mask = 0;
524 	/*
525 	 * If we are using stripe alignment, check whether
526 	 * the stripe unit is a multiple of the inode alignment
527 	 */
528 	if (mp->m_dalign && mp->m_inoalign_mask &&
529 	    !(mp->m_dalign & mp->m_inoalign_mask))
530 		mp->m_sinoalign = mp->m_dalign;
531 	else
532 		mp->m_sinoalign = 0;
533 }
534 
535 /*
536  * Check that the data (and log if separate) is an ok size.
537  */
538 STATIC int
539 xfs_check_sizes(
540 	struct xfs_mount *mp)
541 {
542 	struct xfs_buf	*bp;
543 	xfs_daddr_t	d;
544 	int		error;
545 
546 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
547 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
548 		xfs_warn(mp, "filesystem size mismatch detected");
549 		return -EFBIG;
550 	}
551 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
552 					d - XFS_FSS_TO_BB(mp, 1),
553 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
554 	if (error) {
555 		xfs_warn(mp, "last sector read failed");
556 		return error;
557 	}
558 	xfs_buf_relse(bp);
559 
560 	if (mp->m_logdev_targp == mp->m_ddev_targp)
561 		return 0;
562 
563 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
564 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
565 		xfs_warn(mp, "log size mismatch detected");
566 		return -EFBIG;
567 	}
568 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
569 					d - XFS_FSB_TO_BB(mp, 1),
570 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
571 	if (error) {
572 		xfs_warn(mp, "log device read failed");
573 		return error;
574 	}
575 	xfs_buf_relse(bp);
576 	return 0;
577 }
578 
579 /*
580  * Clear the quotaflags in memory and in the superblock.
581  */
582 int
583 xfs_mount_reset_sbqflags(
584 	struct xfs_mount	*mp)
585 {
586 	int			error;
587 	struct xfs_trans	*tp;
588 
589 	mp->m_qflags = 0;
590 
591 	/*
592 	 * It is OK to look at sb_qflags here in mount path,
593 	 * without m_sb_lock.
594 	 */
595 	if (mp->m_sb.sb_qflags == 0)
596 		return 0;
597 	spin_lock(&mp->m_sb_lock);
598 	mp->m_sb.sb_qflags = 0;
599 	spin_unlock(&mp->m_sb_lock);
600 
601 	/*
602 	 * If the fs is readonly, let the incore superblock run
603 	 * with quotas off but don't flush the update out to disk
604 	 */
605 	if (mp->m_flags & XFS_MOUNT_RDONLY)
606 		return 0;
607 
608 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
609 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
610 	if (error) {
611 		xfs_trans_cancel(tp, 0);
612 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
613 		return error;
614 	}
615 
616 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
617 	return xfs_trans_commit(tp, 0);
618 }
619 
620 __uint64_t
621 xfs_default_resblks(xfs_mount_t *mp)
622 {
623 	__uint64_t resblks;
624 
625 	/*
626 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
627 	 * smaller.  This is intended to cover concurrent allocation
628 	 * transactions when we initially hit enospc. These each require a 4
629 	 * block reservation. Hence by default we cover roughly 2000 concurrent
630 	 * allocation reservations.
631 	 */
632 	resblks = mp->m_sb.sb_dblocks;
633 	do_div(resblks, 20);
634 	resblks = min_t(__uint64_t, resblks, 8192);
635 	return resblks;
636 }
637 
638 /*
639  * This function does the following on an initial mount of a file system:
640  *	- reads the superblock from disk and init the mount struct
641  *	- if we're a 32-bit kernel, do a size check on the superblock
642  *		so we don't mount terabyte filesystems
643  *	- init mount struct realtime fields
644  *	- allocate inode hash table for fs
645  *	- init directory manager
646  *	- perform recovery and init the log manager
647  */
648 int
649 xfs_mountfs(
650 	xfs_mount_t	*mp)
651 {
652 	xfs_sb_t	*sbp = &(mp->m_sb);
653 	xfs_inode_t	*rip;
654 	__uint64_t	resblks;
655 	uint		quotamount = 0;
656 	uint		quotaflags = 0;
657 	int		error = 0;
658 
659 	xfs_sb_mount_common(mp, sbp);
660 
661 	/*
662 	 * Check for a mismatched features2 values.  Older kernels
663 	 * read & wrote into the wrong sb offset for sb_features2
664 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
665 	 * when sb_features2 was added, which made older superblock
666 	 * reading/writing routines swap it as a 64-bit value.
667 	 *
668 	 * For backwards compatibility, we make both slots equal.
669 	 *
670 	 * If we detect a mismatched field, we OR the set bits into the
671 	 * existing features2 field in case it has already been modified; we
672 	 * don't want to lose any features.  We then update the bad location
673 	 * with the ORed value so that older kernels will see any features2
674 	 * flags, and mark the two fields as needing updates once the
675 	 * transaction subsystem is online.
676 	 */
677 	if (xfs_sb_has_mismatched_features2(sbp)) {
678 		xfs_warn(mp, "correcting sb_features alignment problem");
679 		sbp->sb_features2 |= sbp->sb_bad_features2;
680 		sbp->sb_bad_features2 = sbp->sb_features2;
681 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
682 
683 		/*
684 		 * Re-check for ATTR2 in case it was found in bad_features2
685 		 * slot.
686 		 */
687 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
688 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
689 			mp->m_flags |= XFS_MOUNT_ATTR2;
690 	}
691 
692 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
693 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
694 		xfs_sb_version_removeattr2(&mp->m_sb);
695 		mp->m_update_flags |= XFS_SB_FEATURES2;
696 
697 		/* update sb_versionnum for the clearing of the morebits */
698 		if (!sbp->sb_features2)
699 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
700 	}
701 
702 	/* always use v2 inodes by default now */
703 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
704 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
705 		mp->m_update_flags |= XFS_SB_VERSIONNUM;
706 	}
707 
708 	/*
709 	 * Check if sb_agblocks is aligned at stripe boundary
710 	 * If sb_agblocks is NOT aligned turn off m_dalign since
711 	 * allocator alignment is within an ag, therefore ag has
712 	 * to be aligned at stripe boundary.
