xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 78c99ba1)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 
48 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
49 
50 
51 #ifdef HAVE_PERCPU_SB
52 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
53 						int);
54 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
55 						int);
56 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
57 						int64_t, int);
58 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
59 
60 #else
61 
62 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
63 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
64 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
65 
66 #endif
67 
68 static const struct {
69 	short offset;
70 	short type;	/* 0 = integer
71 			 * 1 = binary / string (no translation)
72 			 */
73 } xfs_sb_info[] = {
74     { offsetof(xfs_sb_t, sb_magicnum),   0 },
75     { offsetof(xfs_sb_t, sb_blocksize),  0 },
76     { offsetof(xfs_sb_t, sb_dblocks),    0 },
77     { offsetof(xfs_sb_t, sb_rblocks),    0 },
78     { offsetof(xfs_sb_t, sb_rextents),   0 },
79     { offsetof(xfs_sb_t, sb_uuid),       1 },
80     { offsetof(xfs_sb_t, sb_logstart),   0 },
81     { offsetof(xfs_sb_t, sb_rootino),    0 },
82     { offsetof(xfs_sb_t, sb_rbmino),     0 },
83     { offsetof(xfs_sb_t, sb_rsumino),    0 },
84     { offsetof(xfs_sb_t, sb_rextsize),   0 },
85     { offsetof(xfs_sb_t, sb_agblocks),   0 },
86     { offsetof(xfs_sb_t, sb_agcount),    0 },
87     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
88     { offsetof(xfs_sb_t, sb_logblocks),  0 },
89     { offsetof(xfs_sb_t, sb_versionnum), 0 },
90     { offsetof(xfs_sb_t, sb_sectsize),   0 },
91     { offsetof(xfs_sb_t, sb_inodesize),  0 },
92     { offsetof(xfs_sb_t, sb_inopblock),  0 },
93     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
94     { offsetof(xfs_sb_t, sb_blocklog),   0 },
95     { offsetof(xfs_sb_t, sb_sectlog),    0 },
96     { offsetof(xfs_sb_t, sb_inodelog),   0 },
97     { offsetof(xfs_sb_t, sb_inopblog),   0 },
98     { offsetof(xfs_sb_t, sb_agblklog),   0 },
99     { offsetof(xfs_sb_t, sb_rextslog),   0 },
100     { offsetof(xfs_sb_t, sb_inprogress), 0 },
101     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
102     { offsetof(xfs_sb_t, sb_icount),     0 },
103     { offsetof(xfs_sb_t, sb_ifree),      0 },
104     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
105     { offsetof(xfs_sb_t, sb_frextents),  0 },
106     { offsetof(xfs_sb_t, sb_uquotino),   0 },
107     { offsetof(xfs_sb_t, sb_gquotino),   0 },
108     { offsetof(xfs_sb_t, sb_qflags),     0 },
109     { offsetof(xfs_sb_t, sb_flags),      0 },
110     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
111     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
112     { offsetof(xfs_sb_t, sb_unit),	 0 },
113     { offsetof(xfs_sb_t, sb_width),	 0 },
114     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
115     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
116     { offsetof(xfs_sb_t, sb_logsectsize),0 },
117     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
118     { offsetof(xfs_sb_t, sb_features2),	 0 },
119     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
120     { sizeof(xfs_sb_t),			 0 }
121 };
122 
123 static DEFINE_MUTEX(xfs_uuid_table_mutex);
124 static int xfs_uuid_table_size;
125 static uuid_t *xfs_uuid_table;
126 
127 /*
128  * See if the UUID is unique among mounted XFS filesystems.
129  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
130  */
131 STATIC int
132 xfs_uuid_mount(
133 	struct xfs_mount	*mp)
134 {
135 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
136 	int			hole, i;
137 
138 	if (mp->m_flags & XFS_MOUNT_NOUUID)
139 		return 0;
140 
141 	if (uuid_is_nil(uuid)) {
142 		cmn_err(CE_WARN,
143 			"XFS: Filesystem %s has nil UUID - can't mount",
144 			mp->m_fsname);
145 		return XFS_ERROR(EINVAL);
146 	}
147 
148 	mutex_lock(&xfs_uuid_table_mutex);
149 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 		if (uuid_is_nil(&xfs_uuid_table[i])) {
151 			hole = i;
152 			continue;
153 		}
154 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 			goto out_duplicate;
156 	}
157 
158 	if (hole < 0) {
159 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
162 			KM_SLEEP);
163 		hole = xfs_uuid_table_size++;
164 	}
165 	xfs_uuid_table[hole] = *uuid;
166 	mutex_unlock(&xfs_uuid_table_mutex);
167 
168 	return 0;
169 
170  out_duplicate:
171 	mutex_unlock(&xfs_uuid_table_mutex);
172 	cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
173 			 mp->m_fsname);
174 	return XFS_ERROR(EINVAL);
175 }
176 
177 STATIC void
178 xfs_uuid_unmount(
179 	struct xfs_mount	*mp)
180 {
181 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
182 	int			i;
183 
184 	if (mp->m_flags & XFS_MOUNT_NOUUID)
185 		return;
186 
187 	mutex_lock(&xfs_uuid_table_mutex);
188 	for (i = 0; i < xfs_uuid_table_size; i++) {
189 		if (uuid_is_nil(&xfs_uuid_table[i]))
190 			continue;
191 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
192 			continue;
193 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
194 		break;
195 	}
196 	ASSERT(i < xfs_uuid_table_size);
197 	mutex_unlock(&xfs_uuid_table_mutex);
198 }
199 
200 
201 /*
202  * Free up the resources associated with a mount structure.  Assume that
203  * the structure was initially zeroed, so we can tell which fields got
204  * initialized.
205  */
206 STATIC void
207 xfs_free_perag(
208 	xfs_mount_t	*mp)
209 {
210 	if (mp->m_perag) {
211 		int	agno;
212 
213 		for (agno = 0; agno < mp->m_maxagi; agno++)
214 			if (mp->m_perag[agno].pagb_list)
215 				kmem_free(mp->m_perag[agno].pagb_list);
216 		kmem_free(mp->m_perag);
217 	}
218 }
219 
220 /*
221  * Check size of device based on the (data/realtime) block count.
222  * Note: this check is used by the growfs code as well as mount.
223  */
224 int
225 xfs_sb_validate_fsb_count(
226 	xfs_sb_t	*sbp,
227 	__uint64_t	nblocks)
228 {
229 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
230 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
231 
232 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
233 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
234 		return E2BIG;
235 #else                  /* Limited by UINT_MAX of sectors */
236 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
237 		return E2BIG;
238 #endif
239 	return 0;
240 }
241 
242 /*
243  * Check the validity of the SB found.
244  */
245 STATIC int
246 xfs_mount_validate_sb(
247 	xfs_mount_t	*mp,
248 	xfs_sb_t	*sbp,
249 	int		flags)
250 {
251 	/*
252 	 * If the log device and data device have the
253 	 * same device number, the log is internal.
254 	 * Consequently, the sb_logstart should be non-zero.  If
255 	 * we have a zero sb_logstart in this case, we may be trying to mount
256 	 * a volume filesystem in a non-volume manner.
257 	 */
258 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
259 		xfs_fs_mount_cmn_err(flags, "bad magic number");
260 		return XFS_ERROR(EWRONGFS);
261 	}
262 
263 	if (!xfs_sb_good_version(sbp)) {
264 		xfs_fs_mount_cmn_err(flags, "bad version");
265 		return XFS_ERROR(EWRONGFS);
266 	}
267 
268 	if (unlikely(
269 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
270 		xfs_fs_mount_cmn_err(flags,
271 			"filesystem is marked as having an external log; "
272 			"specify logdev on the\nmount command line.");
273 		return XFS_ERROR(EINVAL);
274 	}
275 
276 	if (unlikely(
277 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
278 		xfs_fs_mount_cmn_err(flags,
279 			"filesystem is marked as having an internal log; "
280 			"do not specify logdev on\nthe mount command line.");
281 		return XFS_ERROR(EINVAL);
282 	}
283 
284 	/*
285 	 * More sanity checking. These were stolen directly from
286 	 * xfs_repair.
