xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 81d67439)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_mount.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_btree.h"
35 #include "xfs_ialloc.h"
36 #include "xfs_alloc.h"
37 #include "xfs_rtalloc.h"
38 #include "xfs_bmap.h"
39 #include "xfs_error.h"
40 #include "xfs_rw.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 
46 
47 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
48 
49 
50 #ifdef HAVE_PERCPU_SB
51 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
52 						int);
53 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 						int);
55 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
56 #else
57 
58 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
59 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
60 #endif
61 
62 static const struct {
63 	short offset;
64 	short type;	/* 0 = integer
65 			 * 1 = binary / string (no translation)
66 			 */
67 } xfs_sb_info[] = {
68     { offsetof(xfs_sb_t, sb_magicnum),   0 },
69     { offsetof(xfs_sb_t, sb_blocksize),  0 },
70     { offsetof(xfs_sb_t, sb_dblocks),    0 },
71     { offsetof(xfs_sb_t, sb_rblocks),    0 },
72     { offsetof(xfs_sb_t, sb_rextents),   0 },
73     { offsetof(xfs_sb_t, sb_uuid),       1 },
74     { offsetof(xfs_sb_t, sb_logstart),   0 },
75     { offsetof(xfs_sb_t, sb_rootino),    0 },
76     { offsetof(xfs_sb_t, sb_rbmino),     0 },
77     { offsetof(xfs_sb_t, sb_rsumino),    0 },
78     { offsetof(xfs_sb_t, sb_rextsize),   0 },
79     { offsetof(xfs_sb_t, sb_agblocks),   0 },
80     { offsetof(xfs_sb_t, sb_agcount),    0 },
81     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
82     { offsetof(xfs_sb_t, sb_logblocks),  0 },
83     { offsetof(xfs_sb_t, sb_versionnum), 0 },
84     { offsetof(xfs_sb_t, sb_sectsize),   0 },
85     { offsetof(xfs_sb_t, sb_inodesize),  0 },
86     { offsetof(xfs_sb_t, sb_inopblock),  0 },
87     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
88     { offsetof(xfs_sb_t, sb_blocklog),   0 },
89     { offsetof(xfs_sb_t, sb_sectlog),    0 },
90     { offsetof(xfs_sb_t, sb_inodelog),   0 },
91     { offsetof(xfs_sb_t, sb_inopblog),   0 },
92     { offsetof(xfs_sb_t, sb_agblklog),   0 },
93     { offsetof(xfs_sb_t, sb_rextslog),   0 },
94     { offsetof(xfs_sb_t, sb_inprogress), 0 },
95     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
96     { offsetof(xfs_sb_t, sb_icount),     0 },
97     { offsetof(xfs_sb_t, sb_ifree),      0 },
98     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
99     { offsetof(xfs_sb_t, sb_frextents),  0 },
100     { offsetof(xfs_sb_t, sb_uquotino),   0 },
101     { offsetof(xfs_sb_t, sb_gquotino),   0 },
102     { offsetof(xfs_sb_t, sb_qflags),     0 },
103     { offsetof(xfs_sb_t, sb_flags),      0 },
104     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
105     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106     { offsetof(xfs_sb_t, sb_unit),	 0 },
107     { offsetof(xfs_sb_t, sb_width),	 0 },
108     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
109     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110     { offsetof(xfs_sb_t, sb_logsectsize),0 },
111     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
112     { offsetof(xfs_sb_t, sb_features2),	 0 },
113     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
114     { sizeof(xfs_sb_t),			 0 }
115 };
116 
117 static DEFINE_MUTEX(xfs_uuid_table_mutex);
118 static int xfs_uuid_table_size;
119 static uuid_t *xfs_uuid_table;
120 
121 /*
122  * See if the UUID is unique among mounted XFS filesystems.
123  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
124  */
125 STATIC int
126 xfs_uuid_mount(
127 	struct xfs_mount	*mp)
128 {
129 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
130 	int			hole, i;
131 
132 	if (mp->m_flags & XFS_MOUNT_NOUUID)
133 		return 0;
134 
135 	if (uuid_is_nil(uuid)) {
136 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
137 		return XFS_ERROR(EINVAL);
138 	}
139 
140 	mutex_lock(&xfs_uuid_table_mutex);
141 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
142 		if (uuid_is_nil(&xfs_uuid_table[i])) {
143 			hole = i;
144 			continue;
145 		}
146 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
147 			goto out_duplicate;
148 	}
149 
150 	if (hole < 0) {
151 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
152 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
153 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
154 			KM_SLEEP);
155 		hole = xfs_uuid_table_size++;
156 	}
157 	xfs_uuid_table[hole] = *uuid;
158 	mutex_unlock(&xfs_uuid_table_mutex);
159 
160 	return 0;
161 
162  out_duplicate:
163 	mutex_unlock(&xfs_uuid_table_mutex);
164 	xfs_warn(mp, "Filesystem has duplicate UUID - can't mount");
165 	return XFS_ERROR(EINVAL);
166 }
167 
168 STATIC void
169 xfs_uuid_unmount(
170 	struct xfs_mount	*mp)
171 {
172 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
173 	int			i;
174 
175 	if (mp->m_flags & XFS_MOUNT_NOUUID)
176 		return;
177 
178 	mutex_lock(&xfs_uuid_table_mutex);
179 	for (i = 0; i < xfs_uuid_table_size; i++) {
180 		if (uuid_is_nil(&xfs_uuid_table[i]))
181 			continue;
182 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
183 			continue;
184 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
185 		break;
186 	}
187 	ASSERT(i < xfs_uuid_table_size);
188 	mutex_unlock(&xfs_uuid_table_mutex);
189 }
190 
191 
192 /*
193  * Reference counting access wrappers to the perag structures.
194  * Because we never free per-ag structures, the only thing we
195  * have to protect against changes is the tree structure itself.
196  */
197 struct xfs_perag *
198 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
199 {
200 	struct xfs_perag	*pag;
201 	int			ref = 0;
202 
203 	rcu_read_lock();
204 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
205 	if (pag) {
206 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
207 		ref = atomic_inc_return(&pag->pag_ref);
208 	}
209 	rcu_read_unlock();
210 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
211 	return pag;
212 }
213 
214 /*
215  * search from @first to find the next perag with the given tag set.
216  */
217 struct xfs_perag *
218 xfs_perag_get_tag(
219 	struct xfs_mount	*mp,
220 	xfs_agnumber_t		first,
221 	int			tag)
222 {
223 	struct xfs_perag	*pag;
224 	int			found;
225 	int			ref;
226 
227 	rcu_read_lock();
228 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
229 					(void **)&pag, first, 1, tag);
230 	if (found <= 0) {
231 		rcu_read_unlock();
232 		return NULL;
233 	}
234 	ref = atomic_inc_return(&pag->pag_ref);
235 	rcu_read_unlock();
236 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
237 	return pag;
238 }
239 
240 void
241 xfs_perag_put(struct xfs_perag *pag)
242 {
243 	int	ref;
244 
245 	ASSERT(atomic_read(&pag->pag_ref) > 0);
246 	ref = atomic_dec_return(&pag->pag_ref);
247 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
248 }
249 
250 STATIC void
251 __xfs_free_perag(
252 	struct rcu_head	*head)
253 {
254 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
255 
256 	ASSERT(atomic_read(&pag->pag_ref) == 0);
257 	kmem_free(pag);
258 }
259 
260 /*
261  * Free up the per-ag resources associated with the mount structure.
262  */
263 STATIC void
264 xfs_free_perag(
265 	xfs_mount_t	*mp)
266 {
267 	xfs_agnumber_t	agno;
268 	struct xfs_perag *pag;
269 
270 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
271 		spin_lock(&mp->m_perag_lock);
272 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
273 		spin_unlock(&mp->m_perag_lock);
274 		ASSERT(pag);
275 		ASSERT(atomic_read(&pag->pag_ref) == 0);
276 		call_rcu(&pag->rcu_head, __xfs_free_perag);
277 	}
278 }
279 
280 /*
281  * Check size of device based on the (data/realtime) block count.
282  * Note: this check is used by the growfs code as well as mount.
283  */
284 int
285 xfs_sb_validate_fsb_count(
286 	xfs_sb_t	*sbp,
287 	__uint64_t	nblocks)
288 {
289 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
290 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
291 
292 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
293 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
294 		return EFBIG;
295 #else                  /* Limited by UINT_MAX of sectors */
296 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
297 		return EFBIG;
298 #endif
299 	return 0;
300 }
301 
302 /*
303  * Check the validity of the SB found.
304  */
305 STATIC int
306 xfs_mount_validate_sb(
307 	xfs_mount_t	*mp,
308 	xfs_sb_t	*sbp,
309 	int		flags)
310 {
311 	int		loud = !(flags & XFS_MFSI_QUIET);
312 
313 	/*
314 	 * If the log device and data device have the
315 	 * same device number, the log is internal.
316 	 * Consequently, the sb_logstart should be non-zero.  If
317 	 * we have a zero sb_logstart in this case, we may be trying to mount
318 	 * a volume filesystem in a non-volume manner.
319 	 */
320 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
321 		if (loud)
322 			xfs_warn(mp, "bad magic number");
323 		return XFS_ERROR(EWRONGFS);
324 	}
325 
326 	if (!xfs_sb_good_version(sbp)) {
327 		if (loud)
328 			xfs_warn(mp, "bad version");
329 		return XFS_ERROR(EWRONGFS);
330 	}
331 
332 	if (unlikely(
333 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
334 		if (loud)
335 			xfs_warn(mp,
336 		"filesystem is marked as having an external log; "
337 		"specify logdev on the mount command line.");
338 		return XFS_ERROR(EINVAL);
339 	}
340 
341 	if (unlikely(
342 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
343 		if (loud)
344 			xfs_warn(mp,
345 		"filesystem is marked as having an internal log; "
346 		"do not specify logdev on the mount command line.");
347 		return XFS_ERROR(EINVAL);
348 	}
349 
350 	/*
351 	 * More sanity checking.  Most of these were stolen directly from
352 	 * xfs_repair.
