1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir2.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_btree.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_alloc.h" 38 #include "xfs_rtalloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_error.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 #include "xfs_icache.h" 46 #include "xfs_cksum.h" 47 #include "xfs_buf_item.h" 48 49 50 #ifdef HAVE_PERCPU_SB 51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 56 #else 57 58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 60 #endif 61 62 static const struct { 63 short offset; 64 short type; /* 0 = integer 65 * 1 = binary / string (no translation) 66 */ 67 } xfs_sb_info[] = { 68 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 69 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 70 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 71 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 72 { offsetof(xfs_sb_t, sb_rextents), 0 }, 73 { offsetof(xfs_sb_t, sb_uuid), 1 }, 74 { offsetof(xfs_sb_t, sb_logstart), 0 }, 75 { offsetof(xfs_sb_t, sb_rootino), 0 }, 76 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 77 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 78 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 79 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_agcount), 0 }, 81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 83 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 84 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 85 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 86 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 87 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 88 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 89 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 90 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 91 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 92 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 93 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 94 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 95 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 96 { offsetof(xfs_sb_t, sb_icount), 0 }, 97 { offsetof(xfs_sb_t, sb_ifree), 0 }, 98 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 99 { offsetof(xfs_sb_t, sb_frextents), 0 }, 100 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 101 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 102 { offsetof(xfs_sb_t, sb_qflags), 0 }, 103 { offsetof(xfs_sb_t, sb_flags), 0 }, 104 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 106 { offsetof(xfs_sb_t, sb_unit), 0 }, 107 { offsetof(xfs_sb_t, sb_width), 0 }, 108 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 109 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 110 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 111 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 112 { offsetof(xfs_sb_t, sb_features2), 0 }, 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 114 { offsetof(xfs_sb_t, sb_features_compat), 0 }, 115 { offsetof(xfs_sb_t, sb_features_ro_compat), 0 }, 116 { offsetof(xfs_sb_t, sb_features_incompat), 0 }, 117 { offsetof(xfs_sb_t, sb_features_log_incompat), 0 }, 118 { offsetof(xfs_sb_t, sb_crc), 0 }, 119 { offsetof(xfs_sb_t, sb_pad), 0 }, 120 { offsetof(xfs_sb_t, sb_pquotino), 0 }, 121 { offsetof(xfs_sb_t, sb_lsn), 0 }, 122 { sizeof(xfs_sb_t), 0 } 123 }; 124 125 static DEFINE_MUTEX(xfs_uuid_table_mutex); 126 static int xfs_uuid_table_size; 127 static uuid_t *xfs_uuid_table; 128 129 /* 130 * See if the UUID is unique among mounted XFS filesystems. 131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 132 */ 133 STATIC int 134 xfs_uuid_mount( 135 struct xfs_mount *mp) 136 { 137 uuid_t *uuid = &mp->m_sb.sb_uuid; 138 int hole, i; 139 140 if (mp->m_flags & XFS_MOUNT_NOUUID) 141 return 0; 142 143 if (uuid_is_nil(uuid)) { 144 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 145 return XFS_ERROR(EINVAL); 146 } 147 148 mutex_lock(&xfs_uuid_table_mutex); 149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 150 if (uuid_is_nil(&xfs_uuid_table[i])) { 151 hole = i; 152 continue; 153 } 154 if (uuid_equal(uuid, &xfs_uuid_table[i])) 155 goto out_duplicate; 156 } 157 158 if (hole < 0) { 159 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 161 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 162 KM_SLEEP); 163 hole = xfs_uuid_table_size++; 164 } 165 xfs_uuid_table[hole] = *uuid; 166 mutex_unlock(&xfs_uuid_table_mutex); 167 168 return 0; 169 170 out_duplicate: 171 mutex_unlock(&xfs_uuid_table_mutex); 172 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 173 return XFS_ERROR(EINVAL); 174 } 175 176 STATIC void 177 xfs_uuid_unmount( 178 struct xfs_mount *mp) 179 { 180 uuid_t *uuid = &mp->m_sb.sb_uuid; 181 int i; 182 183 if (mp->m_flags & XFS_MOUNT_NOUUID) 184 return; 185 186 mutex_lock(&xfs_uuid_table_mutex); 187 for (i = 0; i < xfs_uuid_table_size; i++) { 188 if (uuid_is_nil(&xfs_uuid_table[i])) 189 continue; 190 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 191 continue; 192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 193 break; 194 } 195 ASSERT(i < xfs_uuid_table_size); 196 mutex_unlock(&xfs_uuid_table_mutex); 197 } 198 199 200 /* 201 * Reference counting access wrappers to the perag structures. 202 * Because we never free per-ag structures, the only thing we 203 * have to protect against changes is the tree structure itself. 204 */ 205 struct xfs_perag * 206 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 207 { 208 struct xfs_perag *pag; 209 int ref = 0; 210 211 rcu_read_lock(); 212 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 213 if (pag) { 214 ASSERT(atomic_read(&pag->pag_ref) >= 0); 215 ref = atomic_inc_return(&pag->pag_ref); 216 } 217 rcu_read_unlock(); 218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 219 return pag; 220 } 221 222 /* 223 * search from @first to find the next perag with the given tag set. 224 */ 225 struct xfs_perag * 226 xfs_perag_get_tag( 227 struct xfs_mount *mp, 228 xfs_agnumber_t first, 229 int tag) 230 { 231 struct xfs_perag *pag; 232 int found; 233 int ref; 234 235 rcu_read_lock(); 236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 237 (void **)&pag, first, 1, tag); 238 if (found <= 0) { 239 rcu_read_unlock(); 240 return NULL; 241 } 242 ref = atomic_inc_return(&pag->pag_ref); 243 rcu_read_unlock(); 244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 245 return pag; 246 } 247 248 void 249 xfs_perag_put(struct xfs_perag *pag) 250 { 251 int ref; 252 253 ASSERT(atomic_read(&pag->pag_ref) > 0); 254 ref = atomic_dec_return(&pag->pag_ref); 255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 256 } 257 258 STATIC void 259 __xfs_free_perag( 260 struct rcu_head *head) 261 { 262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 263 264 ASSERT(atomic_read(&pag->pag_ref) == 0); 265 kmem_free(pag); 266 } 267 268 /* 269 * Free up the per-ag resources associated with the mount structure. 270 */ 271 STATIC void 272 xfs_free_perag( 273 xfs_mount_t *mp) 274 { 275 xfs_agnumber_t agno; 276 struct xfs_perag *pag; 277 278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 279 spin_lock(&mp->m_perag_lock); 280 pag = radix_tree_delete(&mp->m_perag_tree, agno); 281 spin_unlock(&mp->m_perag_lock); 282 ASSERT(pag); 283 ASSERT(atomic_read(&pag->pag_ref) == 0); 284 call_rcu(&pag->rcu_head, __xfs_free_perag); 285 } 286 } 287 288 /* 289 * Check size of device based on the (data/realtime) block count. 290 * Note: this check is used by the growfs code as well as mount. 291 */ 292 int 293 xfs_sb_validate_fsb_count( 294 xfs_sb_t *sbp, 295 __uint64_t nblocks) 296 { 297 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 298 ASSERT(sbp->sb_blocklog >= BBSHIFT); 299 300 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 301 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 302 return EFBIG; 303 #else /* Limited by UINT_MAX of sectors */ 304 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 305 return EFBIG; 306 #endif 307 return 0; 308 } 309 310 /* 311 * Check the validity of the SB found. 312 */ 313 STATIC int 314 xfs_mount_validate_sb( 315 xfs_mount_t *mp, 316 xfs_sb_t *sbp, 317 bool check_inprogress, 318 bool check_version) 319 { 320 321 /* 322 * If the log device and data device have the 323 * same device number, the log is internal. 324 * Consequently, the sb_logstart should be non-zero. If 325 * we have a zero sb_logstart in this case, we may be trying to mount 326 * a volume filesystem in a non-volume manner. 327 */ 328 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 329 xfs_warn(mp, "bad magic number"); 330 return XFS_ERROR(EWRONGFS); 331 } 332 333 334 if (!xfs_sb_good_version(sbp)) { 335 xfs_warn(mp, "bad version"); 336 return XFS_ERROR(EWRONGFS); 337 } 338 339 /* 340 * Version 5 superblock feature mask validation. Reject combinations the 341 * kernel cannot support up front before checking anything else. For 342 * write validation, we don't need to check feature masks. 343 */ 344 if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) { 345 xfs_alert(mp, 346 "Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n" 347 "Use of these features in this kernel is at your own risk!"); 348 349 if (xfs_sb_has_compat_feature(sbp, 350 XFS_SB_FEAT_COMPAT_UNKNOWN)) { 351 xfs_warn(mp, 352 "Superblock has unknown compatible features (0x%x) enabled.\n" 353 "Using a more recent kernel is recommended.", 354 (sbp->sb_features_compat & 355 XFS_SB_FEAT_COMPAT_UNKNOWN)); 356 } 357 358 if (xfs_sb_has_ro_compat_feature(sbp, 359 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) { 360 xfs_alert(mp, 361 "Superblock has unknown read-only compatible features (0x%x) enabled.", 362 (sbp->sb_features_ro_compat & 363 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)); 364 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 365 xfs_warn(mp, 366 "Attempted to mount read-only compatible filesystem read-write.