713 	 */
714 	error = xfs_update_alignment(mp);
715 	if (error)
716 		goto out;
717 
718 	xfs_alloc_compute_maxlevels(mp);
719 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
720 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
721 	xfs_ialloc_compute_maxlevels(mp);
722 
723 	xfs_set_maxicount(mp);
724 
725 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
726 	if (error)
727 		goto out;
728 
729 	error = xfs_uuid_mount(mp);
730 	if (error)
731 		goto out_remove_sysfs;
732 
733 	/*
734 	 * Set the minimum read and write sizes
735 	 */
736 	xfs_set_rw_sizes(mp);
737 
738 	/* set the low space thresholds for dynamic preallocation */
739 	xfs_set_low_space_thresholds(mp);
740 
741 	/*
742 	 * Set the inode cluster size.
743 	 * This may still be overridden by the file system
744 	 * block size if it is larger than the chosen cluster size.
745 	 *
746 	 * For v5 filesystems, scale the cluster size with the inode size to
747 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
748 	 * has set the inode alignment value appropriately for larger cluster
749 	 * sizes.
750 	 */
751 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
752 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
753 		int	new_size = mp->m_inode_cluster_size;
754 
755 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
756 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
757 			mp->m_inode_cluster_size = new_size;
758 	}
759 
760 	/*
761 	 * Set inode alignment fields
762 	 */
763 	xfs_set_inoalignment(mp);
764 
765 	/*
766 	 * Check that the data (and log if separate) is an ok size.
767 	 */
768 	error = xfs_check_sizes(mp);
769 	if (error)
770 		goto out_remove_uuid;
771 
772 	/*
773 	 * Initialize realtime fields in the mount structure
774 	 */
775 	error = xfs_rtmount_init(mp);
776 	if (error) {
777 		xfs_warn(mp, "RT mount failed");
778 		goto out_remove_uuid;
779 	}
780 
781 	/*
782 	 *  Copies the low order bits of the timestamp and the randomly
783 	 *  set "sequence" number out of a UUID.
784 	 */
785 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
786 
787 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
788 
789 	error = xfs_da_mount(mp);
790 	if (error) {
791 		xfs_warn(mp, "Failed dir/attr init: %d", error);
792 		goto out_remove_uuid;
793 	}
794 
795 	/*
796 	 * Initialize the precomputed transaction reservations values.
797 	 */
798 	xfs_trans_init(mp);
799 
800 	/*
801 	 * Allocate and initialize the per-ag data.
802 	 */
803 	spin_lock_init(&mp->m_perag_lock);
804 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
805 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
806 	if (error) {
807 		xfs_warn(mp, "Failed per-ag init: %d", error);
808 		goto out_free_dir;
809 	}
810 
811 	if (!sbp->sb_logblocks) {
812 		xfs_warn(mp, "no log defined");
813 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
814 		error = -EFSCORRUPTED;
815 		goto out_free_perag;
816 	}
817 
818 	/*
819 	 * log's mount-time initialization. Perform 1st part recovery if needed
820 	 */
821 	error = xfs_log_mount(mp, mp->m_logdev_targp,
822 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
823 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
824 	if (error) {
825 		xfs_warn(mp, "log mount failed");
826 		goto out_fail_wait;
827 	}
828 
829 	/*
830 	 * Now the log is mounted, we know if it was an unclean shutdown or
831 	 * not. If it was, with the first phase of recovery has completed, we
832 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
833 	 * but they are recovered transactionally in the second recovery phase
834 	 * later.
835 	 *
836 	 * Hence we can safely re-initialise incore superblock counters from
837 	 * the per-ag data. These may not be correct if the filesystem was not
838 	 * cleanly unmounted, so we need to wait for recovery to finish before
839 	 * doing this.
840 	 *
841 	 * If the filesystem was cleanly unmounted, then we can trust the
842 	 * values in the superblock to be correct and we don't need to do
843 	 * anything here.
844 	 *
845 	 * If we are currently making the filesystem, the initialisation will
846 	 * fail as the perag data is in an undefined state.
847 	 */
848 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
849 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
850 	     !mp->m_sb.sb_inprogress) {
851 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
852 		if (error)
853 			goto out_log_dealloc;
854 	}
855 
856 	/*
857 	 * Get and sanity-check the root inode.
858 	 * Save the pointer to it in the mount structure.
859 	 */
860 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
861 	if (error) {
862 		xfs_warn(mp, "failed to read root inode");
863 		goto out_log_dealloc;
864 	}
865 
866 	ASSERT(rip != NULL);
867 
868 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
869 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
870 			(unsigned long long)rip->i_ino);
871 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
872 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
873 				 mp);
874 		error = -EFSCORRUPTED;
875 		goto out_rele_rip;
876 	}
877 	mp->m_rootip = rip;	/* save it */
878 
879 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
880 
881 	/*
882 	 * Initialize realtime inode pointers in the mount structure
883 	 */
884 	error = xfs_rtmount_inodes(mp);
885 	if (error) {
886 		/*
887 		 * Free up the root inode.
888 		 */
889 		xfs_warn(mp, "failed to read RT inodes");
890 		goto out_rele_rip;
891 	}
892 
893 	/*
894 	 * If this is a read-only mount defer the superblock updates until
895 	 * the next remount into writeable mode.  Otherwise we would never
896 	 * perform the update e.g. for the root filesystem.
897 	 */
898 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
899 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
900 		if (error) {
901 			xfs_warn(mp, "failed to write sb changes");
902 			goto out_rtunmount;
903 		}
904 	}
905 
906 	/*
907 	 * Initialise the XFS quota management subsystem for this mount
908 	 */
909 	if (XFS_IS_QUOTA_RUNNING(mp)) {
910 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
911 		if (error)
912 			goto out_rtunmount;
913 	} else {
914 		ASSERT(!XFS_IS_QUOTA_ON(mp));
915 
916 		/*
917 		 * If a file system had quotas running earlier, but decided to
918 		 * mount without -o uquota/pquota/gquota options, revoke the
919 		 * quotachecked license.