353 	 */
354 	if (unlikely(
355 	    sbp->sb_agcount <= 0					||
356 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
357 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
358 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
359 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
360 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
361 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
362 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
363 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
364 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
365 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
366 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
367 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
368 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
369 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
370 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
371 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
372 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
373 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
374 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
375 	    sbp->sb_dblocks == 0					||
376 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
377 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
378 		if (loud)
379 			XFS_CORRUPTION_ERROR("SB sanity check failed",
380 				XFS_ERRLEVEL_LOW, mp, sbp);
381 		return XFS_ERROR(EFSCORRUPTED);
382 	}
383 
384 	/*
385 	 * Until this is fixed only page-sized or smaller data blocks work.
386 	 */
387 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
388 		if (loud) {
389 			xfs_warn(mp,
390 		"File system with blocksize %d bytes. "
391 		"Only pagesize (%ld) or less will currently work.",
392 				sbp->sb_blocksize, PAGE_SIZE);
393 		}
394 		return XFS_ERROR(ENOSYS);
395 	}
396 
397 	/*
398 	 * Currently only very few inode sizes are supported.
399 	 */
400 	switch (sbp->sb_inodesize) {
401 	case 256:
402 	case 512:
403 	case 1024:
404 	case 2048:
405 		break;
406 	default:
407 		if (loud)
408 			xfs_warn(mp, "inode size of %d bytes not supported",
409 				sbp->sb_inodesize);
410 		return XFS_ERROR(ENOSYS);
411 	}
412 
413 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
414 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
415 		if (loud)
416 			xfs_warn(mp,
417 		"file system too large to be mounted on this system.");
418 		return XFS_ERROR(EFBIG);
419 	}
420 
421 	if (unlikely(sbp->sb_inprogress)) {
422 		if (loud)
423 			xfs_warn(mp, "file system busy");
424 		return XFS_ERROR(EFSCORRUPTED);
425 	}
426 
427 	/*
428 	 * Version 1 directory format has never worked on Linux.
429 	 */
430 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
431 		if (loud)
432 			xfs_warn(mp,
433 				"file system using version 1 directory format");
434 		return XFS_ERROR(ENOSYS);
435 	}
436 
437 	return 0;
438 }
439 
440 int
441 xfs_initialize_perag(
442 	xfs_mount_t	*mp,
443 	xfs_agnumber_t	agcount,
444 	xfs_agnumber_t	*maxagi)
445 {
446 	xfs_agnumber_t	index, max_metadata;
447 	xfs_agnumber_t	first_initialised = 0;
448 	xfs_perag_t	*pag;
449 	xfs_agino_t	agino;
450 	xfs_ino_t	ino;
451 	xfs_sb_t	*sbp = &mp->m_sb;
452 	int		error = -ENOMEM;
453 
454 	/*
455 	 * Walk the current per-ag tree so we don't try to initialise AGs
456 	 * that already exist (growfs case). Allocate and insert all the
457 	 * AGs we don't find ready for initialisation.
458 	 */
459 	for (index = 0; index < agcount; index++) {
460 		pag = xfs_perag_get(mp, index);
461 		if (pag) {
462 			xfs_perag_put(pag);
463 			continue;
464 		}
465 		if (!first_initialised)
466 			first_initialised = index;
467 
468 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
469 		if (!pag)
470 			goto out_unwind;
471 		pag->pag_agno = index;
472 		pag->pag_mount = mp;
473 		spin_lock_init(&pag->pag_ici_lock);
474 		mutex_init(&pag->pag_ici_reclaim_lock);
475 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
476 		spin_lock_init(&pag->pag_buf_lock);
477 		pag->pag_buf_tree = RB_ROOT;
478 
479 		if (radix_tree_preload(GFP_NOFS))
480 			goto out_unwind;
481 
482 		spin_lock(&mp->m_perag_lock);
483 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
484 			BUG();
485 			spin_unlock(&mp->m_perag_lock);
486 			radix_tree_preload_end();
487 			error = -EEXIST;
488 			goto out_unwind;
489 		}
490 		spin_unlock(&mp->m_perag_lock);
491 		radix_tree_preload_end();
492 	}
493 
494 	/*
495 	 * If we mount with the inode64 option, or no inode overflows
496 	 * the legacy 32-bit address space clear the inode32 option.
497 	 */
498 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
499 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
500 
501 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
502 		mp->m_flags |= XFS_MOUNT_32BITINODES;
503 	else
504 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
505 
506 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
507 		/*
508 		 * Calculate how much should be reserved for inodes to meet
509 		 * the max inode percentage.
510 		 */
511 		if (mp->m_maxicount) {
512 			__uint64_t	icount;
513 
514 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
515 			do_div(icount, 100);
516 			icount += sbp->sb_agblocks - 1;
517 			do_div(icount, sbp->sb_agblocks);
518 			max_metadata = icount;
519 		} else {
520 			max_metadata = agcount;
521 		}
522 
523 		for (index = 0; index < agcount; index++) {
524 			ino = XFS_AGINO_TO_INO(mp, index, agino);
525 			if (ino > XFS_MAXINUMBER_32) {
526 				index++;
527 				break;
528 			}
529 
530 			pag = xfs_perag_get(mp, index);
531 			pag->pagi_inodeok = 1;
532 			if (index < max_metadata)
533 				pag->pagf_metadata = 1;
534 			xfs_perag_put(pag);
535 		}
536 	} else {
537 		for (index = 0; index < agcount; index++) {
538 			pag = xfs_perag_get(mp, index);
539 			pag->pagi_inodeok = 1;
540 			xfs_perag_put(pag);
541 		}
542 	}
543 
544 	if (maxagi)
545 		*maxagi = index;
546 	return 0;
547 
548 out_unwind:
549 	kmem_free(pag);
550 	for (; index > first_initialised; index--) {
551 		pag = radix_tree_delete(&mp->m_perag_tree, index);
552 		kmem_free(pag);
553 	}
554 	return error;
555 }
556 
557 void
558 xfs_sb_from_disk(
559 	xfs_sb_t	*to,
560 	xfs_dsb_t	*from)
561 {
562 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
563 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
564 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
565 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
566 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
567 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
568 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
569 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
570 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
571 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
572 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
573 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
574 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
575 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
576 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
577 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
578 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
579 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
580 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
581 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
582 	to->sb_blocklog = from->sb_blocklog;
583 	to->sb_sectlog = from->sb_sectlog;
584 	to->sb_inodelog = from->sb_inodelog;
585 	to->sb_inopblog = from->sb_inopblog;
586 	to->sb_agblklog = from->sb_agblklog;
587 	to->sb_rextslog = from->sb_rextslog;
588 	to->sb_inprogress = from->sb_inprogress;
589 	to->sb_imax_pct = from->sb_imax_pct;
590 	to->sb_icount = be64_to_cpu(from->sb_icount);
591 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
592 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
593 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
594 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
595 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
596 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
597 	to->sb_flags = from->sb_flags;
598 	to->sb_shared_vn = from->sb_shared_vn;
599 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
600 	to->sb_unit = be32_to_cpu(from->sb_unit);
601 	to->sb_width = be32_to_cpu(from->sb_width);
602 	to->sb_dirblklog = from->sb_dirblklog;
603 	to->sb_logsectlog = from->sb_logsectlog;
604 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
605 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
606 	to->sb_features2 = be32_to_cpu(from->sb_features2);
607 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
608 }
609 
610 /*
611  * Copy in core superblock to ondisk one.
612  *
613  * The fields argument is mask of superblock fields to copy.
614  */
615 void
616 xfs_sb_to_disk(
617 	xfs_dsb_t	*to,
618 	xfs_sb_t	*from,
619 	__int64_t	fields)
620 {
621 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
622 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
623 	xfs_sb_field_t	f;
624 	int		first;
625 	int		size;
626 
627 	ASSERT(fields);
628 	if (!fields)
629 		return;
630 
631 	while (fields) {
632 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
633 		first = xfs_sb_info[f].offset;
634 		size = xfs_sb_info[f + 1].offset - first;
635 
636 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
637 
638 		if (size == 1 || xfs_sb_info[f].type == 1) {
639 			memcpy(to_ptr + first, from_ptr + first, size);
640 		} else {
641 			switch (size) {
642 			case 2:
643 				*(__be16 *)(to_ptr + first) =
644 					cpu_to_be16(*(__u16 *)(from_ptr + first));
645 				break;
646 			case 4:
647 				*(__be32 *)(to_ptr + first) =
648 					cpu_to_be32(*(__u32 *)(from_ptr + first));
649 				break;
650 			case 8:
651 				*(__be64 *)(to_ptr + first) =
652 					cpu_to_be64(*(__u64 *)(from_ptr + first));
653 				break;
654 			default:
655 				ASSERT(0);
656 			}
657 		}
658 
659 		fields &= ~(1LL << f);
660 	}
661 }
662 
663 /*
664  * xfs_readsb
665  *
666  * Does the initial read of the superblock.
667  */
668 int
669 xfs_readsb(xfs_mount_t *mp, int flags)
670 {
671 	unsigned int	sector_size;
672 	xfs_buf_t	*bp;
673 	int		error;
674 	int		loud = !(flags & XFS_MFSI_QUIET);
675 
676 	ASSERT(mp->m_sb_bp == NULL);
677 	ASSERT(mp->m_ddev_targp != NULL);
678 
679 	/*
680 	 * Allocate a (locked) buffer to hold the superblock.
681 	 * This will be kept around at all times to optimize
682 	 * access to the superblock.
683 	 */
684 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
685 
686 reread:
687 	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
688 					XFS_SB_DADDR, sector_size, 0);
689 	if (!bp) {
690 		if (loud)
691 			xfs_warn(mp, "SB buffer read failed");
692 		return EIO;
693 	}
694 
695 	/*
696 	 * Initialize the mount structure from the superblock.
697 	 * But first do some basic consistency checking.
698 	 */
699 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
700 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
701 	if (error) {
702 		if (loud)
703 			xfs_warn(mp, "SB validate failed");
704 		goto release_buf;
705 	}
706 
707 	/*
708 	 * We must be able to do sector-sized and sector-aligned IO.