287 	 */
288 	if (unlikely(
289 	    sbp->sb_agcount <= 0					||
290 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
291 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
292 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
293 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
294 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
295 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
296 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
297 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
298 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
299 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
300 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
301 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
302 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
303 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
304 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
305 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
306 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
307 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
308 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
309 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
310 		return XFS_ERROR(EFSCORRUPTED);
311 	}
312 
313 	/*
314 	 * Sanity check AG count, size fields against data size field
315 	 */
316 	if (unlikely(
317 	    sbp->sb_dblocks == 0 ||
318 	    sbp->sb_dblocks >
319 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
320 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
321 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
322 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
323 		return XFS_ERROR(EFSCORRUPTED);
324 	}
325 
326 	/*
327 	 * Until this is fixed only page-sized or smaller data blocks work.
328 	 */
329 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
330 		xfs_fs_mount_cmn_err(flags,
331 			"file system with blocksize %d bytes",
332 			sbp->sb_blocksize);
333 		xfs_fs_mount_cmn_err(flags,
334 			"only pagesize (%ld) or less will currently work.",
335 			PAGE_SIZE);
336 		return XFS_ERROR(ENOSYS);
337 	}
338 
339 	/*
340 	 * Currently only very few inode sizes are supported.
341 	 */
342 	switch (sbp->sb_inodesize) {
343 	case 256:
344 	case 512:
345 	case 1024:
346 	case 2048:
347 		break;
348 	default:
349 		xfs_fs_mount_cmn_err(flags,
350 			"inode size of %d bytes not supported",
351 			sbp->sb_inodesize);
352 		return XFS_ERROR(ENOSYS);
353 	}
354 
355 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
356 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
357 		xfs_fs_mount_cmn_err(flags,
358 			"file system too large to be mounted on this system.");
359 		return XFS_ERROR(E2BIG);
360 	}
361 
362 	if (unlikely(sbp->sb_inprogress)) {
363 		xfs_fs_mount_cmn_err(flags, "file system busy");
364 		return XFS_ERROR(EFSCORRUPTED);
365 	}
366 
367 	/*
368 	 * Version 1 directory format has never worked on Linux.
369 	 */
370 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
371 		xfs_fs_mount_cmn_err(flags,
372 			"file system using version 1 directory format");
373 		return XFS_ERROR(ENOSYS);
374 	}
375 
376 	return 0;
377 }
378 
379 STATIC void
380 xfs_initialize_perag_icache(
381 	xfs_perag_t	*pag)
382 {
383 	if (!pag->pag_ici_init) {
384 		rwlock_init(&pag->pag_ici_lock);
385 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
386 		pag->pag_ici_init = 1;
387 	}
388 }
389 
390 xfs_agnumber_t
391 xfs_initialize_perag(
392 	xfs_mount_t	*mp,
393 	xfs_agnumber_t	agcount)
394 {
395 	xfs_agnumber_t	index, max_metadata;
396 	xfs_perag_t	*pag;
397 	xfs_agino_t	agino;
398 	xfs_ino_t	ino;
399 	xfs_sb_t	*sbp = &mp->m_sb;
400 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32;
401 
402 	/* Check to see if the filesystem can overflow 32 bit inodes */
403 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
404 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
405 
406 	/* Clear the mount flag if no inode can overflow 32 bits
407 	 * on this filesystem, or if specifically requested..
408 	 */
409 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
410 		mp->m_flags |= XFS_MOUNT_32BITINODES;
411 	} else {
412 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
413 	}
414 
415 	/* If we can overflow then setup the ag headers accordingly */
416 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
417 		/* Calculate how much should be reserved for inodes to
418 		 * meet the max inode percentage.
419 		 */
420 		if (mp->m_maxicount) {
421 			__uint64_t	icount;
422 
423 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
424 			do_div(icount, 100);
425 			icount += sbp->sb_agblocks - 1;
426 			do_div(icount, sbp->sb_agblocks);
427 			max_metadata = icount;
428 		} else {
429 			max_metadata = agcount;
430 		}
431 		for (index = 0; index < agcount; index++) {
432 			ino = XFS_AGINO_TO_INO(mp, index, agino);
433 			if (ino > max_inum) {
434 				index++;
435 				break;
436 			}
437 
438 			/* This ag is preferred for inodes */
439 			pag = &mp->m_perag[index];
440 			pag->pagi_inodeok = 1;
441 			if (index < max_metadata)
442 				pag->pagf_metadata = 1;
443 			xfs_initialize_perag_icache(pag);
444 		}
445 	} else {
446 		/* Setup default behavior for smaller filesystems */
447 		for (index = 0; index < agcount; index++) {
448 			pag = &mp->m_perag[index];
449 			pag->pagi_inodeok = 1;
450 			xfs_initialize_perag_icache(pag);
451 		}
452 	}
453 	return index;
454 }
455 
456 void
457 xfs_sb_from_disk(
458 	xfs_sb_t	*to,
459 	xfs_dsb_t	*from)
460 {
461 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
462 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
463 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
464 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
465 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
466 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
467 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
468 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
469 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
470 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
471 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
472 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
473 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
474 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
475 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
476 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
477 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
478 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
479 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
480 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
481 	to->sb_blocklog = from->sb_blocklog;
482 	to->sb_sectlog = from->sb_sectlog;
483 	to->sb_inodelog = from->sb_inodelog;
484 	to->sb_inopblog = from->sb_inopblog;
485 	to->sb_agblklog = from->sb_agblklog;
486 	to->sb_rextslog = from->sb_rextslog;
487 	to->sb_inprogress = from->sb_inprogress;
488 	to->sb_imax_pct = from->sb_imax_pct;
489 	to->sb_icount = be64_to_cpu(from->sb_icount);
490 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
491 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
492 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
493 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
494 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
495 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
496 	to->sb_flags = from->sb_flags;
497 	to->sb_shared_vn = from->sb_shared_vn;
498 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
499 	to->sb_unit = be32_to_cpu(from->sb_unit);
500 	to->sb_width = be32_to_cpu(from->sb_width);
501 	to->sb_dirblklog = from->sb_dirblklog;
502 	to->sb_logsectlog = from->sb_logsectlog;
503 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
504 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
505 	to->sb_features2 = be32_to_cpu(from->sb_features2);
506 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
507 }
508 
509 /*
510  * Copy in core superblock to ondisk one.
511  *
512  * The fields argument is mask of superblock fields to copy.
513  */
514 void
515 xfs_sb_to_disk(
516 	xfs_dsb_t	*to,
517 	xfs_sb_t	*from,
518 	__int64_t	fields)
519 {
520 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
521 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
522 	xfs_sb_field_t	f;
523 	int		first;
524 	int		size;
525 
526 	ASSERT(fields);
527 	if (!fields)
528 		return;
529 
530 	while (fields) {
531 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
532 		first = xfs_sb_info[f].offset;
533 		size = xfs_sb_info[f + 1].offset - first;
534 
535 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
536 
537 		if (size == 1 || xfs_sb_info[f].type == 1) {
538 			memcpy(to_ptr + first, from_ptr + first, size);
539 		} else {
540 			switch (size) {
541 			case 2:
542 				*(__be16 *)(to_ptr + first) =
543 					cpu_to_be16(*(__u16 *)(from_ptr + first));
544 				break;
545 			case 4:
546 				*(__be32 *)(to_ptr + first) =
547 					cpu_to_be32(*(__u32 *)(from_ptr + first));
548 				break;
549 			case 8:
550 				*(__be64 *)(to_ptr + first) =
551 					cpu_to_be64(*(__u64 *)(from_ptr + first));
552 				break;
553 			default:
554 				ASSERT(0);
555 			}
556 		}
557 
558 		fields &= ~(1LL << f);
559 	}
560 }
561 
562 /*
563  * xfs_readsb
564  *
565  * Does the initial read of the superblock.