920 		 */
921 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
922 			xfs_notice(mp, "resetting quota flags");
923 			error = xfs_mount_reset_sbqflags(mp);
924 			if (error)
925 				goto out_rtunmount;
926 		}
927 	}
928 
929 	/*
930 	 * Finish recovering the file system.  This part needed to be
931 	 * delayed until after the root and real-time bitmap inodes
932 	 * were consistently read in.
933 	 */
934 	error = xfs_log_mount_finish(mp);
935 	if (error) {
936 		xfs_warn(mp, "log mount finish failed");
937 		goto out_rtunmount;
938 	}
939 
940 	/*
941 	 * Complete the quota initialisation, post-log-replay component.
942 	 */
943 	if (quotamount) {
944 		ASSERT(mp->m_qflags == 0);
945 		mp->m_qflags = quotaflags;
946 
947 		xfs_qm_mount_quotas(mp);
948 	}
949 
950 	/*
951 	 * Now we are mounted, reserve a small amount of unused space for
952 	 * privileged transactions. This is needed so that transaction
953 	 * space required for critical operations can dip into this pool
954 	 * when at ENOSPC. This is needed for operations like create with
955 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
956 	 * are not allowed to use this reserved space.
957 	 *
958 	 * This may drive us straight to ENOSPC on mount, but that implies
959 	 * we were already there on the last unmount. Warn if this occurs.
960 	 */
961 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
962 		resblks = xfs_default_resblks(mp);
963 		error = xfs_reserve_blocks(mp, &resblks, NULL);
964 		if (error)
965 			xfs_warn(mp,
966 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
967 	}
968 
969 	return 0;
970 
971  out_rtunmount:
972 	xfs_rtunmount_inodes(mp);
973  out_rele_rip:
974 	IRELE(rip);
975  out_log_dealloc:
976 	xfs_log_unmount(mp);
977  out_fail_wait:
978 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
979 		xfs_wait_buftarg(mp->m_logdev_targp);
980 	xfs_wait_buftarg(mp->m_ddev_targp);
981  out_free_perag:
982 	xfs_free_perag(mp);
983  out_free_dir:
984 	xfs_da_unmount(mp);
985  out_remove_uuid:
986 	xfs_uuid_unmount(mp);
987  out_remove_sysfs:
988 	xfs_sysfs_del(&mp->m_kobj);
989  out:
990 	return error;
991 }
992 
993 /*
994  * This flushes out the inodes,dquots and the superblock, unmounts the
995  * log and makes sure that incore structures are freed.
996  */
997 void
998 xfs_unmountfs(
999 	struct xfs_mount	*mp)
1000 {
1001 	__uint64_t		resblks;
1002 	int			error;
1003 
1004 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1005 
1006 	xfs_qm_unmount_quotas(mp);
1007 	xfs_rtunmount_inodes(mp);
1008 	IRELE(mp->m_rootip);
1009 
1010 	/*
1011 	 * We can potentially deadlock here if we have an inode cluster
1012 	 * that has been freed has its buffer still pinned in memory because
1013 	 * the transaction is still sitting in a iclog. The stale inodes
1014 	 * on that buffer will have their flush locks held until the
1015 	 * transaction hits the disk and the callbacks run. the inode
1016 	 * flush takes the flush lock unconditionally and with nothing to
1017 	 * push out the iclog we will never get that unlocked. hence we
1018 	 * need to force the log first.
1019 	 */
1020 	xfs_log_force(mp, XFS_LOG_SYNC);
1021 
1022 	/*
1023 	 * Flush all pending changes from the AIL.
1024 	 */
1025 	xfs_ail_push_all_sync(mp->m_ail);
1026 
1027 	/*
1028 	 * And reclaim all inodes.  At this point there should be no dirty
1029 	 * inodes and none should be pinned or locked, but use synchronous
1030 	 * reclaim just to be sure. We can stop background inode reclaim
1031 	 * here as well if it is still running.
1032 	 */
1033 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1034 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1035 
1036 	xfs_qm_unmount(mp);
1037 
1038 	/*
1039 	 * Unreserve any blocks we have so that when we unmount we don't account
1040 	 * the reserved free space as used. This is really only necessary for
1041 	 * lazy superblock counting because it trusts the incore superblock
1042 	 * counters to be absolutely correct on clean unmount.
1043 	 *
1044 	 * We don't bother correcting this elsewhere for lazy superblock
1045 	 * counting because on mount of an unclean filesystem we reconstruct the
1046 	 * correct counter value and this is irrelevant.
1047 	 *
1048 	 * For non-lazy counter filesystems, this doesn't matter at all because
1049 	 * we only every apply deltas to the superblock and hence the incore
1050 	 * value does not matter....
1051 	 */
1052 	resblks = 0;
1053 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1054 	if (error)
1055 		xfs_warn(mp, "Unable to free reserved block pool. "
1056 				"Freespace may not be correct on next mount.");
1057 
1058 	error = xfs_log_sbcount(mp);
1059 	if (error)
1060 		xfs_warn(mp, "Unable to update superblock counters. "
1061 				"Freespace may not be correct on next mount.");
1062 
1063 	xfs_log_unmount(mp);
1064 	xfs_da_unmount(mp);
1065 	xfs_uuid_unmount(mp);
1066 
1067 #if defined(DEBUG)
1068 	xfs_errortag_clearall(mp, 0);
1069 #endif
1070 	xfs_free_perag(mp);
1071 
1072 	xfs_sysfs_del(&mp->m_kobj);
1073 }
1074 
1075 /*
1076  * Determine whether modifications can proceed. The caller specifies the minimum
1077  * freeze level for which modifications should not be allowed. This allows
1078  * certain operations to proceed while the freeze sequence is in progress, if
1079  * necessary.
1080  */
1081 bool
1082 xfs_fs_writable(
1083 	struct xfs_mount	*mp,
1084 	int			level)
1085 {
1086 	ASSERT(level > SB_UNFROZEN);
1087 	if ((mp->m_super->s_writers.frozen >= level) ||
1088 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1089 		return false;
1090 
1091 	return true;
1092 }
1093 
1094 /*
1095  * xfs_log_sbcount
1096  *
1097  * Sync the superblock counters to disk.
1098  *
1099  * Note this code can be called during the process of freezing, so we use the
1100  * transaction allocator that does not block when the transaction subsystem is
1101  * in its frozen state.
