1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 48 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 49 50 51 #ifdef HAVE_PERCPU_SB 52 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 53 int); 54 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 55 int); 56 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 57 int64_t, int); 58 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 59 60 #else 61 62 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 63 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 64 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 65 66 #endif 67 68 static const struct { 69 short offset; 70 short type; /* 0 = integer 71 * 1 = binary / string (no translation) 72 */ 73 } xfs_sb_info[] = { 74 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 75 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 76 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 77 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 78 { offsetof(xfs_sb_t, sb_rextents), 0 }, 79 { offsetof(xfs_sb_t, sb_uuid), 1 }, 80 { offsetof(xfs_sb_t, sb_logstart), 0 }, 81 { offsetof(xfs_sb_t, sb_rootino), 0 }, 82 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 83 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 84 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 85 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 86 { offsetof(xfs_sb_t, sb_agcount), 0 }, 87 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 88 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 89 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 90 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 91 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 92 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 93 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 94 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 95 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 96 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 97 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 98 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 99 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 100 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 101 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 102 { offsetof(xfs_sb_t, sb_icount), 0 }, 103 { offsetof(xfs_sb_t, sb_ifree), 0 }, 104 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 105 { offsetof(xfs_sb_t, sb_frextents), 0 }, 106 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 107 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 108 { offsetof(xfs_sb_t, sb_qflags), 0 }, 109 { offsetof(xfs_sb_t, sb_flags), 0 }, 110 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 111 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 112 { offsetof(xfs_sb_t, sb_unit), 0 }, 113 { offsetof(xfs_sb_t, sb_width), 0 }, 114 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 115 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 116 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 117 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 118 { offsetof(xfs_sb_t, sb_features2), 0 }, 119 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 120 { sizeof(xfs_sb_t), 0 } 121 }; 122 123 static DEFINE_MUTEX(xfs_uuid_table_mutex); 124 static int xfs_uuid_table_size; 125 static uuid_t *xfs_uuid_table; 126 127 /* 128 * See if the UUID is unique among mounted XFS filesystems. 129 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 130 */ 131 STATIC int 132 xfs_uuid_mount( 133 struct xfs_mount *mp) 134 { 135 uuid_t *uuid = &mp->m_sb.sb_uuid; 136 int hole, i; 137 138 if (mp->m_flags & XFS_MOUNT_NOUUID) 139 return 0; 140 141 if (uuid_is_nil(uuid)) { 142 cmn_err(CE_WARN, 143 "XFS: Filesystem %s has nil UUID - can't mount", 144 mp->m_fsname); 145 return XFS_ERROR(EINVAL); 146 } 147 148 mutex_lock(&xfs_uuid_table_mutex); 149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 150 if (uuid_is_nil(&xfs_uuid_table[i])) { 151 hole = i; 152 continue; 153 } 154 if (uuid_equal(uuid, &xfs_uuid_table[i])) 155 goto out_duplicate; 156 } 157 158 if (hole < 0) { 159 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 161 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 162 KM_SLEEP); 163 hole = xfs_uuid_table_size++; 164 } 165 xfs_uuid_table[hole] = *uuid; 166 mutex_unlock(&xfs_uuid_table_mutex); 167 168 return 0; 169 170 out_duplicate: 171 mutex_unlock(&xfs_uuid_table_mutex); 172 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", 173 mp->m_fsname); 174 return XFS_ERROR(EINVAL); 175 } 176 177 STATIC void 178 xfs_uuid_unmount( 179 struct xfs_mount *mp) 180 { 181 uuid_t *uuid = &mp->m_sb.sb_uuid; 182 int i; 183 184 if (mp->m_flags & XFS_MOUNT_NOUUID) 185 return; 186 187 mutex_lock(&xfs_uuid_table_mutex); 188 for (i = 0; i < xfs_uuid_table_size; i++) { 189 if (uuid_is_nil(&xfs_uuid_table[i])) 190 continue; 191 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 192 continue; 193 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 194 break; 195 } 196 ASSERT(i < xfs_uuid_table_size); 197 mutex_unlock(&xfs_uuid_table_mutex); 198 } 199 200 201 /* 202 * Free up the resources associated with a mount structure. Assume that 203 * the structure was initially zeroed, so we can tell which fields got 204 * initialized. 205 */ 206 STATIC void 207 xfs_free_perag( 208 xfs_mount_t *mp) 209 { 210 if (mp->m_perag) { 211 int agno; 212 213 for (agno = 0; agno < mp->m_maxagi; agno++) 214 if (mp->m_perag[agno].pagb_list) 215 kmem_free(mp->m_perag[agno].pagb_list); 216 kmem_free(mp->m_perag); 217 } 218 } 219 220 /* 221 * Check size of device based on the (data/realtime) block count. 222 * Note: this check is used by the growfs code as well as mount. 223 */ 224 int 225 xfs_sb_validate_fsb_count( 226 xfs_sb_t *sbp, 227 __uint64_t nblocks) 228 { 229 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 230 ASSERT(sbp->sb_blocklog >= BBSHIFT); 231 232 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 233 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 234 return E2BIG; 235 #else /* Limited by UINT_MAX of sectors */ 236 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 237 return E2BIG; 238 #endif 239 return 0; 240 } 241 242 /* 243 * Check the validity of the SB found. 244 */ 245 STATIC int 246 xfs_mount_validate_sb( 247 xfs_mount_t *mp, 248 xfs_sb_t *sbp, 249 int flags) 250 { 251 /* 252 * If the log device and data device have the 253 * same device number, the log is internal. 254 * Consequently, the sb_logstart should be non-zero. If 255 * we have a zero sb_logstart in this case, we may be trying to mount 256 * a volume filesystem in a non-volume manner. 257 */ 258 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 259 xfs_fs_mount_cmn_err(flags, "bad magic number"); 260 return XFS_ERROR(EWRONGFS); 261 } 262 263 if (!xfs_sb_good_version(sbp)) { 264 xfs_fs_mount_cmn_err(flags, "bad version"); 265 return XFS_ERROR(EWRONGFS); 266 } 267 268 if (unlikely( 269 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 270 xfs_fs_mount_cmn_err(flags, 271 "filesystem is marked as having an external log; " 272 "specify logdev on the\nmount command line."); 273 return XFS_ERROR(EINVAL); 274 } 275 276 if (unlikely( 277 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 278 xfs_fs_mount_cmn_err(flags, 279 "filesystem is marked as having an internal log; " 280 "do not specify logdev on\nthe mount command line."); 281 return XFS_ERROR(EINVAL); 282 } 283 284 /* 285 * More sanity checking. These were stolen directly from 286 * xfs_repair. 287 */ 288 if (unlikely( 289 sbp->sb_agcount <= 0 || 290 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 291 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 292 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 293 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 294 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 295 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 296 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 297 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 298 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 299 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 300 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 301 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 302 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 303 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 304 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 305 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 306 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 307 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 308 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 309 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 310 return XFS_ERROR(EFSCORRUPTED); 311 } 312 313 /* 314 * Sanity check AG count, size fields against data size field 315 */ 316 if (unlikely( 317 sbp->sb_dblocks == 0 || 318 sbp->sb_dblocks > 319 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 320 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 321 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 322 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 323 return XFS_ERROR(EFSCORRUPTED); 324 } 325 326 /* 327 * Until this is fixed only page-sized or smaller data blocks work. 328 */ 329 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 330 xfs_fs_mount_cmn_err(flags, 331 "file system with blocksize %d bytes", 332 sbp->sb_blocksize); 333 xfs_fs_mount_cmn_err(flags, 334 "only pagesize (%ld) or less will currently work.", 335 PAGE_SIZE); 336 return XFS_ERROR(ENOSYS); 337 } 338 339 /* 340 * Currently only very few inode sizes are supported. 