709 	 */
710 	if (sector_size > mp->m_sb.sb_sectsize) {
711 		if (loud)
712 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
713 				sector_size, mp->m_sb.sb_sectsize);
714 		error = ENOSYS;
715 		goto release_buf;
716 	}
717 
718 	/*
719 	 * If device sector size is smaller than the superblock size,
720 	 * re-read the superblock so the buffer is correctly sized.
721 	 */
722 	if (sector_size < mp->m_sb.sb_sectsize) {
723 		xfs_buf_relse(bp);
724 		sector_size = mp->m_sb.sb_sectsize;
725 		goto reread;
726 	}
727 
728 	/* Initialize per-cpu counters */
729 	xfs_icsb_reinit_counters(mp);
730 
731 	mp->m_sb_bp = bp;
732 	xfs_buf_unlock(bp);
733 	return 0;
734 
735 release_buf:
736 	xfs_buf_relse(bp);
737 	return error;
738 }
739 
740 
741 /*
742  * xfs_mount_common
743  *
744  * Mount initialization code establishing various mount
745  * fields from the superblock associated with the given
746  * mount structure
747  */
748 STATIC void
749 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
750 {
751 	mp->m_agfrotor = mp->m_agirotor = 0;
752 	spin_lock_init(&mp->m_agirotor_lock);
753 	mp->m_maxagi = mp->m_sb.sb_agcount;
754 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
755 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
756 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
757 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
758 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
759 	mp->m_blockmask = sbp->sb_blocksize - 1;
760 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
761 	mp->m_blockwmask = mp->m_blockwsize - 1;
762 
763 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
764 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
765 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
766 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
767 
768 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
769 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
770 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
771 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
772 
773 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
774 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
775 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
776 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
777 
778 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
779 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
780 					sbp->sb_inopblock);
781 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
782 }
783 
784 /*
785  * xfs_initialize_perag_data
786  *
787  * Read in each per-ag structure so we can count up the number of
788  * allocated inodes, free inodes and used filesystem blocks as this
789  * information is no longer persistent in the superblock. Once we have
790  * this information, write it into the in-core superblock structure.
791  */
792 STATIC int
793 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
794 {
795 	xfs_agnumber_t	index;
796 	xfs_perag_t	*pag;
797 	xfs_sb_t	*sbp = &mp->m_sb;
798 	uint64_t	ifree = 0;
799 	uint64_t	ialloc = 0;
800 	uint64_t	bfree = 0;
801 	uint64_t	bfreelst = 0;
802 	uint64_t	btree = 0;
803 	int		error;
804 
805 	for (index = 0; index < agcount; index++) {
806 		/*
807 		 * read the agf, then the agi. This gets us
808 		 * all the information we need and populates the
809 		 * per-ag structures for us.
810 		 */
811 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
812 		if (error)
813 			return error;
814 
815 		error = xfs_ialloc_pagi_init(mp, NULL, index);
816 		if (error)
817 			return error;
818 		pag = xfs_perag_get(mp, index);
819 		ifree += pag->pagi_freecount;
820 		ialloc += pag->pagi_count;
821 		bfree += pag->pagf_freeblks;
822 		bfreelst += pag->pagf_flcount;
823 		btree += pag->pagf_btreeblks;
824 		xfs_perag_put(pag);
825 	}
826 	/*
827 	 * Overwrite incore superblock counters with just-read data
828 	 */
829 	spin_lock(&mp->m_sb_lock);
830 	sbp->sb_ifree = ifree;
831 	sbp->sb_icount = ialloc;
832 	sbp->sb_fdblocks = bfree + bfreelst + btree;
833 	spin_unlock(&mp->m_sb_lock);
834 
835 	/* Fixup the per-cpu counters as well. */
836 	xfs_icsb_reinit_counters(mp);
837 
838 	return 0;
839 }
840 
841 /*
842  * Update alignment values based on mount options and sb values
843  */
844 STATIC int
845 xfs_update_alignment(xfs_mount_t *mp)
846 {
847 	xfs_sb_t	*sbp = &(mp->m_sb);
848 
849 	if (mp->m_dalign) {
850 		/*
851 		 * If stripe unit and stripe width are not multiples
852 		 * of the fs blocksize turn off alignment.
853 		 */
854 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
855 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
856 			if (mp->m_flags & XFS_MOUNT_RETERR) {
857 				xfs_warn(mp, "alignment check failed: "
858 					 "(sunit/swidth vs. blocksize)");
859 				return XFS_ERROR(EINVAL);
860 			}
861 			mp->m_dalign = mp->m_swidth = 0;
862 		} else {
863 			/*
864 			 * Convert the stripe unit and width to FSBs.
865 			 */
866 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
867 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
868 				if (mp->m_flags & XFS_MOUNT_RETERR) {
869 					xfs_warn(mp, "alignment check failed: "
870 						 "(sunit/swidth vs. ag size)");
871 					return XFS_ERROR(EINVAL);
872 				}
873 				xfs_warn(mp,
874 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
875 		"incompatible with agsize(%d)",
876 					mp->m_dalign, mp->m_swidth,
877 					sbp->sb_agblocks);
878 
879 				mp->m_dalign = 0;
880 				mp->m_swidth = 0;
881 			} else if (mp->m_dalign) {
882 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
883 			} else {
884 				if (mp->m_flags & XFS_MOUNT_RETERR) {
885 					xfs_warn(mp, "alignment check failed: "
886 						"sunit(%d) less than bsize(%d)",
887 						mp->m_dalign,
888 						mp->m_blockmask +1);
889 					return XFS_ERROR(EINVAL);
890 				}
891 				mp->m_swidth = 0;
892 			}
893 		}
894 
895 		/*
896 		 * Update superblock with new values
897 		 * and log changes
898 		 */
899 		if (xfs_sb_version_hasdalign(sbp)) {
900 			if (sbp->sb_unit != mp->m_dalign) {
901 				sbp->sb_unit = mp->m_dalign;
902 				mp->m_update_flags |= XFS_SB_UNIT;
903 			}
904 			if (sbp->sb_width != mp->m_swidth) {
905 				sbp->sb_width = mp->m_swidth;
906 				mp->m_update_flags |= XFS_SB_WIDTH;
907 			}
908 		}
909 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
910 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
911 			mp->m_dalign = sbp->sb_unit;
912 			mp->m_swidth = sbp->sb_width;
913 	}
914 
915 	return 0;
916 }
917 
918 /*
919  * Set the maximum inode count for this filesystem
920  */
921 STATIC void
922 xfs_set_maxicount(xfs_mount_t *mp)
923 {
924 	xfs_sb_t	*sbp = &(mp->m_sb);
925 	__uint64_t	icount;
926 
927 	if (sbp->sb_imax_pct) {
928 		/*
929 		 * Make sure the maximum inode count is a multiple
930 		 * of the units we allocate inodes in.
931 		 */
932 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
933 		do_div(icount, 100);
934 		do_div(icount, mp->m_ialloc_blks);
935 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
936 				   sbp->sb_inopblog;
937 	} else {
938 		mp->m_maxicount = 0;
939 	}
940 }
941 
942 /*
943  * Set the default minimum read and write sizes unless
944  * already specified in a mount option.
945  * We use smaller I/O sizes when the file system
946  * is being used for NFS service (wsync mount option).
947  */
948 STATIC void
949 xfs_set_rw_sizes(xfs_mount_t *mp)
950 {
951 	xfs_sb_t	*sbp = &(mp->m_sb);
952 	int		readio_log, writeio_log;
953 
954 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
955 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
956 			readio_log = XFS_WSYNC_READIO_LOG;
957 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
958 		} else {
959 			readio_log = XFS_READIO_LOG_LARGE;
960 			writeio_log = XFS_WRITEIO_LOG_LARGE;
961 		}
962 	} else {
963 		readio_log = mp->m_readio_log;
964 		writeio_log = mp->m_writeio_log;
965 	}
966 
967 	if (sbp->sb_blocklog > readio_log) {
968 		mp->m_readio_log = sbp->sb_blocklog;
969 	} else {
970 		mp->m_readio_log = readio_log;
971 	}
972 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
973 	if (sbp->sb_blocklog > writeio_log) {
974 		mp->m_writeio_log = sbp->sb_blocklog;
975 	} else {
976 		mp->m_writeio_log = writeio_log;
977 	}
978 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
979 }
980 
981 /*
982  * precalculate the low space thresholds for dynamic speculative preallocation.
983  */
984 void
985 xfs_set_low_space_thresholds(
986 	struct xfs_mount	*mp)
987 {
988 	int i;
989 
990 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
991 		__uint64_t space = mp->m_sb.sb_dblocks;
992 
993 		do_div(space, 100);
994 		mp->m_low_space[i] = space * (i + 1);
995 	}
996 }
997 
998 
999 /*
1000  * Set whether we're using inode alignment.
1001  */
1002 STATIC void
1003 xfs_set_inoalignment(xfs_mount_t *mp)
1004 {
1005 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
1006 	    mp->m_sb.sb_inoalignmt >=
1007 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1008 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1009 	else
1010 		mp->m_inoalign_mask = 0;
1011 	/*
1012 	 * If we are using stripe alignment, check whether
1013 	 * the stripe unit is a multiple of the inode alignment
1014 	 */
1015 	if (mp->m_dalign && mp->m_inoalign_mask &&
1016 	    !(mp->m_dalign & mp->m_inoalign_mask))
1017 		mp->m_sinoalign = mp->m_dalign;
1018 	else
1019 		mp->m_sinoalign = 0;
1020 }
1021 
1022 /*
1023  * Check that the data (and log if separate) are an ok size.
