1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 #include "xfs_trace.h" 48 49 50 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 51 52 53 #ifdef HAVE_PERCPU_SB 54 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 55 int); 56 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 57 int); 58 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 59 int64_t, int); 60 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 61 62 #else 63 64 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 65 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 66 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 67 68 #endif 69 70 static const struct { 71 short offset; 72 short type; /* 0 = integer 73 * 1 = binary / string (no translation) 74 */ 75 } xfs_sb_info[] = { 76 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 77 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 78 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 79 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_rextents), 0 }, 81 { offsetof(xfs_sb_t, sb_uuid), 1 }, 82 { offsetof(xfs_sb_t, sb_logstart), 0 }, 83 { offsetof(xfs_sb_t, sb_rootino), 0 }, 84 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 85 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 86 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 87 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 88 { offsetof(xfs_sb_t, sb_agcount), 0 }, 89 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 90 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 91 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 92 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 93 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 94 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 95 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 96 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 97 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 98 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 99 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 100 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 101 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 102 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 103 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 104 { offsetof(xfs_sb_t, sb_icount), 0 }, 105 { offsetof(xfs_sb_t, sb_ifree), 0 }, 106 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 107 { offsetof(xfs_sb_t, sb_frextents), 0 }, 108 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 109 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 110 { offsetof(xfs_sb_t, sb_qflags), 0 }, 111 { offsetof(xfs_sb_t, sb_flags), 0 }, 112 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 113 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 114 { offsetof(xfs_sb_t, sb_unit), 0 }, 115 { offsetof(xfs_sb_t, sb_width), 0 }, 116 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 117 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 118 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 119 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 120 { offsetof(xfs_sb_t, sb_features2), 0 }, 121 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 122 { sizeof(xfs_sb_t), 0 } 123 }; 124 125 static DEFINE_MUTEX(xfs_uuid_table_mutex); 126 static int xfs_uuid_table_size; 127 static uuid_t *xfs_uuid_table; 128 129 /* 130 * See if the UUID is unique among mounted XFS filesystems. 131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 132 */ 133 STATIC int 134 xfs_uuid_mount( 135 struct xfs_mount *mp) 136 { 137 uuid_t *uuid = &mp->m_sb.sb_uuid; 138 int hole, i; 139 140 if (mp->m_flags & XFS_MOUNT_NOUUID) 141 return 0; 142 143 if (uuid_is_nil(uuid)) { 144 cmn_err(CE_WARN, 145 "XFS: Filesystem %s has nil UUID - can't mount", 146 mp->m_fsname); 147 return XFS_ERROR(EINVAL); 148 } 149 150 mutex_lock(&xfs_uuid_table_mutex); 151 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 152 if (uuid_is_nil(&xfs_uuid_table[i])) { 153 hole = i; 154 continue; 155 } 156 if (uuid_equal(uuid, &xfs_uuid_table[i])) 157 goto out_duplicate; 158 } 159 160 if (hole < 0) { 161 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 162 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 163 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 164 KM_SLEEP); 165 hole = xfs_uuid_table_size++; 166 } 167 xfs_uuid_table[hole] = *uuid; 168 mutex_unlock(&xfs_uuid_table_mutex); 169 170 return 0; 171 172 out_duplicate: 173 mutex_unlock(&xfs_uuid_table_mutex); 174 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", 175 mp->m_fsname); 176 return XFS_ERROR(EINVAL); 177 } 178 179 STATIC void 180 xfs_uuid_unmount( 181 struct xfs_mount *mp) 182 { 183 uuid_t *uuid = &mp->m_sb.sb_uuid; 184 int i; 185 186 if (mp->m_flags & XFS_MOUNT_NOUUID) 187 return; 188 189 mutex_lock(&xfs_uuid_table_mutex); 190 for (i = 0; i < xfs_uuid_table_size; i++) { 191 if (uuid_is_nil(&xfs_uuid_table[i])) 192 continue; 193 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 194 continue; 195 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 196 break; 197 } 198 ASSERT(i < xfs_uuid_table_size); 199 mutex_unlock(&xfs_uuid_table_mutex); 200 } 201 202 203 /* 204 * Free up the resources associated with a mount structure. Assume that 205 * the structure was initially zeroed, so we can tell which fields got 206 * initialized. 207 */ 208 STATIC void 209 xfs_free_perag( 210 xfs_mount_t *mp) 211 { 212 if (mp->m_perag) { 213 int agno; 214 215 for (agno = 0; agno < mp->m_maxagi; agno++) 216 if (mp->m_perag[agno].pagb_list) 217 kmem_free(mp->m_perag[agno].pagb_list); 218 kmem_free(mp->m_perag); 219 } 220 } 221 222 /* 223 * Check size of device based on the (data/realtime) block count. 224 * Note: this check is used by the growfs code as well as mount. 225 */ 226 int 227 xfs_sb_validate_fsb_count( 228 xfs_sb_t *sbp, 229 __uint64_t nblocks) 230 { 231 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 232 ASSERT(sbp->sb_blocklog >= BBSHIFT); 233 234 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 235 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 236 return E2BIG; 237 #else /* Limited by UINT_MAX of sectors */ 238 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 239 return E2BIG; 240 #endif 241 return 0; 242 } 243 244 /* 245 * Check the validity of the SB found. 246 */ 247 STATIC int 248 xfs_mount_validate_sb( 249 xfs_mount_t *mp, 250 xfs_sb_t *sbp, 251 int flags) 252 { 253 /* 254 * If the log device and data device have the 255 * same device number, the log is internal. 256 * Consequently, the sb_logstart should be non-zero. If 257 * we have a zero sb_logstart in this case, we may be trying to mount 258 * a volume filesystem in a non-volume manner. 259 */ 260 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 261 xfs_fs_mount_cmn_err(flags, "bad magic number"); 262 return XFS_ERROR(EWRONGFS); 263 } 264 265 if (!xfs_sb_good_version(sbp)) { 266 xfs_fs_mount_cmn_err(flags, "bad version"); 267 return XFS_ERROR(EWRONGFS); 268 } 269 270 if (unlikely( 271 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 272 xfs_fs_mount_cmn_err(flags, 273 "filesystem is marked as having an external log; " 274 "specify logdev on the\nmount command line."); 275 return XFS_ERROR(EINVAL); 276 } 277 278 if (unlikely( 279 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 280 xfs_fs_mount_cmn_err(flags, 281 "filesystem is marked as having an internal log; " 282 "do not specify logdev on\nthe mount command line."); 283 return XFS_ERROR(EINVAL); 284 } 285 286 /* 287 * More sanity checking. These were stolen directly from 288 * xfs_repair. 289 */ 290 if (unlikely( 291 sbp->sb_agcount <= 0 || 292 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 293 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 294 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 295 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 296 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 297 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 298 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 299 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 300 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 301 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 302 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 303 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 304 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 305 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 306 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 307 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 308 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 309 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 310 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 311 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 312 return XFS_ERROR(EFSCORRUPTED); 313 } 314 315 /* 316 * Sanity check AG count, size fields against data size field 317 */ 318 if (unlikely( 319 sbp->sb_dblocks == 0 || 320 sbp->sb_dblocks > 321 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 322 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 323 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 324 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 325 return XFS_ERROR(EFSCORRUPTED); 326 } 327 328 /* 329 * Until this is fixed only page-sized or smaller data blocks work. 330 */ 331 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 332 xfs_fs_mount_cmn_err(flags, 333 "file system with blocksize %d bytes", 334 sbp->sb_blocksize); 335 xfs_fs_mount_cmn_err(flags, 336 "only pagesize (%ld) or less will currently work.", 337 PAGE_SIZE); 338 return XFS_ERROR(ENOSYS); 339 } 340 341 /* 342 * Currently only very few inode sizes are supported. 