1102  */
1103 int
1104 xfs_log_sbcount(xfs_mount_t *mp)
1105 {
1106 	xfs_trans_t	*tp;
1107 	int		error;
1108 
1109 	/* allow this to proceed during the freeze sequence... */
1110 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1111 		return 0;
1112 
1113 	xfs_icsb_sync_counters(mp, 0);
1114 
1115 	/*
1116 	 * we don't need to do this if we are updating the superblock
1117 	 * counters on every modification.
1118 	 */
1119 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1120 		return 0;
1121 
1122 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1123 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1124 	if (error) {
1125 		xfs_trans_cancel(tp, 0);
1126 		return error;
1127 	}
1128 
1129 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1130 	xfs_trans_set_sync(tp);
1131 	error = xfs_trans_commit(tp, 0);
1132 	return error;
1133 }
1134 
1135 /*
1136  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1137  * a delta to a specified field in the in-core superblock.  Simply
1138  * switch on the field indicated and apply the delta to that field.
1139  * Fields are not allowed to dip below zero, so if the delta would
1140  * do this do not apply it and return EINVAL.
1141  *
1142  * The m_sb_lock must be held when this routine is called.
1143  */
1144 STATIC int
1145 xfs_mod_incore_sb_unlocked(
1146 	xfs_mount_t	*mp,
1147 	xfs_sb_field_t	field,
1148 	int64_t		delta,
1149 	int		rsvd)
1150 {
1151 	int		scounter;	/* short counter for 32 bit fields */
1152 	long long	lcounter;	/* long counter for 64 bit fields */
1153 	long long	res_used, rem;
1154 
1155 	/*
1156 	 * With the in-core superblock spin lock held, switch
1157 	 * on the indicated field.  Apply the delta to the
1158 	 * proper field.  If the fields value would dip below
1159 	 * 0, then do not apply the delta and return EINVAL.
1160 	 */
1161 	switch (field) {
1162 	case XFS_SBS_ICOUNT:
1163 		lcounter = (long long)mp->m_sb.sb_icount;
1164 		lcounter += delta;
1165 		if (lcounter < 0) {
1166 			ASSERT(0);
1167 			return -EINVAL;
1168 		}
1169 		mp->m_sb.sb_icount = lcounter;
1170 		return 0;
1171 	case XFS_SBS_IFREE:
1172 		lcounter = (long long)mp->m_sb.sb_ifree;
1173 		lcounter += delta;
1174 		if (lcounter < 0) {
1175 			ASSERT(0);
1176 			return -EINVAL;
1177 		}
1178 		mp->m_sb.sb_ifree = lcounter;
1179 		return 0;
1180 	case XFS_SBS_FDBLOCKS:
1181 		lcounter = (long long)
1182 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1183 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1184 
1185 		if (delta > 0) {		/* Putting blocks back */
1186 			if (res_used > delta) {
1187 				mp->m_resblks_avail += delta;
1188 			} else {
1189 				rem = delta - res_used;
1190 				mp->m_resblks_avail = mp->m_resblks;
1191 				lcounter += rem;
1192 			}
1193 		} else {				/* Taking blocks away */
1194 			lcounter += delta;
1195 			if (lcounter >= 0) {
1196 				mp->m_sb.sb_fdblocks = lcounter +
1197 							XFS_ALLOC_SET_ASIDE(mp);
1198 				return 0;
1199 			}
1200 
1201 			/*
1202 			 * We are out of blocks, use any available reserved
1203 			 * blocks if were allowed to.
1204 			 */
1205 			if (!rsvd)
1206 				return -ENOSPC;
1207 
1208 			lcounter = (long long)mp->m_resblks_avail + delta;
1209 			if (lcounter >= 0) {
1210 				mp->m_resblks_avail = lcounter;
1211 				return 0;
1212 			}
1213 			printk_once(KERN_WARNING
1214 				"Filesystem \"%s\": reserve blocks depleted! "
1215 				"Consider increasing reserve pool size.",
1216 				mp->m_fsname);
1217 			return -ENOSPC;
1218 		}
1219 
1220 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1221 		return 0;
1222 	case XFS_SBS_FREXTENTS:
1223 		lcounter = (long long)mp->m_sb.sb_frextents;
1224 		lcounter += delta;
1225 		if (lcounter < 0) {
1226 			return -ENOSPC;
1227 		}
1228 		mp->m_sb.sb_frextents = lcounter;
1229 		return 0;
1230 	case XFS_SBS_DBLOCKS:
1231 		lcounter = (long long)mp->m_sb.sb_dblocks;
1232 		lcounter += delta;
1233 		if (lcounter < 0) {
1234 			ASSERT(0);
1235 			return -EINVAL;
1236 		}
1237 		mp->m_sb.sb_dblocks = lcounter;
1238 		return 0;
1239 	case XFS_SBS_AGCOUNT:
1240 		scounter = mp->m_sb.sb_agcount;
1241 		scounter += delta;
1242 		if (scounter < 0) {
1243 			ASSERT(0);
1244 			return -EINVAL;
1245 		}
1246 		mp->m_sb.sb_agcount = scounter;
1247 		return 0;
1248 	case XFS_SBS_IMAX_PCT:
1249 		scounter = mp->m_sb.sb_imax_pct;
1250 		scounter += delta;
1251 		if (scounter < 0) {
1252 			ASSERT(0);
1253 			return -EINVAL;
1254 		}
1255 		mp->m_sb.sb_imax_pct = scounter;
1256 		return 0;
1257 	case XFS_SBS_REXTSIZE:
1258 		scounter = mp->m_sb.sb_rextsize;
1259 		scounter += delta;
1260 		if (scounter < 0) {
1261 			ASSERT(0);
1262 			return -EINVAL;
1263 		}
1264 		mp->m_sb.sb_rextsize = scounter;
1265 		return 0;
1266 	case XFS_SBS_RBMBLOCKS:
1267 		scounter = mp->m_sb.sb_rbmblocks;
1268 		scounter += delta;
1269 		if (scounter < 0) {
1270 			ASSERT(0);
1271 			return -EINVAL;
1272 		}
1273 		mp->m_sb.sb_rbmblocks = scounter;
1274 		return 0;
1275 	case XFS_SBS_RBLOCKS:
1276 		lcounter = (long long)mp->m_sb.sb_rblocks;
1277 		lcounter += delta;
1278 		if (lcounter < 0) {
1279 			ASSERT(0);
1280 			return -EINVAL;
1281 		}
1282 		mp->m_sb.sb_rblocks = lcounter;
1283 		return 0;
1284 	case XFS_SBS_REXTENTS:
1285 		lcounter = (long long)mp->m_sb.sb_rextents;
1286 		lcounter += delta;
1287 		if (lcounter < 0) {
1288 			ASSERT(0);
1289 			return -EINVAL;
1290 		}
1291 		mp->m_sb.sb_rextents = lcounter;
1292 		return 0;
1293 	case XFS_SBS_REXTSLOG:
1294 		scounter = mp->m_sb.sb_rextslog;
1295 		scounter += delta;
1296 		if (scounter < 0) {
1297 			ASSERT(0);
1298 			return -EINVAL;
1299 		}
1300 		mp->m_sb.sb_rextslog = scounter;
1301 		return 0;
1302 	default:
1303 		ASSERT(0);
1304 		return -EINVAL;
1305 	}
1306 }
1307 
1308 /*
1309  * xfs_mod_incore_sb() is used to change a field in the in-core
1310  * superblock structure by the specified delta.  This modification
1311  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1312  * routine to do the work.