341 */ 342 switch (sbp->sb_inodesize) { 343 case 256: 344 case 512: 345 case 1024: 346 case 2048: 347 break; 348 default: 349 xfs_fs_mount_cmn_err(flags, 350 "inode size of %d bytes not supported", 351 sbp->sb_inodesize); 352 return XFS_ERROR(ENOSYS); 353 } 354 355 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 356 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 357 xfs_fs_mount_cmn_err(flags, 358 "file system too large to be mounted on this system."); 359 return XFS_ERROR(E2BIG); 360 } 361 362 if (unlikely(sbp->sb_inprogress)) { 363 xfs_fs_mount_cmn_err(flags, "file system busy"); 364 return XFS_ERROR(EFSCORRUPTED); 365 } 366 367 /* 368 * Version 1 directory format has never worked on Linux. 369 */ 370 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 371 xfs_fs_mount_cmn_err(flags, 372 "file system using version 1 directory format"); 373 return XFS_ERROR(ENOSYS); 374 } 375 376 return 0; 377 } 378 379 STATIC void 380 xfs_initialize_perag_icache( 381 xfs_perag_t *pag) 382 { 383 if (!pag->pag_ici_init) { 384 rwlock_init(&pag->pag_ici_lock); 385 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 386 pag->pag_ici_init = 1; 387 } 388 } 389 390 xfs_agnumber_t 391 xfs_initialize_perag( 392 xfs_mount_t *mp, 393 xfs_agnumber_t agcount) 394 { 395 xfs_agnumber_t index, max_metadata; 396 xfs_perag_t *pag; 397 xfs_agino_t agino; 398 xfs_ino_t ino; 399 xfs_sb_t *sbp = &mp->m_sb; 400 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 401 402 /* Check to see if the filesystem can overflow 32 bit inodes */ 403 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 404 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 405 406 /* Clear the mount flag if no inode can overflow 32 bits 407 * on this filesystem, or if specifically requested.. 408 */ 409 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 410 mp->m_flags |= XFS_MOUNT_32BITINODES; 411 } else { 412 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 413 } 414 415 /* If we can overflow then setup the ag headers accordingly */ 416 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 417 /* Calculate how much should be reserved for inodes to 418 * meet the max inode percentage. 419 */ 420 if (mp->m_maxicount) { 421 __uint64_t icount; 422 423 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 424 do_div(icount, 100); 425 icount += sbp->sb_agblocks - 1; 426 do_div(icount, sbp->sb_agblocks); 427 max_metadata = icount; 428 } else { 429 max_metadata = agcount; 430 } 431 for (index = 0; index < agcount; index++) { 432 ino = XFS_AGINO_TO_INO(mp, index, agino); 433 if (ino > max_inum) { 434 index++; 435 break; 436 } 437 438 /* This ag is preferred for inodes */ 439 pag = &mp->m_perag[index]; 440 pag->pagi_inodeok = 1; 441 if (index < max_metadata) 442 pag->pagf_metadata = 1; 443 xfs_initialize_perag_icache(pag); 444 } 445 } else { 446 /* Setup default behavior for smaller filesystems */ 447 for (index = 0; index < agcount; index++) { 448 pag = &mp->m_perag[index]; 449 pag->pagi_inodeok = 1; 450 xfs_initialize_perag_icache(pag); 451 } 452 } 453 return index; 454 } 455 456 void 457 xfs_sb_from_disk( 458 xfs_sb_t *to, 459 xfs_dsb_t *from) 460 { 461 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 462 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 463 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 464 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 465 to->sb_rextents = be64_to_cpu(from->sb_rextents); 466 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 467 to->sb_logstart = be64_to_cpu(from->sb_logstart); 468 to->sb_rootino = be64_to_cpu(from->sb_rootino); 469 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 470 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 471 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 472 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 473 to->sb_agcount = be32_to_cpu(from->sb_agcount); 474 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 475 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 476 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 477 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 478 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 479 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 480 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 481 to->sb_blocklog = from->sb_blocklog; 482 to->sb_sectlog = from->sb_sectlog; 483 to->sb_inodelog = from->sb_inodelog; 484 to->sb_inopblog = from->sb_inopblog; 485 to->sb_agblklog = from->sb_agblklog; 486 to->sb_rextslog = from->sb_rextslog; 487 to->sb_inprogress = from->sb_inprogress; 488 to->sb_imax_pct = from->sb_imax_pct; 489 to->sb_icount = be64_to_cpu(from->sb_icount); 490 to->sb_ifree = be64_to_cpu(from->sb_ifree); 491 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 492 to->sb_frextents = be64_to_cpu(from->sb_frextents); 493 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 494 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 495 to->sb_qflags = be16_to_cpu(from->sb_qflags); 496 to->sb_flags = from->sb_flags; 497 to->sb_shared_vn = from->sb_shared_vn; 498 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 499 to->sb_unit = be32_to_cpu(from->sb_unit); 500 to->sb_width = be32_to_cpu(from->sb_width); 501 to->sb_dirblklog = from->sb_dirblklog; 502 to->sb_logsectlog = from->sb_logsectlog; 503 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 504 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 505 to->sb_features2 = be32_to_cpu(from->sb_features2); 506 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 507 } 508 509 /* 510 * Copy in core superblock to ondisk one. 511 * 512 * The fields argument is mask of superblock fields to copy. 513 */ 514 void 515 xfs_sb_to_disk( 516 xfs_dsb_t *to, 517 xfs_sb_t *from, 518 __int64_t fields) 519 { 520 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 521 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 522 xfs_sb_field_t f; 523 int first; 524 int size; 525 526 ASSERT(fields); 527 if (!fields) 528 return; 529 530 while (fields) { 531 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 532 first = xfs_sb_info[f].offset; 533 size = xfs_sb_info[f + 1].offset - first; 534 535 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 536 537 if (size == 1 || xfs_sb_info[f].type == 1) { 538 memcpy(to_ptr + first, from_ptr + first, size); 539 } else { 540 switch (size) { 541 case 2: 542 *(__be16 *)(to_ptr + first) = 543 cpu_to_be16(*(__u16 *)(from_ptr + first)); 544 break; 545 case 4: 546 *(__be32 *)(to_ptr + first) = 547 cpu_to_be32(*(__u32 *)(from_ptr + first)); 548 break; 549 case 8: 550 *(__be64 *)(to_ptr + first) = 551 cpu_to_be64(*(__u64 *)(from_ptr + first)); 552 break; 553 default: 554 ASSERT(0); 555 } 556 } 557 558 fields &= ~(1LL << f); 559 } 560 } 561 562 /* 563 * xfs_readsb 564 * 565 * Does the initial read of the superblock. 566 */ 567 int 568 xfs_readsb(xfs_mount_t *mp, int flags) 569 { 570 unsigned int sector_size; 571 unsigned int extra_flags; 572 xfs_buf_t *bp; 573 int error; 574 575 ASSERT(mp->m_sb_bp == NULL); 576 ASSERT(mp->m_ddev_targp != NULL); 577 578 /* 579 * Allocate a (locked) buffer to hold the superblock. 580 * This will be kept around at all times to optimize 581 * access to the superblock. 582 */ 583 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 584 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 585 586 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 587 BTOBB(sector_size), extra_flags); 588 if (!bp || XFS_BUF_ISERROR(bp)) { 589 xfs_fs_mount_cmn_err(flags, "SB read failed"); 590 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 591 goto fail; 592 } 593 ASSERT(XFS_BUF_ISBUSY(bp)); 594 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 595 596 /* 597 * Initialize the mount structure from the superblock. 598 * But first do some basic consistency checking. 599 */ 600 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 601 602 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 603 if (error) { 604 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 605 goto fail; 606 } 607 608 /* 609 * We must be able to do sector-sized and sector-aligned IO. 610 */ 611 if (sector_size > mp->m_sb.sb_sectsize) { 612 xfs_fs_mount_cmn_err(flags, 613 "device supports only %u byte sectors (not %u)", 614 sector_size, mp->m_sb.sb_sectsize); 615 error = ENOSYS; 616 goto fail; 617 } 618 619 /* 620 * If device sector size is smaller than the superblock size, 621 * re-read the superblock so the buffer is correctly sized. 