343 */ 344 switch (sbp->sb_inodesize) { 345 case 256: 346 case 512: 347 case 1024: 348 case 2048: 349 break; 350 default: 351 xfs_fs_mount_cmn_err(flags, 352 "inode size of %d bytes not supported", 353 sbp->sb_inodesize); 354 return XFS_ERROR(ENOSYS); 355 } 356 357 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 358 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 359 xfs_fs_mount_cmn_err(flags, 360 "file system too large to be mounted on this system."); 361 return XFS_ERROR(E2BIG); 362 } 363 364 if (unlikely(sbp->sb_inprogress)) { 365 xfs_fs_mount_cmn_err(flags, "file system busy"); 366 return XFS_ERROR(EFSCORRUPTED); 367 } 368 369 /* 370 * Version 1 directory format has never worked on Linux. 371 */ 372 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 373 xfs_fs_mount_cmn_err(flags, 374 "file system using version 1 directory format"); 375 return XFS_ERROR(ENOSYS); 376 } 377 378 return 0; 379 } 380 381 STATIC void 382 xfs_initialize_perag_icache( 383 xfs_perag_t *pag) 384 { 385 if (!pag->pag_ici_init) { 386 rwlock_init(&pag->pag_ici_lock); 387 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 388 pag->pag_ici_init = 1; 389 } 390 } 391 392 xfs_agnumber_t 393 xfs_initialize_perag( 394 xfs_mount_t *mp, 395 xfs_agnumber_t agcount) 396 { 397 xfs_agnumber_t index, max_metadata; 398 xfs_perag_t *pag; 399 xfs_agino_t agino; 400 xfs_ino_t ino; 401 xfs_sb_t *sbp = &mp->m_sb; 402 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 403 404 /* Check to see if the filesystem can overflow 32 bit inodes */ 405 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 406 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 407 408 /* Clear the mount flag if no inode can overflow 32 bits 409 * on this filesystem, or if specifically requested.. 410 */ 411 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 412 mp->m_flags |= XFS_MOUNT_32BITINODES; 413 } else { 414 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 415 } 416 417 /* If we can overflow then setup the ag headers accordingly */ 418 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 419 /* Calculate how much should be reserved for inodes to 420 * meet the max inode percentage. 421 */ 422 if (mp->m_maxicount) { 423 __uint64_t icount; 424 425 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 426 do_div(icount, 100); 427 icount += sbp->sb_agblocks - 1; 428 do_div(icount, sbp->sb_agblocks); 429 max_metadata = icount; 430 } else { 431 max_metadata = agcount; 432 } 433 for (index = 0; index < agcount; index++) { 434 ino = XFS_AGINO_TO_INO(mp, index, agino); 435 if (ino > max_inum) { 436 index++; 437 break; 438 } 439 440 /* This ag is preferred for inodes */ 441 pag = &mp->m_perag[index]; 442 pag->pagi_inodeok = 1; 443 if (index < max_metadata) 444 pag->pagf_metadata = 1; 445 xfs_initialize_perag_icache(pag); 446 } 447 } else { 448 /* Setup default behavior for smaller filesystems */ 449 for (index = 0; index < agcount; index++) { 450 pag = &mp->m_perag[index]; 451 pag->pagi_inodeok = 1; 452 xfs_initialize_perag_icache(pag); 453 } 454 } 455 return index; 456 } 457 458 void 459 xfs_sb_from_disk( 460 xfs_sb_t *to, 461 xfs_dsb_t *from) 462 { 463 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 464 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 465 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 466 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 467 to->sb_rextents = be64_to_cpu(from->sb_rextents); 468 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 469 to->sb_logstart = be64_to_cpu(from->sb_logstart); 470 to->sb_rootino = be64_to_cpu(from->sb_rootino); 471 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 472 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 473 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 474 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 475 to->sb_agcount = be32_to_cpu(from->sb_agcount); 476 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 477 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 478 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 479 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 480 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 481 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 482 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 483 to->sb_blocklog = from->sb_blocklog; 484 to->sb_sectlog = from->sb_sectlog; 485 to->sb_inodelog = from->sb_inodelog; 486 to->sb_inopblog = from->sb_inopblog; 487 to->sb_agblklog = from->sb_agblklog; 488 to->sb_rextslog = from->sb_rextslog; 489 to->sb_inprogress = from->sb_inprogress; 490 to->sb_imax_pct = from->sb_imax_pct; 491 to->sb_icount = be64_to_cpu(from->sb_icount); 492 to->sb_ifree = be64_to_cpu(from->sb_ifree); 493 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 494 to->sb_frextents = be64_to_cpu(from->sb_frextents); 495 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 496 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 497 to->sb_qflags = be16_to_cpu(from->sb_qflags); 498 to->sb_flags = from->sb_flags; 499 to->sb_shared_vn = from->sb_shared_vn; 500 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 501 to->sb_unit = be32_to_cpu(from->sb_unit); 502 to->sb_width = be32_to_cpu(from->sb_width); 503 to->sb_dirblklog = from->sb_dirblklog; 504 to->sb_logsectlog = from->sb_logsectlog; 505 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 506 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 507 to->sb_features2 = be32_to_cpu(from->sb_features2); 508 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 509 } 510 511 /* 512 * Copy in core superblock to ondisk one. 513 * 514 * The fields argument is mask of superblock fields to copy. 515 */ 516 void 517 xfs_sb_to_disk( 518 xfs_dsb_t *to, 519 xfs_sb_t *from, 520 __int64_t fields) 521 { 522 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 523 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 524 xfs_sb_field_t f; 525 int first; 526 int size; 527 528 ASSERT(fields); 529 if (!fields) 530 return; 531 532 while (fields) { 533 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 534 first = xfs_sb_info[f].offset; 535 size = xfs_sb_info[f + 1].offset - first; 536 537 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 538 539 if (size == 1 || xfs_sb_info[f].type == 1) { 540 memcpy(to_ptr + first, from_ptr + first, size); 541 } else { 542 switch (size) { 543 case 2: 544 *(__be16 *)(to_ptr + first) = 545 cpu_to_be16(*(__u16 *)(from_ptr + first)); 546 break; 547 case 4: 548 *(__be32 *)(to_ptr + first) = 549 cpu_to_be32(*(__u32 *)(from_ptr + first)); 550 break; 551 case 8: 552 *(__be64 *)(to_ptr + first) = 553 cpu_to_be64(*(__u64 *)(from_ptr + first)); 554 break; 555 default: 556 ASSERT(0); 557 } 558 } 559 560 fields &= ~(1LL << f); 561 } 562 } 563 564 /* 565 * xfs_readsb 566 * 567 * Does the initial read of the superblock. 568 */ 569 int 570 xfs_readsb(xfs_mount_t *mp, int flags) 571 { 572 unsigned int sector_size; 573 unsigned int extra_flags; 574 xfs_buf_t *bp; 575 int error; 576 577 ASSERT(mp->m_sb_bp == NULL); 578 ASSERT(mp->m_ddev_targp != NULL); 579 580 /* 581 * Allocate a (locked) buffer to hold the superblock. 582 * This will be kept around at all times to optimize 583 * access to the superblock. 584 */ 585 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 586 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 587 588 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, BTOBB(sector_size), 589 extra_flags); 590 if (!bp || XFS_BUF_ISERROR(bp)) { 591 xfs_fs_mount_cmn_err(flags, "SB read failed"); 592 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 593 goto fail; 594 } 595 ASSERT(XFS_BUF_ISBUSY(bp)); 596 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 597 598 /* 599 * Initialize the mount structure from the superblock. 600 * But first do some basic consistency checking. 601 */ 602 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 603 604 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 605 if (error) { 606 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 607 goto fail; 608 } 609 610 /* 611 * We must be able to do sector-sized and sector-aligned IO. 612 */ 613 if (sector_size > mp->m_sb.sb_sectsize) { 614 xfs_fs_mount_cmn_err(flags, 615 "device supports only %u byte sectors (not %u)", 616 sector_size, mp->m_sb.sb_sectsize); 617 error = ENOSYS; 618 goto fail; 619 } 620 621 /* 622 * If device sector size is smaller than the superblock size, 623 * re-read the superblock so the buffer is correctly sized. 