1313  */
1314 int
1315 xfs_mod_incore_sb(
1316 	struct xfs_mount	*mp,
1317 	xfs_sb_field_t		field,
1318 	int64_t			delta,
1319 	int			rsvd)
1320 {
1321 	int			status;
1322 
1323 #ifdef HAVE_PERCPU_SB
1324 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1325 #endif
1326 	spin_lock(&mp->m_sb_lock);
1327 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1328 	spin_unlock(&mp->m_sb_lock);
1329 
1330 	return status;
1331 }
1332 
1333 /*
1334  * Change more than one field in the in-core superblock structure at a time.
1335  *
1336  * The fields and changes to those fields are specified in the array of
1337  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1338  * will be applied or none of them will.  If any modified field dips below 0,
1339  * then all modifications will be backed out and EINVAL will be returned.
1340  *
1341  * Note that this function may not be used for the superblock values that
1342  * are tracked with the in-memory per-cpu counters - a direct call to
1343  * xfs_icsb_modify_counters is required for these.
1344  */
1345 int
1346 xfs_mod_incore_sb_batch(
1347 	struct xfs_mount	*mp,
1348 	xfs_mod_sb_t		*msb,
1349 	uint			nmsb,
1350 	int			rsvd)
1351 {
1352 	xfs_mod_sb_t		*msbp;
1353 	int			error = 0;
1354 
1355 	/*
1356 	 * Loop through the array of mod structures and apply each individually.
1357 	 * If any fail, then back out all those which have already been applied.
1358 	 * Do all of this within the scope of the m_sb_lock so that all of the
1359 	 * changes will be atomic.
1360 	 */
1361 	spin_lock(&mp->m_sb_lock);
1362 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1363 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1364 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1365 
1366 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1367 						   msbp->msb_delta, rsvd);
1368 		if (error)
1369 			goto unwind;
1370 	}
1371 	spin_unlock(&mp->m_sb_lock);
1372 	return 0;
1373 
1374 unwind:
1375 	while (--msbp >= msb) {
1376 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1377 						   -msbp->msb_delta, rsvd);
1378 		ASSERT(error == 0);
1379 	}
1380 	spin_unlock(&mp->m_sb_lock);
1381 	return error;
1382 }
1383 
1384 /*
1385  * xfs_getsb() is called to obtain the buffer for the superblock.
1386  * The buffer is returned locked and read in from disk.
1387  * The buffer should be released with a call to xfs_brelse().
1388  *
1389  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1390  * the superblock buffer if it can be locked without sleeping.
1391  * If it can't then we'll return NULL.
1392  */
1393 struct xfs_buf *
1394 xfs_getsb(
1395 	struct xfs_mount	*mp,
1396 	int			flags)
1397 {
1398 	struct xfs_buf		*bp = mp->m_sb_bp;
1399 
1400 	if (!xfs_buf_trylock(bp)) {
1401 		if (flags & XBF_TRYLOCK)
1402 			return NULL;
1403 		xfs_buf_lock(bp);
1404 	}
1405 
1406 	xfs_buf_hold(bp);
1407 	ASSERT(XFS_BUF_ISDONE(bp));
1408 	return bp;
1409 }
1410 
1411 /*
1412  * Used to free the superblock along various error paths.
1413  */
1414 void
1415 xfs_freesb(
1416 	struct xfs_mount	*mp)
1417 {
1418 	struct xfs_buf		*bp = mp->m_sb_bp;
1419 
1420 	xfs_buf_lock(bp);
1421 	mp->m_sb_bp = NULL;
1422 	xfs_buf_relse(bp);
1423 }
1424 
1425 /*
1426  * Used to log changes to the superblock unit and width fields which could
1427  * be altered by the mount options, as well as any potential sb_features2
1428  * fixup. Only the first superblock is updated.
1429  */
1430 int
1431 xfs_mount_log_sb(
1432 	xfs_mount_t	*mp,
1433 	__int64_t	fields)
1434 {
1435 	xfs_trans_t	*tp;
1436 	int		error;
1437 
1438 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1439 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1440 			 XFS_SB_VERSIONNUM));
1441 
1442 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1443 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1444 	if (error) {
1445 		xfs_trans_cancel(tp, 0);
1446 		return error;
1447 	}
1448 	xfs_mod_sb(tp, fields);
1449 	error = xfs_trans_commit(tp, 0);
1450 	return error;
1451 }
1452 
1453 /*
1454  * If the underlying (data/log/rt) device is readonly, there are some
1455  * operations that cannot proceed.