1024  */
1025 STATIC int
1026 xfs_check_sizes(xfs_mount_t *mp)
1027 {
1028 	xfs_buf_t	*bp;
1029 	xfs_daddr_t	d;
1030 
1031 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1032 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1033 		xfs_warn(mp, "filesystem size mismatch detected");
1034 		return XFS_ERROR(EFBIG);
1035 	}
1036 	bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1037 					d - XFS_FSS_TO_BB(mp, 1),
1038 					BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1039 	if (!bp) {
1040 		xfs_warn(mp, "last sector read failed");
1041 		return EIO;
1042 	}
1043 	xfs_buf_relse(bp);
1044 
1045 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1046 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1047 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1048 			xfs_warn(mp, "log size mismatch detected");
1049 			return XFS_ERROR(EFBIG);
1050 		}
1051 		bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1052 					d - XFS_FSB_TO_BB(mp, 1),
1053 					XFS_FSB_TO_B(mp, 1), 0);
1054 		if (!bp) {
1055 			xfs_warn(mp, "log device read failed");
1056 			return EIO;
1057 		}
1058 		xfs_buf_relse(bp);
1059 	}
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Clear the quotaflags in memory and in the superblock.
1065  */
1066 int
1067 xfs_mount_reset_sbqflags(
1068 	struct xfs_mount	*mp)
1069 {
1070 	int			error;
1071 	struct xfs_trans	*tp;
1072 
1073 	mp->m_qflags = 0;
1074 
1075 	/*
1076 	 * It is OK to look at sb_qflags here in mount path,
1077 	 * without m_sb_lock.
1078 	 */
1079 	if (mp->m_sb.sb_qflags == 0)
1080 		return 0;
1081 	spin_lock(&mp->m_sb_lock);
1082 	mp->m_sb.sb_qflags = 0;
1083 	spin_unlock(&mp->m_sb_lock);
1084 
1085 	/*
1086 	 * If the fs is readonly, let the incore superblock run
1087 	 * with quotas off but don't flush the update out to disk
1088 	 */
1089 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1090 		return 0;
1091 
1092 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1093 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1094 				      XFS_DEFAULT_LOG_COUNT);
1095 	if (error) {
1096 		xfs_trans_cancel(tp, 0);
1097 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1098 		return error;
1099 	}
1100 
1101 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1102 	return xfs_trans_commit(tp, 0);
1103 }
1104 
1105 __uint64_t
1106 xfs_default_resblks(xfs_mount_t *mp)
1107 {
1108 	__uint64_t resblks;
1109 
1110 	/*
1111 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1112 	 * smaller.  This is intended to cover concurrent allocation
1113 	 * transactions when we initially hit enospc. These each require a 4
1114 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1115 	 * allocation reservations.
1116 	 */
1117 	resblks = mp->m_sb.sb_dblocks;
1118 	do_div(resblks, 20);
1119 	resblks = min_t(__uint64_t, resblks, 8192);
1120 	return resblks;
1121 }
1122 
1123 /*
1124  * This function does the following on an initial mount of a file system:
1125  *	- reads the superblock from disk and init the mount struct
1126  *	- if we're a 32-bit kernel, do a size check on the superblock
1127  *		so we don't mount terabyte filesystems
1128  *	- init mount struct realtime fields
1129  *	- allocate inode hash table for fs
1130  *	- init directory manager
1131  *	- perform recovery and init the log manager
1132  */
1133 int
1134 xfs_mountfs(
1135 	xfs_mount_t	*mp)
1136 {
1137 	xfs_sb_t	*sbp = &(mp->m_sb);
1138 	xfs_inode_t	*rip;
1139 	__uint64_t	resblks;
1140 	uint		quotamount = 0;
1141 	uint		quotaflags = 0;
1142 	int		error = 0;
1143 
1144 	xfs_mount_common(mp, sbp);
1145 
1146 	/*
1147 	 * Check for a mismatched features2 values.  Older kernels
1148 	 * read & wrote into the wrong sb offset for sb_features2
1149 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1150 	 * when sb_features2 was added, which made older superblock
1151 	 * reading/writing routines swap it as a 64-bit value.
1152 	 *
1153 	 * For backwards compatibility, we make both slots equal.
1154 	 *
1155 	 * If we detect a mismatched field, we OR the set bits into the
1156 	 * existing features2 field in case it has already been modified; we
1157 	 * don't want to lose any features.  We then update the bad location
1158 	 * with the ORed value so that older kernels will see any features2
1159 	 * flags, and mark the two fields as needing updates once the
1160 	 * transaction subsystem is online.
1161 	 */
1162 	if (xfs_sb_has_mismatched_features2(sbp)) {
1163 		xfs_warn(mp, "correcting sb_features alignment problem");
1164 		sbp->sb_features2 |= sbp->sb_bad_features2;
1165 		sbp->sb_bad_features2 = sbp->sb_features2;
1166 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1167 
1168 		/*
1169 		 * Re-check for ATTR2 in case it was found in bad_features2
1170 		 * slot.
1171 		 */
1172 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1173 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1174 			mp->m_flags |= XFS_MOUNT_ATTR2;
1175 	}
1176 
1177 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1178 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1179 		xfs_sb_version_removeattr2(&mp->m_sb);
1180 		mp->m_update_flags |= XFS_SB_FEATURES2;
1181 
1182 		/* update sb_versionnum for the clearing of the morebits */
1183 		if (!sbp->sb_features2)
1184 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1185 	}
1186 
1187 	/*
1188 	 * Check if sb_agblocks is aligned at stripe boundary
1189 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1190 	 * allocator alignment is within an ag, therefore ag has
1191 	 * to be aligned at stripe boundary.
1192 	 */
1193 	error = xfs_update_alignment(mp);
1194 	if (error)
1195 		goto out;
1196 
1197 	xfs_alloc_compute_maxlevels(mp);
1198 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1199 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1200 	xfs_ialloc_compute_maxlevels(mp);
1201 
1202 	xfs_set_maxicount(mp);
1203 
1204 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1205 
1206 	error = xfs_uuid_mount(mp);
1207 	if (error)
1208 		goto out;
1209 
1210 	/*
1211 	 * Set the minimum read and write sizes
1212 	 */
1213 	xfs_set_rw_sizes(mp);
1214 
1215 	/* set the low space thresholds for dynamic preallocation */
1216 	xfs_set_low_space_thresholds(mp);
1217 
1218 	/*
1219 	 * Set the inode cluster size.
1220 	 * This may still be overridden by the file system
1221 	 * block size if it is larger than the chosen cluster size.
1222 	 */
1223 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1224 
1225 	/*
1226 	 * Set inode alignment fields
1227 	 */
1228 	xfs_set_inoalignment(mp);
1229 
1230 	/*
1231 	 * Check that the data (and log if separate) are an ok size.
1232 	 */
1233 	error = xfs_check_sizes(mp);
1234 	if (error)
1235 		goto out_remove_uuid;
1236 
1237 	/*
1238 	 * Initialize realtime fields in the mount structure
1239 	 */
1240 	error = xfs_rtmount_init(mp);
1241 	if (error) {
1242 		xfs_warn(mp, "RT mount failed");
1243 		goto out_remove_uuid;
1244 	}
1245 
1246 	/*
1247 	 *  Copies the low order bits of the timestamp and the randomly
1248 	 *  set "sequence" number out of a UUID.
1249 	 */
1250 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1251 
1252 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1253 
1254 	xfs_dir_mount(mp);
1255 
1256 	/*
1257 	 * Initialize the attribute manager's entries.
1258 	 */
1259 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1260 
1261 	/*
1262 	 * Initialize the precomputed transaction reservations values.
1263 	 */
1264 	xfs_trans_init(mp);
1265 
1266 	/*
1267 	 * Allocate and initialize the per-ag data.
1268 	 */
1269 	spin_lock_init(&mp->m_perag_lock);
1270 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1271 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1272 	if (error) {
1273 		xfs_warn(mp, "Failed per-ag init: %d", error);
1274 		goto out_remove_uuid;
1275 	}
1276 
1277 	if (!sbp->sb_logblocks) {
1278 		xfs_warn(mp, "no log defined");
1279 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1280 		error = XFS_ERROR(EFSCORRUPTED);
1281 		goto out_free_perag;
1282 	}
1283 
1284 	/*
1285 	 * log's mount-time initialization. Perform 1st part recovery if needed
1286 	 */
1287 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1288 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1289 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1290 	if (error) {
1291 		xfs_warn(mp, "log mount failed");
1292 		goto out_free_perag;
1293 	}
1294 
1295 	/*
1296 	 * Now the log is mounted, we know if it was an unclean shutdown or
1297 	 * not. If it was, with the first phase of recovery has completed, we
1298 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1299 	 * but they are recovered transactionally in the second recovery phase
1300 	 * later.
1301 	 *
1302 	 * Hence we can safely re-initialise incore superblock counters from
1303 	 * the per-ag data. These may not be correct if the filesystem was not
1304 	 * cleanly unmounted, so we need to wait for recovery to finish before
1305 	 * doing this.
1306 	 *
1307 	 * If the filesystem was cleanly unmounted, then we can trust the
1308 	 * values in the superblock to be correct and we don't need to do
1309 	 * anything here.
1310 	 *
1311 	 * If we are currently making the filesystem, the initialisation will
1312 	 * fail as the perag data is in an undefined state.
1313 	 */
1314 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1315 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1316 	     !mp->m_sb.sb_inprogress) {
1317 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1318 		if (error)
1319 			goto out_free_perag;
1320 	}
1321 
1322 	/*
1323 	 * Get and sanity-check the root inode.
1324 	 * Save the pointer to it in the mount structure.
1325 	 */
1326 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1327 	if (error) {
1328 		xfs_warn(mp, "failed to read root inode");
1329 		goto out_log_dealloc;
1330 	}
1331 
1332 	ASSERT(rip != NULL);
1333 
1334 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1335 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1336 			(unsigned long long)rip->i_ino);
1337 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1338 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1339 				 mp);
1340 		error = XFS_ERROR(EFSCORRUPTED);
1341 		goto out_rele_rip;
1342 	}
1343 	mp->m_rootip = rip;	/* save it */
1344 
1345 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1346 
1347 	/*
1348 	 * Initialize realtime inode pointers in the mount structure
1349 	 */
1350 	error = xfs_rtmount_inodes(mp);
1351 	if (error) {
1352 		/*
1353 		 * Free up the root inode.
1354 		 */
1355 		xfs_warn(mp, "failed to read RT inodes");
1356 		goto out_rele_rip;
1357 	}
1358 
1359 	/*
1360 	 * If this is a read-only mount defer the superblock updates until
1361 	 * the next remount into writeable mode.  Otherwise we would never
1362 	 * perform the update e.g. for the root filesystem.