624 */ 625 if (sector_size < mp->m_sb.sb_sectsize) { 626 XFS_BUF_UNMANAGE(bp); 627 xfs_buf_relse(bp); 628 sector_size = mp->m_sb.sb_sectsize; 629 bp = xfs_buf_read(mp->m_ddev_targp, XFS_SB_DADDR, 630 BTOBB(sector_size), extra_flags); 631 if (!bp || XFS_BUF_ISERROR(bp)) { 632 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 633 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 634 goto fail; 635 } 636 ASSERT(XFS_BUF_ISBUSY(bp)); 637 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 638 } 639 640 /* Initialize per-cpu counters */ 641 xfs_icsb_reinit_counters(mp); 642 643 mp->m_sb_bp = bp; 644 xfs_buf_relse(bp); 645 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 646 return 0; 647 648 fail: 649 if (bp) { 650 XFS_BUF_UNMANAGE(bp); 651 xfs_buf_relse(bp); 652 } 653 return error; 654 } 655 656 657 /* 658 * xfs_mount_common 659 * 660 * Mount initialization code establishing various mount 661 * fields from the superblock associated with the given 662 * mount structure 663 */ 664 STATIC void 665 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 666 { 667 mp->m_agfrotor = mp->m_agirotor = 0; 668 spin_lock_init(&mp->m_agirotor_lock); 669 mp->m_maxagi = mp->m_sb.sb_agcount; 670 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 671 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 672 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 673 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 674 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 675 mp->m_blockmask = sbp->sb_blocksize - 1; 676 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 677 mp->m_blockwmask = mp->m_blockwsize - 1; 678 679 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 680 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 681 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 682 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 683 684 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 685 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 686 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 687 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 688 689 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 690 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 691 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 692 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 693 694 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 695 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 696 sbp->sb_inopblock); 697 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 698 } 699 700 /* 701 * xfs_initialize_perag_data 702 * 703 * Read in each per-ag structure so we can count up the number of 704 * allocated inodes, free inodes and used filesystem blocks as this 705 * information is no longer persistent in the superblock. Once we have 706 * this information, write it into the in-core superblock structure. 707 */ 708 STATIC int 709 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 710 { 711 xfs_agnumber_t index; 712 xfs_perag_t *pag; 713 xfs_sb_t *sbp = &mp->m_sb; 714 uint64_t ifree = 0; 715 uint64_t ialloc = 0; 716 uint64_t bfree = 0; 717 uint64_t bfreelst = 0; 718 uint64_t btree = 0; 719 int error; 720 721 for (index = 0; index < agcount; index++) { 722 /* 723 * read the agf, then the agi. This gets us 724 * all the information we need and populates the 725 * per-ag structures for us. 726 */ 727 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 728 if (error) 729 return error; 730 731 error = xfs_ialloc_pagi_init(mp, NULL, index); 732 if (error) 733 return error; 734 pag = &mp->m_perag[index]; 735 ifree += pag->pagi_freecount; 736 ialloc += pag->pagi_count; 737 bfree += pag->pagf_freeblks; 738 bfreelst += pag->pagf_flcount; 739 btree += pag->pagf_btreeblks; 740 } 741 /* 742 * Overwrite incore superblock counters with just-read data 743 */ 744 spin_lock(&mp->m_sb_lock); 745 sbp->sb_ifree = ifree; 746 sbp->sb_icount = ialloc; 747 sbp->sb_fdblocks = bfree + bfreelst + btree; 748 spin_unlock(&mp->m_sb_lock); 749 750 /* Fixup the per-cpu counters as well. */ 751 xfs_icsb_reinit_counters(mp); 752 753 return 0; 754 } 755 756 /* 757 * Update alignment values based on mount options and sb values 758 */ 759 STATIC int 760 xfs_update_alignment(xfs_mount_t *mp) 761 { 762 xfs_sb_t *sbp = &(mp->m_sb); 763 764 if (mp->m_dalign) { 765 /* 766 * If stripe unit and stripe width are not multiples 767 * of the fs blocksize turn off alignment. 768 */ 769 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 770 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 771 if (mp->m_flags & XFS_MOUNT_RETERR) { 772 cmn_err(CE_WARN, 773 "XFS: alignment check 1 failed"); 774 return XFS_ERROR(EINVAL); 775 } 776 mp->m_dalign = mp->m_swidth = 0; 777 } else { 778 /* 779 * Convert the stripe unit and width to FSBs. 780 */ 781 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 782 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 783 if (mp->m_flags & XFS_MOUNT_RETERR) { 784 return XFS_ERROR(EINVAL); 785 } 786 xfs_fs_cmn_err(CE_WARN, mp, 787 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 788 mp->m_dalign, mp->m_swidth, 789 sbp->sb_agblocks); 790 791 mp->m_dalign = 0; 792 mp->m_swidth = 0; 793 } else if (mp->m_dalign) { 794 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 795 } else { 796 if (mp->m_flags & XFS_MOUNT_RETERR) { 797 xfs_fs_cmn_err(CE_WARN, mp, 798 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 799 mp->m_dalign, 800 mp->m_blockmask +1); 801 return XFS_ERROR(EINVAL); 802 } 803 mp->m_swidth = 0; 804 } 805 } 806 807 /* 808 * Update superblock with new values 809 * and log changes 810 */ 811 if (xfs_sb_version_hasdalign(sbp)) { 812 if (sbp->sb_unit != mp->m_dalign) { 813 sbp->sb_unit = mp->m_dalign; 814 mp->m_update_flags |= XFS_SB_UNIT; 815 } 816 if (sbp->sb_width != mp->m_swidth) { 817 sbp->sb_width = mp->m_swidth; 818 mp->m_update_flags |= XFS_SB_WIDTH; 819 } 820 } 821 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 822 xfs_sb_version_hasdalign(&mp->m_sb)) { 823 mp->m_dalign = sbp->sb_unit; 824 mp->m_swidth = sbp->sb_width; 825 } 826 827 return 0; 828 } 829 830 /* 831 * Set the maximum inode count for this filesystem 832 */ 833 STATIC void 834 xfs_set_maxicount(xfs_mount_t *mp) 835 { 836 xfs_sb_t *sbp = &(mp->m_sb); 837 __uint64_t icount; 838 839 if (sbp->sb_imax_pct) { 840 /* 841 * Make sure the maximum inode count is a multiple 842 * of the units we allocate inodes in. 843 */ 844 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 845 do_div(icount, 100); 846 do_div(icount, mp->m_ialloc_blks); 847 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 848 sbp->sb_inopblog; 849 } else { 850 mp->m_maxicount = 0; 851 } 852 } 853 854 /* 855 * Set the default minimum read and write sizes unless 856 * already specified in a mount option. 857 * We use smaller I/O sizes when the file system 858 * is being used for NFS service (wsync mount option). 859 */ 860 STATIC void 861 xfs_set_rw_sizes(xfs_mount_t *mp) 862 { 863 xfs_sb_t *sbp = &(mp->m_sb); 864 int readio_log, writeio_log; 865 866 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 867 if (mp->m_flags & XFS_MOUNT_WSYNC) { 868 readio_log = XFS_WSYNC_READIO_LOG; 869 writeio_log = XFS_WSYNC_WRITEIO_LOG; 870 } else { 871 readio_log = XFS_READIO_LOG_LARGE; 872 writeio_log = XFS_WRITEIO_LOG_LARGE; 873 } 874 } else { 875 readio_log = mp->m_readio_log; 876 writeio_log = mp->m_writeio_log; 877 } 878 879 if (sbp->sb_blocklog > readio_log) { 880 mp->m_readio_log = sbp->sb_blocklog; 881 } else { 882 mp->m_readio_log = readio_log; 883 } 884 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 885 if (sbp->sb_blocklog > writeio_log) { 886 mp->m_writeio_log = sbp->sb_blocklog; 887 } else { 888 mp->m_writeio_log = writeio_log; 889 } 890 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 891 } 892 893 /* 894 * Set whether we're using inode alignment. 895 */ 896 STATIC void 897 xfs_set_inoalignment(xfs_mount_t *mp) 898 { 899 if (xfs_sb_version_hasalign(&mp->m_sb) && 900 mp->m_sb.sb_inoalignmt >= 901 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 902 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 903 else 904 mp->m_inoalign_mask = 0; 905 /* 906 * If we are using stripe alignment, check whether 907 * the stripe unit is a multiple of the inode alignment 908 */ 909 if (mp->m_dalign && mp->m_inoalign_mask && 910 !(mp->m_dalign & mp->m_inoalign_mask)) 911 mp->m_sinoalign = mp->m_dalign; 912 else 913 mp->m_sinoalign = 0; 914 } 915 916 /* 917 * Check that the data (and log if separate) are an ok size. 918 */ 919 STATIC int 920 xfs_check_sizes(xfs_mount_t *mp) 921 { 922 xfs_buf_t *bp; 923 xfs_daddr_t d; 924 int error; 925 926 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 927 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 928 cmn_err(CE_WARN, "XFS: size check 1 failed"); 929 return XFS_ERROR(E2BIG); 930 } 931 error = xfs_read_buf(mp, mp->m_ddev_targp, 932 d - XFS_FSS_TO_BB(mp, 1), 933 XFS_FSS_TO_BB(mp, 1), 0, &bp); 934 if (!error) { 935 xfs_buf_relse(bp); 936 } else { 937 cmn_err(CE_WARN, "XFS: size check 2 failed"); 938 if (error == ENOSPC) 939 error = XFS_ERROR(E2BIG); 940 return error; 941 } 942 943 if (mp->m_logdev_targp != mp->m_ddev_targp) { 944 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 945 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 946 cmn_err(CE_WARN, "XFS: size check 3 failed"); 947 return XFS_ERROR(E2BIG); 948 } 949 error = xfs_read_buf(mp, mp->m_logdev_targp, 950 d - XFS_FSB_TO_BB(mp, 1), 951 XFS_FSB_TO_BB(mp, 1), 0, &bp); 952 if (!error) { 953 xfs_buf_relse(bp); 954 } else { 955 cmn_err(CE_WARN, "XFS: size check 3 failed"); 956 if (error == ENOSPC) 957 error = XFS_ERROR(E2BIG); 958 return error; 959 } 960 } 961 return 0; 962 } 963 964 /* 965 * Clear the quotaflags in memory and in the superblock. 