1456  */
1457 int
1458 xfs_dev_is_read_only(
1459 	struct xfs_mount	*mp,
1460 	char			*message)
1461 {
1462 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1463 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1464 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1465 		xfs_notice(mp, "%s required on read-only device.", message);
1466 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1467 		return -EROFS;
1468 	}
1469 	return 0;
1470 }
1471 
1472 #ifdef HAVE_PERCPU_SB
1473 /*
1474  * Per-cpu incore superblock counters
1475  *
1476  * Simple concept, difficult implementation
1477  *
1478  * Basically, replace the incore superblock counters with a distributed per cpu
1479  * counter for contended fields (e.g.  free block count).
1480  *
1481  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1482  * hence needs to be accurately read when we are running low on space. Hence
1483  * there is a method to enable and disable the per-cpu counters based on how
1484  * much "stuff" is available in them.
1485  *
1486  * Basically, a counter is enabled if there is enough free resource to justify
1487  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1488  * ENOSPC), then we disable the counters to synchronise all callers and
1489  * re-distribute the available resources.
1490  *
1491  * If, once we redistributed the available resources, we still get a failure,
1492  * we disable the per-cpu counter and go through the slow path.
1493  *
1494  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1495  * when we disable a per-cpu counter, we need to drain its resources back to
1496  * the global superblock. We do this after disabling the counter to prevent
1497  * more threads from queueing up on the counter.
1498  *
1499  * Essentially, this means that we still need a lock in the fast path to enable
1500  * synchronisation between the global counters and the per-cpu counters. This
1501  * is not a problem because the lock will be local to a CPU almost all the time
1502  * and have little contention except when we get to ENOSPC conditions.
1503  *
1504  * Basically, this lock becomes a barrier that enables us to lock out the fast
1505  * path while we do things like enabling and disabling counters and
1506  * synchronising the counters.
1507  *
1508  * Locking rules:
1509  *
1510  * 	1. m_sb_lock before picking up per-cpu locks
1511  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1512  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1513  * 	4. modifying per-cpu counters requires holding per-cpu lock
1514  * 	5. modifying global counters requires holding m_sb_lock
1515  *	6. enabling or disabling a counter requires holding the m_sb_lock
1516  *	   and _none_ of the per-cpu locks.
1517  *
1518  * Disabled counters are only ever re-enabled by a balance operation
1519  * that results in more free resources per CPU than a given threshold.
1520  * To ensure counters don't remain disabled, they are rebalanced when
1521  * the global resource goes above a higher threshold (i.e. some hysteresis
1522  * is present to prevent thrashing).
1523  */
1524 
1525 #ifdef CONFIG_HOTPLUG_CPU
1526 /*
1527  * hot-plug CPU notifier support.
1528  *
1529  * We need a notifier per filesystem as we need to be able to identify
1530  * the filesystem to balance the counters out. This is achieved by
1531  * having a notifier block embedded in the xfs_mount_t and doing pointer
1532  * magic to get the mount pointer from the notifier block address.
1533  */
1534 STATIC int
1535 xfs_icsb_cpu_notify(
1536 	struct notifier_block *nfb,
1537 	unsigned long action,
1538 	void *hcpu)
1539 {
1540 	xfs_icsb_cnts_t *cntp;
1541 	xfs_mount_t	*mp;
1542 
1543 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1544 	cntp = (xfs_icsb_cnts_t *)
1545 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1546 	switch (action) {
1547 	case CPU_UP_PREPARE:
1548 	case CPU_UP_PREPARE_FROZEN:
1549 		/* Easy Case - initialize the area and locks, and
1550 		 * then rebalance when online does everything else for us. */
1551 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1552 		break;
1553 	case CPU_ONLINE:
1554 	case CPU_ONLINE_FROZEN:
1555 		xfs_icsb_lock(mp);
1556 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1557 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1558 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1559 		xfs_icsb_unlock(mp);
1560 		break;
1561 	case CPU_DEAD:
1562 	case CPU_DEAD_FROZEN:
1563 		/* Disable all the counters, then fold the dead cpu's
1564 		 * count into the total on the global superblock and
1565 		 * re-enable the counters. */
1566 		xfs_icsb_lock(mp);
1567 		spin_lock(&mp->m_sb_lock);
1568 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1569 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1570 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1571 
1572 		mp->m_sb.sb_icount += cntp->icsb_icount;
1573 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1574 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1575 
1576 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1577 
1578 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1579 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1580 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1581 		spin_unlock(&mp->m_sb_lock);
1582 		xfs_icsb_unlock(mp);
1583 		break;
1584 	}
1585 
1586 	return NOTIFY_OK;
1587 }
1588 #endif /* CONFIG_HOTPLUG_CPU */
1589 
1590 int
1591 xfs_icsb_init_counters(
1592 	xfs_mount_t	*mp)
1593 {
1594 	xfs_icsb_cnts_t *cntp;
1595 	int		i;
1596 
1597 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1598 	if (mp->m_sb_cnts == NULL)
1599 		return -ENOMEM;
1600 
1601 	for_each_online_cpu(i) {
1602 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1603 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1604 	}
1605 
1606 	mutex_init(&mp->m_icsb_mutex);
1607 
1608 	/*
1609 	 * start with all counters disabled so that the
1610 	 * initial balance kicks us off correctly
1611 	 */
1612 	mp->m_icsb_counters = -1;
1613 
1614 #ifdef CONFIG_HOTPLUG_CPU
1615 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1616 	mp->m_icsb_notifier.priority = 0;
1617 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1618 #endif /* CONFIG_HOTPLUG_CPU */