\n" 367 "Filesystem can only be safely mounted read only."); 368 return XFS_ERROR(EINVAL); 369 } 370 } 371 if (xfs_sb_has_incompat_feature(sbp, 372 XFS_SB_FEAT_INCOMPAT_UNKNOWN)) { 373 xfs_warn(mp, 374 "Superblock has unknown incompatible features (0x%x) enabled.\n" 375 "Filesystem can not be safely mounted by this kernel.", 376 (sbp->sb_features_incompat & 377 XFS_SB_FEAT_INCOMPAT_UNKNOWN)); 378 return XFS_ERROR(EINVAL); 379 } 380 } 381 382 if (unlikely( 383 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 384 xfs_warn(mp, 385 "filesystem is marked as having an external log; " 386 "specify logdev on the mount command line."); 387 return XFS_ERROR(EINVAL); 388 } 389 390 if (unlikely( 391 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 392 xfs_warn(mp, 393 "filesystem is marked as having an internal log; " 394 "do not specify logdev on the mount command line."); 395 return XFS_ERROR(EINVAL); 396 } 397 398 /* 399 * More sanity checking. Most of these were stolen directly from 400 * xfs_repair. 401 */ 402 if (unlikely( 403 sbp->sb_agcount <= 0 || 404 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 405 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 406 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 407 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 408 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 409 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 410 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 411 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 412 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 413 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 414 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 415 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 416 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 417 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 418 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 419 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 420 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 421 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 422 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 423 sbp->sb_dblocks == 0 || 424 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 425 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) { 426 XFS_CORRUPTION_ERROR("SB sanity check failed", 427 XFS_ERRLEVEL_LOW, mp, sbp); 428 return XFS_ERROR(EFSCORRUPTED); 429 } 430 431 /* 432 * Until this is fixed only page-sized or smaller data blocks work. 433 */ 434 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 435 xfs_warn(mp, 436 "File system with blocksize %d bytes. " 437 "Only pagesize (%ld) or less will currently work.", 438 sbp->sb_blocksize, PAGE_SIZE); 439 return XFS_ERROR(ENOSYS); 440 } 441 442 /* 443 * Currently only very few inode sizes are supported. 444 */ 445 switch (sbp->sb_inodesize) { 446 case 256: 447 case 512: 448 case 1024: 449 case 2048: 450 break; 451 default: 452 xfs_warn(mp, "inode size of %d bytes not supported", 453 sbp->sb_inodesize); 454 return XFS_ERROR(ENOSYS); 455 } 456 457 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 458 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 459 xfs_warn(mp, 460 "file system too large to be mounted on this system."); 461 return XFS_ERROR(EFBIG); 462 } 463 464 if (check_inprogress && sbp->sb_inprogress) { 465 xfs_warn(mp, "Offline file system operation in progress!"); 466 return XFS_ERROR(EFSCORRUPTED); 467 } 468 469 /* 470 * Version 1 directory format has never worked on Linux. 471 */ 472 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 473 xfs_warn(mp, "file system using version 1 directory format"); 474 return XFS_ERROR(ENOSYS); 475 } 476 477 return 0; 478 } 479 480 int 481 xfs_initialize_perag( 482 xfs_mount_t *mp, 483 xfs_agnumber_t agcount, 484 xfs_agnumber_t *maxagi) 485 { 486 xfs_agnumber_t index; 487 xfs_agnumber_t first_initialised = 0; 488 xfs_perag_t *pag; 489 xfs_agino_t agino; 490 xfs_ino_t ino; 491 xfs_sb_t *sbp = &mp->m_sb; 492 int error = -ENOMEM; 493 494 /* 495 * Walk the current per-ag tree so we don't try to initialise AGs 496 * that already exist (growfs case). Allocate and insert all the 497 * AGs we don't find ready for initialisation. 498 */ 499 for (index = 0; index < agcount; index++) { 500 pag = xfs_perag_get(mp, index); 501 if (pag) { 502 xfs_perag_put(pag); 503 continue; 504 } 505 if (!first_initialised) 506 first_initialised = index; 507 508 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 509 if (!pag) 510 goto out_unwind; 511 pag->pag_agno = index; 512 pag->pag_mount = mp; 513 spin_lock_init(&pag->pag_ici_lock); 514 mutex_init(&pag->pag_ici_reclaim_lock); 515 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 516 spin_lock_init(&pag->pag_buf_lock); 517 pag->pag_buf_tree = RB_ROOT; 518 519 if (radix_tree_preload(GFP_NOFS)) 520 goto out_unwind; 521 522 spin_lock(&mp->m_perag_lock); 523 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 524 BUG(); 525 spin_unlock(&mp->m_perag_lock); 526 radix_tree_preload_end(); 527 error = -EEXIST; 528 goto out_unwind; 529 } 530 spin_unlock(&mp->m_perag_lock); 531 radix_tree_preload_end(); 532 } 533 534 /* 535 * If we mount with the inode64 option, or no inode overflows 536 * the legacy 32-bit address space clear the inode32 option. 537 */ 538 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 539 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 540 541 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 542 mp->m_flags |= XFS_MOUNT_32BITINODES; 543 else 544 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 545 546 if (mp->m_flags & XFS_MOUNT_32BITINODES) 547 index = xfs_set_inode32(mp); 548 else 549 index = xfs_set_inode64(mp); 550 551 if (maxagi) 552 *maxagi = index; 553 return 0; 554 555 out_unwind: 556 kmem_free(pag); 557 for (; index > first_initialised; index--) { 558 pag = radix_tree_delete(&mp->m_perag_tree, index); 559 kmem_free(pag); 560 } 561 return error; 562 } 563 564 void 565 xfs_sb_from_disk( 566 struct xfs_sb *to, 567 xfs_dsb_t *from) 568 { 569 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 570 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 571 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 572 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 573 to->sb_rextents = be64_to_cpu(from->sb_rextents); 574 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 575 to->sb_logstart = be64_to_cpu(from->sb_logstart); 576 to->sb_rootino = be64_to_cpu(from->sb_rootino); 577 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 578 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 579 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 580 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 581 to->sb_agcount = be32_to_cpu(from->sb_agcount); 582 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 583 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 584 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 585 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 586 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 587 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 588 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 589 to->sb_blocklog = from->sb_blocklog; 590 to->sb_sectlog = from->sb_sectlog; 591 to->sb_inodelog = from->sb_inodelog; 592 to->sb_inopblog = from->sb_inopblog; 593 to->sb_agblklog = from->sb_agblklog; 594 to->sb_rextslog = from->sb_rextslog; 595 to->sb_inprogress = from->sb_inprogress; 596 to->sb_imax_pct = from->sb_imax_pct; 597 to->sb_icount = be64_to_cpu(from->sb_icount); 598 to->sb_ifree = be64_to_cpu(from->sb_ifree); 599 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 600 to->sb_frextents = be64_to_cpu(from->sb_frextents); 601 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 602 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 603 to->sb_qflags = be16_to_cpu(from->sb_qflags); 604 to->sb_flags = from->sb_flags; 605 to->sb_shared_vn = from->sb_shared_vn; 606 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 607 to->sb_unit = be32_to_cpu(from->sb_unit); 608 to->sb_width = be32_to_cpu(from->sb_width); 609 to->sb_dirblklog = from->sb_dirblklog; 610 to->sb_logsectlog = from->sb_logsectlog; 611 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 612 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 613 to->sb_features2 = be32_to_cpu(from->sb_features2); 614 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 615 to->sb_features_compat = be32_to_cpu(from->sb_features_compat); 616 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat); 617 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat); 618 to->sb_features_log_incompat = 619 be32_to_cpu(from->sb_features_log_incompat); 620 to->sb_pad = 0; 621 to->sb_pquotino = be64_to_cpu(from->sb_pquotino); 622 to->sb_lsn = be64_to_cpu(from->sb_lsn); 623 } 624 625 /* 626 * Copy in core superblock to ondisk one. 627 * 628 * The fields argument is mask of superblock fields to copy. 629 */ 630 void 631 xfs_sb_to_disk( 632 xfs_dsb_t *to, 633 xfs_sb_t *from, 634 __int64_t fields) 635 { 636 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 637 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 638 xfs_sb_field_t f; 639 int first; 640 int size; 641 642 ASSERT(fields); 643 if (!fields) 644 return; 645 646 while (fields) { 647 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 648 first = xfs_sb_info[f].offset; 649 size = xfs_sb_info[f + 1].offset - first; 650 651 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 652 653 if (size == 1 || xfs_sb_info[f].type == 1) { 654 memcpy(to_ptr + first, from_ptr + first, size); 655 } else { 656 switch (size) { 657 case 2: 658 *(__be16 *)(to_ptr + first) = 659 cpu_to_be16(*(__u16 *)(from_ptr + first)); 660 break; 661 case 4: 662 *(__be32 *)(to_ptr + first) = 663 cpu_to_be32(*(__u32 *)(from_ptr + first)); 664 break; 665 case 8: 666 *(__be64 *)(to_ptr + first) = 667 cpu_to_be64(*(__u64 *)(from_ptr + first)); 668 break; 669 default: 670 ASSERT(0); 671 } 672 } 673 674 fields &= ~(1LL << f); 675 } 676 } 677 678 static int 679 xfs_sb_verify( 680 struct xfs_buf *bp, 681 bool check_version) 682 { 683 struct xfs_mount *mp = bp->b_target->bt_mount; 684 struct xfs_sb sb; 685 686 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp)); 687 688 /* 689 * Only check the in progress field for the primary superblock as 690 * mkfs.xfs doesn't clear it from secondary superblocks. 