966 */ 967 int 968 xfs_mount_reset_sbqflags( 969 struct xfs_mount *mp) 970 { 971 int error; 972 struct xfs_trans *tp; 973 974 mp->m_qflags = 0; 975 976 /* 977 * It is OK to look at sb_qflags here in mount path, 978 * without m_sb_lock. 979 */ 980 if (mp->m_sb.sb_qflags == 0) 981 return 0; 982 spin_lock(&mp->m_sb_lock); 983 mp->m_sb.sb_qflags = 0; 984 spin_unlock(&mp->m_sb_lock); 985 986 /* 987 * If the fs is readonly, let the incore superblock run 988 * with quotas off but don't flush the update out to disk 989 */ 990 if (mp->m_flags & XFS_MOUNT_RDONLY) 991 return 0; 992 993 #ifdef QUOTADEBUG 994 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes"); 995 #endif 996 997 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 998 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 999 XFS_DEFAULT_LOG_COUNT); 1000 if (error) { 1001 xfs_trans_cancel(tp, 0); 1002 xfs_fs_cmn_err(CE_ALERT, mp, 1003 "xfs_mount_reset_sbqflags: Superblock update failed!"); 1004 return error; 1005 } 1006 1007 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1008 return xfs_trans_commit(tp, 0); 1009 } 1010 1011 /* 1012 * This function does the following on an initial mount of a file system: 1013 * - reads the superblock from disk and init the mount struct 1014 * - if we're a 32-bit kernel, do a size check on the superblock 1015 * so we don't mount terabyte filesystems 1016 * - init mount struct realtime fields 1017 * - allocate inode hash table for fs 1018 * - init directory manager 1019 * - perform recovery and init the log manager 1020 */ 1021 int 1022 xfs_mountfs( 1023 xfs_mount_t *mp) 1024 { 1025 xfs_sb_t *sbp = &(mp->m_sb); 1026 xfs_inode_t *rip; 1027 __uint64_t resblks; 1028 uint quotamount = 0; 1029 uint quotaflags = 0; 1030 int error = 0; 1031 1032 xfs_mount_common(mp, sbp); 1033 1034 /* 1035 * Check for a mismatched features2 values. Older kernels 1036 * read & wrote into the wrong sb offset for sb_features2 1037 * on some platforms due to xfs_sb_t not being 64bit size aligned 1038 * when sb_features2 was added, which made older superblock 1039 * reading/writing routines swap it as a 64-bit value. 1040 * 1041 * For backwards compatibility, we make both slots equal. 1042 * 1043 * If we detect a mismatched field, we OR the set bits into the 1044 * existing features2 field in case it has already been modified; we 1045 * don't want to lose any features. We then update the bad location 1046 * with the ORed value so that older kernels will see any features2 1047 * flags, and mark the two fields as needing updates once the 1048 * transaction subsystem is online. 1049 */ 1050 if (xfs_sb_has_mismatched_features2(sbp)) { 1051 cmn_err(CE_WARN, 1052 "XFS: correcting sb_features alignment problem"); 1053 sbp->sb_features2 |= sbp->sb_bad_features2; 1054 sbp->sb_bad_features2 = sbp->sb_features2; 1055 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1056 1057 /* 1058 * Re-check for ATTR2 in case it was found in bad_features2 1059 * slot. 1060 */ 1061 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1062 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1063 mp->m_flags |= XFS_MOUNT_ATTR2; 1064 } 1065 1066 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1067 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1068 xfs_sb_version_removeattr2(&mp->m_sb); 1069 mp->m_update_flags |= XFS_SB_FEATURES2; 1070 1071 /* update sb_versionnum for the clearing of the morebits */ 1072 if (!sbp->sb_features2) 1073 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1074 } 1075 1076 /* 1077 * Check if sb_agblocks is aligned at stripe boundary 1078 * If sb_agblocks is NOT aligned turn off m_dalign since 1079 * allocator alignment is within an ag, therefore ag has 1080 * to be aligned at stripe boundary. 1081 */ 1082 error = xfs_update_alignment(mp); 1083 if (error) 1084 goto out; 1085 1086 xfs_alloc_compute_maxlevels(mp); 1087 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1088 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1089 xfs_ialloc_compute_maxlevels(mp); 1090 1091 xfs_set_maxicount(mp); 1092 1093 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1094 1095 error = xfs_uuid_mount(mp); 1096 if (error) 1097 goto out; 1098 1099 /* 1100 * Set the minimum read and write sizes 1101 */ 1102 xfs_set_rw_sizes(mp); 1103 1104 /* 1105 * Set the inode cluster size. 1106 * This may still be overridden by the file system 1107 * block size if it is larger than the chosen cluster size. 1108 */ 1109 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1110 1111 /* 1112 * Set inode alignment fields 1113 */ 1114 xfs_set_inoalignment(mp); 1115 1116 /* 1117 * Check that the data (and log if separate) are an ok size. 1118 */ 1119 error = xfs_check_sizes(mp); 1120 if (error) 1121 goto out_remove_uuid; 1122 1123 /* 1124 * Initialize realtime fields in the mount structure 1125 */ 1126 error = xfs_rtmount_init(mp); 1127 if (error) { 1128 cmn_err(CE_WARN, "XFS: RT mount failed"); 1129 goto out_remove_uuid; 1130 } 1131 1132 /* 1133 * Copies the low order bits of the timestamp and the randomly 1134 * set "sequence" number out of a UUID. 1135 */ 1136 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1137 1138 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1139 1140 xfs_dir_mount(mp); 1141 1142 /* 1143 * Initialize the attribute manager's entries. 1144 */ 1145 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1146 1147 /* 1148 * Initialize the precomputed transaction reservations values. 1149 */ 1150 xfs_trans_init(mp); 1151 1152 /* 1153 * Allocate and initialize the per-ag data. 1154 */ 1155 init_rwsem(&mp->m_peraglock); 1156 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), 1157 KM_MAYFAIL); 1158 if (!mp->m_perag) 1159 goto out_remove_uuid; 1160 1161 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1162 1163 if (!sbp->sb_logblocks) { 1164 cmn_err(CE_WARN, "XFS: no log defined"); 1165 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1166 error = XFS_ERROR(EFSCORRUPTED); 1167 goto out_free_perag; 1168 } 1169 1170 /* 1171 * log's mount-time initialization. Perform 1st part recovery if needed 1172 */ 1173 error = xfs_log_mount(mp, mp->m_logdev_targp, 1174 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1175 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1176 if (error) { 1177 cmn_err(CE_WARN, "XFS: log mount failed"); 1178 goto out_free_perag; 1179 } 1180 1181 /* 1182 * Now the log is mounted, we know if it was an unclean shutdown or 1183 * not. If it was, with the first phase of recovery has completed, we 1184 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1185 * but they are recovered transactionally in the second recovery phase 1186 * later. 1187 * 1188 * Hence we can safely re-initialise incore superblock counters from 1189 * the per-ag data. These may not be correct if the filesystem was not 1190 * cleanly unmounted, so we need to wait for recovery to finish before 1191 * doing this. 1192 * 1193 * If the filesystem was cleanly unmounted, then we can trust the 1194 * values in the superblock to be correct and we don't need to do 1195 * anything here. 1196 * 1197 * If we are currently making the filesystem, the initialisation will 1198 * fail as the perag data is in an undefined state. 1199 */ 1200 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1201 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1202 !mp->m_sb.sb_inprogress) { 1203 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1204 if (error) 1205 goto out_free_perag; 1206 } 1207 1208 /* 1209 * Get and sanity-check the root inode. 1210 * Save the pointer to it in the mount structure. 1211 */ 1212 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1213 if (error) { 1214 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1215 goto out_log_dealloc; 1216 } 1217 1218 ASSERT(rip != NULL); 1219 1220 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1221 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1222 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1223 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1224 (unsigned long long)rip->i_ino); 1225 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1226 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1227 mp); 1228 error = XFS_ERROR(EFSCORRUPTED); 1229 goto out_rele_rip; 1230 } 1231 mp->m_rootip = rip; /* save it */ 1232 1233 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1234 1235 /* 1236 * Initialize realtime inode pointers in the mount structure 1237 */ 1238 error = xfs_rtmount_inodes(mp); 1239 if (error) { 1240 /* 1241 * Free up the root inode. 1242 */ 1243 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1244 goto out_rele_rip; 1245 } 1246 1247 /* 1248 * If this is a read-only mount defer the superblock updates until 1249 * the next remount into writeable mode. Otherwise we would never 1250 * perform the update e.g. for the root filesystem. 