1363 	 */
1364 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1365 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1366 		if (error) {
1367 			xfs_warn(mp, "failed to write sb changes");
1368 			goto out_rtunmount;
1369 		}
1370 	}
1371 
1372 	/*
1373 	 * Initialise the XFS quota management subsystem for this mount
1374 	 */
1375 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1376 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1377 		if (error)
1378 			goto out_rtunmount;
1379 	} else {
1380 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1381 
1382 		/*
1383 		 * If a file system had quotas running earlier, but decided to
1384 		 * mount without -o uquota/pquota/gquota options, revoke the
1385 		 * quotachecked license.
1386 		 */
1387 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1388 			xfs_notice(mp, "resetting quota flags");
1389 			error = xfs_mount_reset_sbqflags(mp);
1390 			if (error)
1391 				return error;
1392 		}
1393 	}
1394 
1395 	/*
1396 	 * Finish recovering the file system.  This part needed to be
1397 	 * delayed until after the root and real-time bitmap inodes
1398 	 * were consistently read in.
1399 	 */
1400 	error = xfs_log_mount_finish(mp);
1401 	if (error) {
1402 		xfs_warn(mp, "log mount finish failed");
1403 		goto out_rtunmount;
1404 	}
1405 
1406 	/*
1407 	 * Complete the quota initialisation, post-log-replay component.
1408 	 */
1409 	if (quotamount) {
1410 		ASSERT(mp->m_qflags == 0);
1411 		mp->m_qflags = quotaflags;
1412 
1413 		xfs_qm_mount_quotas(mp);
1414 	}
1415 
1416 	/*
1417 	 * Now we are mounted, reserve a small amount of unused space for
1418 	 * privileged transactions. This is needed so that transaction
1419 	 * space required for critical operations can dip into this pool
1420 	 * when at ENOSPC. This is needed for operations like create with
1421 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1422 	 * are not allowed to use this reserved space.
1423 	 *
1424 	 * This may drive us straight to ENOSPC on mount, but that implies
1425 	 * we were already there on the last unmount. Warn if this occurs.
1426 	 */
1427 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1428 		resblks = xfs_default_resblks(mp);
1429 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1430 		if (error)
1431 			xfs_warn(mp,
1432 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1433 	}
1434 
1435 	return 0;
1436 
1437  out_rtunmount:
1438 	xfs_rtunmount_inodes(mp);
1439  out_rele_rip:
1440 	IRELE(rip);
1441  out_log_dealloc:
1442 	xfs_log_unmount(mp);
1443  out_free_perag:
1444 	xfs_free_perag(mp);
1445  out_remove_uuid:
1446 	xfs_uuid_unmount(mp);
1447  out:
1448 	return error;
1449 }
1450 
1451 /*
1452  * This flushes out the inodes,dquots and the superblock, unmounts the
1453  * log and makes sure that incore structures are freed.
1454  */
1455 void
1456 xfs_unmountfs(
1457 	struct xfs_mount	*mp)
1458 {
1459 	__uint64_t		resblks;
1460 	int			error;
1461 
1462 	xfs_qm_unmount_quotas(mp);
1463 	xfs_rtunmount_inodes(mp);
1464 	IRELE(mp->m_rootip);
1465 
1466 	/*
1467 	 * We can potentially deadlock here if we have an inode cluster
1468 	 * that has been freed has its buffer still pinned in memory because
1469 	 * the transaction is still sitting in a iclog. The stale inodes
1470 	 * on that buffer will have their flush locks held until the
1471 	 * transaction hits the disk and the callbacks run. the inode
1472 	 * flush takes the flush lock unconditionally and with nothing to
1473 	 * push out the iclog we will never get that unlocked. hence we
1474 	 * need to force the log first.
1475 	 */
1476 	xfs_log_force(mp, XFS_LOG_SYNC);
1477 
1478 	/*
1479 	 * Do a delwri reclaim pass first so that as many dirty inodes are
1480 	 * queued up for IO as possible. Then flush the buffers before making
1481 	 * a synchronous path to catch all the remaining inodes are reclaimed.
1482 	 * This makes the reclaim process as quick as possible by avoiding
1483 	 * synchronous writeout and blocking on inodes already in the delwri
1484 	 * state as much as possible.
1485 	 */
1486 	xfs_reclaim_inodes(mp, 0);
1487 	XFS_bflush(mp->m_ddev_targp);
1488 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1489 
1490 	xfs_qm_unmount(mp);
1491 
1492 	/*
1493 	 * Flush out the log synchronously so that we know for sure
1494 	 * that nothing is pinned.  This is important because bflush()
1495 	 * will skip pinned buffers.
1496 	 */
1497 	xfs_log_force(mp, XFS_LOG_SYNC);
1498 
1499 	xfs_binval(mp->m_ddev_targp);
1500 	if (mp->m_rtdev_targp) {
1501 		xfs_binval(mp->m_rtdev_targp);
1502 	}
1503 
1504 	/*
1505 	 * Unreserve any blocks we have so that when we unmount we don't account
1506 	 * the reserved free space as used. This is really only necessary for
1507 	 * lazy superblock counting because it trusts the incore superblock
1508 	 * counters to be absolutely correct on clean unmount.
1509 	 *
1510 	 * We don't bother correcting this elsewhere for lazy superblock
1511 	 * counting because on mount of an unclean filesystem we reconstruct the
1512 	 * correct counter value and this is irrelevant.
1513 	 *
1514 	 * For non-lazy counter filesystems, this doesn't matter at all because
1515 	 * we only every apply deltas to the superblock and hence the incore
1516 	 * value does not matter....
1517 	 */
1518 	resblks = 0;
1519 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1520 	if (error)
1521 		xfs_warn(mp, "Unable to free reserved block pool. "
1522 				"Freespace may not be correct on next mount.");
1523 
1524 	error = xfs_log_sbcount(mp);
1525 	if (error)
1526 		xfs_warn(mp, "Unable to update superblock counters. "
1527 				"Freespace may not be correct on next mount.");
1528 	xfs_unmountfs_writesb(mp);
1529 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1530 	xfs_log_unmount_write(mp);
1531 	xfs_log_unmount(mp);
1532 	xfs_uuid_unmount(mp);
1533 
1534 #if defined(DEBUG)
1535 	xfs_errortag_clearall(mp, 0);
1536 #endif
1537 	xfs_free_perag(mp);
1538 }
1539 
1540 STATIC void
1541 xfs_unmountfs_wait(xfs_mount_t *mp)
1542 {
1543 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1544 		xfs_wait_buftarg(mp->m_logdev_targp);
1545 	if (mp->m_rtdev_targp)
1546 		xfs_wait_buftarg(mp->m_rtdev_targp);
1547 	xfs_wait_buftarg(mp->m_ddev_targp);
1548 }
1549 
1550 int
1551 xfs_fs_writable(xfs_mount_t *mp)
1552 {
1553 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1554 		(mp->m_flags & XFS_MOUNT_RDONLY));
1555 }
1556 
1557 /*
1558  * xfs_log_sbcount
1559  *
1560  * Sync the superblock counters to disk.
1561  *
1562  * Note this code can be called during the process of freezing, so
1563  * we may need to use the transaction allocator which does not
1564  * block when the transaction subsystem is in its frozen state.
1565  */
1566 int
1567 xfs_log_sbcount(xfs_mount_t *mp)
1568 {
1569 	xfs_trans_t	*tp;
1570 	int		error;
1571 
1572 	if (!xfs_fs_writable(mp))
1573 		return 0;
1574 
1575 	xfs_icsb_sync_counters(mp, 0);
1576 
1577 	/*
1578 	 * we don't need to do this if we are updating the superblock
1579 	 * counters on every modification.
1580 	 */
1581 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1582 		return 0;
1583 
1584 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1585 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1586 					XFS_DEFAULT_LOG_COUNT);
1587 	if (error) {
1588 		xfs_trans_cancel(tp, 0);
1589 		return error;
1590 	}
1591 
1592 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1593 	xfs_trans_set_sync(tp);
1594 	error = xfs_trans_commit(tp, 0);
1595 	return error;
1596 }
1597 
1598 int
1599 xfs_unmountfs_writesb(xfs_mount_t *mp)
1600 {
1601 	xfs_buf_t	*sbp;
1602 	int		error = 0;
1603 
1604 	/*
1605 	 * skip superblock write if fs is read-only, or
1606 	 * if we are doing a forced umount.
1607 	 */
1608 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1609 		XFS_FORCED_SHUTDOWN(mp))) {
1610 
1611 		sbp = xfs_getsb(mp, 0);
1612 
1613 		XFS_BUF_UNDONE(sbp);
1614 		XFS_BUF_UNREAD(sbp);
1615 		XFS_BUF_UNDELAYWRITE(sbp);
1616 		XFS_BUF_WRITE(sbp);
1617 		XFS_BUF_UNASYNC(sbp);
1618 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1619 		xfsbdstrat(mp, sbp);
1620 		error = xfs_buf_iowait(sbp);
1621 		if (error)
1622 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1623 					  mp, sbp, XFS_BUF_ADDR(sbp));
1624 		xfs_buf_relse(sbp);
1625 	}
1626 	return error;
1627 }
1628 
1629 /*
1630  * xfs_mod_sb() can be used to copy arbitrary changes to the
1631  * in-core superblock into the superblock buffer to be logged.
1632  * It does not provide the higher level of locking that is
1633  * needed to protect the in-core superblock from concurrent
1634  * access.
1635  */
1636 void
1637 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1638 {
1639 	xfs_buf_t	*bp;
1640 	int		first;
1641 	int		last;
1642 	xfs_mount_t	*mp;
1643 	xfs_sb_field_t	f;
1644 
1645 	ASSERT(fields);
1646 	if (!fields)
1647 		return;
1648 	mp = tp->t_mountp;
1649 	bp = xfs_trans_getsb(tp, mp, 0);
1650 	first = sizeof(xfs_sb_t);
1651 	last = 0;
1652 
1653 	/* translate/copy */
1654 
1655 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1656 
1657 	/* find modified range */
1658 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1659 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1660 	last = xfs_sb_info[f + 1].offset - 1;
1661 
1662 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1663 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1664 	first = xfs_sb_info[f].offset;
1665 
1666 	xfs_trans_log_buf(tp, bp, first, last);
1667 }
1668 
1669 
1670 /*
1671  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1672  * a delta to a specified field in the in-core superblock.  Simply
1673  * switch on the field indicated and apply the delta to that field.