1619 
1620 	return 0;
1621 }
1622 
1623 void
1624 xfs_icsb_reinit_counters(
1625 	xfs_mount_t	*mp)
1626 {
1627 	xfs_icsb_lock(mp);
1628 	/*
1629 	 * start with all counters disabled so that the
1630 	 * initial balance kicks us off correctly
1631 	 */
1632 	mp->m_icsb_counters = -1;
1633 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1634 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1635 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1636 	xfs_icsb_unlock(mp);
1637 }
1638 
1639 void
1640 xfs_icsb_destroy_counters(
1641 	xfs_mount_t	*mp)
1642 {
1643 	if (mp->m_sb_cnts) {
1644 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1645 		free_percpu(mp->m_sb_cnts);
1646 	}
1647 	mutex_destroy(&mp->m_icsb_mutex);
1648 }
1649 
1650 STATIC void
1651 xfs_icsb_lock_cntr(
1652 	xfs_icsb_cnts_t	*icsbp)
1653 {
1654 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1655 		ndelay(1000);
1656 	}
1657 }
1658 
1659 STATIC void
1660 xfs_icsb_unlock_cntr(
1661 	xfs_icsb_cnts_t	*icsbp)
1662 {
1663 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1664 }
1665 
1666 
1667 STATIC void
1668 xfs_icsb_lock_all_counters(
1669 	xfs_mount_t	*mp)
1670 {
1671 	xfs_icsb_cnts_t *cntp;
1672 	int		i;
1673 
1674 	for_each_online_cpu(i) {
1675 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1676 		xfs_icsb_lock_cntr(cntp);
1677 	}
1678 }
1679 
1680 STATIC void
1681 xfs_icsb_unlock_all_counters(
1682 	xfs_mount_t	*mp)
1683 {
1684 	xfs_icsb_cnts_t *cntp;
1685 	int		i;
1686 
1687 	for_each_online_cpu(i) {
1688 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1689 		xfs_icsb_unlock_cntr(cntp);
1690 	}
1691 }
1692 
1693 STATIC void
1694 xfs_icsb_count(
1695 	xfs_mount_t	*mp,
1696 	xfs_icsb_cnts_t	*cnt,
1697 	int		flags)
1698 {
1699 	xfs_icsb_cnts_t *cntp;
1700 	int		i;
1701 
1702 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1703 
1704 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1705 		xfs_icsb_lock_all_counters(mp);
1706 
1707 	for_each_online_cpu(i) {
1708 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1709 		cnt->icsb_icount += cntp->icsb_icount;
1710 		cnt->icsb_ifree += cntp->icsb_ifree;
1711 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1712 	}
1713 
1714 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1715 		xfs_icsb_unlock_all_counters(mp);
1716 }
1717 
1718 STATIC int
1719 xfs_icsb_counter_disabled(
1720 	xfs_mount_t	*mp,
1721 	xfs_sb_field_t	field)
1722 {
1723 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1724 	return test_bit(field, &mp->m_icsb_counters);
1725 }
1726 
1727 STATIC void
1728 xfs_icsb_disable_counter(
1729 	xfs_mount_t	*mp,
1730 	xfs_sb_field_t	field)
1731 {
1732 	xfs_icsb_cnts_t	cnt;
1733 
1734 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1735 
1736 	/*
1737 	 * If we are already disabled, then there is nothing to do
1738 	 * here. We check before locking all the counters to avoid
1739 	 * the expensive lock operation when being called in the
1740 	 * slow path and the counter is already disabled. This is
1741 	 * safe because the only time we set or clear this state is under
1742 	 * the m_icsb_mutex.
1743 	 */
1744 	if (xfs_icsb_counter_disabled(mp, field))
1745 		return;
1746 
1747 	xfs_icsb_lock_all_counters(mp);
1748 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1749 		/* drain back to superblock */
1750 
1751 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1752 		switch(field) {
1753 		case XFS_SBS_ICOUNT:
1754 			mp->m_sb.sb_icount = cnt.icsb_icount;
1755 			break;
1756 		case XFS_SBS_IFREE:
1757 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1758 			break;
1759 		case XFS_SBS_FDBLOCKS:
1760 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1761 			break;
1762 		default:
1763 			BUG();
1764 		}
1765 	}
1766 
1767 	xfs_icsb_unlock_all_counters(mp);
1768 }
1769 
1770 STATIC void
1771 xfs_icsb_enable_counter(
1772 	xfs_mount_t	*mp,
1773 	xfs_sb_field_t	field,
1774 	uint64_t	count,
1775 	uint64_t	resid)
1776 {
1777 	xfs_icsb_cnts_t	*cntp;
1778 	int		i;
1779 
1780 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1781 
1782 	xfs_icsb_lock_all_counters(mp);
1783 	for_each_online_cpu(i) {
1784 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1785 		switch (field) {
1786 		case XFS_SBS_ICOUNT:
1787 			cntp->icsb_icount = count + resid;
1788 			break;
1789 		case XFS_SBS_IFREE:
1790 			cntp->icsb_ifree = count + resid;
1791 			break;
1792 		case XFS_SBS_FDBLOCKS:
1793 			cntp->icsb_fdblocks = count + resid;
1794 			break;
1795 		default:
1796 			BUG();
1797 			break;
1798 		}
1799 		resid = 0;
1800 	}
1801 	clear_bit(field, &mp->m_icsb_counters);
1802 	xfs_icsb_unlock_all_counters(mp);
1803 }
1804 
1805 void
1806 xfs_icsb_sync_counters_locked(
1807 	xfs_mount_t	*mp,
1808 	int		flags)
1809 {
1810 	xfs_icsb_cnts_t	cnt;
1811 
1812 	xfs_icsb_count(mp, &cnt, flags);
1813 
1814 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1815 		mp->m_sb.sb_icount = cnt.icsb_icount;
1816 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1817 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1818 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1819 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1820 }
1821 
1822 /*
1823  * Accurate update of per-cpu counters to incore superblock
1824  */
1825 void
1826 xfs_icsb_sync_counters(
1827 	xfs_mount_t	*mp,
1828 	int		flags)
1829 {
1830 	spin_lock(&mp->m_sb_lock);
1831 	xfs_icsb_sync_counters_locked(mp, flags);
1832 	spin_unlock(&mp->m_sb_lock);
1833 }
1834 
1835 /*
1836  * Balance and enable/disable counters as necessary.
1837  *
1838  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1839  * chosen to be the same number as single on disk allocation chunk per CPU, and
1840  * free blocks is something far enough zero that we aren't going thrash when we
1841  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1842  * prevent looping endlessly when xfs_alloc_space asks for more than will
1843  * be distributed to a single CPU but each CPU has enough blocks to be
1844  * reenabled.
1845  *
1846  * Note that we can be called when counters are already disabled.
1847  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1848  * prevent locking every per-cpu counter needlessly.