1251 */ 1252 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1253 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1254 if (error) { 1255 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1256 goto out_rtunmount; 1257 } 1258 } 1259 1260 /* 1261 * Initialise the XFS quota management subsystem for this mount 1262 */ 1263 if (XFS_IS_QUOTA_RUNNING(mp)) { 1264 error = xfs_qm_newmount(mp, "amount, "aflags); 1265 if (error) 1266 goto out_rtunmount; 1267 } else { 1268 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1269 1270 /* 1271 * If a file system had quotas running earlier, but decided to 1272 * mount without -o uquota/pquota/gquota options, revoke the 1273 * quotachecked license. 1274 */ 1275 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1276 cmn_err(CE_NOTE, 1277 "XFS: resetting qflags for filesystem %s", 1278 mp->m_fsname); 1279 1280 error = xfs_mount_reset_sbqflags(mp); 1281 if (error) 1282 return error; 1283 } 1284 } 1285 1286 /* 1287 * Finish recovering the file system. This part needed to be 1288 * delayed until after the root and real-time bitmap inodes 1289 * were consistently read in. 1290 */ 1291 error = xfs_log_mount_finish(mp); 1292 if (error) { 1293 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1294 goto out_rtunmount; 1295 } 1296 1297 /* 1298 * Complete the quota initialisation, post-log-replay component. 1299 */ 1300 if (quotamount) { 1301 ASSERT(mp->m_qflags == 0); 1302 mp->m_qflags = quotaflags; 1303 1304 xfs_qm_mount_quotas(mp); 1305 } 1306 1307 #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY) 1308 if (XFS_IS_QUOTA_ON(mp)) 1309 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas turned on"); 1310 else 1311 xfs_fs_cmn_err(CE_NOTE, mp, "Disk quotas not turned on"); 1312 #endif 1313 1314 /* 1315 * Now we are mounted, reserve a small amount of unused space for 1316 * privileged transactions. This is needed so that transaction 1317 * space required for critical operations can dip into this pool 1318 * when at ENOSPC. This is needed for operations like create with 1319 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1320 * are not allowed to use this reserved space. 1321 * 1322 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1323 * This may drive us straight to ENOSPC on mount, but that implies 1324 * we were already there on the last unmount. Warn if this occurs. 1325 */ 1326 resblks = mp->m_sb.sb_dblocks; 1327 do_div(resblks, 20); 1328 resblks = min_t(__uint64_t, resblks, 1024); 1329 error = xfs_reserve_blocks(mp, &resblks, NULL); 1330 if (error) 1331 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1332 "Continuing without a reserve pool."); 1333 1334 return 0; 1335 1336 out_rtunmount: 1337 xfs_rtunmount_inodes(mp); 1338 out_rele_rip: 1339 IRELE(rip); 1340 out_log_dealloc: 1341 xfs_log_unmount(mp); 1342 out_free_perag: 1343 xfs_free_perag(mp); 1344 out_remove_uuid: 1345 xfs_uuid_unmount(mp); 1346 out: 1347 return error; 1348 } 1349 1350 /* 1351 * This flushes out the inodes,dquots and the superblock, unmounts the 1352 * log and makes sure that incore structures are freed. 1353 */ 1354 void 1355 xfs_unmountfs( 1356 struct xfs_mount *mp) 1357 { 1358 __uint64_t resblks; 1359 int error; 1360 1361 xfs_qm_unmount_quotas(mp); 1362 xfs_rtunmount_inodes(mp); 1363 IRELE(mp->m_rootip); 1364 1365 /* 1366 * We can potentially deadlock here if we have an inode cluster 1367 * that has been freed has its buffer still pinned in memory because 1368 * the transaction is still sitting in a iclog. The stale inodes 1369 * on that buffer will have their flush locks held until the 1370 * transaction hits the disk and the callbacks run. the inode 1371 * flush takes the flush lock unconditionally and with nothing to 1372 * push out the iclog we will never get that unlocked. hence we 1373 * need to force the log first. 1374 */ 1375 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1376 xfs_reclaim_inodes(mp, XFS_IFLUSH_ASYNC); 1377 1378 xfs_qm_unmount(mp); 1379 1380 /* 1381 * Flush out the log synchronously so that we know for sure 1382 * that nothing is pinned. This is important because bflush() 1383 * will skip pinned buffers. 1384 */ 1385 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1386 1387 xfs_binval(mp->m_ddev_targp); 1388 if (mp->m_rtdev_targp) { 1389 xfs_binval(mp->m_rtdev_targp); 1390 } 1391 1392 /* 1393 * Unreserve any blocks we have so that when we unmount we don't account 1394 * the reserved free space as used. This is really only necessary for 1395 * lazy superblock counting because it trusts the incore superblock 1396 * counters to be absolutely correct on clean unmount. 1397 * 1398 * We don't bother correcting this elsewhere for lazy superblock 1399 * counting because on mount of an unclean filesystem we reconstruct the 1400 * correct counter value and this is irrelevant. 1401 * 1402 * For non-lazy counter filesystems, this doesn't matter at all because 1403 * we only every apply deltas to the superblock and hence the incore 1404 * value does not matter.... 1405 */ 1406 resblks = 0; 1407 error = xfs_reserve_blocks(mp, &resblks, NULL); 1408 if (error) 1409 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1410 "Freespace may not be correct on next mount."); 1411 1412 error = xfs_log_sbcount(mp, 1); 1413 if (error) 1414 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1415 "Freespace may not be correct on next mount."); 1416 xfs_unmountfs_writesb(mp); 1417 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1418 xfs_log_unmount_write(mp); 1419 xfs_log_unmount(mp); 1420 xfs_uuid_unmount(mp); 1421 1422 #if defined(DEBUG) 1423 xfs_errortag_clearall(mp, 0); 1424 #endif 1425 xfs_free_perag(mp); 1426 } 1427 1428 STATIC void 1429 xfs_unmountfs_wait(xfs_mount_t *mp) 1430 { 1431 if (mp->m_logdev_targp != mp->m_ddev_targp) 1432 xfs_wait_buftarg(mp->m_logdev_targp); 1433 if (mp->m_rtdev_targp) 1434 xfs_wait_buftarg(mp->m_rtdev_targp); 1435 xfs_wait_buftarg(mp->m_ddev_targp); 1436 } 1437 1438 int 1439 xfs_fs_writable(xfs_mount_t *mp) 1440 { 1441 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1442 (mp->m_flags & XFS_MOUNT_RDONLY)); 1443 } 1444 1445 /* 1446 * xfs_log_sbcount 1447 * 1448 * Called either periodically to keep the on disk superblock values 1449 * roughly up to date or from unmount to make sure the values are 1450 * correct on a clean unmount. 1451 * 1452 * Note this code can be called during the process of freezing, so 1453 * we may need to use the transaction allocator which does not not 1454 * block when the transaction subsystem is in its frozen state. 1455 */ 1456 int 1457 xfs_log_sbcount( 1458 xfs_mount_t *mp, 1459 uint sync) 1460 { 1461 xfs_trans_t *tp; 1462 int error; 1463 1464 if (!xfs_fs_writable(mp)) 1465 return 0; 1466 1467 xfs_icsb_sync_counters(mp, 0); 1468 1469 /* 1470 * we don't need to do this if we are updating the superblock 1471 * counters on every modification. 1472 */ 1473 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1474 return 0; 1475 1476 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1477 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1478 XFS_DEFAULT_LOG_COUNT); 1479 if (error) { 1480 xfs_trans_cancel(tp, 0); 1481 return error; 1482 } 1483 1484 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1485 if (sync) 1486 xfs_trans_set_sync(tp); 1487 error = xfs_trans_commit(tp, 0); 1488 return error; 1489 } 1490 1491 int 1492 xfs_unmountfs_writesb(xfs_mount_t *mp) 1493 { 1494 xfs_buf_t *sbp; 1495 int error = 0; 1496 1497 /* 1498 * skip superblock write if fs is read-only, or 1499 * if we are doing a forced umount. 1500 */ 1501 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1502 XFS_FORCED_SHUTDOWN(mp))) { 1503 1504 sbp = xfs_getsb(mp, 0); 1505 1506 XFS_BUF_UNDONE(sbp); 1507 XFS_BUF_UNREAD(sbp); 1508 XFS_BUF_UNDELAYWRITE(sbp); 1509 XFS_BUF_WRITE(sbp); 1510 XFS_BUF_UNASYNC(sbp); 1511 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1512 xfsbdstrat(mp, sbp); 1513 error = xfs_iowait(sbp); 1514 if (error) 1515 xfs_ioerror_alert("xfs_unmountfs_writesb", 1516 mp, sbp, XFS_BUF_ADDR(sbp)); 1517 xfs_buf_relse(sbp); 1518 } 1519 return error; 1520 } 1521 1522 /* 1523 * xfs_mod_sb() can be used to copy arbitrary changes to the 1524 * in-core superblock into the superblock buffer to be logged. 1525 * It does not provide the higher level of locking that is 1526 * needed to protect the in-core superblock from concurrent 1527 * access. 1528 */ 1529 void 1530 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1531 { 1532 xfs_buf_t *bp; 1533 int first; 1534 int last; 1535 xfs_mount_t *mp; 1536 xfs_sb_field_t f; 1537 1538 ASSERT(fields); 1539 if (!fields) 1540 return; 1541 mp = tp->t_mountp; 1542 bp = xfs_trans_getsb(tp, mp, 0); 1543 first = sizeof(xfs_sb_t); 1544 last = 0; 1545 1546 /* translate/copy */ 1547 1548 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1549 1550 /* find modified range */ 1551 1552 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1553 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1554 first = xfs_sb_info[f].offset; 1555 1556 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1557 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1558 last = xfs_sb_info[f + 1].offset - 1; 1559 1560 xfs_trans_log_buf(tp, bp, first, last); 1561 } 1562 1563 1564 /* 1565 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1566 * a delta to a specified field in the in-core superblock. Simply 1567 * switch on the field indicated and apply the delta to that field. 