622 */ 623 if (sector_size < mp->m_sb.sb_sectsize) { 624 XFS_BUF_UNMANAGE(bp); 625 xfs_buf_relse(bp); 626 sector_size = mp->m_sb.sb_sectsize; 627 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 628 BTOBB(sector_size), extra_flags); 629 if (!bp || XFS_BUF_ISERROR(bp)) { 630 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 631 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 632 goto fail; 633 } 634 ASSERT(XFS_BUF_ISBUSY(bp)); 635 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 636 } 637 638 /* Initialize per-cpu counters */ 639 xfs_icsb_reinit_counters(mp); 640 641 mp->m_sb_bp = bp; 642 xfs_buf_relse(bp); 643 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 644 return 0; 645 646 fail: 647 if (bp) { 648 XFS_BUF_UNMANAGE(bp); 649 xfs_buf_relse(bp); 650 } 651 return error; 652 } 653 654 655 /* 656 * xfs_mount_common 657 * 658 * Mount initialization code establishing various mount 659 * fields from the superblock associated with the given 660 * mount structure 661 */ 662 STATIC void 663 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 664 { 665 mp->m_agfrotor = mp->m_agirotor = 0; 666 spin_lock_init(&mp->m_agirotor_lock); 667 mp->m_maxagi = mp->m_sb.sb_agcount; 668 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 669 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 670 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 671 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 672 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 673 mp->m_blockmask = sbp->sb_blocksize - 1; 674 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 675 mp->m_blockwmask = mp->m_blockwsize - 1; 676 677 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 678 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 679 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 680 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 681 682 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 683 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 684 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 685 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 686 687 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 688 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 689 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 690 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 691 692 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 693 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 694 sbp->sb_inopblock); 695 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 696 } 697 698 /* 699 * xfs_initialize_perag_data 700 * 701 * Read in each per-ag structure so we can count up the number of 702 * allocated inodes, free inodes and used filesystem blocks as this 703 * information is no longer persistent in the superblock. Once we have 704 * this information, write it into the in-core superblock structure. 705 */ 706 STATIC int 707 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 708 { 709 xfs_agnumber_t index; 710 xfs_perag_t *pag; 711 xfs_sb_t *sbp = &mp->m_sb; 712 uint64_t ifree = 0; 713 uint64_t ialloc = 0; 714 uint64_t bfree = 0; 715 uint64_t bfreelst = 0; 716 uint64_t btree = 0; 717 int error; 718 719 for (index = 0; index < agcount; index++) { 720 /* 721 * read the agf, then the agi. This gets us 722 * all the information we need and populates the 723 * per-ag structures for us. 724 */ 725 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 726 if (error) 727 return error; 728 729 error = xfs_ialloc_pagi_init(mp, NULL, index); 730 if (error) 731 return error; 732 pag = &mp->m_perag[index]; 733 ifree += pag->pagi_freecount; 734 ialloc += pag->pagi_count; 735 bfree += pag->pagf_freeblks; 736 bfreelst += pag->pagf_flcount; 737 btree += pag->pagf_btreeblks; 738 } 739 /* 740 * Overwrite incore superblock counters with just-read data 741 */ 742 spin_lock(&mp->m_sb_lock); 743 sbp->sb_ifree = ifree; 744 sbp->sb_icount = ialloc; 745 sbp->sb_fdblocks = bfree + bfreelst + btree; 746 spin_unlock(&mp->m_sb_lock); 747 748 /* Fixup the per-cpu counters as well. */ 749 xfs_icsb_reinit_counters(mp); 750 751 return 0; 752 } 753 754 /* 755 * Update alignment values based on mount options and sb values 756 */ 757 STATIC int 758 xfs_update_alignment(xfs_mount_t *mp) 759 { 760 xfs_sb_t *sbp = &(mp->m_sb); 761 762 if (mp->m_dalign) { 763 /* 764 * If stripe unit and stripe width are not multiples 765 * of the fs blocksize turn off alignment. 766 */ 767 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 768 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 769 if (mp->m_flags & XFS_MOUNT_RETERR) { 770 cmn_err(CE_WARN, 771 "XFS: alignment check 1 failed"); 772 return XFS_ERROR(EINVAL); 773 } 774 mp->m_dalign = mp->m_swidth = 0; 775 } else { 776 /* 777 * Convert the stripe unit and width to FSBs. 778 */ 779 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 780 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 781 if (mp->m_flags & XFS_MOUNT_RETERR) { 782 return XFS_ERROR(EINVAL); 783 } 784 xfs_fs_cmn_err(CE_WARN, mp, 785 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 786 mp->m_dalign, mp->m_swidth, 787 sbp->sb_agblocks); 788 789 mp->m_dalign = 0; 790 mp->m_swidth = 0; 791 } else if (mp->m_dalign) { 792 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 793 } else { 794 if (mp->m_flags & XFS_MOUNT_RETERR) { 795 xfs_fs_cmn_err(CE_WARN, mp, 796 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 797 mp->m_dalign, 798 mp->m_blockmask +1); 799 return XFS_ERROR(EINVAL); 800 } 801 mp->m_swidth = 0; 802 } 803 } 804 805 /* 806 * Update superblock with new values 807 * and log changes 808 */ 809 if (xfs_sb_version_hasdalign(sbp)) { 810 if (sbp->sb_unit != mp->m_dalign) { 811 sbp->sb_unit = mp->m_dalign; 812 mp->m_update_flags |= XFS_SB_UNIT; 813 } 814 if (sbp->sb_width != mp->m_swidth) { 815 sbp->sb_width = mp->m_swidth; 816 mp->m_update_flags |= XFS_SB_WIDTH; 817 } 818 } 819 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 820 xfs_sb_version_hasdalign(&mp->m_sb)) { 821 mp->m_dalign = sbp->sb_unit; 822 mp->m_swidth = sbp->sb_width; 823 } 824 825 return 0; 826 } 827 828 /* 829 * Set the maximum inode count for this filesystem 830 */ 831 STATIC void 832 xfs_set_maxicount(xfs_mount_t *mp) 833 { 834 xfs_sb_t *sbp = &(mp->m_sb); 835 __uint64_t icount; 836 837 if (sbp->sb_imax_pct) { 838 /* 839 * Make sure the maximum inode count is a multiple 840 * of the units we allocate inodes in. 841 */ 842 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 843 do_div(icount, 100); 844 do_div(icount, mp->m_ialloc_blks); 845 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 846 sbp->sb_inopblog; 847 } else { 848 mp->m_maxicount = 0; 849 } 850 } 851 852 /* 853 * Set the default minimum read and write sizes unless 854 * already specified in a mount option. 855 * We use smaller I/O sizes when the file system 856 * is being used for NFS service (wsync mount option). 857 */ 858 STATIC void 859 xfs_set_rw_sizes(xfs_mount_t *mp) 860 { 861 xfs_sb_t *sbp = &(mp->m_sb); 862 int readio_log, writeio_log; 863 864 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 865 if (mp->m_flags & XFS_MOUNT_WSYNC) { 866 readio_log = XFS_WSYNC_READIO_LOG; 867 writeio_log = XFS_WSYNC_WRITEIO_LOG; 868 } else { 869 readio_log = XFS_READIO_LOG_LARGE; 870 writeio_log = XFS_WRITEIO_LOG_LARGE; 871 } 872 } else { 873 readio_log = mp->m_readio_log; 874 writeio_log = mp->m_writeio_log; 875 } 876 877 if (sbp->sb_blocklog > readio_log) { 878 mp->m_readio_log = sbp->sb_blocklog; 879 } else { 880 mp->m_readio_log = readio_log; 881 } 882 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 883 if (sbp->sb_blocklog > writeio_log) { 884 mp->m_writeio_log = sbp->sb_blocklog; 885 } else { 886 mp->m_writeio_log = writeio_log; 887 } 888 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 889 } 890 891 /* 892 * Set whether we're using inode alignment. 893 */ 894 STATIC void 895 xfs_set_inoalignment(xfs_mount_t *mp) 896 { 897 if (xfs_sb_version_hasalign(&mp->m_sb) && 898 mp->m_sb.sb_inoalignmt >= 899 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 900 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 901 else 902 mp->m_inoalign_mask = 0; 903 /* 904 * If we are using stripe alignment, check whether 905 * the stripe unit is a multiple of the inode alignment 906 */ 907 if (mp->m_dalign && mp->m_inoalign_mask && 908 !