1674  * Fields are not allowed to dip below zero, so if the delta would
1675  * do this do not apply it and return EINVAL.
1676  *
1677  * The m_sb_lock must be held when this routine is called.
1678  */
1679 STATIC int
1680 xfs_mod_incore_sb_unlocked(
1681 	xfs_mount_t	*mp,
1682 	xfs_sb_field_t	field,
1683 	int64_t		delta,
1684 	int		rsvd)
1685 {
1686 	int		scounter;	/* short counter for 32 bit fields */
1687 	long long	lcounter;	/* long counter for 64 bit fields */
1688 	long long	res_used, rem;
1689 
1690 	/*
1691 	 * With the in-core superblock spin lock held, switch
1692 	 * on the indicated field.  Apply the delta to the
1693 	 * proper field.  If the fields value would dip below
1694 	 * 0, then do not apply the delta and return EINVAL.
1695 	 */
1696 	switch (field) {
1697 	case XFS_SBS_ICOUNT:
1698 		lcounter = (long long)mp->m_sb.sb_icount;
1699 		lcounter += delta;
1700 		if (lcounter < 0) {
1701 			ASSERT(0);
1702 			return XFS_ERROR(EINVAL);
1703 		}
1704 		mp->m_sb.sb_icount = lcounter;
1705 		return 0;
1706 	case XFS_SBS_IFREE:
1707 		lcounter = (long long)mp->m_sb.sb_ifree;
1708 		lcounter += delta;
1709 		if (lcounter < 0) {
1710 			ASSERT(0);
1711 			return XFS_ERROR(EINVAL);
1712 		}
1713 		mp->m_sb.sb_ifree = lcounter;
1714 		return 0;
1715 	case XFS_SBS_FDBLOCKS:
1716 		lcounter = (long long)
1717 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1718 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1719 
1720 		if (delta > 0) {		/* Putting blocks back */
1721 			if (res_used > delta) {
1722 				mp->m_resblks_avail += delta;
1723 			} else {
1724 				rem = delta - res_used;
1725 				mp->m_resblks_avail = mp->m_resblks;
1726 				lcounter += rem;
1727 			}
1728 		} else {				/* Taking blocks away */
1729 			lcounter += delta;
1730 			if (lcounter >= 0) {
1731 				mp->m_sb.sb_fdblocks = lcounter +
1732 							XFS_ALLOC_SET_ASIDE(mp);
1733 				return 0;
1734 			}
1735 
1736 			/*
1737 			 * We are out of blocks, use any available reserved
1738 			 * blocks if were allowed to.
1739 			 */
1740 			if (!rsvd)
1741 				return XFS_ERROR(ENOSPC);
1742 
1743 			lcounter = (long long)mp->m_resblks_avail + delta;
1744 			if (lcounter >= 0) {
1745 				mp->m_resblks_avail = lcounter;
1746 				return 0;
1747 			}
1748 			printk_once(KERN_WARNING
1749 				"Filesystem \"%s\": reserve blocks depleted! "
1750 				"Consider increasing reserve pool size.",
1751 				mp->m_fsname);
1752 			return XFS_ERROR(ENOSPC);
1753 		}
1754 
1755 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1756 		return 0;
1757 	case XFS_SBS_FREXTENTS:
1758 		lcounter = (long long)mp->m_sb.sb_frextents;
1759 		lcounter += delta;
1760 		if (lcounter < 0) {
1761 			return XFS_ERROR(ENOSPC);
1762 		}
1763 		mp->m_sb.sb_frextents = lcounter;
1764 		return 0;
1765 	case XFS_SBS_DBLOCKS:
1766 		lcounter = (long long)mp->m_sb.sb_dblocks;
1767 		lcounter += delta;
1768 		if (lcounter < 0) {
1769 			ASSERT(0);
1770 			return XFS_ERROR(EINVAL);
1771 		}
1772 		mp->m_sb.sb_dblocks = lcounter;
1773 		return 0;
1774 	case XFS_SBS_AGCOUNT:
1775 		scounter = mp->m_sb.sb_agcount;
1776 		scounter += delta;
1777 		if (scounter < 0) {
1778 			ASSERT(0);
1779 			return XFS_ERROR(EINVAL);
1780 		}
1781 		mp->m_sb.sb_agcount = scounter;
1782 		return 0;
1783 	case XFS_SBS_IMAX_PCT:
1784 		scounter = mp->m_sb.sb_imax_pct;
1785 		scounter += delta;
1786 		if (scounter < 0) {
1787 			ASSERT(0);
1788 			return XFS_ERROR(EINVAL);
1789 		}
1790 		mp->m_sb.sb_imax_pct = scounter;
1791 		return 0;
1792 	case XFS_SBS_REXTSIZE:
1793 		scounter = mp->m_sb.sb_rextsize;
1794 		scounter += delta;
1795 		if (scounter < 0) {
1796 			ASSERT(0);
1797 			return XFS_ERROR(EINVAL);
1798 		}
1799 		mp->m_sb.sb_rextsize = scounter;
1800 		return 0;
1801 	case XFS_SBS_RBMBLOCKS:
1802 		scounter = mp->m_sb.sb_rbmblocks;
1803 		scounter += delta;
1804 		if (scounter < 0) {
1805 			ASSERT(0);
1806 			return XFS_ERROR(EINVAL);
1807 		}
1808 		mp->m_sb.sb_rbmblocks = scounter;
1809 		return 0;
1810 	case XFS_SBS_RBLOCKS:
1811 		lcounter = (long long)mp->m_sb.sb_rblocks;
1812 		lcounter += delta;
1813 		if (lcounter < 0) {
1814 			ASSERT(0);
1815 			return XFS_ERROR(EINVAL);
1816 		}
1817 		mp->m_sb.sb_rblocks = lcounter;
1818 		return 0;
1819 	case XFS_SBS_REXTENTS:
1820 		lcounter = (long long)mp->m_sb.sb_rextents;
1821 		lcounter += delta;
1822 		if (lcounter < 0) {
1823 			ASSERT(0);
1824 			return XFS_ERROR(EINVAL);
1825 		}
1826 		mp->m_sb.sb_rextents = lcounter;
1827 		return 0;
1828 	case XFS_SBS_REXTSLOG:
1829 		scounter = mp->m_sb.sb_rextslog;
1830 		scounter += delta;
1831 		if (scounter < 0) {
1832 			ASSERT(0);
1833 			return XFS_ERROR(EINVAL);
1834 		}
1835 		mp->m_sb.sb_rextslog = scounter;
1836 		return 0;
1837 	default:
1838 		ASSERT(0);
1839 		return XFS_ERROR(EINVAL);
1840 	}
1841 }
1842 
1843 /*
1844  * xfs_mod_incore_sb() is used to change a field in the in-core
1845  * superblock structure by the specified delta.  This modification
1846  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1847  * routine to do the work.
1848  */
1849 int
1850 xfs_mod_incore_sb(
1851 	struct xfs_mount	*mp,
1852 	xfs_sb_field_t		field,
1853 	int64_t			delta,
1854 	int			rsvd)
1855 {
1856 	int			status;
1857 
1858 #ifdef HAVE_PERCPU_SB
1859 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1860 #endif
1861 	spin_lock(&mp->m_sb_lock);
1862 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1863 	spin_unlock(&mp->m_sb_lock);
1864 
1865 	return status;
1866 }
1867 
1868 /*
1869  * Change more than one field in the in-core superblock structure at a time.
1870  *
1871  * The fields and changes to those fields are specified in the array of
1872  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1873  * will be applied or none of them will.  If any modified field dips below 0,
1874  * then all modifications will be backed out and EINVAL will be returned.
1875  *
1876  * Note that this function may not be used for the superblock values that
1877  * are tracked with the in-memory per-cpu counters - a direct call to
1878  * xfs_icsb_modify_counters is required for these.
1879  */
1880 int
1881 xfs_mod_incore_sb_batch(
1882 	struct xfs_mount	*mp,
1883 	xfs_mod_sb_t		*msb,
1884 	uint			nmsb,
1885 	int			rsvd)
1886 {
1887 	xfs_mod_sb_t		*msbp;
1888 	int			error = 0;
1889 
1890 	/*
1891 	 * Loop through the array of mod structures and apply each individually.
1892 	 * If any fail, then back out all those which have already been applied.
1893 	 * Do all of this within the scope of the m_sb_lock so that all of the
1894 	 * changes will be atomic.
1895 	 */
1896 	spin_lock(&mp->m_sb_lock);
1897 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1898 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1899 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1900 
1901 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1902 						   msbp->msb_delta, rsvd);
1903 		if (error)
1904 			goto unwind;
1905 	}
1906 	spin_unlock(&mp->m_sb_lock);
1907 	return 0;
1908 
1909 unwind:
1910 	while (--msbp >= msb) {
1911 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1912 						   -msbp->msb_delta, rsvd);
1913 		ASSERT(error == 0);
1914 	}
1915 	spin_unlock(&mp->m_sb_lock);
1916 	return error;
1917 }
1918 
1919 /*
1920  * xfs_getsb() is called to obtain the buffer for the superblock.
1921  * The buffer is returned locked and read in from disk.
1922  * The buffer should be released with a call to xfs_brelse().
1923  *
1924  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1925  * the superblock buffer if it can be locked without sleeping.
1926  * If it can't then we'll return NULL.
1927  */
1928 struct xfs_buf *
1929 xfs_getsb(
1930 	struct xfs_mount	*mp,
1931 	int			flags)
1932 {
1933 	struct xfs_buf		*bp = mp->m_sb_bp;
1934 
1935 	if (!xfs_buf_trylock(bp)) {
1936 		if (flags & XBF_TRYLOCK)
1937 			return NULL;
1938 		xfs_buf_lock(bp);
1939 	}
1940 
1941 	XFS_BUF_HOLD(bp);
1942 	ASSERT(XFS_BUF_ISDONE(bp));
1943 	return bp;
1944 }
1945 
1946 /*
1947  * Used to free the superblock along various error paths.