691 */ 692 return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR, 693 check_version); 694 } 695 696 /* 697 * If the superblock has the CRC feature bit set or the CRC field is non-null, 698 * check that the CRC is valid. We check the CRC field is non-null because a 699 * single bit error could clear the feature bit and unused parts of the 700 * superblock are supposed to be zero. Hence a non-null crc field indicates that 701 * we've potentially lost a feature bit and we should check it anyway. 702 */ 703 static void 704 xfs_sb_read_verify( 705 struct xfs_buf *bp) 706 { 707 struct xfs_mount *mp = bp->b_target->bt_mount; 708 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 709 int error; 710 711 /* 712 * open code the version check to avoid needing to convert the entire 713 * superblock from disk order just to check the version number 714 */ 715 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) && 716 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) == 717 XFS_SB_VERSION_5) || 718 dsb->sb_crc != 0)) { 719 720 if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize), 721 offsetof(struct xfs_sb, sb_crc))) { 722 error = EFSCORRUPTED; 723 goto out_error; 724 } 725 } 726 error = xfs_sb_verify(bp, true); 727 728 out_error: 729 if (error) { 730 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); 731 xfs_buf_ioerror(bp, error); 732 } 733 } 734 735 /* 736 * We may be probed for a filesystem match, so we may not want to emit 737 * messages when the superblock buffer is not actually an XFS superblock. 738 * If we find an XFS superblock, the run a normal, noisy mount because we are 739 * really going to mount it and want to know about errors. 740 */ 741 static void 742 xfs_sb_quiet_read_verify( 743 struct xfs_buf *bp) 744 { 745 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp); 746 747 748 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) { 749 /* XFS filesystem, verify noisily! */ 750 xfs_sb_read_verify(bp); 751 return; 752 } 753 /* quietly fail */ 754 xfs_buf_ioerror(bp, EWRONGFS); 755 } 756 757 static void 758 xfs_sb_write_verify( 759 struct xfs_buf *bp) 760 { 761 struct xfs_mount *mp = bp->b_target->bt_mount; 762 struct xfs_buf_log_item *bip = bp->b_fspriv; 763 int error; 764 765 error = xfs_sb_verify(bp, false); 766 if (error) { 767 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr); 768 xfs_buf_ioerror(bp, error); 769 return; 770 } 771 772 if (!xfs_sb_version_hascrc(&mp->m_sb)) 773 return; 774 775 if (bip) 776 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 777 778 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length), 779 offsetof(struct xfs_sb, sb_crc)); 780 } 781 782 const struct xfs_buf_ops xfs_sb_buf_ops = { 783 .verify_read = xfs_sb_read_verify, 784 .verify_write = xfs_sb_write_verify, 785 }; 786 787 static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = { 788 .verify_read = xfs_sb_quiet_read_verify, 789 .verify_write = xfs_sb_write_verify, 790 }; 791 792 /* 793 * xfs_readsb 794 * 795 * Does the initial read of the superblock. 796 */ 797 int 798 xfs_readsb(xfs_mount_t *mp, int flags) 799 { 800 unsigned int sector_size; 801 struct xfs_buf *bp; 802 struct xfs_sb *sbp = &mp->m_sb; 803 int error; 804 int loud = !(flags & XFS_MFSI_QUIET); 805 806 ASSERT(mp->m_sb_bp == NULL); 807 ASSERT(mp->m_ddev_targp != NULL); 808 809 /* 810 * Allocate a (locked) buffer to hold the superblock. 811 * This will be kept around at all times to optimize 812 * access to the superblock. 813 */ 814 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 815 816 reread: 817 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 818 BTOBB(sector_size), 0, 819 loud ? &xfs_sb_buf_ops 820 : &xfs_sb_quiet_buf_ops); 821 if (!bp) { 822 if (loud) 823 xfs_warn(mp, "SB buffer read failed"); 824 return EIO; 825 } 826 if (bp->b_error) { 827 error = bp->b_error; 828 if (loud) 829 xfs_warn(mp, "SB validate failed with error %d.", error); 830 goto release_buf; 831 } 832 833 /* 834 * Initialize the mount structure from the superblock. 835 */ 836 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 837 838 /* 839 * We must be able to do sector-sized and sector-aligned IO. 840 */ 841 if (sector_size > sbp->sb_sectsize) { 842 if (loud) 843 xfs_warn(mp, "device supports %u byte sectors (not %u)", 844 sector_size, sbp->sb_sectsize); 845 error = ENOSYS; 846 goto release_buf; 847 } 848 849 /* 850 * If device sector size is smaller than the superblock size, 851 * re-read the superblock so the buffer is correctly sized. 852 */ 853 if (sector_size < sbp->sb_sectsize) { 854 xfs_buf_relse(bp); 855 sector_size = sbp->sb_sectsize; 856 goto reread; 857 } 858 859 /* Initialize per-cpu counters */ 860 xfs_icsb_reinit_counters(mp); 861 862 /* no need to be quiet anymore, so reset the buf ops */ 863 bp->b_ops = &xfs_sb_buf_ops; 864 865 mp->m_sb_bp = bp; 866 xfs_buf_unlock(bp); 867 return 0; 868 869 release_buf: 870 xfs_buf_relse(bp); 871 return error; 872 } 873 874 875 /* 876 * xfs_mount_common 877 * 878 * Mount initialization code establishing various mount 879 * fields from the superblock associated with the given 880 * mount structure 881 */ 882 STATIC void 883 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 884 { 885 mp->m_agfrotor = mp->m_agirotor = 0; 886 spin_lock_init(&mp->m_agirotor_lock); 887 mp->m_maxagi = mp->m_sb.sb_agcount; 888 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 889 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 890 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 891 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 892 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 893 mp->m_blockmask = sbp->sb_blocksize - 1; 894 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 895 mp->m_blockwmask = mp->m_blockwsize - 1; 896 897 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 898 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 899 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 900 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 901 902 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 903 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 904 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 905 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 906 907 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 908 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 909 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 910 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 911 912 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 913 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 914 sbp->sb_inopblock); 915 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 916 } 917 918 /* 919 * xfs_initialize_perag_data 920 * 921 * Read in each per-ag structure so we can count up the number of 922 * allocated inodes, free inodes and used filesystem blocks as this 923 * information is no longer persistent in the superblock. Once we have 924 * this information, write it into the in-core superblock structure. 925 */ 926 STATIC int 927 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 928 { 929 xfs_agnumber_t index; 930 xfs_perag_t *pag; 931 xfs_sb_t *sbp = &mp->m_sb; 932 uint64_t ifree = 0; 933 uint64_t ialloc = 0; 934 uint64_t bfree = 0; 935 uint64_t bfreelst = 0; 936 uint64_t btree = 0; 937 int error; 938 939 for (index = 0; index < agcount; index++) { 940 /* 941 * read the agf, then the agi. This gets us 942 * all the information we need and populates the 943 * per-ag structures for us. 944 */ 945 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 946 if (error) 947 return error; 948 949 error = xfs_ialloc_pagi_init(mp, NULL, index); 950 if (error) 951 return error; 952 pag = xfs_perag_get(mp, index); 953 ifree += pag->pagi_freecount; 954 ialloc += pag->pagi_count; 955 bfree += pag->pagf_freeblks; 956 bfreelst += pag->pagf_flcount; 957 btree += pag->pagf_btreeblks; 958 xfs_perag_put(pag); 959 } 960 /* 961 * Overwrite incore superblock counters with just-read data 962 */ 963 spin_lock(&mp->m_sb_lock); 964 sbp->sb_ifree = ifree; 965 sbp->sb_icount = ialloc; 966 sbp->sb_fdblocks = bfree + bfreelst + btree; 967 spin_unlock(&mp->m_sb_lock); 968 969 /* Fixup the per-cpu counters as well. */ 970 xfs_icsb_reinit_counters(mp); 971 972 return 0; 973 } 974 975 /* 976 * Update alignment values based on mount options and sb values 977 */ 978 STATIC int 979 xfs_update_alignment(xfs_mount_t *mp) 980 { 981 xfs_sb_t *sbp = &(mp->m_sb); 982 983 if (mp->m_dalign) { 984 /* 985 * If stripe unit and stripe width are not multiples 986 * of the fs blocksize turn off alignment. 