(mp->m_dalign & mp->m_inoalign_mask)) 909 mp->m_sinoalign = mp->m_dalign; 910 else 911 mp->m_sinoalign = 0; 912 } 913 914 /* 915 * Check that the data (and log if separate) are an ok size. 916 */ 917 STATIC int 918 xfs_check_sizes(xfs_mount_t *mp) 919 { 920 xfs_buf_t *bp; 921 xfs_daddr_t d; 922 int error; 923 924 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 925 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 926 cmn_err(CE_WARN, "XFS: size check 1 failed"); 927 return XFS_ERROR(E2BIG); 928 } 929 error = xfs_read_buf(mp, mp->m_ddev_targp, 930 d - XFS_FSS_TO_BB(mp, 1), 931 XFS_FSS_TO_BB(mp, 1), 0, &bp); 932 if (!error) { 933 xfs_buf_relse(bp); 934 } else { 935 cmn_err(CE_WARN, "XFS: size check 2 failed"); 936 if (error == ENOSPC) 937 error = XFS_ERROR(E2BIG); 938 return error; 939 } 940 941 if (mp->m_logdev_targp != mp->m_ddev_targp) { 942 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 943 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 944 cmn_err(CE_WARN, "XFS: size check 3 failed"); 945 return XFS_ERROR(E2BIG); 946 } 947 error = xfs_read_buf(mp, mp->m_logdev_targp, 948 d - XFS_FSB_TO_BB(mp, 1), 949 XFS_FSB_TO_BB(mp, 1), 0, &bp); 950 if (!error) { 951 xfs_buf_relse(bp); 952 } else { 953 cmn_err(CE_WARN, "XFS: size check 3 failed"); 954 if (error == ENOSPC) 955 error = XFS_ERROR(E2BIG); 956 return error; 957 } 958 } 959 return 0; 960 } 961 962 /* 963 * This function does the following on an initial mount of a file system: 964 * - reads the superblock from disk and init the mount struct 965 * - if we're a 32-bit kernel, do a size check on the superblock 966 * so we don't mount terabyte filesystems 967 * - init mount struct realtime fields 968 * - allocate inode hash table for fs 969 * - init directory manager 970 * - perform recovery and init the log manager 971 */ 972 int 973 xfs_mountfs( 974 xfs_mount_t *mp) 975 { 976 xfs_sb_t *sbp = &(mp->m_sb); 977 xfs_inode_t *rip; 978 __uint64_t resblks; 979 uint quotamount, quotaflags; 980 int error = 0; 981 982 xfs_mount_common(mp, sbp); 983 984 /* 985 * Check for a mismatched features2 values. Older kernels 986 * read & wrote into the wrong sb offset for sb_features2 987 * on some platforms due to xfs_sb_t not being 64bit size aligned 988 * when sb_features2 was added, which made older superblock 989 * reading/writing routines swap it as a 64-bit value. 990 * 991 * For backwards compatibility, we make both slots equal. 992 * 993 * If we detect a mismatched field, we OR the set bits into the 994 * existing features2 field in case it has already been modified; we 995 * don't want to lose any features. We then update the bad location 996 * with the ORed value so that older kernels will see any features2 997 * flags, and mark the two fields as needing updates once the 998 * transaction subsystem is online. 999 */ 1000 if (xfs_sb_has_mismatched_features2(sbp)) { 1001 cmn_err(CE_WARN, 1002 "XFS: correcting sb_features alignment problem"); 1003 sbp->sb_features2 |= sbp->sb_bad_features2; 1004 sbp->sb_bad_features2 = sbp->sb_features2; 1005 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1006 1007 /* 1008 * Re-check for ATTR2 in case it was found in bad_features2 1009 * slot. 1010 */ 1011 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1012 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1013 mp->m_flags |= XFS_MOUNT_ATTR2; 1014 } 1015 1016 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1017 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1018 xfs_sb_version_removeattr2(&mp->m_sb); 1019 mp->m_update_flags |= XFS_SB_FEATURES2; 1020 1021 /* update sb_versionnum for the clearing of the morebits */ 1022 if (!sbp->sb_features2) 1023 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1024 } 1025 1026 /* 1027 * Check if sb_agblocks is aligned at stripe boundary 1028 * If sb_agblocks is NOT aligned turn off m_dalign since 1029 * allocator alignment is within an ag, therefore ag has 1030 * to be aligned at stripe boundary. 1031 */ 1032 error = xfs_update_alignment(mp); 1033 if (error) 1034 goto out; 1035 1036 xfs_alloc_compute_maxlevels(mp); 1037 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1038 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1039 xfs_ialloc_compute_maxlevels(mp); 1040 1041 xfs_set_maxicount(mp); 1042 1043 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1044 1045 error = xfs_uuid_mount(mp); 1046 if (error) 1047 goto out; 1048 1049 /* 1050 * Set the minimum read and write sizes 1051 */ 1052 xfs_set_rw_sizes(mp); 1053 1054 /* 1055 * Set the inode cluster size. 1056 * This may still be overridden by the file system 1057 * block size if it is larger than the chosen cluster size. 1058 */ 1059 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1060 1061 /* 1062 * Set inode alignment fields 1063 */ 1064 xfs_set_inoalignment(mp); 1065 1066 /* 1067 * Check that the data (and log if separate) are an ok size. 1068 */ 1069 error = xfs_check_sizes(mp); 1070 if (error) 1071 goto out_remove_uuid; 1072 1073 /* 1074 * Initialize realtime fields in the mount structure 1075 */ 1076 error = xfs_rtmount_init(mp); 1077 if (error) { 1078 cmn_err(CE_WARN, "XFS: RT mount failed"); 1079 goto out_remove_uuid; 1080 } 1081 1082 /* 1083 * Copies the low order bits of the timestamp and the randomly 1084 * set "sequence" number out of a UUID. 1085 */ 1086 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1087 1088 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1089 1090 xfs_dir_mount(mp); 1091 1092 /* 1093 * Initialize the attribute manager's entries. 1094 */ 1095 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1096 1097 /* 1098 * Initialize the precomputed transaction reservations values. 1099 */ 1100 xfs_trans_init(mp); 1101 1102 /* 1103 * Allocate and initialize the per-ag data. 1104 */ 1105 init_rwsem(&mp->m_peraglock); 1106 mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), 1107 KM_MAYFAIL); 1108 if (!mp->m_perag) 1109 goto out_remove_uuid; 1110 1111 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1112 1113 if (!sbp->sb_logblocks) { 1114 cmn_err(CE_WARN, "XFS: no log defined"); 1115 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1116 error = XFS_ERROR(EFSCORRUPTED); 1117 goto out_free_perag; 1118 } 1119 1120 /* 1121 * log's mount-time initialization. Perform 1st part recovery if needed 1122 */ 1123 error = xfs_log_mount(mp, mp->m_logdev_targp, 1124 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1125 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1126 if (error) { 1127 cmn_err(CE_WARN, "XFS: log mount failed"); 1128 goto out_free_perag; 1129 } 1130 1131 /* 1132 * Now the log is mounted, we know if it was an unclean shutdown or 1133 * not. If it was, with the first phase of recovery has completed, we 1134 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1135 * but they are recovered transactionally in the second recovery phase 1136 * later. 1137 * 1138 * Hence we can safely re-initialise incore superblock counters from 1139 * the per-ag data. These may not be correct if the filesystem was not 1140 * cleanly unmounted, so we need to wait for recovery to finish before 1141 * doing this. 1142 * 1143 * If the filesystem was cleanly unmounted, then we can trust the 1144 * values in the superblock to be correct and we don't need to do 1145 * anything here. 1146 * 1147 * If we are currently making the filesystem, the initialisation will 1148 * fail as the perag data is in an undefined state. 1149 */ 1150 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1151 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1152 !mp->m_sb.sb_inprogress) { 1153 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1154 if (error) 1155 goto out_free_perag; 1156 } 1157 1158 /* 1159 * Get and sanity-check the root inode. 1160 * Save the pointer to it in the mount structure. 1161 */ 1162 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1163 if (error) { 1164 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1165 goto out_log_dealloc; 1166 } 1167 1168 ASSERT(rip != NULL); 1169 1170 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1171 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1172 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1173 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1174 (unsigned long long)rip->i_ino); 1175 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1176 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1177 mp); 1178 error = XFS_ERROR(EFSCORRUPTED); 1179 goto out_rele_rip; 1180 } 1181 mp->m_rootip = rip; /* save it */ 1182 1183 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1184 1185 /* 1186 * Initialize realtime inode pointers in the mount structure 1187 */ 1188 error = xfs_rtmount_inodes(mp); 1189 if (error) { 1190 /* 1191 * Free up the root inode. 1192 */ 1193 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1194 goto out_rele_rip; 1195 } 1196 1197 /* 1198 * If this is a read-only mount defer the superblock updates until 1199 * the next remount into writeable mode. Otherwise we would never 1200 * perform the update e.g. for the root filesystem. 