1568 * Fields are not allowed to dip below zero, so if the delta would 1569 * do this do not apply it and return EINVAL. 1570 * 1571 * The m_sb_lock must be held when this routine is called. 1572 */ 1573 STATIC int 1574 xfs_mod_incore_sb_unlocked( 1575 xfs_mount_t *mp, 1576 xfs_sb_field_t field, 1577 int64_t delta, 1578 int rsvd) 1579 { 1580 int scounter; /* short counter for 32 bit fields */ 1581 long long lcounter; /* long counter for 64 bit fields */ 1582 long long res_used, rem; 1583 1584 /* 1585 * With the in-core superblock spin lock held, switch 1586 * on the indicated field. Apply the delta to the 1587 * proper field. If the fields value would dip below 1588 * 0, then do not apply the delta and return EINVAL. 1589 */ 1590 switch (field) { 1591 case XFS_SBS_ICOUNT: 1592 lcounter = (long long)mp->m_sb.sb_icount; 1593 lcounter += delta; 1594 if (lcounter < 0) { 1595 ASSERT(0); 1596 return XFS_ERROR(EINVAL); 1597 } 1598 mp->m_sb.sb_icount = lcounter; 1599 return 0; 1600 case XFS_SBS_IFREE: 1601 lcounter = (long long)mp->m_sb.sb_ifree; 1602 lcounter += delta; 1603 if (lcounter < 0) { 1604 ASSERT(0); 1605 return XFS_ERROR(EINVAL); 1606 } 1607 mp->m_sb.sb_ifree = lcounter; 1608 return 0; 1609 case XFS_SBS_FDBLOCKS: 1610 lcounter = (long long) 1611 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1612 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1613 1614 if (delta > 0) { /* Putting blocks back */ 1615 if (res_used > delta) { 1616 mp->m_resblks_avail += delta; 1617 } else { 1618 rem = delta - res_used; 1619 mp->m_resblks_avail = mp->m_resblks; 1620 lcounter += rem; 1621 } 1622 } else { /* Taking blocks away */ 1623 1624 lcounter += delta; 1625 1626 /* 1627 * If were out of blocks, use any available reserved blocks if 1628 * were allowed to. 1629 */ 1630 1631 if (lcounter < 0) { 1632 if (rsvd) { 1633 lcounter = (long long)mp->m_resblks_avail + delta; 1634 if (lcounter < 0) { 1635 return XFS_ERROR(ENOSPC); 1636 } 1637 mp->m_resblks_avail = lcounter; 1638 return 0; 1639 } else { /* not reserved */ 1640 return XFS_ERROR(ENOSPC); 1641 } 1642 } 1643 } 1644 1645 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1646 return 0; 1647 case XFS_SBS_FREXTENTS: 1648 lcounter = (long long)mp->m_sb.sb_frextents; 1649 lcounter += delta; 1650 if (lcounter < 0) { 1651 return XFS_ERROR(ENOSPC); 1652 } 1653 mp->m_sb.sb_frextents = lcounter; 1654 return 0; 1655 case XFS_SBS_DBLOCKS: 1656 lcounter = (long long)mp->m_sb.sb_dblocks; 1657 lcounter += delta; 1658 if (lcounter < 0) { 1659 ASSERT(0); 1660 return XFS_ERROR(EINVAL); 1661 } 1662 mp->m_sb.sb_dblocks = lcounter; 1663 return 0; 1664 case XFS_SBS_AGCOUNT: 1665 scounter = mp->m_sb.sb_agcount; 1666 scounter += delta; 1667 if (scounter < 0) { 1668 ASSERT(0); 1669 return XFS_ERROR(EINVAL); 1670 } 1671 mp->m_sb.sb_agcount = scounter; 1672 return 0; 1673 case XFS_SBS_IMAX_PCT: 1674 scounter = mp->m_sb.sb_imax_pct; 1675 scounter += delta; 1676 if (scounter < 0) { 1677 ASSERT(0); 1678 return XFS_ERROR(EINVAL); 1679 } 1680 mp->m_sb.sb_imax_pct = scounter; 1681 return 0; 1682 case XFS_SBS_REXTSIZE: 1683 scounter = mp->m_sb.sb_rextsize; 1684 scounter += delta; 1685 if (scounter < 0) { 1686 ASSERT(0); 1687 return XFS_ERROR(EINVAL); 1688 } 1689 mp->m_sb.sb_rextsize = scounter; 1690 return 0; 1691 case XFS_SBS_RBMBLOCKS: 1692 scounter = mp->m_sb.sb_rbmblocks; 1693 scounter += delta; 1694 if (scounter < 0) { 1695 ASSERT(0); 1696 return XFS_ERROR(EINVAL); 1697 } 1698 mp->m_sb.sb_rbmblocks = scounter; 1699 return 0; 1700 case XFS_SBS_RBLOCKS: 1701 lcounter = (long long)mp->m_sb.sb_rblocks; 1702 lcounter += delta; 1703 if (lcounter < 0) { 1704 ASSERT(0); 1705 return XFS_ERROR(EINVAL); 1706 } 1707 mp->m_sb.sb_rblocks = lcounter; 1708 return 0; 1709 case XFS_SBS_REXTENTS: 1710 lcounter = (long long)mp->m_sb.sb_rextents; 1711 lcounter += delta; 1712 if (lcounter < 0) { 1713 ASSERT(0); 1714 return XFS_ERROR(EINVAL); 1715 } 1716 mp->m_sb.sb_rextents = lcounter; 1717 return 0; 1718 case XFS_SBS_REXTSLOG: 1719 scounter = mp->m_sb.sb_rextslog; 1720 scounter += delta; 1721 if (scounter < 0) { 1722 ASSERT(0); 1723 return XFS_ERROR(EINVAL); 1724 } 1725 mp->m_sb.sb_rextslog = scounter; 1726 return 0; 1727 default: 1728 ASSERT(0); 1729 return XFS_ERROR(EINVAL); 1730 } 1731 } 1732 1733 /* 1734 * xfs_mod_incore_sb() is used to change a field in the in-core 1735 * superblock structure by the specified delta. This modification 1736 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1737 * routine to do the work. 1738 */ 1739 int 1740 xfs_mod_incore_sb( 1741 xfs_mount_t *mp, 1742 xfs_sb_field_t field, 1743 int64_t delta, 1744 int rsvd) 1745 { 1746 int status; 1747 1748 /* check for per-cpu counters */ 1749 switch (field) { 1750 #ifdef HAVE_PERCPU_SB 1751 case XFS_SBS_ICOUNT: 1752 case XFS_SBS_IFREE: 1753 case XFS_SBS_FDBLOCKS: 1754 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1755 status = xfs_icsb_modify_counters(mp, field, 1756 delta, rsvd); 1757 break; 1758 } 1759 /* FALLTHROUGH */ 1760 #endif 1761 default: 1762 spin_lock(&mp->m_sb_lock); 1763 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1764 spin_unlock(&mp->m_sb_lock); 1765 break; 1766 } 1767 1768 return status; 1769 } 1770 1771 /* 1772 * xfs_mod_incore_sb_batch() is used to change more than one field 1773 * in the in-core superblock structure at a time. This modification 1774 * is protected by a lock internal to this module. The fields and 1775 * changes to those fields are specified in the array of xfs_mod_sb 1776 * structures passed in. 1777 * 1778 * Either all of the specified deltas will be applied or none of 1779 * them will. If any modified field dips below 0, then all modifications 1780 * will be backed out and EINVAL will be returned. 1781 */ 1782 int 1783 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1784 { 1785 int status=0; 1786 xfs_mod_sb_t *msbp; 1787 1788 /* 1789 * Loop through the array of mod structures and apply each 1790 * individually. If any fail, then back out all those 1791 * which have already been applied. Do all of this within 1792 * the scope of the m_sb_lock so that all of the changes will 1793 * be atomic. 1794 */ 1795 spin_lock(&mp->m_sb_lock); 1796 msbp = &msb[0]; 1797 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1798 /* 1799 * Apply the delta at index n. If it fails, break 1800 * from the loop so we'll fall into the undo loop 1801 * below. 1802 */ 1803 switch (msbp->msb_field) { 1804 #ifdef HAVE_PERCPU_SB 1805 case XFS_SBS_ICOUNT: 1806 case XFS_SBS_IFREE: 1807 case XFS_SBS_FDBLOCKS: 1808 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1809 spin_unlock(&mp->m_sb_lock); 1810 status = xfs_icsb_modify_counters(mp, 1811 msbp->msb_field, 1812 msbp->msb_delta, rsvd); 1813 spin_lock(&mp->m_sb_lock); 1814 break; 1815 } 1816 /* FALLTHROUGH */ 1817 #endif 1818 default: 1819 status = xfs_mod_incore_sb_unlocked(mp, 1820 msbp->msb_field, 1821 msbp->msb_delta, rsvd); 1822 break; 1823 } 1824 1825 if (status != 0) { 1826 break; 1827 } 1828 } 1829 1830 /* 1831 * If we didn't complete the loop above, then back out 1832 * any changes made to the superblock. If you add code 1833 * between the loop above and here, make sure that you 1834 * preserve the value of status. Loop back until 1835 * we step below the beginning of the array. Make sure 1836 * we don't touch anything back there. 1837 */ 1838 if (status != 0) { 1839 msbp--; 1840 while (msbp >= msb) { 1841 switch (msbp->msb_field) { 1842 #ifdef HAVE_PERCPU_SB 1843 case XFS_SBS_ICOUNT: 1844 case XFS_SBS_IFREE: 1845 case XFS_SBS_FDBLOCKS: 1846 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1847 spin_unlock(&mp->m_sb_lock); 1848 status = xfs_icsb_modify_counters(mp, 1849 msbp->msb_field, 1850 -(msbp->msb_delta), 1851 rsvd); 1852 spin_lock(&mp->m_sb_lock); 1853 break; 1854 } 1855 /* FALLTHROUGH */ 1856 #endif 1857 default: 1858 status = xfs_mod_incore_sb_unlocked(mp, 1859 msbp->msb_field, 1860 -(msbp->msb_delta), 1861 rsvd); 1862 break; 1863 } 1864 ASSERT(status == 0); 1865 msbp--; 1866 } 1867 } 1868 spin_unlock(&mp->m_sb_lock); 1869 return status; 1870 } 1871 1872 /* 1873 * xfs_getsb() is called to obtain the buffer for the superblock. 1874 * The buffer is returned locked and read in from disk. 1875 * The buffer should be released with a call to xfs_brelse(). 1876 * 1877 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1878 * the superblock buffer if it can be locked without sleeping. 1879 * If it can't then we'll return NULL. 1880 */ 1881 xfs_buf_t * 1882 xfs_getsb( 1883 xfs_mount_t *mp, 1884 int flags) 1885 { 1886 xfs_buf_t *bp; 1887 1888 ASSERT(mp->m_sb_bp != NULL); 1889 bp = mp->m_sb_bp; 1890 if (flags & XFS_BUF_TRYLOCK) { 1891 if (!XFS_BUF_CPSEMA(bp)) { 1892 return NULL; 1893 } 1894 } else { 1895 XFS_BUF_PSEMA(bp, PRIBIO); 1896 } 1897 XFS_BUF_HOLD(bp); 1898 ASSERT(XFS_BUF_ISDONE(bp)); 1899 return bp; 1900 } 1901 1902 /* 1903 * Used to free the superblock along various error paths. 