987 */ 988 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 989 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 990 if (mp->m_flags & XFS_MOUNT_RETERR) { 991 xfs_warn(mp, "alignment check failed: " 992 "(sunit/swidth vs. blocksize)"); 993 return XFS_ERROR(EINVAL); 994 } 995 mp->m_dalign = mp->m_swidth = 0; 996 } else { 997 /* 998 * Convert the stripe unit and width to FSBs. 999 */ 1000 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 1001 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 1002 if (mp->m_flags & XFS_MOUNT_RETERR) { 1003 xfs_warn(mp, "alignment check failed: " 1004 "(sunit/swidth vs. ag size)"); 1005 return XFS_ERROR(EINVAL); 1006 } 1007 xfs_warn(mp, 1008 "stripe alignment turned off: sunit(%d)/swidth(%d) " 1009 "incompatible with agsize(%d)", 1010 mp->m_dalign, mp->m_swidth, 1011 sbp->sb_agblocks); 1012 1013 mp->m_dalign = 0; 1014 mp->m_swidth = 0; 1015 } else if (mp->m_dalign) { 1016 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 1017 } else { 1018 if (mp->m_flags & XFS_MOUNT_RETERR) { 1019 xfs_warn(mp, "alignment check failed: " 1020 "sunit(%d) less than bsize(%d)", 1021 mp->m_dalign, 1022 mp->m_blockmask +1); 1023 return XFS_ERROR(EINVAL); 1024 } 1025 mp->m_swidth = 0; 1026 } 1027 } 1028 1029 /* 1030 * Update superblock with new values 1031 * and log changes 1032 */ 1033 if (xfs_sb_version_hasdalign(sbp)) { 1034 if (sbp->sb_unit != mp->m_dalign) { 1035 sbp->sb_unit = mp->m_dalign; 1036 mp->m_update_flags |= XFS_SB_UNIT; 1037 } 1038 if (sbp->sb_width != mp->m_swidth) { 1039 sbp->sb_width = mp->m_swidth; 1040 mp->m_update_flags |= XFS_SB_WIDTH; 1041 } 1042 } 1043 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 1044 xfs_sb_version_hasdalign(&mp->m_sb)) { 1045 mp->m_dalign = sbp->sb_unit; 1046 mp->m_swidth = sbp->sb_width; 1047 } 1048 1049 return 0; 1050 } 1051 1052 /* 1053 * Set the maximum inode count for this filesystem 1054 */ 1055 STATIC void 1056 xfs_set_maxicount(xfs_mount_t *mp) 1057 { 1058 xfs_sb_t *sbp = &(mp->m_sb); 1059 __uint64_t icount; 1060 1061 if (sbp->sb_imax_pct) { 1062 /* 1063 * Make sure the maximum inode count is a multiple 1064 * of the units we allocate inodes in. 1065 */ 1066 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 1067 do_div(icount, 100); 1068 do_div(icount, mp->m_ialloc_blks); 1069 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 1070 sbp->sb_inopblog; 1071 } else { 1072 mp->m_maxicount = 0; 1073 } 1074 } 1075 1076 /* 1077 * Set the default minimum read and write sizes unless 1078 * already specified in a mount option. 1079 * We use smaller I/O sizes when the file system 1080 * is being used for NFS service (wsync mount option). 1081 */ 1082 STATIC void 1083 xfs_set_rw_sizes(xfs_mount_t *mp) 1084 { 1085 xfs_sb_t *sbp = &(mp->m_sb); 1086 int readio_log, writeio_log; 1087 1088 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 1089 if (mp->m_flags & XFS_MOUNT_WSYNC) { 1090 readio_log = XFS_WSYNC_READIO_LOG; 1091 writeio_log = XFS_WSYNC_WRITEIO_LOG; 1092 } else { 1093 readio_log = XFS_READIO_LOG_LARGE; 1094 writeio_log = XFS_WRITEIO_LOG_LARGE; 1095 } 1096 } else { 1097 readio_log = mp->m_readio_log; 1098 writeio_log = mp->m_writeio_log; 1099 } 1100 1101 if (sbp->sb_blocklog > readio_log) { 1102 mp->m_readio_log = sbp->sb_blocklog; 1103 } else { 1104 mp->m_readio_log = readio_log; 1105 } 1106 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 1107 if (sbp->sb_blocklog > writeio_log) { 1108 mp->m_writeio_log = sbp->sb_blocklog; 1109 } else { 1110 mp->m_writeio_log = writeio_log; 1111 } 1112 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 1113 } 1114 1115 /* 1116 * precalculate the low space thresholds for dynamic speculative preallocation. 1117 */ 1118 void 1119 xfs_set_low_space_thresholds( 1120 struct xfs_mount *mp) 1121 { 1122 int i; 1123 1124 for (i = 0; i < XFS_LOWSP_MAX; i++) { 1125 __uint64_t space = mp->m_sb.sb_dblocks; 1126 1127 do_div(space, 100); 1128 mp->m_low_space[i] = space * (i + 1); 1129 } 1130 } 1131 1132 1133 /* 1134 * Set whether we're using inode alignment. 1135 */ 1136 STATIC void 1137 xfs_set_inoalignment(xfs_mount_t *mp) 1138 { 1139 if (xfs_sb_version_hasalign(&mp->m_sb) && 1140 mp->m_sb.sb_inoalignmt >= 1141 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 1142 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 1143 else 1144 mp->m_inoalign_mask = 0; 1145 /* 1146 * If we are using stripe alignment, check whether 1147 * the stripe unit is a multiple of the inode alignment 1148 */ 1149 if (mp->m_dalign && mp->m_inoalign_mask && 1150 !(mp->m_dalign & mp->m_inoalign_mask)) 1151 mp->m_sinoalign = mp->m_dalign; 1152 else 1153 mp->m_sinoalign = 0; 1154 } 1155 1156 /* 1157 * Check that the data (and log if separate) are an ok size. 1158 */ 1159 STATIC int 1160 xfs_check_sizes(xfs_mount_t *mp) 1161 { 1162 xfs_buf_t *bp; 1163 xfs_daddr_t d; 1164 1165 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 1166 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 1167 xfs_warn(mp, "filesystem size mismatch detected"); 1168 return XFS_ERROR(EFBIG); 1169 } 1170 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 1171 d - XFS_FSS_TO_BB(mp, 1), 1172 XFS_FSS_TO_BB(mp, 1), 0, NULL); 1173 if (!bp) { 1174 xfs_warn(mp, "last sector read failed"); 1175 return EIO; 1176 } 1177 xfs_buf_relse(bp); 1178 1179 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1180 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1181 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1182 xfs_warn(mp, "log size mismatch detected"); 1183 return XFS_ERROR(EFBIG); 1184 } 1185 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 1186 d - XFS_FSB_TO_BB(mp, 1), 1187 XFS_FSB_TO_BB(mp, 1), 0, NULL); 1188 if (!bp) { 1189 xfs_warn(mp, "log device read failed"); 1190 return EIO; 1191 } 1192 xfs_buf_relse(bp); 1193 } 1194 return 0; 1195 } 1196 1197 /* 1198 * Clear the quotaflags in memory and in the superblock. 1199 */ 1200 int 1201 xfs_mount_reset_sbqflags( 1202 struct xfs_mount *mp) 1203 { 1204 int error; 1205 struct xfs_trans *tp; 1206 1207 mp->m_qflags = 0; 1208 1209 /* 1210 * It is OK to look at sb_qflags here in mount path, 1211 * without m_sb_lock. 1212 */ 1213 if (mp->m_sb.sb_qflags == 0) 1214 return 0; 1215 spin_lock(&mp->m_sb_lock); 1216 mp->m_sb.sb_qflags = 0; 1217 spin_unlock(&mp->m_sb_lock); 1218 1219 /* 1220 * If the fs is readonly, let the incore superblock run 1221 * with quotas off but don't flush the update out to disk 1222 */ 1223 if (mp->m_flags & XFS_MOUNT_RDONLY) 1224 return 0; 1225 1226 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1227 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp), 1228 0, 0, XFS_DEFAULT_LOG_COUNT); 1229 if (error) { 1230 xfs_trans_cancel(tp, 0); 1231 xfs_alert(mp, "%s: Superblock update failed!", __func__); 1232 return error; 1233 } 1234 1235 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1236 return xfs_trans_commit(tp, 0); 1237 } 1238 1239 __uint64_t 1240 xfs_default_resblks(xfs_mount_t *mp) 1241 { 1242 __uint64_t resblks; 1243 1244 /* 1245 * We default to 5% or 8192 fsbs of space reserved, whichever is 1246 * smaller. This is intended to cover concurrent allocation 1247 * transactions when we initially hit enospc. These each require a 4 1248 * block reservation. Hence by default we cover roughly 2000 concurrent 1249 * allocation reservations. 1250 */ 1251 resblks = mp->m_sb.sb_dblocks; 1252 do_div(resblks, 20); 1253 resblks = min_t(__uint64_t, resblks, 8192); 1254 return resblks; 1255 } 1256 1257 /* 1258 * This function does the following on an initial mount of a file system: 1259 * - reads the superblock from disk and init the mount struct 1260 * - if we're a 32-bit kernel, do a size check on the superblock 1261 * so we don't mount terabyte filesystems 1262 * - init mount struct realtime fields 1263 * - allocate inode hash table for fs 1264 * - init directory manager 1265 * - perform recovery and init the log manager 1266 */ 1267 int 1268 xfs_mountfs( 1269 xfs_mount_t *mp) 1270 { 1271 xfs_sb_t *sbp = &(mp->m_sb); 1272 xfs_inode_t *rip; 1273 __uint64_t resblks; 1274 uint quotamount = 0; 1275 uint quotaflags = 0; 1276 int error = 0; 1277 1278 xfs_mount_common(mp, sbp); 1279 1280 /* 1281 * Check for a mismatched features2 values. Older kernels 1282 * read & wrote into the wrong sb offset for sb_features2 1283 * on some platforms due to xfs_sb_t not being 64bit size aligned 1284 * when sb_features2 was added, which made older superblock 1285 * reading/writing routines swap it as a 64-bit value. 1286 * 1287 * For backwards compatibility, we make both slots equal. 1288 * 1289 * If we detect a mismatched field, we OR the set bits into the 1290 * existing features2 field in case it has already been modified; we 1291 * don't want to lose any features. We then update the bad location 1292 * with the ORed value so that older kernels will see any features2 1293 * flags, and mark the two fields as needing updates once the 1294 * transaction subsystem is online. 1295 */ 1296 if (xfs_sb_has_mismatched_features2(sbp)) { 1297 xfs_warn(mp, "correcting sb_features alignment problem"); 1298 sbp->sb_features2 |= sbp->sb_bad_features2; 1299 sbp->sb_bad_features2 = sbp->sb_features2; 1300 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1301 1302 /* 1303 * Re-check for ATTR2 in case it was found in bad_features2 1304 * slot. 1305 */ 1306 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1307 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1308 mp->m_flags |= XFS_MOUNT_ATTR2; 1309 } 1310 1311 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1312 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1313 xfs_sb_version_removeattr2(&mp->m_sb); 1314 mp->m_update_flags |= XFS_SB_FEATURES2; 1315 1316 /* update sb_versionnum for the clearing of the morebits */ 1317 if (!sbp->sb_features2) 1318 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1319 } 1320 1321 /* 1322 * Check if sb_agblocks is aligned at stripe boundary 1323 * If sb_agblocks is NOT aligned turn off m_dalign since 1324 * allocator alignment is within an ag, therefore ag has 1325 * to be aligned at stripe boundary. 