1201 */ 1202 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1203 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1204 if (error) { 1205 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1206 goto out_rtunmount; 1207 } 1208 } 1209 1210 /* 1211 * Initialise the XFS quota management subsystem for this mount 1212 */ 1213 error = XFS_QM_INIT(mp, "amount, "aflags); 1214 if (error) 1215 goto out_rtunmount; 1216 1217 /* 1218 * Finish recovering the file system. This part needed to be 1219 * delayed until after the root and real-time bitmap inodes 1220 * were consistently read in. 1221 */ 1222 error = xfs_log_mount_finish(mp); 1223 if (error) { 1224 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1225 goto out_rtunmount; 1226 } 1227 1228 /* 1229 * Complete the quota initialisation, post-log-replay component. 1230 */ 1231 error = XFS_QM_MOUNT(mp, quotamount, quotaflags); 1232 if (error) 1233 goto out_rtunmount; 1234 1235 /* 1236 * Now we are mounted, reserve a small amount of unused space for 1237 * privileged transactions. This is needed so that transaction 1238 * space required for critical operations can dip into this pool 1239 * when at ENOSPC. This is needed for operations like create with 1240 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1241 * are not allowed to use this reserved space. 1242 * 1243 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1244 * This may drive us straight to ENOSPC on mount, but that implies 1245 * we were already there on the last unmount. Warn if this occurs. 1246 */ 1247 resblks = mp->m_sb.sb_dblocks; 1248 do_div(resblks, 20); 1249 resblks = min_t(__uint64_t, resblks, 1024); 1250 error = xfs_reserve_blocks(mp, &resblks, NULL); 1251 if (error) 1252 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1253 "Continuing without a reserve pool."); 1254 1255 return 0; 1256 1257 out_rtunmount: 1258 xfs_rtunmount_inodes(mp); 1259 out_rele_rip: 1260 IRELE(rip); 1261 out_log_dealloc: 1262 xfs_log_unmount(mp); 1263 out_free_perag: 1264 xfs_free_perag(mp); 1265 out_remove_uuid: 1266 xfs_uuid_unmount(mp); 1267 out: 1268 return error; 1269 } 1270 1271 /* 1272 * This flushes out the inodes,dquots and the superblock, unmounts the 1273 * log and makes sure that incore structures are freed. 1274 */ 1275 void 1276 xfs_unmountfs( 1277 struct xfs_mount *mp) 1278 { 1279 __uint64_t resblks; 1280 int error; 1281 1282 /* 1283 * Release dquot that rootinode, rbmino and rsumino might be holding, 1284 * and release the quota inodes. 1285 */ 1286 XFS_QM_UNMOUNT(mp); 1287 1288 xfs_rtunmount_inodes(mp); 1289 IRELE(mp->m_rootip); 1290 1291 /* 1292 * We can potentially deadlock here if we have an inode cluster 1293 * that has been freed has its buffer still pinned in memory because 1294 * the transaction is still sitting in a iclog. The stale inodes 1295 * on that buffer will have their flush locks held until the 1296 * transaction hits the disk and the callbacks run. the inode 1297 * flush takes the flush lock unconditionally and with nothing to 1298 * push out the iclog we will never get that unlocked. hence we 1299 * need to force the log first. 1300 */ 1301 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1302 xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC); 1303 1304 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); 1305 1306 if (mp->m_quotainfo) 1307 XFS_QM_DONE(mp); 1308 1309 /* 1310 * Flush out the log synchronously so that we know for sure 1311 * that nothing is pinned. This is important because bflush() 1312 * will skip pinned buffers. 1313 */ 1314 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1315 1316 xfs_binval(mp->m_ddev_targp); 1317 if (mp->m_rtdev_targp) { 1318 xfs_binval(mp->m_rtdev_targp); 1319 } 1320 1321 /* 1322 * Unreserve any blocks we have so that when we unmount we don't account 1323 * the reserved free space as used. This is really only necessary for 1324 * lazy superblock counting because it trusts the incore superblock 1325 * counters to be absolutely correct on clean unmount. 1326 * 1327 * We don't bother correcting this elsewhere for lazy superblock 1328 * counting because on mount of an unclean filesystem we reconstruct the 1329 * correct counter value and this is irrelevant. 1330 * 1331 * For non-lazy counter filesystems, this doesn't matter at all because 1332 * we only every apply deltas to the superblock and hence the incore 1333 * value does not matter.... 1334 */ 1335 resblks = 0; 1336 error = xfs_reserve_blocks(mp, &resblks, NULL); 1337 if (error) 1338 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1339 "Freespace may not be correct on next mount."); 1340 1341 error = xfs_log_sbcount(mp, 1); 1342 if (error) 1343 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1344 "Freespace may not be correct on next mount."); 1345 xfs_unmountfs_writesb(mp); 1346 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1347 xfs_log_unmount_write(mp); 1348 xfs_log_unmount(mp); 1349 xfs_uuid_unmount(mp); 1350 1351 #if defined(DEBUG) 1352 xfs_errortag_clearall(mp, 0); 1353 #endif 1354 xfs_free_perag(mp); 1355 } 1356 1357 STATIC void 1358 xfs_unmountfs_wait(xfs_mount_t *mp) 1359 { 1360 if (mp->m_logdev_targp != mp->m_ddev_targp) 1361 xfs_wait_buftarg(mp->m_logdev_targp); 1362 if (mp->m_rtdev_targp) 1363 xfs_wait_buftarg(mp->m_rtdev_targp); 1364 xfs_wait_buftarg(mp->m_ddev_targp); 1365 } 1366 1367 int 1368 xfs_fs_writable(xfs_mount_t *mp) 1369 { 1370 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1371 (mp->m_flags & XFS_MOUNT_RDONLY)); 1372 } 1373 1374 /* 1375 * xfs_log_sbcount 1376 * 1377 * Called either periodically to keep the on disk superblock values 1378 * roughly up to date or from unmount to make sure the values are 1379 * correct on a clean unmount. 1380 * 1381 * Note this code can be called during the process of freezing, so 1382 * we may need to use the transaction allocator which does not not 1383 * block when the transaction subsystem is in its frozen state. 1384 */ 1385 int 1386 xfs_log_sbcount( 1387 xfs_mount_t *mp, 1388 uint sync) 1389 { 1390 xfs_trans_t *tp; 1391 int error; 1392 1393 if (!xfs_fs_writable(mp)) 1394 return 0; 1395 1396 xfs_icsb_sync_counters(mp, 0); 1397 1398 /* 1399 * we don't need to do this if we are updating the superblock 1400 * counters on every modification. 1401 */ 1402 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1403 return 0; 1404 1405 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); 1406 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1407 XFS_DEFAULT_LOG_COUNT); 1408 if (error) { 1409 xfs_trans_cancel(tp, 0); 1410 return error; 1411 } 1412 1413 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1414 if (sync) 1415 xfs_trans_set_sync(tp); 1416 error = xfs_trans_commit(tp, 0); 1417 return error; 1418 } 1419 1420 int 1421 xfs_unmountfs_writesb(xfs_mount_t *mp) 1422 { 1423 xfs_buf_t *sbp; 1424 int error = 0; 1425 1426 /* 1427 * skip superblock write if fs is read-only, or 1428 * if we are doing a forced umount. 1429 */ 1430 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1431 XFS_FORCED_SHUTDOWN(mp))) { 1432 1433 sbp = xfs_getsb(mp, 0); 1434 1435 XFS_BUF_UNDONE(sbp); 1436 XFS_BUF_UNREAD(sbp); 1437 XFS_BUF_UNDELAYWRITE(sbp); 1438 XFS_BUF_WRITE(sbp); 1439 XFS_BUF_UNASYNC(sbp); 1440 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1441 xfsbdstrat(mp, sbp); 1442 error = xfs_iowait(sbp); 1443 if (error) 1444 xfs_ioerror_alert("xfs_unmountfs_writesb", 1445 mp, sbp, XFS_BUF_ADDR(sbp)); 1446 xfs_buf_relse(sbp); 1447 } 1448 return error; 1449 } 1450 1451 /* 1452 * xfs_mod_sb() can be used to copy arbitrary changes to the 1453 * in-core superblock into the superblock buffer to be logged. 1454 * It does not provide the higher level of locking that is 1455 * needed to protect the in-core superblock from concurrent 1456 * access. 1457 */ 1458 void 1459 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1460 { 1461 xfs_buf_t *bp; 1462 int first; 1463 int last; 1464 xfs_mount_t *mp; 1465 xfs_sb_field_t f; 1466 1467 ASSERT(fields); 1468 if (!fields) 1469 return; 1470 mp = tp->t_mountp; 1471 bp = xfs_trans_getsb(tp, mp, 0); 1472 first = sizeof(xfs_sb_t); 1473 last = 0; 1474 1475 /* translate/copy */ 1476 1477 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1478 1479 /* find modified range */ 1480 1481 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1482 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1483 first = xfs_sb_info[f].offset; 1484 1485 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1486 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1487 last = xfs_sb_info[f + 1].offset - 1; 1488 1489 xfs_trans_log_buf(tp, bp, first, last); 1490 } 1491 1492 1493 /* 1494 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1495 * a delta to a specified field in the in-core superblock. Simply 1496 * switch on the field indicated and apply the delta to that field. 1497 * Fields are not allowed to dip below zero, so if the delta would 1498 * do this do not apply it and return EINVAL. 1499 * 1500 * The m_sb_lock must be held when this routine is called. 