1948  */
1949 void
1950 xfs_freesb(
1951 	struct xfs_mount	*mp)
1952 {
1953 	struct xfs_buf		*bp = mp->m_sb_bp;
1954 
1955 	xfs_buf_lock(bp);
1956 	mp->m_sb_bp = NULL;
1957 	xfs_buf_relse(bp);
1958 }
1959 
1960 /*
1961  * Used to log changes to the superblock unit and width fields which could
1962  * be altered by the mount options, as well as any potential sb_features2
1963  * fixup. Only the first superblock is updated.
1964  */
1965 int
1966 xfs_mount_log_sb(
1967 	xfs_mount_t	*mp,
1968 	__int64_t	fields)
1969 {
1970 	xfs_trans_t	*tp;
1971 	int		error;
1972 
1973 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1974 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1975 			 XFS_SB_VERSIONNUM));
1976 
1977 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1978 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1979 				XFS_DEFAULT_LOG_COUNT);
1980 	if (error) {
1981 		xfs_trans_cancel(tp, 0);
1982 		return error;
1983 	}
1984 	xfs_mod_sb(tp, fields);
1985 	error = xfs_trans_commit(tp, 0);
1986 	return error;
1987 }
1988 
1989 /*
1990  * If the underlying (data/log/rt) device is readonly, there are some
1991  * operations that cannot proceed.
1992  */
1993 int
1994 xfs_dev_is_read_only(
1995 	struct xfs_mount	*mp,
1996 	char			*message)
1997 {
1998 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1999 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
2000 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2001 		xfs_notice(mp, "%s required on read-only device.", message);
2002 		xfs_notice(mp, "write access unavailable, cannot proceed.");
2003 		return EROFS;
2004 	}
2005 	return 0;
2006 }
2007 
2008 #ifdef HAVE_PERCPU_SB
2009 /*
2010  * Per-cpu incore superblock counters
2011  *
2012  * Simple concept, difficult implementation
2013  *
2014  * Basically, replace the incore superblock counters with a distributed per cpu
2015  * counter for contended fields (e.g.  free block count).
2016  *
2017  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2018  * hence needs to be accurately read when we are running low on space. Hence
2019  * there is a method to enable and disable the per-cpu counters based on how
2020  * much "stuff" is available in them.
2021  *
2022  * Basically, a counter is enabled if there is enough free resource to justify
2023  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2024  * ENOSPC), then we disable the counters to synchronise all callers and
2025  * re-distribute the available resources.
2026  *
2027  * If, once we redistributed the available resources, we still get a failure,
2028  * we disable the per-cpu counter and go through the slow path.
2029  *
2030  * The slow path is the current xfs_mod_incore_sb() function.  This means that
2031  * when we disable a per-cpu counter, we need to drain its resources back to
2032  * the global superblock. We do this after disabling the counter to prevent
2033  * more threads from queueing up on the counter.
2034  *
2035  * Essentially, this means that we still need a lock in the fast path to enable
2036  * synchronisation between the global counters and the per-cpu counters. This
2037  * is not a problem because the lock will be local to a CPU almost all the time
2038  * and have little contention except when we get to ENOSPC conditions.
2039  *
2040  * Basically, this lock becomes a barrier that enables us to lock out the fast
2041  * path while we do things like enabling and disabling counters and
2042  * synchronising the counters.
2043  *
2044  * Locking rules:
2045  *
2046  * 	1. m_sb_lock before picking up per-cpu locks
2047  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
2048  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
2049  * 	4. modifying per-cpu counters requires holding per-cpu lock
2050  * 	5. modifying global counters requires holding m_sb_lock
2051  *	6. enabling or disabling a counter requires holding the m_sb_lock
2052  *	   and _none_ of the per-cpu locks.
2053  *
2054  * Disabled counters are only ever re-enabled by a balance operation
2055  * that results in more free resources per CPU than a given threshold.
2056  * To ensure counters don't remain disabled, they are rebalanced when
2057  * the global resource goes above a higher threshold (i.e. some hysteresis
2058  * is present to prevent thrashing).
2059  */
2060 
2061 #ifdef CONFIG_HOTPLUG_CPU
2062 /*
2063  * hot-plug CPU notifier support.
2064  *
2065  * We need a notifier per filesystem as we need to be able to identify
2066  * the filesystem to balance the counters out. This is achieved by
2067  * having a notifier block embedded in the xfs_mount_t and doing pointer
2068  * magic to get the mount pointer from the notifier block address.
2069  */
2070 STATIC int
2071 xfs_icsb_cpu_notify(
2072 	struct notifier_block *nfb,
2073 	unsigned long action,
2074 	void *hcpu)
2075 {
2076 	xfs_icsb_cnts_t *cntp;
2077 	xfs_mount_t	*mp;
2078 
2079 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2080 	cntp = (xfs_icsb_cnts_t *)
2081 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2082 	switch (action) {
2083 	case CPU_UP_PREPARE:
2084 	case CPU_UP_PREPARE_FROZEN:
2085 		/* Easy Case - initialize the area and locks, and
2086 		 * then rebalance when online does everything else for us. */
2087 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2088 		break;
2089 	case CPU_ONLINE:
2090 	case CPU_ONLINE_FROZEN:
2091 		xfs_icsb_lock(mp);
2092 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2093 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2094 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2095 		xfs_icsb_unlock(mp);
2096 		break;
2097 	case CPU_DEAD:
2098 	case CPU_DEAD_FROZEN:
2099 		/* Disable all the counters, then fold the dead cpu's
2100 		 * count into the total on the global superblock and
2101 		 * re-enable the counters. */
2102 		xfs_icsb_lock(mp);
2103 		spin_lock(&mp->m_sb_lock);
2104 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2105 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2106 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2107 
2108 		mp->m_sb.sb_icount += cntp->icsb_icount;
2109 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2110 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2111 
2112 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2113 
2114 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2115 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2116 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2117 		spin_unlock(&mp->m_sb_lock);
2118 		xfs_icsb_unlock(mp);
2119 		break;
2120 	}
2121 
2122 	return NOTIFY_OK;
2123 }
2124 #endif /* CONFIG_HOTPLUG_CPU */
2125 
2126 int
2127 xfs_icsb_init_counters(
2128 	xfs_mount_t	*mp)
2129 {
2130 	xfs_icsb_cnts_t *cntp;
2131 	int		i;
2132 
2133 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2134 	if (mp->m_sb_cnts == NULL)
2135 		return -ENOMEM;
2136 
2137 #ifdef CONFIG_HOTPLUG_CPU
2138 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2139 	mp->m_icsb_notifier.priority = 0;
2140 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2141 #endif /* CONFIG_HOTPLUG_CPU */
2142 
2143 	for_each_online_cpu(i) {
2144 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2145 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2146 	}
2147 
2148 	mutex_init(&mp->m_icsb_mutex);
2149 
2150 	/*
2151 	 * start with all counters disabled so that the
2152 	 * initial balance kicks us off correctly
2153 	 */
2154 	mp->m_icsb_counters = -1;
2155 	return 0;
2156 }
2157 
2158 void
2159 xfs_icsb_reinit_counters(
2160 	xfs_mount_t	*mp)
2161 {
2162 	xfs_icsb_lock(mp);
2163 	/*
2164 	 * start with all counters disabled so that the
2165 	 * initial balance kicks us off correctly
2166 	 */
2167 	mp->m_icsb_counters = -1;
2168 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2169 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2170 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2171 	xfs_icsb_unlock(mp);
2172 }
2173 
2174 void
2175 xfs_icsb_destroy_counters(
2176 	xfs_mount_t	*mp)
2177 {
2178 	if (mp->m_sb_cnts) {
2179 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2180 		free_percpu(mp->m_sb_cnts);
2181 	}
2182 	mutex_destroy(&mp->m_icsb_mutex);
2183 }
2184 
2185 STATIC void
2186 xfs_icsb_lock_cntr(
2187 	xfs_icsb_cnts_t	*icsbp)
2188 {
2189 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2190 		ndelay(1000);
2191 	}
2192 }
2193 
2194 STATIC void
2195 xfs_icsb_unlock_cntr(
2196 	xfs_icsb_cnts_t	*icsbp)
2197 {
2198 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2199 }
2200 
2201 
2202 STATIC void
2203 xfs_icsb_lock_all_counters(
2204 	xfs_mount_t	*mp)
2205 {
2206 	xfs_icsb_cnts_t *cntp;
2207 	int		i;
2208 
2209 	for_each_online_cpu(i) {
2210 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2211 		xfs_icsb_lock_cntr(cntp);
2212 	}
2213 }
2214 
2215 STATIC void
2216 xfs_icsb_unlock_all_counters(
2217 	xfs_mount_t	*mp)
2218 {
2219 	xfs_icsb_cnts_t *cntp;
2220 	int		i;
2221 
2222 	for_each_online_cpu(i) {
2223 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2224 		xfs_icsb_unlock_cntr(cntp);
2225 	}
2226 }
2227 
2228 STATIC void
2229 xfs_icsb_count(
2230 	xfs_mount_t	*mp,
2231 	xfs_icsb_cnts_t	*cnt,
2232 	int		flags)
2233 {
2234 	xfs_icsb_cnts_t *cntp;
2235 	int		i;
2236 
2237 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2238 
2239 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2240 		xfs_icsb_lock_all_counters(mp);
2241 
2242 	for_each_online_cpu(i) {
2243 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2244 		cnt->icsb_icount += cntp->icsb_icount;
2245 		cnt->icsb_ifree += cntp->icsb_ifree;
2246 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2247 	}
2248 
2249 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2250 		xfs_icsb_unlock_all_counters(mp);
2251 }
2252 
2253 STATIC int
2254 xfs_icsb_counter_disabled(
2255 	xfs_mount_t	*mp,
2256 	xfs_sb_field_t	field)
2257 {
2258 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2259 	return test_bit(field, &mp->m_icsb_counters);
2260 }
2261 
2262 STATIC void
2263 xfs_icsb_disable_counter(
2264 	xfs_mount_t	*mp,
2265 	xfs_sb_field_t	field)
2266 {
2267 	xfs_icsb_cnts_t	cnt;
2268 
2269 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2270 
2271 	/*
2272 	 * If we are already disabled, then there is nothing to do
2273 	 * here. We check before locking all the counters to avoid
2274 	 * the expensive lock operation when being called in the
2275 	 * slow path and the counter is already disabled. This is
2276 	 * safe because the only time we set or clear this state is under
2277 	 * the m_icsb_mutex.