566  */
567 int
568 xfs_readsb(xfs_mount_t *mp, int flags)
569 {
570 	unsigned int	sector_size;
571 	unsigned int	extra_flags;
572 	xfs_buf_t	*bp;
573 	int		error;
574 
575 	ASSERT(mp->m_sb_bp == NULL);
576 	ASSERT(mp->m_ddev_targp != NULL);
577 
578 	/*
579 	 * Allocate a (locked) buffer to hold the superblock.
580 	 * This will be kept around at all times to optimize
581 	 * access to the superblock.
582 	 */
583 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
584 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
585 
586 	bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
587 				BTOBB(sector_size), extra_flags);
588 	if (!bp || XFS_BUF_ISERROR(bp)) {
589 		xfs_fs_mount_cmn_err(flags, "SB read failed");
590 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
591 		goto fail;
592 	}
593 	ASSERT(XFS_BUF_ISBUSY(bp));
594 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
595 
596 	/*
597 	 * Initialize the mount structure from the superblock.
598 	 * But first do some basic consistency checking.
599 	 */
600 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
601 
602 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
603 	if (error) {
604 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
605 		goto fail;
606 	}
607 
608 	/*
609 	 * We must be able to do sector-sized and sector-aligned IO.
610 	 */
611 	if (sector_size > mp->m_sb.sb_sectsize) {
612 		xfs_fs_mount_cmn_err(flags,
613 			"device supports only %u byte sectors (not %u)",
614 			sector_size, mp->m_sb.sb_sectsize);
615 		error = ENOSYS;
616 		goto fail;
617 	}
618 
619 	/*
620 	 * If device sector size is smaller than the superblock size,
621 	 * re-read the superblock so the buffer is correctly sized.
622 	 */
623 	if (sector_size < mp->m_sb.sb_sectsize) {
624 		XFS_BUF_UNMANAGE(bp);
625 		xfs_buf_relse(bp);
626 		sector_size = mp->m_sb.sb_sectsize;
627 		bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
628 					BTOBB(sector_size), extra_flags);
629 		if (!bp || XFS_BUF_ISERROR(bp)) {
630 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
631 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
632 			goto fail;
633 		}
634 		ASSERT(XFS_BUF_ISBUSY(bp));
635 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
636 	}
637 
638 	/* Initialize per-cpu counters */
639 	xfs_icsb_reinit_counters(mp);
640 
641 	mp->m_sb_bp = bp;
642 	xfs_buf_relse(bp);
643 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
644 	return 0;
645 
646  fail:
647 	if (bp) {
648 		XFS_BUF_UNMANAGE(bp);
649 		xfs_buf_relse(bp);
650 	}
651 	return error;
652 }
653 
654 
655 /*
656  * xfs_mount_common
657  *
658  * Mount initialization code establishing various mount
659  * fields from the superblock associated with the given
660  * mount structure
661  */
662 STATIC void
663 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
664 {
665 	mp->m_agfrotor = mp->m_agirotor = 0;
666 	spin_lock_init(&mp->m_agirotor_lock);
667 	mp->m_maxagi = mp->m_sb.sb_agcount;
668 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
669 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
670 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
671 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
672 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
673 	mp->m_blockmask = sbp->sb_blocksize - 1;
674 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
675 	mp->m_blockwmask = mp->m_blockwsize - 1;
676 
677 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
678 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
679 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
680 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
681 
682 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
683 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
684 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
685 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
686 
687 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
688 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
689 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
690 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
691 
692 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
693 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
694 					sbp->sb_inopblock);
695 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
696 }
697 
698 /*
699  * xfs_initialize_perag_data
700  *
701  * Read in each per-ag structure so we can count up the number of
702  * allocated inodes, free inodes and used filesystem blocks as this
703  * information is no longer persistent in the superblock. Once we have
704  * this information, write it into the in-core superblock structure.
705  */
706 STATIC int
707 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
708 {
709 	xfs_agnumber_t	index;
710 	xfs_perag_t	*pag;
711 	xfs_sb_t	*sbp = &mp->m_sb;
712 	uint64_t	ifree = 0;
713 	uint64_t	ialloc = 0;
714 	uint64_t	bfree = 0;
715 	uint64_t	bfreelst = 0;
716 	uint64_t	btree = 0;
717 	int		error;
718 
719 	for (index = 0; index < agcount; index++) {
720 		/*
721 		 * read the agf, then the agi. This gets us
722 		 * all the information we need and populates the
723 		 * per-ag structures for us.
724 		 */
725 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
726 		if (error)
727 			return error;
728 
729 		error = xfs_ialloc_pagi_init(mp, NULL, index);
730 		if (error)
731 			return error;
732 		pag = &mp->m_perag[index];
733 		ifree += pag->pagi_freecount;
734 		ialloc += pag->pagi_count;
735 		bfree += pag->pagf_freeblks;
736 		bfreelst += pag->pagf_flcount;
737 		btree += pag->pagf_btreeblks;
738 	}
739 	/*
740 	 * Overwrite incore superblock counters with just-read data
741 	 */
742 	spin_lock(&mp->m_sb_lock);
743 	sbp->sb_ifree = ifree;
744 	sbp->sb_icount = ialloc;
745 	sbp->sb_fdblocks = bfree + bfreelst + btree;
746 	spin_unlock(&mp->m_sb_lock);
747 
748 	/* Fixup the per-cpu counters as well. */
749 	xfs_icsb_reinit_counters(mp);
750 
751 	return 0;
752 }
753 
754 /*
755  * Update alignment values based on mount options and sb values
756  */
757 STATIC int
758 xfs_update_alignment(xfs_mount_t *mp)
759 {
760 	xfs_sb_t	*sbp = &(mp->m_sb);
761 
762 	if (mp->m_dalign) {
763 		/*
764 		 * If stripe unit and stripe width are not multiples
765 		 * of the fs blocksize turn off alignment.
766 		 */
767 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
768 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
769 			if (mp->m_flags & XFS_MOUNT_RETERR) {
770 				cmn_err(CE_WARN,
771 					"XFS: alignment check 1 failed");
772 				return XFS_ERROR(EINVAL);
773 			}
774 			mp->m_dalign = mp->m_swidth = 0;
775 		} else {
776 			/*
777 			 * Convert the stripe unit and width to FSBs.
778 			 */
779 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
780 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
781 				if (mp->m_flags & XFS_MOUNT_RETERR) {
782 					return XFS_ERROR(EINVAL);
783 				}
784 				xfs_fs_cmn_err(CE_WARN, mp,
785 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
786 					mp->m_dalign, mp->m_swidth,
787 					sbp->sb_agblocks);
788 
789 				mp->m_dalign = 0;
790 				mp->m_swidth = 0;
791 			} else if (mp->m_dalign) {
792 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
793 			} else {
794 				if (mp->m_flags & XFS_MOUNT_RETERR) {
795 					xfs_fs_cmn_err(CE_WARN, mp,
796 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
797                                         	mp->m_dalign,
798 						mp->m_blockmask +1);
799 					return XFS_ERROR(EINVAL);
800 				}
801 				mp->m_swidth = 0;
802 			}
803 		}
804 
805 		/*
806 		 * Update superblock with new values
807 		 * and log changes
808 		 */
809 		if (xfs_sb_version_hasdalign(sbp)) {
810 			if (sbp->sb_unit != mp->m_dalign) {
811 				sbp->sb_unit = mp->m_dalign;
812 				mp->m_update_flags |= XFS_SB_UNIT;
813 			}
814 			if (sbp->sb_width != mp->m_swidth) {
815 				sbp->sb_width = mp->m_swidth;
816 				mp->m_update_flags |= XFS_SB_WIDTH;
817 			}
818 		}
819 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
820 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
821 			mp->m_dalign = sbp->sb_unit;
822 			mp->m_swidth = sbp->sb_width;
823 	}
824 
825 	return 0;
826 }
827 
828 /*
829  * Set the maximum inode count for this filesystem
830  */
831 STATIC void
832 xfs_set_maxicount(xfs_mount_t *mp)
833 {
834 	xfs_sb_t	*sbp = &(mp->m_sb);
835 	__uint64_t	icount;
836 
837 	if (sbp->sb_imax_pct) {
838 		/*
839 		 * Make sure the maximum inode count is a multiple
840 		 * of the units we allocate inodes in.