1501 */ 1502 int 1503 xfs_mod_incore_sb_unlocked( 1504 xfs_mount_t *mp, 1505 xfs_sb_field_t field, 1506 int64_t delta, 1507 int rsvd) 1508 { 1509 int scounter; /* short counter for 32 bit fields */ 1510 long long lcounter; /* long counter for 64 bit fields */ 1511 long long res_used, rem; 1512 1513 /* 1514 * With the in-core superblock spin lock held, switch 1515 * on the indicated field. Apply the delta to the 1516 * proper field. If the fields value would dip below 1517 * 0, then do not apply the delta and return EINVAL. 1518 */ 1519 switch (field) { 1520 case XFS_SBS_ICOUNT: 1521 lcounter = (long long)mp->m_sb.sb_icount; 1522 lcounter += delta; 1523 if (lcounter < 0) { 1524 ASSERT(0); 1525 return XFS_ERROR(EINVAL); 1526 } 1527 mp->m_sb.sb_icount = lcounter; 1528 return 0; 1529 case XFS_SBS_IFREE: 1530 lcounter = (long long)mp->m_sb.sb_ifree; 1531 lcounter += delta; 1532 if (lcounter < 0) { 1533 ASSERT(0); 1534 return XFS_ERROR(EINVAL); 1535 } 1536 mp->m_sb.sb_ifree = lcounter; 1537 return 0; 1538 case XFS_SBS_FDBLOCKS: 1539 lcounter = (long long) 1540 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1541 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1542 1543 if (delta > 0) { /* Putting blocks back */ 1544 if (res_used > delta) { 1545 mp->m_resblks_avail += delta; 1546 } else { 1547 rem = delta - res_used; 1548 mp->m_resblks_avail = mp->m_resblks; 1549 lcounter += rem; 1550 } 1551 } else { /* Taking blocks away */ 1552 1553 lcounter += delta; 1554 1555 /* 1556 * If were out of blocks, use any available reserved blocks if 1557 * were allowed to. 1558 */ 1559 1560 if (lcounter < 0) { 1561 if (rsvd) { 1562 lcounter = (long long)mp->m_resblks_avail + delta; 1563 if (lcounter < 0) { 1564 return XFS_ERROR(ENOSPC); 1565 } 1566 mp->m_resblks_avail = lcounter; 1567 return 0; 1568 } else { /* not reserved */ 1569 return XFS_ERROR(ENOSPC); 1570 } 1571 } 1572 } 1573 1574 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1575 return 0; 1576 case XFS_SBS_FREXTENTS: 1577 lcounter = (long long)mp->m_sb.sb_frextents; 1578 lcounter += delta; 1579 if (lcounter < 0) { 1580 return XFS_ERROR(ENOSPC); 1581 } 1582 mp->m_sb.sb_frextents = lcounter; 1583 return 0; 1584 case XFS_SBS_DBLOCKS: 1585 lcounter = (long long)mp->m_sb.sb_dblocks; 1586 lcounter += delta; 1587 if (lcounter < 0) { 1588 ASSERT(0); 1589 return XFS_ERROR(EINVAL); 1590 } 1591 mp->m_sb.sb_dblocks = lcounter; 1592 return 0; 1593 case XFS_SBS_AGCOUNT: 1594 scounter = mp->m_sb.sb_agcount; 1595 scounter += delta; 1596 if (scounter < 0) { 1597 ASSERT(0); 1598 return XFS_ERROR(EINVAL); 1599 } 1600 mp->m_sb.sb_agcount = scounter; 1601 return 0; 1602 case XFS_SBS_IMAX_PCT: 1603 scounter = mp->m_sb.sb_imax_pct; 1604 scounter += delta; 1605 if (scounter < 0) { 1606 ASSERT(0); 1607 return XFS_ERROR(EINVAL); 1608 } 1609 mp->m_sb.sb_imax_pct = scounter; 1610 return 0; 1611 case XFS_SBS_REXTSIZE: 1612 scounter = mp->m_sb.sb_rextsize; 1613 scounter += delta; 1614 if (scounter < 0) { 1615 ASSERT(0); 1616 return XFS_ERROR(EINVAL); 1617 } 1618 mp->m_sb.sb_rextsize = scounter; 1619 return 0; 1620 case XFS_SBS_RBMBLOCKS: 1621 scounter = mp->m_sb.sb_rbmblocks; 1622 scounter += delta; 1623 if (scounter < 0) { 1624 ASSERT(0); 1625 return XFS_ERROR(EINVAL); 1626 } 1627 mp->m_sb.sb_rbmblocks = scounter; 1628 return 0; 1629 case XFS_SBS_RBLOCKS: 1630 lcounter = (long long)mp->m_sb.sb_rblocks; 1631 lcounter += delta; 1632 if (lcounter < 0) { 1633 ASSERT(0); 1634 return XFS_ERROR(EINVAL); 1635 } 1636 mp->m_sb.sb_rblocks = lcounter; 1637 return 0; 1638 case XFS_SBS_REXTENTS: 1639 lcounter = (long long)mp->m_sb.sb_rextents; 1640 lcounter += delta; 1641 if (lcounter < 0) { 1642 ASSERT(0); 1643 return XFS_ERROR(EINVAL); 1644 } 1645 mp->m_sb.sb_rextents = lcounter; 1646 return 0; 1647 case XFS_SBS_REXTSLOG: 1648 scounter = mp->m_sb.sb_rextslog; 1649 scounter += delta; 1650 if (scounter < 0) { 1651 ASSERT(0); 1652 return XFS_ERROR(EINVAL); 1653 } 1654 mp->m_sb.sb_rextslog = scounter; 1655 return 0; 1656 default: 1657 ASSERT(0); 1658 return XFS_ERROR(EINVAL); 1659 } 1660 } 1661 1662 /* 1663 * xfs_mod_incore_sb() is used to change a field in the in-core 1664 * superblock structure by the specified delta. This modification 1665 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1666 * routine to do the work. 1667 */ 1668 int 1669 xfs_mod_incore_sb( 1670 xfs_mount_t *mp, 1671 xfs_sb_field_t field, 1672 int64_t delta, 1673 int rsvd) 1674 { 1675 int status; 1676 1677 /* check for per-cpu counters */ 1678 switch (field) { 1679 #ifdef HAVE_PERCPU_SB 1680 case XFS_SBS_ICOUNT: 1681 case XFS_SBS_IFREE: 1682 case XFS_SBS_FDBLOCKS: 1683 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1684 status = xfs_icsb_modify_counters(mp, field, 1685 delta, rsvd); 1686 break; 1687 } 1688 /* FALLTHROUGH */ 1689 #endif 1690 default: 1691 spin_lock(&mp->m_sb_lock); 1692 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1693 spin_unlock(&mp->m_sb_lock); 1694 break; 1695 } 1696 1697 return status; 1698 } 1699 1700 /* 1701 * xfs_mod_incore_sb_batch() is used to change more than one field 1702 * in the in-core superblock structure at a time. This modification 1703 * is protected by a lock internal to this module. The fields and 1704 * changes to those fields are specified in the array of xfs_mod_sb 1705 * structures passed in. 1706 * 1707 * Either all of the specified deltas will be applied or none of 1708 * them will. If any modified field dips below 0, then all modifications 1709 * will be backed out and EINVAL will be returned. 1710 */ 1711 int 1712 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1713 { 1714 int status=0; 1715 xfs_mod_sb_t *msbp; 1716 1717 /* 1718 * Loop through the array of mod structures and apply each 1719 * individually. If any fail, then back out all those 1720 * which have already been applied. Do all of this within 1721 * the scope of the m_sb_lock so that all of the changes will 1722 * be atomic. 1723 */ 1724 spin_lock(&mp->m_sb_lock); 1725 msbp = &msb[0]; 1726 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1727 /* 1728 * Apply the delta at index n. If it fails, break 1729 * from the loop so we'll fall into the undo loop 1730 * below. 1731 */ 1732 switch (msbp->msb_field) { 1733 #ifdef HAVE_PERCPU_SB 1734 case XFS_SBS_ICOUNT: 1735 case XFS_SBS_IFREE: 1736 case XFS_SBS_FDBLOCKS: 1737 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1738 spin_unlock(&mp->m_sb_lock); 1739 status = xfs_icsb_modify_counters(mp, 1740 msbp->msb_field, 1741 msbp->msb_delta, rsvd); 1742 spin_lock(&mp->m_sb_lock); 1743 break; 1744 } 1745 /* FALLTHROUGH */ 1746 #endif 1747 default: 1748 status = xfs_mod_incore_sb_unlocked(mp, 1749 msbp->msb_field, 1750 msbp->msb_delta, rsvd); 1751 break; 1752 } 1753 1754 if (status != 0) { 1755 break; 1756 } 1757 } 1758 1759 /* 1760 * If we didn't complete the loop above, then back out 1761 * any changes made to the superblock. If you add code 1762 * between the loop above and here, make sure that you 1763 * preserve the value of status. Loop back until 1764 * we step below the beginning of the array. Make sure 1765 * we don't touch anything back there. 1766 */ 1767 if (status != 0) { 1768 msbp--; 1769 while (msbp >= msb) { 1770 switch (msbp->msb_field) { 1771 #ifdef HAVE_PERCPU_SB 1772 case XFS_SBS_ICOUNT: 1773 case XFS_SBS_IFREE: 1774 case XFS_SBS_FDBLOCKS: 1775 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1776 spin_unlock(&mp->m_sb_lock); 1777 status = xfs_icsb_modify_counters(mp, 1778 msbp->msb_field, 1779 -(msbp->msb_delta), 1780 rsvd); 1781 spin_lock(&mp->m_sb_lock); 1782 break; 1783 } 1784 /* FALLTHROUGH */ 1785 #endif 1786 default: 1787 status = xfs_mod_incore_sb_unlocked(mp, 1788 msbp->msb_field, 1789 -(msbp->msb_delta), 1790 rsvd); 1791 break; 1792 } 1793 ASSERT(status == 0); 1794 msbp--; 1795 } 1796 } 1797 spin_unlock(&mp->m_sb_lock); 1798 return status; 1799 } 1800 1801 /* 1802 * xfs_getsb() is called to obtain the buffer for the superblock. 1803 * The buffer is returned locked and read in from disk. 1804 * The buffer should be released with a call to xfs_brelse(). 1805 * 1806 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1807 * the superblock buffer if it can be locked without sleeping. 1808 * If it can't then we'll return NULL. 1809 */ 1810 xfs_buf_t * 1811 xfs_getsb( 1812 xfs_mount_t *mp, 1813 int flags) 1814 { 1815 xfs_buf_t *bp; 1816 1817 ASSERT(mp->m_sb_bp != NULL); 1818 bp = mp->m_sb_bp; 1819 if (flags & XFS_BUF_TRYLOCK) { 1820 if (!XFS_BUF_CPSEMA(bp)) { 1821 return NULL; 1822 } 1823 } else { 1824 XFS_BUF_PSEMA(bp, PRIBIO); 1825 } 1826 XFS_BUF_HOLD(bp); 1827 ASSERT(XFS_BUF_ISDONE(bp)); 1828 return bp; 1829 } 1830 1831 /* 1832 * Used to free the superblock along various error paths. 1833 */ 1834 void 1835 xfs_freesb( 1836 xfs_mount_t *mp) 1837 { 1838 xfs_buf_t *bp; 1839 1840 /* 1841 * Use xfs_getsb() so that the buffer will be locked 1842 * when we call xfs_buf_relse(). 