1849  */
1850 
1851 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1852 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1853 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1854 STATIC void
1855 xfs_icsb_balance_counter_locked(
1856 	xfs_mount_t	*mp,
1857 	xfs_sb_field_t  field,
1858 	int		min_per_cpu)
1859 {
1860 	uint64_t	count, resid;
1861 	int		weight = num_online_cpus();
1862 	uint64_t	min = (uint64_t)min_per_cpu;
1863 
1864 	/* disable counter and sync counter */
1865 	xfs_icsb_disable_counter(mp, field);
1866 
1867 	/* update counters  - first CPU gets residual*/
1868 	switch (field) {
1869 	case XFS_SBS_ICOUNT:
1870 		count = mp->m_sb.sb_icount;
1871 		resid = do_div(count, weight);
1872 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1873 			return;
1874 		break;
1875 	case XFS_SBS_IFREE:
1876 		count = mp->m_sb.sb_ifree;
1877 		resid = do_div(count, weight);
1878 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1879 			return;
1880 		break;
1881 	case XFS_SBS_FDBLOCKS:
1882 		count = mp->m_sb.sb_fdblocks;
1883 		resid = do_div(count, weight);
1884 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1885 			return;
1886 		break;
1887 	default:
1888 		BUG();
1889 		count = resid = 0;	/* quiet, gcc */
1890 		break;
1891 	}
1892 
1893 	xfs_icsb_enable_counter(mp, field, count, resid);
1894 }
1895 
1896 STATIC void
1897 xfs_icsb_balance_counter(
1898 	xfs_mount_t	*mp,
1899 	xfs_sb_field_t  fields,
1900 	int		min_per_cpu)
1901 {
1902 	spin_lock(&mp->m_sb_lock);
1903 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1904 	spin_unlock(&mp->m_sb_lock);
1905 }
1906 
1907 int
1908 xfs_icsb_modify_counters(
1909 	xfs_mount_t	*mp,
1910 	xfs_sb_field_t	field,
1911 	int64_t		delta,
1912 	int		rsvd)
1913 {
1914 	xfs_icsb_cnts_t	*icsbp;
1915 	long long	lcounter;	/* long counter for 64 bit fields */
1916 	int		ret = 0;
1917 
1918 	might_sleep();
1919 again:
1920 	preempt_disable();
1921 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1922 
1923 	/*
1924 	 * if the counter is disabled, go to slow path
1925 	 */
1926 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1927 		goto slow_path;
1928 	xfs_icsb_lock_cntr(icsbp);
1929 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1930 		xfs_icsb_unlock_cntr(icsbp);
1931 		goto slow_path;
1932 	}
1933 
1934 	switch (field) {
1935 	case XFS_SBS_ICOUNT:
1936 		lcounter = icsbp->icsb_icount;
1937 		lcounter += delta;
1938 		if (unlikely(lcounter < 0))
1939 			goto balance_counter;
1940 		icsbp->icsb_icount = lcounter;
1941 		break;
1942 
1943 	case XFS_SBS_IFREE:
1944 		lcounter = icsbp->icsb_ifree;
1945 		lcounter += delta;
1946 		if (unlikely(lcounter < 0))
1947 			goto balance_counter;
1948 		icsbp->icsb_ifree = lcounter;
1949 		break;
1950 
1951 	case XFS_SBS_FDBLOCKS:
1952 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1953 
1954 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1955 		lcounter += delta;
1956 		if (unlikely(lcounter < 0))
1957 			goto balance_counter;
1958 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1959 		break;
1960 	default:
1961 		BUG();
1962 		break;
1963 	}
1964 	xfs_icsb_unlock_cntr(icsbp);
1965 	preempt_enable();
1966 	return 0;
1967 
1968 slow_path:
1969 	preempt_enable();
1970 
1971 	/*
1972 	 * serialise with a mutex so we don't burn lots of cpu on
1973 	 * the superblock lock. We still need to hold the superblock
1974 	 * lock, however, when we modify the global structures.
1975 	 */
1976 	xfs_icsb_lock(mp);
1977 
1978 	/*
1979 	 * Now running atomically.
1980 	 *
1981 	 * If the counter is enabled, someone has beaten us to rebalancing.
1982 	 * Drop the lock and try again in the fast path....
1983 	 */
1984 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1985 		xfs_icsb_unlock(mp);
1986 		goto again;
1987 	}
1988 
1989 	/*
1990 	 * The counter is currently disabled. Because we are
1991 	 * running atomically here, we know a rebalance cannot
1992 	 * be in progress. Hence we can go straight to operating
1993 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1994 	 * here even though we need to get the m_sb_lock. Doing so
1995 	 * will cause us to re-enter this function and deadlock.
1996 	 * Hence we get the m_sb_lock ourselves and then call
1997 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1998 	 * directly on the global counters.
1999 	 */
2000 	spin_lock(&mp->m_sb_lock);
2001 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2002 	spin_unlock(&mp->m_sb_lock);
2003 
2004 	/*
2005 	 * Now that we've modified the global superblock, we
2006 	 * may be able to re-enable the distributed counters
2007 	 * (e.g. lots of space just got freed). After that
2008 	 * we are done.
2009 	 */
2010 	if (ret != -ENOSPC)
2011 		xfs_icsb_balance_counter(mp, field, 0);
2012 	xfs_icsb_unlock(mp);
2013 	return ret;
2014 
2015 balance_counter:
2016 	xfs_icsb_unlock_cntr(icsbp);
2017 	preempt_enable();
2018 
2019 	/*
2020 	 * We may have multiple threads here if multiple per-cpu
2021 	 * counters run dry at the same time. This will mean we can
2022 	 * do more balances than strictly necessary but it is not
2023 	 * the common slowpath case.
2024 	 */
2025 	xfs_icsb_lock(mp);
2026 
2027 	/*
2028 	 * running atomically.
2029 	 *
2030 	 * This will leave the counter in the correct state for future
2031 	 * accesses. After the rebalance, we simply try again and our retry
2032 	 * will either succeed through the fast path or slow path without
2033 	 * another balance operation being required.
2034 	 */
2035 	xfs_icsb_balance_counter(mp, field, delta);
2036 	xfs_icsb_unlock(mp);
2037 	goto again;
2038 }
2039 
2040 #endif
2041