2278 	 */
2279 	if (xfs_icsb_counter_disabled(mp, field))
2280 		return;
2281 
2282 	xfs_icsb_lock_all_counters(mp);
2283 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2284 		/* drain back to superblock */
2285 
2286 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2287 		switch(field) {
2288 		case XFS_SBS_ICOUNT:
2289 			mp->m_sb.sb_icount = cnt.icsb_icount;
2290 			break;
2291 		case XFS_SBS_IFREE:
2292 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2293 			break;
2294 		case XFS_SBS_FDBLOCKS:
2295 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2296 			break;
2297 		default:
2298 			BUG();
2299 		}
2300 	}
2301 
2302 	xfs_icsb_unlock_all_counters(mp);
2303 }
2304 
2305 STATIC void
2306 xfs_icsb_enable_counter(
2307 	xfs_mount_t	*mp,
2308 	xfs_sb_field_t	field,
2309 	uint64_t	count,
2310 	uint64_t	resid)
2311 {
2312 	xfs_icsb_cnts_t	*cntp;
2313 	int		i;
2314 
2315 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2316 
2317 	xfs_icsb_lock_all_counters(mp);
2318 	for_each_online_cpu(i) {
2319 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2320 		switch (field) {
2321 		case XFS_SBS_ICOUNT:
2322 			cntp->icsb_icount = count + resid;
2323 			break;
2324 		case XFS_SBS_IFREE:
2325 			cntp->icsb_ifree = count + resid;
2326 			break;
2327 		case XFS_SBS_FDBLOCKS:
2328 			cntp->icsb_fdblocks = count + resid;
2329 			break;
2330 		default:
2331 			BUG();
2332 			break;
2333 		}
2334 		resid = 0;
2335 	}
2336 	clear_bit(field, &mp->m_icsb_counters);
2337 	xfs_icsb_unlock_all_counters(mp);
2338 }
2339 
2340 void
2341 xfs_icsb_sync_counters_locked(
2342 	xfs_mount_t	*mp,
2343 	int		flags)
2344 {
2345 	xfs_icsb_cnts_t	cnt;
2346 
2347 	xfs_icsb_count(mp, &cnt, flags);
2348 
2349 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2350 		mp->m_sb.sb_icount = cnt.icsb_icount;
2351 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2352 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2353 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2354 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2355 }
2356 
2357 /*
2358  * Accurate update of per-cpu counters to incore superblock
2359  */
2360 void
2361 xfs_icsb_sync_counters(
2362 	xfs_mount_t	*mp,
2363 	int		flags)
2364 {
2365 	spin_lock(&mp->m_sb_lock);
2366 	xfs_icsb_sync_counters_locked(mp, flags);
2367 	spin_unlock(&mp->m_sb_lock);
2368 }
2369 
2370 /*
2371  * Balance and enable/disable counters as necessary.
2372  *
2373  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2374  * chosen to be the same number as single on disk allocation chunk per CPU, and
2375  * free blocks is something far enough zero that we aren't going thrash when we
2376  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2377  * prevent looping endlessly when xfs_alloc_space asks for more than will
2378  * be distributed to a single CPU but each CPU has enough blocks to be
2379  * reenabled.
2380  *
2381  * Note that we can be called when counters are already disabled.
2382  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2383  * prevent locking every per-cpu counter needlessly.
2384  */
2385 
2386 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2387 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2388 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2389 STATIC void
2390 xfs_icsb_balance_counter_locked(
2391 	xfs_mount_t	*mp,
2392 	xfs_sb_field_t  field,
2393 	int		min_per_cpu)
2394 {
2395 	uint64_t	count, resid;
2396 	int		weight = num_online_cpus();
2397 	uint64_t	min = (uint64_t)min_per_cpu;
2398 
2399 	/* disable counter and sync counter */
2400 	xfs_icsb_disable_counter(mp, field);
2401 
2402 	/* update counters  - first CPU gets residual*/
2403 	switch (field) {
2404 	case XFS_SBS_ICOUNT:
2405 		count = mp->m_sb.sb_icount;
2406 		resid = do_div(count, weight);
2407 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2408 			return;
2409 		break;
2410 	case XFS_SBS_IFREE:
2411 		count = mp->m_sb.sb_ifree;
2412 		resid = do_div(count, weight);
2413 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2414 			return;
2415 		break;
2416 	case XFS_SBS_FDBLOCKS:
2417 		count = mp->m_sb.sb_fdblocks;
2418 		resid = do_div(count, weight);
2419 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2420 			return;
2421 		break;
2422 	default:
2423 		BUG();
2424 		count = resid = 0;	/* quiet, gcc */
2425 		break;
2426 	}
2427 
2428 	xfs_icsb_enable_counter(mp, field, count, resid);
2429 }
2430 
2431 STATIC void
2432 xfs_icsb_balance_counter(
2433 	xfs_mount_t	*mp,
2434 	xfs_sb_field_t  fields,
2435 	int		min_per_cpu)
2436 {
2437 	spin_lock(&mp->m_sb_lock);
2438 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2439 	spin_unlock(&mp->m_sb_lock);
2440 }
2441 
2442 int
2443 xfs_icsb_modify_counters(
2444 	xfs_mount_t	*mp,
2445 	xfs_sb_field_t	field,
2446 	int64_t		delta,
2447 	int		rsvd)
2448 {
2449 	xfs_icsb_cnts_t	*icsbp;
2450 	long long	lcounter;	/* long counter for 64 bit fields */
2451 	int		ret = 0;
2452 
2453 	might_sleep();
2454 again:
2455 	preempt_disable();
2456 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2457 
2458 	/*
2459 	 * if the counter is disabled, go to slow path
2460 	 */
2461 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2462 		goto slow_path;
2463 	xfs_icsb_lock_cntr(icsbp);
2464 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2465 		xfs_icsb_unlock_cntr(icsbp);
2466 		goto slow_path;
2467 	}
2468 
2469 	switch (field) {
2470 	case XFS_SBS_ICOUNT:
2471 		lcounter = icsbp->icsb_icount;
2472 		lcounter += delta;
2473 		if (unlikely(lcounter < 0))
2474 			goto balance_counter;
2475 		icsbp->icsb_icount = lcounter;
2476 		break;
2477 
2478 	case XFS_SBS_IFREE:
2479 		lcounter = icsbp->icsb_ifree;
2480 		lcounter += delta;
2481 		if (unlikely(lcounter < 0))
2482 			goto balance_counter;
2483 		icsbp->icsb_ifree = lcounter;
2484 		break;
2485 
2486 	case XFS_SBS_FDBLOCKS:
2487 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2488 
2489 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2490 		lcounter += delta;
2491 		if (unlikely(lcounter < 0))
2492 			goto balance_counter;
2493 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2494 		break;
2495 	default:
2496 		BUG();
2497 		break;
2498 	}
2499 	xfs_icsb_unlock_cntr(icsbp);
2500 	preempt_enable();
2501 	return 0;
2502 
2503 slow_path:
2504 	preempt_enable();
2505 
2506 	/*
2507 	 * serialise with a mutex so we don't burn lots of cpu on
2508 	 * the superblock lock. We still need to hold the superblock
2509 	 * lock, however, when we modify the global structures.
2510 	 */
2511 	xfs_icsb_lock(mp);
2512 
2513 	/*
2514 	 * Now running atomically.
2515 	 *
2516 	 * If the counter is enabled, someone has beaten us to rebalancing.
2517 	 * Drop the lock and try again in the fast path....
2518 	 */
2519 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2520 		xfs_icsb_unlock(mp);
2521 		goto again;
2522 	}
2523 
2524 	/*
2525 	 * The counter is currently disabled. Because we are
2526 	 * running atomically here, we know a rebalance cannot
2527 	 * be in progress. Hence we can go straight to operating
2528 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2529 	 * here even though we need to get the m_sb_lock. Doing so
2530 	 * will cause us to re-enter this function and deadlock.
2531 	 * Hence we get the m_sb_lock ourselves and then call
2532 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2533 	 * directly on the global counters.
2534 	 */
2535 	spin_lock(&mp->m_sb_lock);
2536 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2537 	spin_unlock(&mp->m_sb_lock);
2538 
2539 	/*
2540 	 * Now that we've modified the global superblock, we
2541 	 * may be able to re-enable the distributed counters
2542 	 * (e.g. lots of space just got freed). After that
2543 	 * we are done.
2544 	 */
2545 	if (ret != ENOSPC)
2546 		xfs_icsb_balance_counter(mp, field, 0);
2547 	xfs_icsb_unlock(mp);
2548 	return ret;
2549 
2550 balance_counter:
2551 	xfs_icsb_unlock_cntr(icsbp);
2552 	preempt_enable();
2553 
2554 	/*
2555 	 * We may have multiple threads here if multiple per-cpu
2556 	 * counters run dry at the same time. This will mean we can
2557 	 * do more balances than strictly necessary but it is not
2558 	 * the common slowpath case.
2559 	 */
2560 	xfs_icsb_lock(mp);
2561 
2562 	/*
2563 	 * running atomically.
2564 	 *
2565 	 * This will leave the counter in the correct state for future
2566 	 * accesses. After the rebalance, we simply try again and our retry
2567 	 * will either succeed through the fast path or slow path without
2568 	 * another balance operation being required.
2569 	 */
2570 	xfs_icsb_balance_counter(mp, field, delta);
2571 	xfs_icsb_unlock(mp);
2572 	goto again;
2573 }
2574 
2575 #endif
2576