1326 */ 1327 error = xfs_update_alignment(mp); 1328 if (error) 1329 goto out; 1330 1331 xfs_alloc_compute_maxlevels(mp); 1332 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1333 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1334 xfs_ialloc_compute_maxlevels(mp); 1335 1336 xfs_set_maxicount(mp); 1337 1338 error = xfs_uuid_mount(mp); 1339 if (error) 1340 goto out; 1341 1342 /* 1343 * Set the minimum read and write sizes 1344 */ 1345 xfs_set_rw_sizes(mp); 1346 1347 /* set the low space thresholds for dynamic preallocation */ 1348 xfs_set_low_space_thresholds(mp); 1349 1350 /* 1351 * Set the inode cluster size. 1352 * This may still be overridden by the file system 1353 * block size if it is larger than the chosen cluster size. 1354 */ 1355 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1356 1357 /* 1358 * Set inode alignment fields 1359 */ 1360 xfs_set_inoalignment(mp); 1361 1362 /* 1363 * Check that the data (and log if separate) are an ok size. 1364 */ 1365 error = xfs_check_sizes(mp); 1366 if (error) 1367 goto out_remove_uuid; 1368 1369 /* 1370 * Initialize realtime fields in the mount structure 1371 */ 1372 error = xfs_rtmount_init(mp); 1373 if (error) { 1374 xfs_warn(mp, "RT mount failed"); 1375 goto out_remove_uuid; 1376 } 1377 1378 /* 1379 * Copies the low order bits of the timestamp and the randomly 1380 * set "sequence" number out of a UUID. 1381 */ 1382 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1383 1384 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1385 1386 xfs_dir_mount(mp); 1387 1388 /* 1389 * Initialize the attribute manager's entries. 1390 */ 1391 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1392 1393 /* 1394 * Initialize the precomputed transaction reservations values. 1395 */ 1396 xfs_trans_init(mp); 1397 1398 /* 1399 * Allocate and initialize the per-ag data. 1400 */ 1401 spin_lock_init(&mp->m_perag_lock); 1402 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1403 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1404 if (error) { 1405 xfs_warn(mp, "Failed per-ag init: %d", error); 1406 goto out_remove_uuid; 1407 } 1408 1409 if (!sbp->sb_logblocks) { 1410 xfs_warn(mp, "no log defined"); 1411 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1412 error = XFS_ERROR(EFSCORRUPTED); 1413 goto out_free_perag; 1414 } 1415 1416 /* 1417 * log's mount-time initialization. Perform 1st part recovery if needed 1418 */ 1419 error = xfs_log_mount(mp, mp->m_logdev_targp, 1420 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1421 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1422 if (error) { 1423 xfs_warn(mp, "log mount failed"); 1424 goto out_fail_wait; 1425 } 1426 1427 /* 1428 * Now the log is mounted, we know if it was an unclean shutdown or 1429 * not. If it was, with the first phase of recovery has completed, we 1430 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1431 * but they are recovered transactionally in the second recovery phase 1432 * later. 1433 * 1434 * Hence we can safely re-initialise incore superblock counters from 1435 * the per-ag data. These may not be correct if the filesystem was not 1436 * cleanly unmounted, so we need to wait for recovery to finish before 1437 * doing this. 1438 * 1439 * If the filesystem was cleanly unmounted, then we can trust the 1440 * values in the superblock to be correct and we don't need to do 1441 * anything here. 1442 * 1443 * If we are currently making the filesystem, the initialisation will 1444 * fail as the perag data is in an undefined state. 1445 */ 1446 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1447 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1448 !mp->m_sb.sb_inprogress) { 1449 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1450 if (error) 1451 goto out_fail_wait; 1452 } 1453 1454 /* 1455 * Get and sanity-check the root inode. 1456 * Save the pointer to it in the mount structure. 1457 */ 1458 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1459 if (error) { 1460 xfs_warn(mp, "failed to read root inode"); 1461 goto out_log_dealloc; 1462 } 1463 1464 ASSERT(rip != NULL); 1465 1466 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 1467 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1468 (unsigned long long)rip->i_ino); 1469 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1470 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1471 mp); 1472 error = XFS_ERROR(EFSCORRUPTED); 1473 goto out_rele_rip; 1474 } 1475 mp->m_rootip = rip; /* save it */ 1476 1477 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1478 1479 /* 1480 * Initialize realtime inode pointers in the mount structure 1481 */ 1482 error = xfs_rtmount_inodes(mp); 1483 if (error) { 1484 /* 1485 * Free up the root inode. 1486 */ 1487 xfs_warn(mp, "failed to read RT inodes"); 1488 goto out_rele_rip; 1489 } 1490 1491 /* 1492 * If this is a read-only mount defer the superblock updates until 1493 * the next remount into writeable mode. Otherwise we would never 1494 * perform the update e.g. for the root filesystem. 1495 */ 1496 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1497 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1498 if (error) { 1499 xfs_warn(mp, "failed to write sb changes"); 1500 goto out_rtunmount; 1501 } 1502 } 1503 1504 /* 1505 * Initialise the XFS quota management subsystem for this mount 1506 */ 1507 if (XFS_IS_QUOTA_RUNNING(mp)) { 1508 error = xfs_qm_newmount(mp, "amount, "aflags); 1509 if (error) 1510 goto out_rtunmount; 1511 } else { 1512 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1513 1514 /* 1515 * If a file system had quotas running earlier, but decided to 1516 * mount without -o uquota/pquota/gquota options, revoke the 1517 * quotachecked license. 1518 */ 1519 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1520 xfs_notice(mp, "resetting quota flags"); 1521 error = xfs_mount_reset_sbqflags(mp); 1522 if (error) 1523 return error; 1524 } 1525 } 1526 1527 /* 1528 * Finish recovering the file system. This part needed to be 1529 * delayed until after the root and real-time bitmap inodes 1530 * were consistently read in. 1531 */ 1532 error = xfs_log_mount_finish(mp); 1533 if (error) { 1534 xfs_warn(mp, "log mount finish failed"); 1535 goto out_rtunmount; 1536 } 1537 1538 /* 1539 * Complete the quota initialisation, post-log-replay component. 1540 */ 1541 if (quotamount) { 1542 ASSERT(mp->m_qflags == 0); 1543 mp->m_qflags = quotaflags; 1544 1545 xfs_qm_mount_quotas(mp); 1546 } 1547 1548 /* 1549 * Now we are mounted, reserve a small amount of unused space for 1550 * privileged transactions. This is needed so that transaction 1551 * space required for critical operations can dip into this pool 1552 * when at ENOSPC. This is needed for operations like create with 1553 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1554 * are not allowed to use this reserved space. 1555 * 1556 * This may drive us straight to ENOSPC on mount, but that implies 1557 * we were already there on the last unmount. Warn if this occurs. 1558 */ 1559 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1560 resblks = xfs_default_resblks(mp); 1561 error = xfs_reserve_blocks(mp, &resblks, NULL); 1562 if (error) 1563 xfs_warn(mp, 1564 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1565 } 1566 1567 return 0; 1568 1569 out_rtunmount: 1570 xfs_rtunmount_inodes(mp); 1571 out_rele_rip: 1572 IRELE(rip); 1573 out_log_dealloc: 1574 xfs_log_unmount(mp); 1575 out_fail_wait: 1576 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1577 xfs_wait_buftarg(mp->m_logdev_targp); 1578 xfs_wait_buftarg(mp->m_ddev_targp); 1579 out_free_perag: 1580 xfs_free_perag(mp); 1581 out_remove_uuid: 1582 xfs_uuid_unmount(mp); 1583 out: 1584 return error; 1585 } 1586 1587 /* 1588 * This flushes out the inodes,dquots and the superblock, unmounts the 1589 * log and makes sure that incore structures are freed. 1590 */ 1591 void 1592 xfs_unmountfs( 1593 struct xfs_mount *mp) 1594 { 1595 __uint64_t resblks; 1596 int error; 1597 1598 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1599 1600 xfs_qm_unmount_quotas(mp); 1601 xfs_rtunmount_inodes(mp); 1602 IRELE(mp->m_rootip); 1603 1604 /* 1605 * We can potentially deadlock here if we have an inode cluster 1606 * that has been freed has its buffer still pinned in memory because 1607 * the transaction is still sitting in a iclog. The stale inodes 1608 * on that buffer will have their flush locks held until the 1609 * transaction hits the disk and the callbacks run. the inode 1610 * flush takes the flush lock unconditionally and with nothing to 1611 * push out the iclog we will never get that unlocked. hence we 1612 * need to force the log first. 1613 */ 1614 xfs_log_force(mp, XFS_LOG_SYNC); 1615 1616 /* 1617 * Flush all pending changes from the AIL. 1618 */ 1619 xfs_ail_push_all_sync(mp->m_ail); 1620 1621 /* 1622 * And reclaim all inodes. At this point there should be no dirty 1623 * inodes and none should be pinned or locked, but use synchronous 1624 * reclaim just to be sure. We can stop background inode reclaim 1625 * here as well if it is still running. 1626 */ 1627 cancel_delayed_work_sync(&mp->m_reclaim_work); 1628 xfs_reclaim_inodes(mp, SYNC_WAIT); 1629 1630 xfs_qm_unmount(mp); 1631 1632 /* 1633 * Unreserve any blocks we have so that when we unmount we don't account 1634 * the reserved free space as used. This is really only necessary for 1635 * lazy superblock counting because it trusts the incore superblock 1636 * counters to be absolutely correct on clean unmount. 1637 * 1638 * We don't bother correcting this elsewhere for lazy superblock 1639 * counting because on mount of an unclean filesystem we reconstruct the 1640 * correct counter value and this is irrelevant. 1641 * 1642 * For non-lazy counter filesystems, this doesn't matter at all because 1643 * we only every apply deltas to the superblock and hence the incore 1644 * value does not matter.... 