841 		 */
842 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
843 		do_div(icount, 100);
844 		do_div(icount, mp->m_ialloc_blks);
845 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
846 				   sbp->sb_inopblog;
847 	} else {
848 		mp->m_maxicount = 0;
849 	}
850 }
851 
852 /*
853  * Set the default minimum read and write sizes unless
854  * already specified in a mount option.
855  * We use smaller I/O sizes when the file system
856  * is being used for NFS service (wsync mount option).
857  */
858 STATIC void
859 xfs_set_rw_sizes(xfs_mount_t *mp)
860 {
861 	xfs_sb_t	*sbp = &(mp->m_sb);
862 	int		readio_log, writeio_log;
863 
864 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
865 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
866 			readio_log = XFS_WSYNC_READIO_LOG;
867 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
868 		} else {
869 			readio_log = XFS_READIO_LOG_LARGE;
870 			writeio_log = XFS_WRITEIO_LOG_LARGE;
871 		}
872 	} else {
873 		readio_log = mp->m_readio_log;
874 		writeio_log = mp->m_writeio_log;
875 	}
876 
877 	if (sbp->sb_blocklog > readio_log) {
878 		mp->m_readio_log = sbp->sb_blocklog;
879 	} else {
880 		mp->m_readio_log = readio_log;
881 	}
882 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
883 	if (sbp->sb_blocklog > writeio_log) {
884 		mp->m_writeio_log = sbp->sb_blocklog;
885 	} else {
886 		mp->m_writeio_log = writeio_log;
887 	}
888 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
889 }
890 
891 /*
892  * Set whether we're using inode alignment.
893  */
894 STATIC void
895 xfs_set_inoalignment(xfs_mount_t *mp)
896 {
897 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
898 	    mp->m_sb.sb_inoalignmt >=
899 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
900 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
901 	else
902 		mp->m_inoalign_mask = 0;
903 	/*
904 	 * If we are using stripe alignment, check whether
905 	 * the stripe unit is a multiple of the inode alignment
906 	 */
907 	if (mp->m_dalign && mp->m_inoalign_mask &&
908 	    !(mp->m_dalign & mp->m_inoalign_mask))
909 		mp->m_sinoalign = mp->m_dalign;
910 	else
911 		mp->m_sinoalign = 0;
912 }
913 
914 /*
915  * Check that the data (and log if separate) are an ok size.
916  */
917 STATIC int
918 xfs_check_sizes(xfs_mount_t *mp)
919 {
920 	xfs_buf_t	*bp;
921 	xfs_daddr_t	d;
922 	int		error;
923 
924 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
925 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
926 		cmn_err(CE_WARN, "XFS: size check 1 failed");
927 		return XFS_ERROR(E2BIG);
928 	}
929 	error = xfs_read_buf(mp, mp->m_ddev_targp,
930 			     d - XFS_FSS_TO_BB(mp, 1),
931 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
932 	if (!error) {
933 		xfs_buf_relse(bp);
934 	} else {
935 		cmn_err(CE_WARN, "XFS: size check 2 failed");
936 		if (error == ENOSPC)
937 			error = XFS_ERROR(E2BIG);
938 		return error;
939 	}
940 
941 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
942 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
943 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
944 			cmn_err(CE_WARN, "XFS: size check 3 failed");
945 			return XFS_ERROR(E2BIG);
946 		}
947 		error = xfs_read_buf(mp, mp->m_logdev_targp,
948 				     d - XFS_FSB_TO_BB(mp, 1),
949 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
950 		if (!error) {
951 			xfs_buf_relse(bp);
952 		} else {
953 			cmn_err(CE_WARN, "XFS: size check 3 failed");
954 			if (error == ENOSPC)
955 				error = XFS_ERROR(E2BIG);
956 			return error;
957 		}
958 	}
959 	return 0;
960 }
961 
962 /*
963  * This function does the following on an initial mount of a file system:
964  *	- reads the superblock from disk and init the mount struct
965  *	- if we're a 32-bit kernel, do a size check on the superblock
966  *		so we don't mount terabyte filesystems
967  *	- init mount struct realtime fields
968  *	- allocate inode hash table for fs
969  *	- init directory manager
970  *	- perform recovery and init the log manager
971  */
972 int
973 xfs_mountfs(
974 	xfs_mount_t	*mp)
975 {
976 	xfs_sb_t	*sbp = &(mp->m_sb);
977 	xfs_inode_t	*rip;
978 	__uint64_t	resblks;
979 	uint		quotamount, quotaflags;
980 	int		error = 0;
981 
982 	xfs_mount_common(mp, sbp);
983 
984 	/*
985 	 * Check for a mismatched features2 values.  Older kernels
986 	 * read & wrote into the wrong sb offset for sb_features2
987 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
988 	 * when sb_features2 was added, which made older superblock
989 	 * reading/writing routines swap it as a 64-bit value.
990 	 *
991 	 * For backwards compatibility, we make both slots equal.
992 	 *
993 	 * If we detect a mismatched field, we OR the set bits into the
994 	 * existing features2 field in case it has already been modified; we
995 	 * don't want to lose any features.  We then update the bad location
996 	 * with the ORed value so that older kernels will see any features2
997 	 * flags, and mark the two fields as needing updates once the
998 	 * transaction subsystem is online.
999 	 */
1000 	if (xfs_sb_has_mismatched_features2(sbp)) {
1001 		cmn_err(CE_WARN,
1002 			"XFS: correcting sb_features alignment problem");
1003 		sbp->sb_features2 |= sbp->sb_bad_features2;
1004 		sbp->sb_bad_features2 = sbp->sb_features2;
1005 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1006 
1007 		/*
1008 		 * Re-check for ATTR2 in case it was found in bad_features2
1009 		 * slot.
1010 		 */
1011 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1012 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1013 			mp->m_flags |= XFS_MOUNT_ATTR2;
1014 	}
1015 
1016 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1017 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1018 		xfs_sb_version_removeattr2(&mp->m_sb);
1019 		mp->m_update_flags |= XFS_SB_FEATURES2;
1020 
1021 		/* update sb_versionnum for the clearing of the morebits */
1022 		if (!sbp->sb_features2)
1023 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1024 	}
1025 
1026 	/*
1027 	 * Check if sb_agblocks is aligned at stripe boundary
1028 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1029 	 * allocator alignment is within an ag, therefore ag has
1030 	 * to be aligned at stripe boundary.
1031 	 */
1032 	error = xfs_update_alignment(mp);
1033 	if (error)
1034 		goto out;
1035 
1036 	xfs_alloc_compute_maxlevels(mp);
1037 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1038 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1039 	xfs_ialloc_compute_maxlevels(mp);
1040 
1041 	xfs_set_maxicount(mp);
1042 
1043 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1044 
1045 	error = xfs_uuid_mount(mp);
1046 	if (error)
1047 		goto out;
1048 
1049 	/*
1050 	 * Set the minimum read and write sizes
1051 	 */
1052 	xfs_set_rw_sizes(mp);
1053 
1054 	/*
1055 	 * Set the inode cluster size.
1056 	 * This may still be overridden by the file system
1057 	 * block size if it is larger than the chosen cluster size.
1058 	 */
1059 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1060 
1061 	/*
1062 	 * Set inode alignment fields
1063 	 */
1064 	xfs_set_inoalignment(mp);
1065 
1066 	/*
1067 	 * Check that the data (and log if separate) are an ok size.
1068 	 */
1069 	error = xfs_check_sizes(mp);
1070 	if (error)
1071 		goto out_remove_uuid;
1072 
1073 	/*
1074 	 * Initialize realtime fields in the mount structure
1075 	 */
1076 	error = xfs_rtmount_init(mp);
1077 	if (error) {
1078 		cmn_err(CE_WARN, "XFS: RT mount failed");
1079 		goto out_remove_uuid;
1080 	}
1081 
1082 	/*
1083 	 *  Copies the low order bits of the timestamp and the randomly
1084 	 *  set "sequence" number out of a UUID.
1085 	 */
1086 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1087 
1088 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1089 
1090 	xfs_dir_mount(mp);
1091 
1092 	/*
1093 	 * Initialize the attribute manager's entries.