1843 */ 1844 bp = xfs_getsb(mp, 0); 1845 XFS_BUF_UNMANAGE(bp); 1846 xfs_buf_relse(bp); 1847 mp->m_sb_bp = NULL; 1848 } 1849 1850 /* 1851 * Used to log changes to the superblock unit and width fields which could 1852 * be altered by the mount options, as well as any potential sb_features2 1853 * fixup. Only the first superblock is updated. 1854 */ 1855 int 1856 xfs_mount_log_sb( 1857 xfs_mount_t *mp, 1858 __int64_t fields) 1859 { 1860 xfs_trans_t *tp; 1861 int error; 1862 1863 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1864 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1865 XFS_SB_VERSIONNUM)); 1866 1867 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1868 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1869 XFS_DEFAULT_LOG_COUNT); 1870 if (error) { 1871 xfs_trans_cancel(tp, 0); 1872 return error; 1873 } 1874 xfs_mod_sb(tp, fields); 1875 error = xfs_trans_commit(tp, 0); 1876 return error; 1877 } 1878 1879 1880 #ifdef HAVE_PERCPU_SB 1881 /* 1882 * Per-cpu incore superblock counters 1883 * 1884 * Simple concept, difficult implementation 1885 * 1886 * Basically, replace the incore superblock counters with a distributed per cpu 1887 * counter for contended fields (e.g. free block count). 1888 * 1889 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1890 * hence needs to be accurately read when we are running low on space. Hence 1891 * there is a method to enable and disable the per-cpu counters based on how 1892 * much "stuff" is available in them. 1893 * 1894 * Basically, a counter is enabled if there is enough free resource to justify 1895 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1896 * ENOSPC), then we disable the counters to synchronise all callers and 1897 * re-distribute the available resources. 1898 * 1899 * If, once we redistributed the available resources, we still get a failure, 1900 * we disable the per-cpu counter and go through the slow path. 1901 * 1902 * The slow path is the current xfs_mod_incore_sb() function. This means that 1903 * when we disable a per-cpu counter, we need to drain its resources back to 1904 * the global superblock. We do this after disabling the counter to prevent 1905 * more threads from queueing up on the counter. 1906 * 1907 * Essentially, this means that we still need a lock in the fast path to enable 1908 * synchronisation between the global counters and the per-cpu counters. This 1909 * is not a problem because the lock will be local to a CPU almost all the time 1910 * and have little contention except when we get to ENOSPC conditions. 1911 * 1912 * Basically, this lock becomes a barrier that enables us to lock out the fast 1913 * path while we do things like enabling and disabling counters and 1914 * synchronising the counters. 1915 * 1916 * Locking rules: 1917 * 1918 * 1. m_sb_lock before picking up per-cpu locks 1919 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1920 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1921 * 4. modifying per-cpu counters requires holding per-cpu lock 1922 * 5. modifying global counters requires holding m_sb_lock 1923 * 6. enabling or disabling a counter requires holding the m_sb_lock 1924 * and _none_ of the per-cpu locks. 1925 * 1926 * Disabled counters are only ever re-enabled by a balance operation 1927 * that results in more free resources per CPU than a given threshold. 1928 * To ensure counters don't remain disabled, they are rebalanced when 1929 * the global resource goes above a higher threshold (i.e. some hysteresis 1930 * is present to prevent thrashing). 1931 */ 1932 1933 #ifdef CONFIG_HOTPLUG_CPU 1934 /* 1935 * hot-plug CPU notifier support. 1936 * 1937 * We need a notifier per filesystem as we need to be able to identify 1938 * the filesystem to balance the counters out. This is achieved by 1939 * having a notifier block embedded in the xfs_mount_t and doing pointer 1940 * magic to get the mount pointer from the notifier block address. 1941 */ 1942 STATIC int 1943 xfs_icsb_cpu_notify( 1944 struct notifier_block *nfb, 1945 unsigned long action, 1946 void *hcpu) 1947 { 1948 xfs_icsb_cnts_t *cntp; 1949 xfs_mount_t *mp; 1950 1951 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1952 cntp = (xfs_icsb_cnts_t *) 1953 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1954 switch (action) { 1955 case CPU_UP_PREPARE: 1956 case CPU_UP_PREPARE_FROZEN: 1957 /* Easy Case - initialize the area and locks, and 1958 * then rebalance when online does everything else for us. */ 1959 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1960 break; 1961 case CPU_ONLINE: 1962 case CPU_ONLINE_FROZEN: 1963 xfs_icsb_lock(mp); 1964 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1965 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1966 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1967 xfs_icsb_unlock(mp); 1968 break; 1969 case CPU_DEAD: 1970 case CPU_DEAD_FROZEN: 1971 /* Disable all the counters, then fold the dead cpu's 1972 * count into the total on the global superblock and 1973 * re-enable the counters. */ 1974 xfs_icsb_lock(mp); 1975 spin_lock(&mp->m_sb_lock); 1976 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1977 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1978 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1979 1980 mp->m_sb.sb_icount += cntp->icsb_icount; 1981 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1982 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1983 1984 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1985 1986 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1987 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1988 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1989 spin_unlock(&mp->m_sb_lock); 1990 xfs_icsb_unlock(mp); 1991 break; 1992 } 1993 1994 return NOTIFY_OK; 1995 } 1996 #endif /* CONFIG_HOTPLUG_CPU */ 1997 1998 int 1999 xfs_icsb_init_counters( 2000 xfs_mount_t *mp) 2001 { 2002 xfs_icsb_cnts_t *cntp; 2003 int i; 2004 2005 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2006 if (mp->m_sb_cnts == NULL) 2007 return -ENOMEM; 2008 2009 #ifdef CONFIG_HOTPLUG_CPU 2010 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2011 mp->m_icsb_notifier.priority = 0; 2012 register_hotcpu_notifier(&mp->m_icsb_notifier); 2013 #endif /* CONFIG_HOTPLUG_CPU */ 2014 2015 for_each_online_cpu(i) { 2016 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2017 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2018 } 2019 2020 mutex_init(&mp->m_icsb_mutex); 2021 2022 /* 2023 * start with all counters disabled so that the 2024 * initial balance kicks us off correctly 2025 */ 2026 mp->m_icsb_counters = -1; 2027 return 0; 2028 } 2029 2030 void 2031 xfs_icsb_reinit_counters( 2032 xfs_mount_t *mp) 2033 { 2034 xfs_icsb_lock(mp); 2035 /* 2036 * start with all counters disabled so that the 2037 * initial balance kicks us off correctly 2038 */ 2039 mp->m_icsb_counters = -1; 2040 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2041 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2042 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2043 xfs_icsb_unlock(mp); 2044 } 2045 2046 void 2047 xfs_icsb_destroy_counters( 2048 xfs_mount_t *mp) 2049 { 2050 if (mp->m_sb_cnts) { 2051 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2052 free_percpu(mp->m_sb_cnts); 2053 } 2054 mutex_destroy(&mp->m_icsb_mutex); 2055 } 2056 2057 STATIC_INLINE void 2058 xfs_icsb_lock_cntr( 2059 xfs_icsb_cnts_t *icsbp) 2060 { 2061 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2062 ndelay(1000); 2063 } 2064 } 2065 2066 STATIC_INLINE void 2067 xfs_icsb_unlock_cntr( 2068 xfs_icsb_cnts_t *icsbp) 2069 { 2070 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2071 } 2072 2073 2074 STATIC_INLINE void 2075 xfs_icsb_lock_all_counters( 2076 xfs_mount_t *mp) 2077 { 2078 xfs_icsb_cnts_t *cntp; 2079 int i; 2080 2081 for_each_online_cpu(i) { 2082 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2083 xfs_icsb_lock_cntr(cntp); 2084 } 2085 } 2086 2087 STATIC_INLINE void 2088 xfs_icsb_unlock_all_counters( 2089 xfs_mount_t *mp) 2090 { 2091 xfs_icsb_cnts_t *cntp; 2092 int i; 2093 2094 for_each_online_cpu(i) { 2095 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2096 xfs_icsb_unlock_cntr(cntp); 2097 } 2098 } 2099 2100 STATIC void 2101 xfs_icsb_count( 2102 xfs_mount_t *mp, 2103 xfs_icsb_cnts_t *cnt, 2104 int flags) 2105 { 2106 xfs_icsb_cnts_t *cntp; 2107 int i; 2108 2109 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2110 2111 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2112 xfs_icsb_lock_all_counters(mp); 2113 2114 for_each_online_cpu(i) { 2115 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2116 cnt->icsb_icount += cntp->icsb_icount; 2117 cnt->icsb_ifree += cntp->icsb_ifree; 2118 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2119 } 2120 2121 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2122 xfs_icsb_unlock_all_counters(mp); 2123 } 2124 2125 STATIC int 2126 xfs_icsb_counter_disabled( 2127 xfs_mount_t *mp, 2128 xfs_sb_field_t field) 2129 { 2130 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2131 return test_bit(field, &mp->m_icsb_counters); 2132 } 2133 2134 STATIC void 2135 xfs_icsb_disable_counter( 2136 xfs_mount_t *mp, 2137 xfs_sb_field_t field) 2138 { 2139 xfs_icsb_cnts_t cnt; 2140 2141 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2142 2143 /* 2144 * If we are already disabled, then there is nothing to do 2145 * here. We check before locking all the counters to avoid 2146 * the expensive lock operation when being called in the 2147 * slow path and the counter is already disabled. This is 2148 * safe because the only time we set or clear this state is under 2149 * the m_icsb_mutex. 