1645 */ 1646 resblks = 0; 1647 error = xfs_reserve_blocks(mp, &resblks, NULL); 1648 if (error) 1649 xfs_warn(mp, "Unable to free reserved block pool. " 1650 "Freespace may not be correct on next mount."); 1651 1652 error = xfs_log_sbcount(mp); 1653 if (error) 1654 xfs_warn(mp, "Unable to update superblock counters. " 1655 "Freespace may not be correct on next mount."); 1656 1657 xfs_log_unmount(mp); 1658 xfs_uuid_unmount(mp); 1659 1660 #if defined(DEBUG) 1661 xfs_errortag_clearall(mp, 0); 1662 #endif 1663 xfs_free_perag(mp); 1664 } 1665 1666 int 1667 xfs_fs_writable(xfs_mount_t *mp) 1668 { 1669 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1670 (mp->m_flags & XFS_MOUNT_RDONLY)); 1671 } 1672 1673 /* 1674 * xfs_log_sbcount 1675 * 1676 * Sync the superblock counters to disk. 1677 * 1678 * Note this code can be called during the process of freezing, so 1679 * we may need to use the transaction allocator which does not 1680 * block when the transaction subsystem is in its frozen state. 1681 */ 1682 int 1683 xfs_log_sbcount(xfs_mount_t *mp) 1684 { 1685 xfs_trans_t *tp; 1686 int error; 1687 1688 if (!xfs_fs_writable(mp)) 1689 return 0; 1690 1691 xfs_icsb_sync_counters(mp, 0); 1692 1693 /* 1694 * we don't need to do this if we are updating the superblock 1695 * counters on every modification. 1696 */ 1697 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1698 return 0; 1699 1700 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1701 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0, 1702 XFS_DEFAULT_LOG_COUNT); 1703 if (error) { 1704 xfs_trans_cancel(tp, 0); 1705 return error; 1706 } 1707 1708 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1709 xfs_trans_set_sync(tp); 1710 error = xfs_trans_commit(tp, 0); 1711 return error; 1712 } 1713 1714 /* 1715 * xfs_mod_sb() can be used to copy arbitrary changes to the 1716 * in-core superblock into the superblock buffer to be logged. 1717 * It does not provide the higher level of locking that is 1718 * needed to protect the in-core superblock from concurrent 1719 * access. 1720 */ 1721 void 1722 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1723 { 1724 xfs_buf_t *bp; 1725 int first; 1726 int last; 1727 xfs_mount_t *mp; 1728 xfs_sb_field_t f; 1729 1730 ASSERT(fields); 1731 if (!fields) 1732 return; 1733 mp = tp->t_mountp; 1734 bp = xfs_trans_getsb(tp, mp, 0); 1735 first = sizeof(xfs_sb_t); 1736 last = 0; 1737 1738 /* translate/copy */ 1739 1740 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1741 1742 /* find modified range */ 1743 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1744 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1745 last = xfs_sb_info[f + 1].offset - 1; 1746 1747 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1748 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1749 first = xfs_sb_info[f].offset; 1750 1751 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF); 1752 xfs_trans_log_buf(tp, bp, first, last); 1753 } 1754 1755 1756 /* 1757 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1758 * a delta to a specified field in the in-core superblock. Simply 1759 * switch on the field indicated and apply the delta to that field. 1760 * Fields are not allowed to dip below zero, so if the delta would 1761 * do this do not apply it and return EINVAL. 1762 * 1763 * The m_sb_lock must be held when this routine is called. 1764 */ 1765 STATIC int 1766 xfs_mod_incore_sb_unlocked( 1767 xfs_mount_t *mp, 1768 xfs_sb_field_t field, 1769 int64_t delta, 1770 int rsvd) 1771 { 1772 int scounter; /* short counter for 32 bit fields */ 1773 long long lcounter; /* long counter for 64 bit fields */ 1774 long long res_used, rem; 1775 1776 /* 1777 * With the in-core superblock spin lock held, switch 1778 * on the indicated field. Apply the delta to the 1779 * proper field. If the fields value would dip below 1780 * 0, then do not apply the delta and return EINVAL. 1781 */ 1782 switch (field) { 1783 case XFS_SBS_ICOUNT: 1784 lcounter = (long long)mp->m_sb.sb_icount; 1785 lcounter += delta; 1786 if (lcounter < 0) { 1787 ASSERT(0); 1788 return XFS_ERROR(EINVAL); 1789 } 1790 mp->m_sb.sb_icount = lcounter; 1791 return 0; 1792 case XFS_SBS_IFREE: 1793 lcounter = (long long)mp->m_sb.sb_ifree; 1794 lcounter += delta; 1795 if (lcounter < 0) { 1796 ASSERT(0); 1797 return XFS_ERROR(EINVAL); 1798 } 1799 mp->m_sb.sb_ifree = lcounter; 1800 return 0; 1801 case XFS_SBS_FDBLOCKS: 1802 lcounter = (long long) 1803 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1804 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1805 1806 if (delta > 0) { /* Putting blocks back */ 1807 if (res_used > delta) { 1808 mp->m_resblks_avail += delta; 1809 } else { 1810 rem = delta - res_used; 1811 mp->m_resblks_avail = mp->m_resblks; 1812 lcounter += rem; 1813 } 1814 } else { /* Taking blocks away */ 1815 lcounter += delta; 1816 if (lcounter >= 0) { 1817 mp->m_sb.sb_fdblocks = lcounter + 1818 XFS_ALLOC_SET_ASIDE(mp); 1819 return 0; 1820 } 1821 1822 /* 1823 * We are out of blocks, use any available reserved 1824 * blocks if were allowed to. 1825 */ 1826 if (!rsvd) 1827 return XFS_ERROR(ENOSPC); 1828 1829 lcounter = (long long)mp->m_resblks_avail + delta; 1830 if (lcounter >= 0) { 1831 mp->m_resblks_avail = lcounter; 1832 return 0; 1833 } 1834 printk_once(KERN_WARNING 1835 "Filesystem \"%s\": reserve blocks depleted! " 1836 "Consider increasing reserve pool size.", 1837 mp->m_fsname); 1838 return XFS_ERROR(ENOSPC); 1839 } 1840 1841 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1842 return 0; 1843 case XFS_SBS_FREXTENTS: 1844 lcounter = (long long)mp->m_sb.sb_frextents; 1845 lcounter += delta; 1846 if (lcounter < 0) { 1847 return XFS_ERROR(ENOSPC); 1848 } 1849 mp->m_sb.sb_frextents = lcounter; 1850 return 0; 1851 case XFS_SBS_DBLOCKS: 1852 lcounter = (long long)mp->m_sb.sb_dblocks; 1853 lcounter += delta; 1854 if (lcounter < 0) { 1855 ASSERT(0); 1856 return XFS_ERROR(EINVAL); 1857 } 1858 mp->m_sb.sb_dblocks = lcounter; 1859 return 0; 1860 case XFS_SBS_AGCOUNT: 1861 scounter = mp->m_sb.sb_agcount; 1862 scounter += delta; 1863 if (scounter < 0) { 1864 ASSERT(0); 1865 return XFS_ERROR(EINVAL); 1866 } 1867 mp->m_sb.sb_agcount = scounter; 1868 return 0; 1869 case XFS_SBS_IMAX_PCT: 1870 scounter = mp->m_sb.sb_imax_pct; 1871 scounter += delta; 1872 if (scounter < 0) { 1873 ASSERT(0); 1874 return XFS_ERROR(EINVAL); 1875 } 1876 mp->m_sb.sb_imax_pct = scounter; 1877 return 0; 1878 case XFS_SBS_REXTSIZE: 1879 scounter = mp->m_sb.sb_rextsize; 1880 scounter += delta; 1881 if (scounter < 0) { 1882 ASSERT(0); 1883 return XFS_ERROR(EINVAL); 1884 } 1885 mp->m_sb.sb_rextsize = scounter; 1886 return 0; 1887 case XFS_SBS_RBMBLOCKS: 1888 scounter = mp->m_sb.sb_rbmblocks; 1889 scounter += delta; 1890 if (scounter < 0) { 1891 ASSERT(0); 1892 return XFS_ERROR(EINVAL); 1893 } 1894 mp->m_sb.sb_rbmblocks = scounter; 1895 return 0; 1896 case XFS_SBS_RBLOCKS: 1897 lcounter = (long long)mp->m_sb.sb_rblocks; 1898 lcounter += delta; 1899 if (lcounter < 0) { 1900 ASSERT(0); 1901 return XFS_ERROR(EINVAL); 1902 } 1903 mp->m_sb.sb_rblocks = lcounter; 1904 return 0; 1905 case XFS_SBS_REXTENTS: 1906 lcounter = (long long)mp->m_sb.sb_rextents; 1907 lcounter += delta; 1908 if (lcounter < 0) { 1909 ASSERT(0); 1910 return XFS_ERROR(EINVAL); 1911 } 1912 mp->m_sb.sb_rextents = lcounter; 1913 return 0; 1914 case XFS_SBS_REXTSLOG: 1915 scounter = mp->m_sb.sb_rextslog; 1916 scounter += delta; 1917 if (scounter < 0) { 1918 ASSERT(0); 1919 return XFS_ERROR(EINVAL); 1920 } 1921 mp->m_sb.sb_rextslog = scounter; 1922 return 0; 1923 default: 1924 ASSERT(0); 1925 return XFS_ERROR(EINVAL); 1926 } 1927 } 1928 1929 /* 1930 * xfs_mod_incore_sb() is used to change a field in the in-core 1931 * superblock structure by the specified delta. This modification 1932 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1933 * routine to do the work. 1934 */ 1935 int 1936 xfs_mod_incore_sb( 1937 struct xfs_mount *mp, 1938 xfs_sb_field_t field, 1939 int64_t delta, 1940 int rsvd) 1941 { 1942 int status; 1943 1944 #ifdef HAVE_PERCPU_SB 1945 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1946 #endif 1947 spin_lock(&mp->m_sb_lock); 1948 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1949 spin_unlock(&mp->m_sb_lock); 1950 1951 return status; 1952 } 1953 1954 /* 1955 * Change more than one field in the in-core superblock structure at a time. 1956 * 1957 * The fields and changes to those fields are specified in the array of 1958 * xfs_mod_sb structures passed in. Either all of the specified deltas 1959 * will be applied or none of them will. If any modified field dips below 0, 1960 * then all modifications will be backed out and EINVAL will be returned. 1961 * 1962 * Note that this function may not be used for the superblock values that 1963 * are tracked with the in-memory per-cpu counters - a direct call to 1964 * xfs_icsb_modify_counters is required for these. 1965 */ 1966 int 1967 xfs_mod_incore_sb_batch( 1968 struct xfs_mount *mp, 1969 xfs_mod_sb_t *msb, 1970 uint nmsb, 1971 int rsvd) 1972 { 1973 xfs_mod_sb_t *msbp; 1974 int error = 0; 1975 1976 /* 1977 * Loop through the array of mod structures and apply each individually. 1978 * If any fail, then back out all those which have already been applied. 1979 * Do all of this within the scope of the m_sb_lock so that all of the 1980 * changes will be atomic. 1981 */ 1982 spin_lock(&mp->m_sb_lock); 1983 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1984 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1985 msbp->msb_field > XFS_SBS_FDBLOCKS); 1986 1987 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1988 msbp->msb_delta, rsvd); 1989 if (error) 1990 goto unwind; 1991 } 1992 spin_unlock(&mp->m_sb_lock); 1993 return 0; 1994 1995 unwind: 1996 while (--msbp >= msb) { 1997 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1998 -msbp->msb_delta, rsvd); 1999 ASSERT(error == 0); 2000 } 2001 spin_unlock(&mp->m_sb_lock); 2002 return error; 2003 } 2004 2005 /* 2006 * xfs_getsb() is called to obtain the buffer for the superblock. 