1094 	 */
1095 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1096 
1097 	/*
1098 	 * Initialize the precomputed transaction reservations values.
1099 	 */
1100 	xfs_trans_init(mp);
1101 
1102 	/*
1103 	 * Allocate and initialize the per-ag data.
1104 	 */
1105 	init_rwsem(&mp->m_peraglock);
1106 	mp->m_perag = kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t),
1107 				  KM_MAYFAIL);
1108 	if (!mp->m_perag)
1109 		goto out_remove_uuid;
1110 
1111 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1112 
1113 	if (!sbp->sb_logblocks) {
1114 		cmn_err(CE_WARN, "XFS: no log defined");
1115 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1116 		error = XFS_ERROR(EFSCORRUPTED);
1117 		goto out_free_perag;
1118 	}
1119 
1120 	/*
1121 	 * log's mount-time initialization. Perform 1st part recovery if needed
1122 	 */
1123 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1124 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1125 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1126 	if (error) {
1127 		cmn_err(CE_WARN, "XFS: log mount failed");
1128 		goto out_free_perag;
1129 	}
1130 
1131 	/*
1132 	 * Now the log is mounted, we know if it was an unclean shutdown or
1133 	 * not. If it was, with the first phase of recovery has completed, we
1134 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1135 	 * but they are recovered transactionally in the second recovery phase
1136 	 * later.
1137 	 *
1138 	 * Hence we can safely re-initialise incore superblock counters from
1139 	 * the per-ag data. These may not be correct if the filesystem was not
1140 	 * cleanly unmounted, so we need to wait for recovery to finish before
1141 	 * doing this.
1142 	 *
1143 	 * If the filesystem was cleanly unmounted, then we can trust the
1144 	 * values in the superblock to be correct and we don't need to do
1145 	 * anything here.
1146 	 *
1147 	 * If we are currently making the filesystem, the initialisation will
1148 	 * fail as the perag data is in an undefined state.
1149 	 */
1150 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1151 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1152 	     !mp->m_sb.sb_inprogress) {
1153 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1154 		if (error)
1155 			goto out_free_perag;
1156 	}
1157 
1158 	/*
1159 	 * Get and sanity-check the root inode.
1160 	 * Save the pointer to it in the mount structure.
1161 	 */
1162 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1163 	if (error) {
1164 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1165 		goto out_log_dealloc;
1166 	}
1167 
1168 	ASSERT(rip != NULL);
1169 
1170 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1171 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1172 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1173 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1174 			(unsigned long long)rip->i_ino);
1175 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1176 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1177 				 mp);
1178 		error = XFS_ERROR(EFSCORRUPTED);
1179 		goto out_rele_rip;
1180 	}
1181 	mp->m_rootip = rip;	/* save it */
1182 
1183 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1184 
1185 	/*
1186 	 * Initialize realtime inode pointers in the mount structure
1187 	 */
1188 	error = xfs_rtmount_inodes(mp);
1189 	if (error) {
1190 		/*
1191 		 * Free up the root inode.
1192 		 */
1193 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1194 		goto out_rele_rip;
1195 	}
1196 
1197 	/*
1198 	 * If this is a read-only mount defer the superblock updates until
1199 	 * the next remount into writeable mode.  Otherwise we would never
1200 	 * perform the update e.g. for the root filesystem.
1201 	 */
1202 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1203 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1204 		if (error) {
1205 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1206 			goto out_rtunmount;
1207 		}
1208 	}
1209 
1210 	/*
1211 	 * Initialise the XFS quota management subsystem for this mount
1212 	 */
1213 	error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1214 	if (error)
1215 		goto out_rtunmount;
1216 
1217 	/*
1218 	 * Finish recovering the file system.  This part needed to be
1219 	 * delayed until after the root and real-time bitmap inodes
1220 	 * were consistently read in.
1221 	 */
1222 	error = xfs_log_mount_finish(mp);
1223 	if (error) {
1224 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1225 		goto out_rtunmount;
1226 	}
1227 
1228 	/*
1229 	 * Complete the quota initialisation, post-log-replay component.
1230 	 */
1231 	error = XFS_QM_MOUNT(mp, quotamount, quotaflags);
1232 	if (error)
1233 		goto out_rtunmount;
1234 
1235 	/*
1236 	 * Now we are mounted, reserve a small amount of unused space for
1237 	 * privileged transactions. This is needed so that transaction
1238 	 * space required for critical operations can dip into this pool
1239 	 * when at ENOSPC. This is needed for operations like create with
1240 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1241 	 * are not allowed to use this reserved space.
1242 	 *
1243 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1244 	 * This may drive us straight to ENOSPC on mount, but that implies
1245 	 * we were already there on the last unmount. Warn if this occurs.
1246 	 */
1247 	resblks = mp->m_sb.sb_dblocks;
1248 	do_div(resblks, 20);
1249 	resblks = min_t(__uint64_t, resblks, 1024);
1250 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1251 	if (error)
1252 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1253 				"Continuing without a reserve pool.");
1254 
1255 	return 0;
1256 
1257  out_rtunmount:
1258 	xfs_rtunmount_inodes(mp);
1259  out_rele_rip:
1260 	IRELE(rip);
1261  out_log_dealloc:
1262 	xfs_log_unmount(mp);
1263  out_free_perag:
1264 	xfs_free_perag(mp);
1265  out_remove_uuid:
1266 	xfs_uuid_unmount(mp);
1267  out:
1268 	return error;
1269 }
1270 
1271 /*
1272  * This flushes out the inodes,dquots and the superblock, unmounts the
1273  * log and makes sure that incore structures are freed.
1274  */
1275 void
1276 xfs_unmountfs(
1277 	struct xfs_mount	*mp)
1278 {
1279 	__uint64_t		resblks;
1280 	int			error;
1281 
1282 	/*
1283 	 * Release dquot that rootinode, rbmino and rsumino might be holding,
1284 	 * and release the quota inodes.
1285 	 */
1286 	XFS_QM_UNMOUNT(mp);
1287 
1288 	xfs_rtunmount_inodes(mp);
1289 	IRELE(mp->m_rootip);
1290 
1291 	/*
1292 	 * We can potentially deadlock here if we have an inode cluster
1293 	 * that has been freed has its buffer still pinned in memory because
1294 	 * the transaction is still sitting in a iclog. The stale inodes
1295 	 * on that buffer will have their flush locks held until the
1296 	 * transaction hits the disk and the callbacks run. the inode
1297 	 * flush takes the flush lock unconditionally and with nothing to
1298 	 * push out the iclog we will never get that unlocked. hence we
1299 	 * need to force the log first.
1300 	 */
1301 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1302 	xfs_reclaim_inodes(mp, 0, XFS_IFLUSH_ASYNC);
1303 
1304 	XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1305 
1306 	if (mp->m_quotainfo)
1307 		XFS_QM_DONE(mp);
1308 
1309 	/*
1310 	 * Flush out the log synchronously so that we know for sure
1311 	 * that nothing is pinned.  This is important because bflush()
1312 	 * will skip pinned buffers.
1313 	 */
1314 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1315 
1316 	xfs_binval(mp->m_ddev_targp);
1317 	if (mp->m_rtdev_targp) {
1318 		xfs_binval(mp->m_rtdev_targp);
1319 	}
1320 
1321 	/*
1322 	 * Unreserve any blocks we have so that when we unmount we don't account
1323 	 * the reserved free space as used. This is really only necessary for
1324 	 * lazy superblock counting because it trusts the incore superblock
1325 	 * counters to be absolutely correct on clean unmount.
1326 	 *
1327 	 * We don't bother correcting this elsewhere for lazy superblock
1328 	 * counting because on mount of an unclean filesystem we reconstruct the
1329 	 * correct counter value and this is irrelevant.
1330 	 *
1331 	 * For non-lazy counter filesystems, this doesn't matter at all because
1332 	 * we only every apply deltas to the superblock and hence the incore
1333 	 * value does not matter....