2150 */ 2151 if (xfs_icsb_counter_disabled(mp, field)) 2152 return; 2153 2154 xfs_icsb_lock_all_counters(mp); 2155 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2156 /* drain back to superblock */ 2157 2158 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2159 switch(field) { 2160 case XFS_SBS_ICOUNT: 2161 mp->m_sb.sb_icount = cnt.icsb_icount; 2162 break; 2163 case XFS_SBS_IFREE: 2164 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2165 break; 2166 case XFS_SBS_FDBLOCKS: 2167 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2168 break; 2169 default: 2170 BUG(); 2171 } 2172 } 2173 2174 xfs_icsb_unlock_all_counters(mp); 2175 } 2176 2177 STATIC void 2178 xfs_icsb_enable_counter( 2179 xfs_mount_t *mp, 2180 xfs_sb_field_t field, 2181 uint64_t count, 2182 uint64_t resid) 2183 { 2184 xfs_icsb_cnts_t *cntp; 2185 int i; 2186 2187 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2188 2189 xfs_icsb_lock_all_counters(mp); 2190 for_each_online_cpu(i) { 2191 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2192 switch (field) { 2193 case XFS_SBS_ICOUNT: 2194 cntp->icsb_icount = count + resid; 2195 break; 2196 case XFS_SBS_IFREE: 2197 cntp->icsb_ifree = count + resid; 2198 break; 2199 case XFS_SBS_FDBLOCKS: 2200 cntp->icsb_fdblocks = count + resid; 2201 break; 2202 default: 2203 BUG(); 2204 break; 2205 } 2206 resid = 0; 2207 } 2208 clear_bit(field, &mp->m_icsb_counters); 2209 xfs_icsb_unlock_all_counters(mp); 2210 } 2211 2212 void 2213 xfs_icsb_sync_counters_locked( 2214 xfs_mount_t *mp, 2215 int flags) 2216 { 2217 xfs_icsb_cnts_t cnt; 2218 2219 xfs_icsb_count(mp, &cnt, flags); 2220 2221 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2222 mp->m_sb.sb_icount = cnt.icsb_icount; 2223 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2224 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2225 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2226 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2227 } 2228 2229 /* 2230 * Accurate update of per-cpu counters to incore superblock 2231 */ 2232 void 2233 xfs_icsb_sync_counters( 2234 xfs_mount_t *mp, 2235 int flags) 2236 { 2237 spin_lock(&mp->m_sb_lock); 2238 xfs_icsb_sync_counters_locked(mp, flags); 2239 spin_unlock(&mp->m_sb_lock); 2240 } 2241 2242 /* 2243 * Balance and enable/disable counters as necessary. 2244 * 2245 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2246 * chosen to be the same number as single on disk allocation chunk per CPU, and 2247 * free blocks is something far enough zero that we aren't going thrash when we 2248 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2249 * prevent looping endlessly when xfs_alloc_space asks for more than will 2250 * be distributed to a single CPU but each CPU has enough blocks to be 2251 * reenabled. 2252 * 2253 * Note that we can be called when counters are already disabled. 2254 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2255 * prevent locking every per-cpu counter needlessly. 2256 */ 2257 2258 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2259 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2260 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2261 STATIC void 2262 xfs_icsb_balance_counter_locked( 2263 xfs_mount_t *mp, 2264 xfs_sb_field_t field, 2265 int min_per_cpu) 2266 { 2267 uint64_t count, resid; 2268 int weight = num_online_cpus(); 2269 uint64_t min = (uint64_t)min_per_cpu; 2270 2271 /* disable counter and sync counter */ 2272 xfs_icsb_disable_counter(mp, field); 2273 2274 /* update counters - first CPU gets residual*/ 2275 switch (field) { 2276 case XFS_SBS_ICOUNT: 2277 count = mp->m_sb.sb_icount; 2278 resid = do_div(count, weight); 2279 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2280 return; 2281 break; 2282 case XFS_SBS_IFREE: 2283 count = mp->m_sb.sb_ifree; 2284 resid = do_div(count, weight); 2285 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2286 return; 2287 break; 2288 case XFS_SBS_FDBLOCKS: 2289 count = mp->m_sb.sb_fdblocks; 2290 resid = do_div(count, weight); 2291 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2292 return; 2293 break; 2294 default: 2295 BUG(); 2296 count = resid = 0; /* quiet, gcc */ 2297 break; 2298 } 2299 2300 xfs_icsb_enable_counter(mp, field, count, resid); 2301 } 2302 2303 STATIC void 2304 xfs_icsb_balance_counter( 2305 xfs_mount_t *mp, 2306 xfs_sb_field_t fields, 2307 int min_per_cpu) 2308 { 2309 spin_lock(&mp->m_sb_lock); 2310 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2311 spin_unlock(&mp->m_sb_lock); 2312 } 2313 2314 STATIC int 2315 xfs_icsb_modify_counters( 2316 xfs_mount_t *mp, 2317 xfs_sb_field_t field, 2318 int64_t delta, 2319 int rsvd) 2320 { 2321 xfs_icsb_cnts_t *icsbp; 2322 long long lcounter; /* long counter for 64 bit fields */ 2323 int cpu, ret = 0; 2324 2325 might_sleep(); 2326 again: 2327 cpu = get_cpu(); 2328 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); 2329 2330 /* 2331 * if the counter is disabled, go to slow path 2332 */ 2333 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2334 goto slow_path; 2335 xfs_icsb_lock_cntr(icsbp); 2336 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2337 xfs_icsb_unlock_cntr(icsbp); 2338 goto slow_path; 2339 } 2340 2341 switch (field) { 2342 case XFS_SBS_ICOUNT: 2343 lcounter = icsbp->icsb_icount; 2344 lcounter += delta; 2345 if (unlikely(lcounter < 0)) 2346 goto balance_counter; 2347 icsbp->icsb_icount = lcounter; 2348 break; 2349 2350 case XFS_SBS_IFREE: 2351 lcounter = icsbp->icsb_ifree; 2352 lcounter += delta; 2353 if (unlikely(lcounter < 0)) 2354 goto balance_counter; 2355 icsbp->icsb_ifree = lcounter; 2356 break; 2357 2358 case XFS_SBS_FDBLOCKS: 2359 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2360 2361 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2362 lcounter += delta; 2363 if (unlikely(lcounter < 0)) 2364 goto balance_counter; 2365 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2366 break; 2367 default: 2368 BUG(); 2369 break; 2370 } 2371 xfs_icsb_unlock_cntr(icsbp); 2372 put_cpu(); 2373 return 0; 2374 2375 slow_path: 2376 put_cpu(); 2377 2378 /* 2379 * serialise with a mutex so we don't burn lots of cpu on 2380 * the superblock lock. We still need to hold the superblock 2381 * lock, however, when we modify the global structures. 2382 */ 2383 xfs_icsb_lock(mp); 2384 2385 /* 2386 * Now running atomically. 2387 * 2388 * If the counter is enabled, someone has beaten us to rebalancing. 2389 * Drop the lock and try again in the fast path.... 2390 */ 2391 if (!(xfs_icsb_counter_disabled(mp, field))) { 2392 xfs_icsb_unlock(mp); 2393 goto again; 2394 } 2395 2396 /* 2397 * The counter is currently disabled. Because we are 2398 * running atomically here, we know a rebalance cannot 2399 * be in progress. Hence we can go straight to operating 2400 * on the global superblock. We do not call xfs_mod_incore_sb() 2401 * here even though we need to get the m_sb_lock. Doing so 2402 * will cause us to re-enter this function and deadlock. 2403 * Hence we get the m_sb_lock ourselves and then call 2404 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2405 * directly on the global counters. 2406 */ 2407 spin_lock(&mp->m_sb_lock); 2408 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2409 spin_unlock(&mp->m_sb_lock); 2410 2411 /* 2412 * Now that we've modified the global superblock, we 2413 * may be able to re-enable the distributed counters 2414 * (e.g. lots of space just got freed). After that 2415 * we are done. 2416 */ 2417 if (ret != ENOSPC) 2418 xfs_icsb_balance_counter(mp, field, 0); 2419 xfs_icsb_unlock(mp); 2420 return ret; 2421 2422 balance_counter: 2423 xfs_icsb_unlock_cntr(icsbp); 2424 put_cpu(); 2425 2426 /* 2427 * We may have multiple threads here if multiple per-cpu 2428 * counters run dry at the same time. This will mean we can 2429 * do more balances than strictly necessary but it is not 2430 * the common slowpath case. 2431 */ 2432 xfs_icsb_lock(mp); 2433 2434 /* 2435 * running atomically. 2436 * 2437 * This will leave the counter in the correct state for future 2438 * accesses. After the rebalance, we simply try again and our retry 2439 * will either succeed through the fast path or slow path without 2440 * another balance operation being required. 2441 */ 2442 xfs_icsb_balance_counter(mp, field, delta); 2443 xfs_icsb_unlock(mp); 2444 goto again; 2445 } 2446 2447 #endif 2448