2007 * The buffer is returned locked and read in from disk. 2008 * The buffer should be released with a call to xfs_brelse(). 2009 * 2010 * If the flags parameter is BUF_TRYLOCK, then we'll only return 2011 * the superblock buffer if it can be locked without sleeping. 2012 * If it can't then we'll return NULL. 2013 */ 2014 struct xfs_buf * 2015 xfs_getsb( 2016 struct xfs_mount *mp, 2017 int flags) 2018 { 2019 struct xfs_buf *bp = mp->m_sb_bp; 2020 2021 if (!xfs_buf_trylock(bp)) { 2022 if (flags & XBF_TRYLOCK) 2023 return NULL; 2024 xfs_buf_lock(bp); 2025 } 2026 2027 xfs_buf_hold(bp); 2028 ASSERT(XFS_BUF_ISDONE(bp)); 2029 return bp; 2030 } 2031 2032 /* 2033 * Used to free the superblock along various error paths. 2034 */ 2035 void 2036 xfs_freesb( 2037 struct xfs_mount *mp) 2038 { 2039 struct xfs_buf *bp = mp->m_sb_bp; 2040 2041 xfs_buf_lock(bp); 2042 mp->m_sb_bp = NULL; 2043 xfs_buf_relse(bp); 2044 } 2045 2046 /* 2047 * Used to log changes to the superblock unit and width fields which could 2048 * be altered by the mount options, as well as any potential sb_features2 2049 * fixup. Only the first superblock is updated. 2050 */ 2051 int 2052 xfs_mount_log_sb( 2053 xfs_mount_t *mp, 2054 __int64_t fields) 2055 { 2056 xfs_trans_t *tp; 2057 int error; 2058 2059 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 2060 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 2061 XFS_SB_VERSIONNUM)); 2062 2063 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 2064 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0, 2065 XFS_DEFAULT_LOG_COUNT); 2066 if (error) { 2067 xfs_trans_cancel(tp, 0); 2068 return error; 2069 } 2070 xfs_mod_sb(tp, fields); 2071 error = xfs_trans_commit(tp, 0); 2072 return error; 2073 } 2074 2075 /* 2076 * If the underlying (data/log/rt) device is readonly, there are some 2077 * operations that cannot proceed. 2078 */ 2079 int 2080 xfs_dev_is_read_only( 2081 struct xfs_mount *mp, 2082 char *message) 2083 { 2084 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 2085 xfs_readonly_buftarg(mp->m_logdev_targp) || 2086 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 2087 xfs_notice(mp, "%s required on read-only device.", message); 2088 xfs_notice(mp, "write access unavailable, cannot proceed."); 2089 return EROFS; 2090 } 2091 return 0; 2092 } 2093 2094 #ifdef HAVE_PERCPU_SB 2095 /* 2096 * Per-cpu incore superblock counters 2097 * 2098 * Simple concept, difficult implementation 2099 * 2100 * Basically, replace the incore superblock counters with a distributed per cpu 2101 * counter for contended fields (e.g. free block count). 2102 * 2103 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 2104 * hence needs to be accurately read when we are running low on space. Hence 2105 * there is a method to enable and disable the per-cpu counters based on how 2106 * much "stuff" is available in them. 2107 * 2108 * Basically, a counter is enabled if there is enough free resource to justify 2109 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 2110 * ENOSPC), then we disable the counters to synchronise all callers and 2111 * re-distribute the available resources. 2112 * 2113 * If, once we redistributed the available resources, we still get a failure, 2114 * we disable the per-cpu counter and go through the slow path. 2115 * 2116 * The slow path is the current xfs_mod_incore_sb() function. This means that 2117 * when we disable a per-cpu counter, we need to drain its resources back to 2118 * the global superblock. We do this after disabling the counter to prevent 2119 * more threads from queueing up on the counter. 2120 * 2121 * Essentially, this means that we still need a lock in the fast path to enable 2122 * synchronisation between the global counters and the per-cpu counters. This 2123 * is not a problem because the lock will be local to a CPU almost all the time 2124 * and have little contention except when we get to ENOSPC conditions. 2125 * 2126 * Basically, this lock becomes a barrier that enables us to lock out the fast 2127 * path while we do things like enabling and disabling counters and 2128 * synchronising the counters. 2129 * 2130 * Locking rules: 2131 * 2132 * 1. m_sb_lock before picking up per-cpu locks 2133 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2134 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2135 * 4. modifying per-cpu counters requires holding per-cpu lock 2136 * 5. modifying global counters requires holding m_sb_lock 2137 * 6. enabling or disabling a counter requires holding the m_sb_lock 2138 * and _none_ of the per-cpu locks. 2139 * 2140 * Disabled counters are only ever re-enabled by a balance operation 2141 * that results in more free resources per CPU than a given threshold. 2142 * To ensure counters don't remain disabled, they are rebalanced when 2143 * the global resource goes above a higher threshold (i.e. some hysteresis 2144 * is present to prevent thrashing). 2145 */ 2146 2147 #ifdef CONFIG_HOTPLUG_CPU 2148 /* 2149 * hot-plug CPU notifier support. 2150 * 2151 * We need a notifier per filesystem as we need to be able to identify 2152 * the filesystem to balance the counters out. This is achieved by 2153 * having a notifier block embedded in the xfs_mount_t and doing pointer 2154 * magic to get the mount pointer from the notifier block address. 2155 */ 2156 STATIC int 2157 xfs_icsb_cpu_notify( 2158 struct notifier_block *nfb, 2159 unsigned long action, 2160 void *hcpu) 2161 { 2162 xfs_icsb_cnts_t *cntp; 2163 xfs_mount_t *mp; 2164 2165 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2166 cntp = (xfs_icsb_cnts_t *) 2167 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2168 switch (action) { 2169 case CPU_UP_PREPARE: 2170 case CPU_UP_PREPARE_FROZEN: 2171 /* Easy Case - initialize the area and locks, and 2172 * then rebalance when online does everything else for us. */ 2173 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2174 break; 2175 case CPU_ONLINE: 2176 case CPU_ONLINE_FROZEN: 2177 xfs_icsb_lock(mp); 2178 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2179 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2180 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2181 xfs_icsb_unlock(mp); 2182 break; 2183 case CPU_DEAD: 2184 case CPU_DEAD_FROZEN: 2185 /* Disable all the counters, then fold the dead cpu's 2186 * count into the total on the global superblock and 2187 * re-enable the counters. */ 2188 xfs_icsb_lock(mp); 2189 spin_lock(&mp->m_sb_lock); 2190 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2191 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2192 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2193 2194 mp->m_sb.sb_icount += cntp->icsb_icount; 2195 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2196 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2197 2198 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2199 2200 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2201 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2202 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2203 spin_unlock(&mp->m_sb_lock); 2204 xfs_icsb_unlock(mp); 2205 break; 2206 } 2207 2208 return NOTIFY_OK; 2209 } 2210 #endif /* CONFIG_HOTPLUG_CPU */ 2211 2212 int 2213 xfs_icsb_init_counters( 2214 xfs_mount_t *mp) 2215 { 2216 xfs_icsb_cnts_t *cntp; 2217 int i; 2218 2219 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2220 if (mp->m_sb_cnts == NULL) 2221 return -ENOMEM; 2222 2223 #ifdef CONFIG_HOTPLUG_CPU 2224 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2225 mp->m_icsb_notifier.priority = 0; 2226 register_hotcpu_notifier(&mp->m_icsb_notifier); 2227 #endif /* CONFIG_HOTPLUG_CPU */ 2228 2229 for_each_online_cpu(i) { 2230 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2231 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2232 } 2233 2234 mutex_init(&mp->m_icsb_mutex); 2235 2236 /* 2237 * start with all counters disabled so that the 2238 * initial balance kicks us off correctly 2239 */ 2240 mp->m_icsb_counters = -1; 2241 return 0; 2242 } 2243 2244 void 2245 xfs_icsb_reinit_counters( 2246 xfs_mount_t *mp) 2247 { 2248 xfs_icsb_lock(mp); 2249 /* 2250 * start with all counters disabled so that the 2251 * initial balance kicks us off correctly 2252 */ 2253 mp->m_icsb_counters = -1; 2254 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2255 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2256 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2257 xfs_icsb_unlock(mp); 2258 } 2259 2260 void 2261 xfs_icsb_destroy_counters( 2262 xfs_mount_t *mp) 2263 { 2264 if (mp->m_sb_cnts) { 2265 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2266 free_percpu(mp->m_sb_cnts); 2267 } 2268 mutex_destroy(&mp->m_icsb_mutex); 2269 } 2270 2271 STATIC void 2272 xfs_icsb_lock_cntr( 2273 xfs_icsb_cnts_t *icsbp) 2274 { 2275 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2276 ndelay(1000); 2277 } 2278 } 2279 2280 STATIC void 2281 xfs_icsb_unlock_cntr( 2282 xfs_icsb_cnts_t *icsbp) 2283 { 2284 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2285 } 2286 2287 2288 STATIC void 2289 xfs_icsb_lock_all_counters( 2290 xfs_mount_t *mp) 2291 { 2292 xfs_icsb_cnts_t *cntp; 2293 int i; 2294 2295 for_each_online_cpu(i) { 2296 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2297 xfs_icsb_lock_cntr(cntp); 2298 } 2299 } 2300 2301 STATIC void 2302 xfs_icsb_unlock_all_counters( 2303 xfs_mount_t *mp) 2304 { 2305 xfs_icsb_cnts_t *cntp; 2306 int i; 2307 2308 for_each_online_cpu(i) { 2309 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2310 xfs_icsb_unlock_cntr(cntp); 2311 } 2312 } 2313 2314 STATIC void 2315 xfs_icsb_count( 2316 xfs_mount_t *mp, 2317 xfs_icsb_cnts_t *cnt, 2318 int flags) 2319 { 2320 xfs_icsb_cnts_t *cntp; 2321 int i; 2322 2323 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2324 2325 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2326 xfs_icsb_lock_all_counters(mp); 2327 2328 for_each_online_cpu(i) { 2329 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2330 cnt->icsb_icount += cntp->icsb_icount; 2331 cnt->icsb_ifree += cntp->icsb_ifree; 2332 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2333 } 2334 2335 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2336 xfs_icsb_unlock_all_counters(mp); 2337 } 2338 2339 STATIC int 2340 xfs_icsb_counter_disabled( 2341 xfs_mount_t *mp, 2342 xfs_sb_field_t field) 2343 { 2344 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2345 return test_bit(field, &mp->m_icsb_counters); 2346 } 2347 2348 STATIC void 2349 xfs_icsb_disable_counter( 2350 xfs_mount_t *mp, 2351 xfs_sb_field_t field) 2352 { 2353 xfs_icsb_cnts_t cnt; 2354 2355 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2356 2357 /* 2358 * If we are already disabled, then there is nothing to do 2359 * here. We check before locking all the counters to avoid 2360 * the expensive lock operation when being called in the 2361 * slow path and the counter is already disabled. This is 2362 * safe because the only time we set or clear this state is under 2363 * the m_icsb_mutex. 