1334 	 */
1335 	resblks = 0;
1336 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1337 	if (error)
1338 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1339 				"Freespace may not be correct on next mount.");
1340 
1341 	error = xfs_log_sbcount(mp, 1);
1342 	if (error)
1343 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1344 				"Freespace may not be correct on next mount.");
1345 	xfs_unmountfs_writesb(mp);
1346 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1347 	xfs_log_unmount_write(mp);
1348 	xfs_log_unmount(mp);
1349 	xfs_uuid_unmount(mp);
1350 
1351 #if defined(DEBUG)
1352 	xfs_errortag_clearall(mp, 0);
1353 #endif
1354 	xfs_free_perag(mp);
1355 }
1356 
1357 STATIC void
1358 xfs_unmountfs_wait(xfs_mount_t *mp)
1359 {
1360 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1361 		xfs_wait_buftarg(mp->m_logdev_targp);
1362 	if (mp->m_rtdev_targp)
1363 		xfs_wait_buftarg(mp->m_rtdev_targp);
1364 	xfs_wait_buftarg(mp->m_ddev_targp);
1365 }
1366 
1367 int
1368 xfs_fs_writable(xfs_mount_t *mp)
1369 {
1370 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1371 		(mp->m_flags & XFS_MOUNT_RDONLY));
1372 }
1373 
1374 /*
1375  * xfs_log_sbcount
1376  *
1377  * Called either periodically to keep the on disk superblock values
1378  * roughly up to date or from unmount to make sure the values are
1379  * correct on a clean unmount.
1380  *
1381  * Note this code can be called during the process of freezing, so
1382  * we may need to use the transaction allocator which does not not
1383  * block when the transaction subsystem is in its frozen state.
1384  */
1385 int
1386 xfs_log_sbcount(
1387 	xfs_mount_t	*mp,
1388 	uint		sync)
1389 {
1390 	xfs_trans_t	*tp;
1391 	int		error;
1392 
1393 	if (!xfs_fs_writable(mp))
1394 		return 0;
1395 
1396 	xfs_icsb_sync_counters(mp, 0);
1397 
1398 	/*
1399 	 * we don't need to do this if we are updating the superblock
1400 	 * counters on every modification.
1401 	 */
1402 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1403 		return 0;
1404 
1405 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1406 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1407 					XFS_DEFAULT_LOG_COUNT);
1408 	if (error) {
1409 		xfs_trans_cancel(tp, 0);
1410 		return error;
1411 	}
1412 
1413 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1414 	if (sync)
1415 		xfs_trans_set_sync(tp);
1416 	error = xfs_trans_commit(tp, 0);
1417 	return error;
1418 }
1419 
1420 int
1421 xfs_unmountfs_writesb(xfs_mount_t *mp)
1422 {
1423 	xfs_buf_t	*sbp;
1424 	int		error = 0;
1425 
1426 	/*
1427 	 * skip superblock write if fs is read-only, or
1428 	 * if we are doing a forced umount.
1429 	 */
1430 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1431 		XFS_FORCED_SHUTDOWN(mp))) {
1432 
1433 		sbp = xfs_getsb(mp, 0);
1434 
1435 		XFS_BUF_UNDONE(sbp);
1436 		XFS_BUF_UNREAD(sbp);
1437 		XFS_BUF_UNDELAYWRITE(sbp);
1438 		XFS_BUF_WRITE(sbp);
1439 		XFS_BUF_UNASYNC(sbp);
1440 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1441 		xfsbdstrat(mp, sbp);
1442 		error = xfs_iowait(sbp);
1443 		if (error)
1444 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1445 					  mp, sbp, XFS_BUF_ADDR(sbp));
1446 		xfs_buf_relse(sbp);
1447 	}
1448 	return error;
1449 }
1450 
1451 /*
1452  * xfs_mod_sb() can be used to copy arbitrary changes to the
1453  * in-core superblock into the superblock buffer to be logged.
1454  * It does not provide the higher level of locking that is
1455  * needed to protect the in-core superblock from concurrent
1456  * access.
1457  */
1458 void
1459 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1460 {
1461 	xfs_buf_t	*bp;
1462 	int		first;
1463 	int		last;
1464 	xfs_mount_t	*mp;
1465 	xfs_sb_field_t	f;
1466 
1467 	ASSERT(fields);
1468 	if (!fields)
1469 		return;
1470 	mp = tp->t_mountp;
1471 	bp = xfs_trans_getsb(tp, mp, 0);
1472 	first = sizeof(xfs_sb_t);
1473 	last = 0;
1474 
1475 	/* translate/copy */
1476 
1477 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1478 
1479 	/* find modified range */
1480 
1481 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1482 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1483 	first = xfs_sb_info[f].offset;
1484 
1485 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1486 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1487 	last = xfs_sb_info[f + 1].offset - 1;
1488 
1489 	xfs_trans_log_buf(tp, bp, first, last);
1490 }
1491 
1492 
1493 /*
1494  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1495  * a delta to a specified field in the in-core superblock.  Simply
1496  * switch on the field indicated and apply the delta to that field.
1497  * Fields are not allowed to dip below zero, so if the delta would
1498  * do this do not apply it and return EINVAL.
1499  *
1500  * The m_sb_lock must be held when this routine is called.
1501  */
1502 int
1503 xfs_mod_incore_sb_unlocked(
1504 	xfs_mount_t	*mp,
1505 	xfs_sb_field_t	field,
1506 	int64_t		delta,
1507 	int		rsvd)
1508 {
1509 	int		scounter;	/* short counter for 32 bit fields */
1510 	long long	lcounter;	/* long counter for 64 bit fields */
1511 	long long	res_used, rem;
1512 
1513 	/*
1514 	 * With the in-core superblock spin lock held, switch
1515 	 * on the indicated field.  Apply the delta to the
1516 	 * proper field.  If the fields value would dip below
1517 	 * 0, then do not apply the delta and return EINVAL.
1518 	 */
1519 	switch (field) {
1520 	case XFS_SBS_ICOUNT:
1521 		lcounter = (long long)mp->m_sb.sb_icount;
1522 		lcounter += delta;
1523 		if (lcounter < 0) {
1524 			ASSERT(0);
1525 			return XFS_ERROR(EINVAL);
1526 		}
1527 		mp->m_sb.sb_icount = lcounter;
1528 		return 0;
1529 	case XFS_SBS_IFREE:
1530 		lcounter = (long long)mp->m_sb.sb_ifree;
1531 		lcounter += delta;
1532 		if (lcounter < 0) {
1533 			ASSERT(0);
1534 			return XFS_ERROR(EINVAL);
1535 		}
1536 		mp->m_sb.sb_ifree = lcounter;
1537 		return 0;
1538 	case XFS_SBS_FDBLOCKS:
1539 		lcounter = (long long)
1540 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1541 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1542 
1543 		if (delta > 0) {		/* Putting blocks back */
1544 			if (res_used > delta) {
1545 				mp->m_resblks_avail += delta;
1546 			} else {
1547 				rem = delta - res_used;
1548 				mp->m_resblks_avail = mp->m_resblks;
1549 				lcounter += rem;
1550 			}
1551 		} else {				/* Taking blocks away */
1552 
1553 			lcounter += delta;
1554 
1555 		/*
1556 		 * If were out of blocks, use any available reserved blocks if
1557 		 * were allowed to.