1904 */ 1905 void 1906 xfs_freesb( 1907 xfs_mount_t *mp) 1908 { 1909 xfs_buf_t *bp; 1910 1911 /* 1912 * Use xfs_getsb() so that the buffer will be locked 1913 * when we call xfs_buf_relse(). 1914 */ 1915 bp = xfs_getsb(mp, 0); 1916 XFS_BUF_UNMANAGE(bp); 1917 xfs_buf_relse(bp); 1918 mp->m_sb_bp = NULL; 1919 } 1920 1921 /* 1922 * Used to log changes to the superblock unit and width fields which could 1923 * be altered by the mount options, as well as any potential sb_features2 1924 * fixup. Only the first superblock is updated. 1925 */ 1926 int 1927 xfs_mount_log_sb( 1928 xfs_mount_t *mp, 1929 __int64_t fields) 1930 { 1931 xfs_trans_t *tp; 1932 int error; 1933 1934 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1935 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1936 XFS_SB_VERSIONNUM)); 1937 1938 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1939 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1940 XFS_DEFAULT_LOG_COUNT); 1941 if (error) { 1942 xfs_trans_cancel(tp, 0); 1943 return error; 1944 } 1945 xfs_mod_sb(tp, fields); 1946 error = xfs_trans_commit(tp, 0); 1947 return error; 1948 } 1949 1950 1951 #ifdef HAVE_PERCPU_SB 1952 /* 1953 * Per-cpu incore superblock counters 1954 * 1955 * Simple concept, difficult implementation 1956 * 1957 * Basically, replace the incore superblock counters with a distributed per cpu 1958 * counter for contended fields (e.g. free block count). 1959 * 1960 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1961 * hence needs to be accurately read when we are running low on space. Hence 1962 * there is a method to enable and disable the per-cpu counters based on how 1963 * much "stuff" is available in them. 1964 * 1965 * Basically, a counter is enabled if there is enough free resource to justify 1966 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1967 * ENOSPC), then we disable the counters to synchronise all callers and 1968 * re-distribute the available resources. 1969 * 1970 * If, once we redistributed the available resources, we still get a failure, 1971 * we disable the per-cpu counter and go through the slow path. 1972 * 1973 * The slow path is the current xfs_mod_incore_sb() function. This means that 1974 * when we disable a per-cpu counter, we need to drain its resources back to 1975 * the global superblock. We do this after disabling the counter to prevent 1976 * more threads from queueing up on the counter. 1977 * 1978 * Essentially, this means that we still need a lock in the fast path to enable 1979 * synchronisation between the global counters and the per-cpu counters. This 1980 * is not a problem because the lock will be local to a CPU almost all the time 1981 * and have little contention except when we get to ENOSPC conditions. 1982 * 1983 * Basically, this lock becomes a barrier that enables us to lock out the fast 1984 * path while we do things like enabling and disabling counters and 1985 * synchronising the counters. 1986 * 1987 * Locking rules: 1988 * 1989 * 1. m_sb_lock before picking up per-cpu locks 1990 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1991 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1992 * 4. modifying per-cpu counters requires holding per-cpu lock 1993 * 5. modifying global counters requires holding m_sb_lock 1994 * 6. enabling or disabling a counter requires holding the m_sb_lock 1995 * and _none_ of the per-cpu locks. 1996 * 1997 * Disabled counters are only ever re-enabled by a balance operation 1998 * that results in more free resources per CPU than a given threshold. 1999 * To ensure counters don't remain disabled, they are rebalanced when 2000 * the global resource goes above a higher threshold (i.e. some hysteresis 2001 * is present to prevent thrashing). 2002 */ 2003 2004 #ifdef CONFIG_HOTPLUG_CPU 2005 /* 2006 * hot-plug CPU notifier support. 2007 * 2008 * We need a notifier per filesystem as we need to be able to identify 2009 * the filesystem to balance the counters out. This is achieved by 2010 * having a notifier block embedded in the xfs_mount_t and doing pointer 2011 * magic to get the mount pointer from the notifier block address. 2012 */ 2013 STATIC int 2014 xfs_icsb_cpu_notify( 2015 struct notifier_block *nfb, 2016 unsigned long action, 2017 void *hcpu) 2018 { 2019 xfs_icsb_cnts_t *cntp; 2020 xfs_mount_t *mp; 2021 2022 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2023 cntp = (xfs_icsb_cnts_t *) 2024 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2025 switch (action) { 2026 case CPU_UP_PREPARE: 2027 case CPU_UP_PREPARE_FROZEN: 2028 /* Easy Case - initialize the area and locks, and 2029 * then rebalance when online does everything else for us. */ 2030 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2031 break; 2032 case CPU_ONLINE: 2033 case CPU_ONLINE_FROZEN: 2034 xfs_icsb_lock(mp); 2035 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2036 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2037 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2038 xfs_icsb_unlock(mp); 2039 break; 2040 case CPU_DEAD: 2041 case CPU_DEAD_FROZEN: 2042 /* Disable all the counters, then fold the dead cpu's 2043 * count into the total on the global superblock and 2044 * re-enable the counters. */ 2045 xfs_icsb_lock(mp); 2046 spin_lock(&mp->m_sb_lock); 2047 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2048 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2049 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2050 2051 mp->m_sb.sb_icount += cntp->icsb_icount; 2052 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2053 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2054 2055 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2056 2057 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2058 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2059 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2060 spin_unlock(&mp->m_sb_lock); 2061 xfs_icsb_unlock(mp); 2062 break; 2063 } 2064 2065 return NOTIFY_OK; 2066 } 2067 #endif /* CONFIG_HOTPLUG_CPU */ 2068 2069 int 2070 xfs_icsb_init_counters( 2071 xfs_mount_t *mp) 2072 { 2073 xfs_icsb_cnts_t *cntp; 2074 int i; 2075 2076 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2077 if (mp->m_sb_cnts == NULL) 2078 return -ENOMEM; 2079 2080 #ifdef CONFIG_HOTPLUG_CPU 2081 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2082 mp->m_icsb_notifier.priority = 0; 2083 register_hotcpu_notifier(&mp->m_icsb_notifier); 2084 #endif /* CONFIG_HOTPLUG_CPU */ 2085 2086 for_each_online_cpu(i) { 2087 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2088 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2089 } 2090 2091 mutex_init(&mp->m_icsb_mutex); 2092 2093 /* 2094 * start with all counters disabled so that the 2095 * initial balance kicks us off correctly 2096 */ 2097 mp->m_icsb_counters = -1; 2098 return 0; 2099 } 2100 2101 void 2102 xfs_icsb_reinit_counters( 2103 xfs_mount_t *mp) 2104 { 2105 xfs_icsb_lock(mp); 2106 /* 2107 * start with all counters disabled so that the 2108 * initial balance kicks us off correctly 2109 */ 2110 mp->m_icsb_counters = -1; 2111 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2112 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2113 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2114 xfs_icsb_unlock(mp); 2115 } 2116 2117 void 2118 xfs_icsb_destroy_counters( 2119 xfs_mount_t *mp) 2120 { 2121 if (mp->m_sb_cnts) { 2122 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2123 free_percpu(mp->m_sb_cnts); 2124 } 2125 mutex_destroy(&mp->m_icsb_mutex); 2126 } 2127 2128 STATIC void 2129 xfs_icsb_lock_cntr( 2130 xfs_icsb_cnts_t *icsbp) 2131 { 2132 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2133 ndelay(1000); 2134 } 2135 } 2136 2137 STATIC void 2138 xfs_icsb_unlock_cntr( 2139 xfs_icsb_cnts_t *icsbp) 2140 { 2141 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2142 } 2143 2144 2145 STATIC void 2146 xfs_icsb_lock_all_counters( 2147 xfs_mount_t *mp) 2148 { 2149 xfs_icsb_cnts_t *cntp; 2150 int i; 2151 2152 for_each_online_cpu(i) { 2153 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2154 xfs_icsb_lock_cntr(cntp); 2155 } 2156 } 2157 2158 STATIC void 2159 xfs_icsb_unlock_all_counters( 2160 xfs_mount_t *mp) 2161 { 2162 xfs_icsb_cnts_t *cntp; 2163 int i; 2164 2165 for_each_online_cpu(i) { 2166 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2167 xfs_icsb_unlock_cntr(cntp); 2168 } 2169 } 2170 2171 STATIC void 2172 xfs_icsb_count( 2173 xfs_mount_t *mp, 2174 xfs_icsb_cnts_t *cnt, 2175 int flags) 2176 { 2177 xfs_icsb_cnts_t *cntp; 2178 int i; 2179 2180 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2181 2182 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2183 xfs_icsb_lock_all_counters(mp); 2184 2185 for_each_online_cpu(i) { 2186 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2187 cnt->icsb_icount += cntp->icsb_icount; 2188 cnt->icsb_ifree += cntp->icsb_ifree; 2189 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2190 } 2191 2192 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2193 xfs_icsb_unlock_all_counters(mp); 2194 } 2195 2196 STATIC int 2197 xfs_icsb_counter_disabled( 2198 xfs_mount_t *mp, 2199 xfs_sb_field_t field) 2200 { 2201 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2202 return test_bit(field, &mp->m_icsb_counters); 2203 } 2204 2205 STATIC void 2206 xfs_icsb_disable_counter( 2207 xfs_mount_t *mp, 2208 xfs_sb_field_t field) 2209 { 2210 xfs_icsb_cnts_t cnt; 2211 2212 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2213 2214 /* 2215 * If we are already disabled, then there is nothing to do 2216 * here. We check before locking all the counters to avoid 2217 * the expensive lock operation when being called in the 2218 * slow path and the counter is already disabled. This is 2219 * safe because the only time we set or clear this state is under 2220 * the m_icsb_mutex. 