2364 */ 2365 if (xfs_icsb_counter_disabled(mp, field)) 2366 return; 2367 2368 xfs_icsb_lock_all_counters(mp); 2369 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2370 /* drain back to superblock */ 2371 2372 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2373 switch(field) { 2374 case XFS_SBS_ICOUNT: 2375 mp->m_sb.sb_icount = cnt.icsb_icount; 2376 break; 2377 case XFS_SBS_IFREE: 2378 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2379 break; 2380 case XFS_SBS_FDBLOCKS: 2381 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2382 break; 2383 default: 2384 BUG(); 2385 } 2386 } 2387 2388 xfs_icsb_unlock_all_counters(mp); 2389 } 2390 2391 STATIC void 2392 xfs_icsb_enable_counter( 2393 xfs_mount_t *mp, 2394 xfs_sb_field_t field, 2395 uint64_t count, 2396 uint64_t resid) 2397 { 2398 xfs_icsb_cnts_t *cntp; 2399 int i; 2400 2401 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2402 2403 xfs_icsb_lock_all_counters(mp); 2404 for_each_online_cpu(i) { 2405 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2406 switch (field) { 2407 case XFS_SBS_ICOUNT: 2408 cntp->icsb_icount = count + resid; 2409 break; 2410 case XFS_SBS_IFREE: 2411 cntp->icsb_ifree = count + resid; 2412 break; 2413 case XFS_SBS_FDBLOCKS: 2414 cntp->icsb_fdblocks = count + resid; 2415 break; 2416 default: 2417 BUG(); 2418 break; 2419 } 2420 resid = 0; 2421 } 2422 clear_bit(field, &mp->m_icsb_counters); 2423 xfs_icsb_unlock_all_counters(mp); 2424 } 2425 2426 void 2427 xfs_icsb_sync_counters_locked( 2428 xfs_mount_t *mp, 2429 int flags) 2430 { 2431 xfs_icsb_cnts_t cnt; 2432 2433 xfs_icsb_count(mp, &cnt, flags); 2434 2435 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2436 mp->m_sb.sb_icount = cnt.icsb_icount; 2437 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2438 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2439 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2440 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2441 } 2442 2443 /* 2444 * Accurate update of per-cpu counters to incore superblock 2445 */ 2446 void 2447 xfs_icsb_sync_counters( 2448 xfs_mount_t *mp, 2449 int flags) 2450 { 2451 spin_lock(&mp->m_sb_lock); 2452 xfs_icsb_sync_counters_locked(mp, flags); 2453 spin_unlock(&mp->m_sb_lock); 2454 } 2455 2456 /* 2457 * Balance and enable/disable counters as necessary. 2458 * 2459 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2460 * chosen to be the same number as single on disk allocation chunk per CPU, and 2461 * free blocks is something far enough zero that we aren't going thrash when we 2462 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2463 * prevent looping endlessly when xfs_alloc_space asks for more than will 2464 * be distributed to a single CPU but each CPU has enough blocks to be 2465 * reenabled. 2466 * 2467 * Note that we can be called when counters are already disabled. 2468 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2469 * prevent locking every per-cpu counter needlessly. 2470 */ 2471 2472 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2473 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2474 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2475 STATIC void 2476 xfs_icsb_balance_counter_locked( 2477 xfs_mount_t *mp, 2478 xfs_sb_field_t field, 2479 int min_per_cpu) 2480 { 2481 uint64_t count, resid; 2482 int weight = num_online_cpus(); 2483 uint64_t min = (uint64_t)min_per_cpu; 2484 2485 /* disable counter and sync counter */ 2486 xfs_icsb_disable_counter(mp, field); 2487 2488 /* update counters - first CPU gets residual*/ 2489 switch (field) { 2490 case XFS_SBS_ICOUNT: 2491 count = mp->m_sb.sb_icount; 2492 resid = do_div(count, weight); 2493 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2494 return; 2495 break; 2496 case XFS_SBS_IFREE: 2497 count = mp->m_sb.sb_ifree; 2498 resid = do_div(count, weight); 2499 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2500 return; 2501 break; 2502 case XFS_SBS_FDBLOCKS: 2503 count = mp->m_sb.sb_fdblocks; 2504 resid = do_div(count, weight); 2505 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2506 return; 2507 break; 2508 default: 2509 BUG(); 2510 count = resid = 0; /* quiet, gcc */ 2511 break; 2512 } 2513 2514 xfs_icsb_enable_counter(mp, field, count, resid); 2515 } 2516 2517 STATIC void 2518 xfs_icsb_balance_counter( 2519 xfs_mount_t *mp, 2520 xfs_sb_field_t fields, 2521 int min_per_cpu) 2522 { 2523 spin_lock(&mp->m_sb_lock); 2524 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2525 spin_unlock(&mp->m_sb_lock); 2526 } 2527 2528 int 2529 xfs_icsb_modify_counters( 2530 xfs_mount_t *mp, 2531 xfs_sb_field_t field, 2532 int64_t delta, 2533 int rsvd) 2534 { 2535 xfs_icsb_cnts_t *icsbp; 2536 long long lcounter; /* long counter for 64 bit fields */ 2537 int ret = 0; 2538 2539 might_sleep(); 2540 again: 2541 preempt_disable(); 2542 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2543 2544 /* 2545 * if the counter is disabled, go to slow path 2546 */ 2547 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2548 goto slow_path; 2549 xfs_icsb_lock_cntr(icsbp); 2550 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2551 xfs_icsb_unlock_cntr(icsbp); 2552 goto slow_path; 2553 } 2554 2555 switch (field) { 2556 case XFS_SBS_ICOUNT: 2557 lcounter = icsbp->icsb_icount; 2558 lcounter += delta; 2559 if (unlikely(lcounter < 0)) 2560 goto balance_counter; 2561 icsbp->icsb_icount = lcounter; 2562 break; 2563 2564 case XFS_SBS_IFREE: 2565 lcounter = icsbp->icsb_ifree; 2566 lcounter += delta; 2567 if (unlikely(lcounter < 0)) 2568 goto balance_counter; 2569 icsbp->icsb_ifree = lcounter; 2570 break; 2571 2572 case XFS_SBS_FDBLOCKS: 2573 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2574 2575 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2576 lcounter += delta; 2577 if (unlikely(lcounter < 0)) 2578 goto balance_counter; 2579 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2580 break; 2581 default: 2582 BUG(); 2583 break; 2584 } 2585 xfs_icsb_unlock_cntr(icsbp); 2586 preempt_enable(); 2587 return 0; 2588 2589 slow_path: 2590 preempt_enable(); 2591 2592 /* 2593 * serialise with a mutex so we don't burn lots of cpu on 2594 * the superblock lock. We still need to hold the superblock 2595 * lock, however, when we modify the global structures. 2596 */ 2597 xfs_icsb_lock(mp); 2598 2599 /* 2600 * Now running atomically. 2601 * 2602 * If the counter is enabled, someone has beaten us to rebalancing. 2603 * Drop the lock and try again in the fast path.... 2604 */ 2605 if (!(xfs_icsb_counter_disabled(mp, field))) { 2606 xfs_icsb_unlock(mp); 2607 goto again; 2608 } 2609 2610 /* 2611 * The counter is currently disabled. Because we are 2612 * running atomically here, we know a rebalance cannot 2613 * be in progress. Hence we can go straight to operating 2614 * on the global superblock. We do not call xfs_mod_incore_sb() 2615 * here even though we need to get the m_sb_lock. Doing so 2616 * will cause us to re-enter this function and deadlock. 2617 * Hence we get the m_sb_lock ourselves and then call 2618 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2619 * directly on the global counters. 2620 */ 2621 spin_lock(&mp->m_sb_lock); 2622 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2623 spin_unlock(&mp->m_sb_lock); 2624 2625 /* 2626 * Now that we've modified the global superblock, we 2627 * may be able to re-enable the distributed counters 2628 * (e.g. lots of space just got freed). After that 2629 * we are done. 2630 */ 2631 if (ret != ENOSPC) 2632 xfs_icsb_balance_counter(mp, field, 0); 2633 xfs_icsb_unlock(mp); 2634 return ret; 2635 2636 balance_counter: 2637 xfs_icsb_unlock_cntr(icsbp); 2638 preempt_enable(); 2639 2640 /* 2641 * We may have multiple threads here if multiple per-cpu 2642 * counters run dry at the same time. This will mean we can 2643 * do more balances than strictly necessary but it is not 2644 * the common slowpath case. 2645 */ 2646 xfs_icsb_lock(mp); 2647 2648 /* 2649 * running atomically. 2650 * 2651 * This will leave the counter in the correct state for future 2652 * accesses. After the rebalance, we simply try again and our retry 2653 * will either succeed through the fast path or slow path without 2654 * another balance operation being required. 2655 */ 2656 xfs_icsb_balance_counter(mp, field, delta); 2657 xfs_icsb_unlock(mp); 2658 goto again; 2659 } 2660 2661 #endif 2662