1558 		 */
1559 
1560 			if (lcounter < 0) {
1561 				if (rsvd) {
1562 					lcounter = (long long)mp->m_resblks_avail + delta;
1563 					if (lcounter < 0) {
1564 						return XFS_ERROR(ENOSPC);
1565 					}
1566 					mp->m_resblks_avail = lcounter;
1567 					return 0;
1568 				} else {	/* not reserved */
1569 					return XFS_ERROR(ENOSPC);
1570 				}
1571 			}
1572 		}
1573 
1574 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1575 		return 0;
1576 	case XFS_SBS_FREXTENTS:
1577 		lcounter = (long long)mp->m_sb.sb_frextents;
1578 		lcounter += delta;
1579 		if (lcounter < 0) {
1580 			return XFS_ERROR(ENOSPC);
1581 		}
1582 		mp->m_sb.sb_frextents = lcounter;
1583 		return 0;
1584 	case XFS_SBS_DBLOCKS:
1585 		lcounter = (long long)mp->m_sb.sb_dblocks;
1586 		lcounter += delta;
1587 		if (lcounter < 0) {
1588 			ASSERT(0);
1589 			return XFS_ERROR(EINVAL);
1590 		}
1591 		mp->m_sb.sb_dblocks = lcounter;
1592 		return 0;
1593 	case XFS_SBS_AGCOUNT:
1594 		scounter = mp->m_sb.sb_agcount;
1595 		scounter += delta;
1596 		if (scounter < 0) {
1597 			ASSERT(0);
1598 			return XFS_ERROR(EINVAL);
1599 		}
1600 		mp->m_sb.sb_agcount = scounter;
1601 		return 0;
1602 	case XFS_SBS_IMAX_PCT:
1603 		scounter = mp->m_sb.sb_imax_pct;
1604 		scounter += delta;
1605 		if (scounter < 0) {
1606 			ASSERT(0);
1607 			return XFS_ERROR(EINVAL);
1608 		}
1609 		mp->m_sb.sb_imax_pct = scounter;
1610 		return 0;
1611 	case XFS_SBS_REXTSIZE:
1612 		scounter = mp->m_sb.sb_rextsize;
1613 		scounter += delta;
1614 		if (scounter < 0) {
1615 			ASSERT(0);
1616 			return XFS_ERROR(EINVAL);
1617 		}
1618 		mp->m_sb.sb_rextsize = scounter;
1619 		return 0;
1620 	case XFS_SBS_RBMBLOCKS:
1621 		scounter = mp->m_sb.sb_rbmblocks;
1622 		scounter += delta;
1623 		if (scounter < 0) {
1624 			ASSERT(0);
1625 			return XFS_ERROR(EINVAL);
1626 		}
1627 		mp->m_sb.sb_rbmblocks = scounter;
1628 		return 0;
1629 	case XFS_SBS_RBLOCKS:
1630 		lcounter = (long long)mp->m_sb.sb_rblocks;
1631 		lcounter += delta;
1632 		if (lcounter < 0) {
1633 			ASSERT(0);
1634 			return XFS_ERROR(EINVAL);
1635 		}
1636 		mp->m_sb.sb_rblocks = lcounter;
1637 		return 0;
1638 	case XFS_SBS_REXTENTS:
1639 		lcounter = (long long)mp->m_sb.sb_rextents;
1640 		lcounter += delta;
1641 		if (lcounter < 0) {
1642 			ASSERT(0);
1643 			return XFS_ERROR(EINVAL);
1644 		}
1645 		mp->m_sb.sb_rextents = lcounter;
1646 		return 0;
1647 	case XFS_SBS_REXTSLOG:
1648 		scounter = mp->m_sb.sb_rextslog;
1649 		scounter += delta;
1650 		if (scounter < 0) {
1651 			ASSERT(0);
1652 			return XFS_ERROR(EINVAL);
1653 		}
1654 		mp->m_sb.sb_rextslog = scounter;
1655 		return 0;
1656 	default:
1657 		ASSERT(0);
1658 		return XFS_ERROR(EINVAL);
1659 	}
1660 }
1661 
1662 /*
1663  * xfs_mod_incore_sb() is used to change a field in the in-core
1664  * superblock structure by the specified delta.  This modification
1665  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1666  * routine to do the work.
1667  */
1668 int
1669 xfs_mod_incore_sb(
1670 	xfs_mount_t	*mp,
1671 	xfs_sb_field_t	field,
1672 	int64_t		delta,
1673 	int		rsvd)
1674 {
1675 	int	status;
1676 
1677 	/* check for per-cpu counters */
1678 	switch (field) {
1679 #ifdef HAVE_PERCPU_SB
1680 	case XFS_SBS_ICOUNT:
1681 	case XFS_SBS_IFREE:
1682 	case XFS_SBS_FDBLOCKS:
1683 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1684 			status = xfs_icsb_modify_counters(mp, field,
1685 							delta, rsvd);
1686 			break;
1687 		}
1688 		/* FALLTHROUGH */
1689 #endif
1690 	default:
1691 		spin_lock(&mp->m_sb_lock);
1692 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1693 		spin_unlock(&mp->m_sb_lock);
1694 		break;
1695 	}
1696 
1697 	return status;
1698 }
1699 
1700 /*
1701  * xfs_mod_incore_sb_batch() is used to change more than one field
1702  * in the in-core superblock structure at a time.  This modification
1703  * is protected by a lock internal to this module.  The fields and
1704  * changes to those fields are specified in the array of xfs_mod_sb
1705  * structures passed in.
1706  *
1707  * Either all of the specified deltas will be applied or none of
1708  * them will.  If any modified field dips below 0, then all modifications
1709  * will be backed out and EINVAL will be returned.
1710  */
1711 int
1712 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1713 {
1714 	int		status=0;
1715 	xfs_mod_sb_t	*msbp;
1716 
1717 	/*
1718 	 * Loop through the array of mod structures and apply each
1719 	 * individually.  If any fail, then back out all those
1720 	 * which have already been applied.  Do all of this within
1721 	 * the scope of the m_sb_lock so that all of the changes will
1722 	 * be atomic.
1723 	 */
1724 	spin_lock(&mp->m_sb_lock);
1725 	msbp = &msb[0];
1726 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1727 		/*
1728 		 * Apply the delta at index n.  If it fails, break
1729 		 * from the loop so we'll fall into the undo loop
1730 		 * below.
1731 		 */
1732 		switch (msbp->msb_field) {
1733 #ifdef HAVE_PERCPU_SB
1734 		case XFS_SBS_ICOUNT:
1735 		case XFS_SBS_IFREE:
1736 		case XFS_SBS_FDBLOCKS:
1737 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1738 				spin_unlock(&mp->m_sb_lock);
1739 				status = xfs_icsb_modify_counters(mp,
1740 							msbp->msb_field,
1741 							msbp->msb_delta, rsvd);
1742 				spin_lock(&mp->m_sb_lock);
1743 				break;
1744 			}
1745 			/* FALLTHROUGH */
1746 #endif
1747 		default:
1748 			status = xfs_mod_incore_sb_unlocked(mp,
1749 						msbp->msb_field,
1750 						msbp->msb_delta, rsvd);
1751 			break;
1752 		}
1753 
1754 		if (status != 0) {
1755 			break;
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * If we didn't complete the loop above, then back out
1761 	 * any changes made to the superblock.  If you add code
1762 	 * between the loop above and here, make sure that you
1763 	 * preserve the value of status. Loop back until
1764 	 * we step below the beginning of the array.  Make sure
1765 	 * we don't touch anything back there.
1766 	 */
1767 	if (status != 0) {
1768 		msbp--;
1769 		while (msbp >= msb) {
1770 			switch (msbp->msb_field) {
1771 #ifdef HAVE_PERCPU_SB
1772 			case XFS_SBS_ICOUNT:
1773 			case XFS_SBS_IFREE:
1774 			case XFS_SBS_FDBLOCKS:
1775 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1776 					spin_unlock(&mp->m_sb_lock);
1777 					status = xfs_icsb_modify_counters(mp,
1778 							msbp->msb_field,
1779 							-(msbp->msb_delta),
1780 							rsvd);
1781 					spin_lock(&mp->m_sb_lock);
1782 					break;
1783 				}
1784 				/* FALLTHROUGH */
1785 #endif
1786 			default:
1787 				status = xfs_mod_incore_sb_unlocked(mp,
1788 							msbp->msb_field,
1789 							-(msbp->msb_delta),
1790 							rsvd);
1791 				break;
1792 			}
1793 			ASSERT(status == 0);
1794 			msbp--;
1795 		}
1796 	}
1797 	spin_unlock(&mp->m_sb_lock);
1798 	return status;
1799 }
1800 
1801 /*
1802  * xfs_getsb() is called to obtain the buffer for the superblock.
1803  * The buffer is returned locked and read in from disk.
1804  * The buffer should be released with a call to xfs_brelse().