2221 */ 2222 if (xfs_icsb_counter_disabled(mp, field)) 2223 return; 2224 2225 xfs_icsb_lock_all_counters(mp); 2226 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2227 /* drain back to superblock */ 2228 2229 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2230 switch(field) { 2231 case XFS_SBS_ICOUNT: 2232 mp->m_sb.sb_icount = cnt.icsb_icount; 2233 break; 2234 case XFS_SBS_IFREE: 2235 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2236 break; 2237 case XFS_SBS_FDBLOCKS: 2238 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2239 break; 2240 default: 2241 BUG(); 2242 } 2243 } 2244 2245 xfs_icsb_unlock_all_counters(mp); 2246 } 2247 2248 STATIC void 2249 xfs_icsb_enable_counter( 2250 xfs_mount_t *mp, 2251 xfs_sb_field_t field, 2252 uint64_t count, 2253 uint64_t resid) 2254 { 2255 xfs_icsb_cnts_t *cntp; 2256 int i; 2257 2258 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2259 2260 xfs_icsb_lock_all_counters(mp); 2261 for_each_online_cpu(i) { 2262 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2263 switch (field) { 2264 case XFS_SBS_ICOUNT: 2265 cntp->icsb_icount = count + resid; 2266 break; 2267 case XFS_SBS_IFREE: 2268 cntp->icsb_ifree = count + resid; 2269 break; 2270 case XFS_SBS_FDBLOCKS: 2271 cntp->icsb_fdblocks = count + resid; 2272 break; 2273 default: 2274 BUG(); 2275 break; 2276 } 2277 resid = 0; 2278 } 2279 clear_bit(field, &mp->m_icsb_counters); 2280 xfs_icsb_unlock_all_counters(mp); 2281 } 2282 2283 void 2284 xfs_icsb_sync_counters_locked( 2285 xfs_mount_t *mp, 2286 int flags) 2287 { 2288 xfs_icsb_cnts_t cnt; 2289 2290 xfs_icsb_count(mp, &cnt, flags); 2291 2292 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2293 mp->m_sb.sb_icount = cnt.icsb_icount; 2294 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2295 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2296 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2297 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2298 } 2299 2300 /* 2301 * Accurate update of per-cpu counters to incore superblock 2302 */ 2303 void 2304 xfs_icsb_sync_counters( 2305 xfs_mount_t *mp, 2306 int flags) 2307 { 2308 spin_lock(&mp->m_sb_lock); 2309 xfs_icsb_sync_counters_locked(mp, flags); 2310 spin_unlock(&mp->m_sb_lock); 2311 } 2312 2313 /* 2314 * Balance and enable/disable counters as necessary. 2315 * 2316 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2317 * chosen to be the same number as single on disk allocation chunk per CPU, and 2318 * free blocks is something far enough zero that we aren't going thrash when we 2319 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2320 * prevent looping endlessly when xfs_alloc_space asks for more than will 2321 * be distributed to a single CPU but each CPU has enough blocks to be 2322 * reenabled. 2323 * 2324 * Note that we can be called when counters are already disabled. 2325 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2326 * prevent locking every per-cpu counter needlessly. 2327 */ 2328 2329 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2330 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2331 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2332 STATIC void 2333 xfs_icsb_balance_counter_locked( 2334 xfs_mount_t *mp, 2335 xfs_sb_field_t field, 2336 int min_per_cpu) 2337 { 2338 uint64_t count, resid; 2339 int weight = num_online_cpus(); 2340 uint64_t min = (uint64_t)min_per_cpu; 2341 2342 /* disable counter and sync counter */ 2343 xfs_icsb_disable_counter(mp, field); 2344 2345 /* update counters - first CPU gets residual*/ 2346 switch (field) { 2347 case XFS_SBS_ICOUNT: 2348 count = mp->m_sb.sb_icount; 2349 resid = do_div(count, weight); 2350 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2351 return; 2352 break; 2353 case XFS_SBS_IFREE: 2354 count = mp->m_sb.sb_ifree; 2355 resid = do_div(count, weight); 2356 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2357 return; 2358 break; 2359 case XFS_SBS_FDBLOCKS: 2360 count = mp->m_sb.sb_fdblocks; 2361 resid = do_div(count, weight); 2362 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2363 return; 2364 break; 2365 default: 2366 BUG(); 2367 count = resid = 0; /* quiet, gcc */ 2368 break; 2369 } 2370 2371 xfs_icsb_enable_counter(mp, field, count, resid); 2372 } 2373 2374 STATIC void 2375 xfs_icsb_balance_counter( 2376 xfs_mount_t *mp, 2377 xfs_sb_field_t fields, 2378 int min_per_cpu) 2379 { 2380 spin_lock(&mp->m_sb_lock); 2381 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2382 spin_unlock(&mp->m_sb_lock); 2383 } 2384 2385 STATIC int 2386 xfs_icsb_modify_counters( 2387 xfs_mount_t *mp, 2388 xfs_sb_field_t field, 2389 int64_t delta, 2390 int rsvd) 2391 { 2392 xfs_icsb_cnts_t *icsbp; 2393 long long lcounter; /* long counter for 64 bit fields */ 2394 int ret = 0; 2395 2396 might_sleep(); 2397 again: 2398 preempt_disable(); 2399 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2400 2401 /* 2402 * if the counter is disabled, go to slow path 2403 */ 2404 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2405 goto slow_path; 2406 xfs_icsb_lock_cntr(icsbp); 2407 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2408 xfs_icsb_unlock_cntr(icsbp); 2409 goto slow_path; 2410 } 2411 2412 switch (field) { 2413 case XFS_SBS_ICOUNT: 2414 lcounter = icsbp->icsb_icount; 2415 lcounter += delta; 2416 if (unlikely(lcounter < 0)) 2417 goto balance_counter; 2418 icsbp->icsb_icount = lcounter; 2419 break; 2420 2421 case XFS_SBS_IFREE: 2422 lcounter = icsbp->icsb_ifree; 2423 lcounter += delta; 2424 if (unlikely(lcounter < 0)) 2425 goto balance_counter; 2426 icsbp->icsb_ifree = lcounter; 2427 break; 2428 2429 case XFS_SBS_FDBLOCKS: 2430 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2431 2432 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2433 lcounter += delta; 2434 if (unlikely(lcounter < 0)) 2435 goto balance_counter; 2436 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2437 break; 2438 default: 2439 BUG(); 2440 break; 2441 } 2442 xfs_icsb_unlock_cntr(icsbp); 2443 preempt_enable(); 2444 return 0; 2445 2446 slow_path: 2447 preempt_enable(); 2448 2449 /* 2450 * serialise with a mutex so we don't burn lots of cpu on 2451 * the superblock lock. We still need to hold the superblock 2452 * lock, however, when we modify the global structures. 2453 */ 2454 xfs_icsb_lock(mp); 2455 2456 /* 2457 * Now running atomically. 2458 * 2459 * If the counter is enabled, someone has beaten us to rebalancing. 2460 * Drop the lock and try again in the fast path.... 2461 */ 2462 if (!(xfs_icsb_counter_disabled(mp, field))) { 2463 xfs_icsb_unlock(mp); 2464 goto again; 2465 } 2466 2467 /* 2468 * The counter is currently disabled. Because we are 2469 * running atomically here, we know a rebalance cannot 2470 * be in progress. Hence we can go straight to operating 2471 * on the global superblock. We do not call xfs_mod_incore_sb() 2472 * here even though we need to get the m_sb_lock. Doing so 2473 * will cause us to re-enter this function and deadlock. 2474 * Hence we get the m_sb_lock ourselves and then call 2475 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2476 * directly on the global counters. 2477 */ 2478 spin_lock(&mp->m_sb_lock); 2479 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2480 spin_unlock(&mp->m_sb_lock); 2481 2482 /* 2483 * Now that we've modified the global superblock, we 2484 * may be able to re-enable the distributed counters 2485 * (e.g. lots of space just got freed). After that 2486 * we are done. 2487 */ 2488 if (ret != ENOSPC) 2489 xfs_icsb_balance_counter(mp, field, 0); 2490 xfs_icsb_unlock(mp); 2491 return ret; 2492 2493 balance_counter: 2494 xfs_icsb_unlock_cntr(icsbp); 2495 preempt_enable(); 2496 2497 /* 2498 * We may have multiple threads here if multiple per-cpu 2499 * counters run dry at the same time. This will mean we can 2500 * do more balances than strictly necessary but it is not 2501 * the common slowpath case. 2502 */ 2503 xfs_icsb_lock(mp); 2504 2505 /* 2506 * running atomically. 2507 * 2508 * This will leave the counter in the correct state for future 2509 * accesses. After the rebalance, we simply try again and our retry 2510 * will either succeed through the fast path or slow path without 2511 * another balance operation being required. 2512 */ 2513 xfs_icsb_balance_counter(mp, field, delta); 2514 xfs_icsb_unlock(mp); 2515 goto again; 2516 } 2517 2518 #endif 2519