1805  *
1806  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1807  * the superblock buffer if it can be locked without sleeping.
1808  * If it can't then we'll return NULL.
1809  */
1810 xfs_buf_t *
1811 xfs_getsb(
1812 	xfs_mount_t	*mp,
1813 	int		flags)
1814 {
1815 	xfs_buf_t	*bp;
1816 
1817 	ASSERT(mp->m_sb_bp != NULL);
1818 	bp = mp->m_sb_bp;
1819 	if (flags & XFS_BUF_TRYLOCK) {
1820 		if (!XFS_BUF_CPSEMA(bp)) {
1821 			return NULL;
1822 		}
1823 	} else {
1824 		XFS_BUF_PSEMA(bp, PRIBIO);
1825 	}
1826 	XFS_BUF_HOLD(bp);
1827 	ASSERT(XFS_BUF_ISDONE(bp));
1828 	return bp;
1829 }
1830 
1831 /*
1832  * Used to free the superblock along various error paths.
1833  */
1834 void
1835 xfs_freesb(
1836 	xfs_mount_t	*mp)
1837 {
1838 	xfs_buf_t	*bp;
1839 
1840 	/*
1841 	 * Use xfs_getsb() so that the buffer will be locked
1842 	 * when we call xfs_buf_relse().
1843 	 */
1844 	bp = xfs_getsb(mp, 0);
1845 	XFS_BUF_UNMANAGE(bp);
1846 	xfs_buf_relse(bp);
1847 	mp->m_sb_bp = NULL;
1848 }
1849 
1850 /*
1851  * Used to log changes to the superblock unit and width fields which could
1852  * be altered by the mount options, as well as any potential sb_features2
1853  * fixup. Only the first superblock is updated.
1854  */
1855 int
1856 xfs_mount_log_sb(
1857 	xfs_mount_t	*mp,
1858 	__int64_t	fields)
1859 {
1860 	xfs_trans_t	*tp;
1861 	int		error;
1862 
1863 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1864 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1865 			 XFS_SB_VERSIONNUM));
1866 
1867 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1868 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1869 				XFS_DEFAULT_LOG_COUNT);
1870 	if (error) {
1871 		xfs_trans_cancel(tp, 0);
1872 		return error;
1873 	}
1874 	xfs_mod_sb(tp, fields);
1875 	error = xfs_trans_commit(tp, 0);
1876 	return error;
1877 }
1878 
1879 
1880 #ifdef HAVE_PERCPU_SB
1881 /*
1882  * Per-cpu incore superblock counters
1883  *
1884  * Simple concept, difficult implementation
1885  *
1886  * Basically, replace the incore superblock counters with a distributed per cpu
1887  * counter for contended fields (e.g.  free block count).
1888  *
1889  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1890  * hence needs to be accurately read when we are running low on space. Hence
1891  * there is a method to enable and disable the per-cpu counters based on how
1892  * much "stuff" is available in them.
1893  *
1894  * Basically, a counter is enabled if there is enough free resource to justify
1895  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1896  * ENOSPC), then we disable the counters to synchronise all callers and
1897  * re-distribute the available resources.
1898  *
1899  * If, once we redistributed the available resources, we still get a failure,
1900  * we disable the per-cpu counter and go through the slow path.
1901  *
1902  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1903  * when we disable a per-cpu counter, we need to drain its resources back to
1904  * the global superblock. We do this after disabling the counter to prevent
1905  * more threads from queueing up on the counter.
1906  *
1907  * Essentially, this means that we still need a lock in the fast path to enable
1908  * synchronisation between the global counters and the per-cpu counters. This
1909  * is not a problem because the lock will be local to a CPU almost all the time
1910  * and have little contention except when we get to ENOSPC conditions.
1911  *
1912  * Basically, this lock becomes a barrier that enables us to lock out the fast
1913  * path while we do things like enabling and disabling counters and
1914  * synchronising the counters.
1915  *
1916  * Locking rules:
1917  *
1918  * 	1. m_sb_lock before picking up per-cpu locks
1919  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1920  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1921  * 	4. modifying per-cpu counters requires holding per-cpu lock
1922  * 	5. modifying global counters requires holding m_sb_lock
1923  *	6. enabling or disabling a counter requires holding the m_sb_lock
1924  *	   and _none_ of the per-cpu locks.
1925  *
1926  * Disabled counters are only ever re-enabled by a balance operation
1927  * that results in more free resources per CPU than a given threshold.
1928  * To ensure counters don't remain disabled, they are rebalanced when
1929  * the global resource goes above a higher threshold (i.e. some hysteresis
1930  * is present to prevent thrashing).
1931  */
1932 
1933 #ifdef CONFIG_HOTPLUG_CPU
1934 /*
1935  * hot-plug CPU notifier support.
1936  *
1937  * We need a notifier per filesystem as we need to be able to identify
1938  * the filesystem to balance the counters out. This is achieved by
1939  * having a notifier block embedded in the xfs_mount_t and doing pointer
1940  * magic to get the mount pointer from the notifier block address.
1941  */
1942 STATIC int
1943 xfs_icsb_cpu_notify(
1944 	struct notifier_block *nfb,
1945 	unsigned long action,
1946 	void *hcpu)
1947 {
1948 	xfs_icsb_cnts_t *cntp;
1949 	xfs_mount_t	*mp;
1950 
1951 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1952 	cntp = (xfs_icsb_cnts_t *)
1953 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1954 	switch (action) {
1955 	case CPU_UP_PREPARE:
1956 	case CPU_UP_PREPARE_FROZEN:
1957 		/* Easy Case - initialize the area and locks, and
1958 		 * then rebalance when online does everything else for us. */
1959 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1960 		break;
1961 	case CPU_ONLINE:
1962 	case CPU_ONLINE_FROZEN:
1963 		xfs_icsb_lock(mp);
1964 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1965 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1966 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1967 		xfs_icsb_unlock(mp);
1968 		break;
1969 	case CPU_DEAD:
1970 	case CPU_DEAD_FROZEN:
1971 		/* Disable all the counters, then fold the dead cpu's
1972 		 * count into the total on the global superblock and
1973 		 * re-enable the counters. */
1974 		xfs_icsb_lock(mp);
1975 		spin_lock(&mp->m_sb_lock);
1976 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1977 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1978 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1979 
1980 		mp->m_sb.sb_icount += cntp->icsb_icount;
1981 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1982 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1983 
1984 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1985 
1986 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1987 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1988 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1989 		spin_unlock(&mp->m_sb_lock);
1990 		xfs_icsb_unlock(mp);
1991 		break;
1992 	}
1993 
1994 	return NOTIFY_OK;
1995 }
1996 #endif /* CONFIG_HOTPLUG_CPU */
1997 
1998 int
1999 xfs_icsb_init_counters(
2000 	xfs_mount_t	*mp)
2001 {
2002 	xfs_icsb_cnts_t *cntp;
2003 	int		i;
2004 
2005 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2006 	if (mp->m_sb_cnts == NULL)
2007 		return -ENOMEM;
2008 
2009 #ifdef CONFIG_HOTPLUG_CPU
2010 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2011 	mp->m_icsb_notifier.priority = 0;
2012 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2013 #endif /* CONFIG_HOTPLUG_CPU */
2014 
2015 	for_each_online_cpu(i) {
2016 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2017 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2018 	}
2019 
2020 	mutex_init(&mp->m_icsb_mutex);
2021 
2022 	/*
2023 	 * start with all counters disabled so that the
2024 	 * initial balance kicks us off correctly
2025 	 */
2026 	mp->m_icsb_counters = -1;
2027 	return 0;
2028 }
2029 
2030 void
2031 xfs_icsb_reinit_counters(
2032 	xfs_mount_t	*mp)
2033 {
2034 	xfs_icsb_lock(mp);
2035 	/*
2036 	 * start with all counters disabled so that the
2037 	 * initial balance kicks us off correctly
2038 	 */
2039 	mp->m_icsb_counters = -1;
2040 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2041 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2042 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2043 	xfs_icsb_unlock(mp);
2044 }
2045 
2046 void
2047 xfs_icsb_destroy_counters(
2048 	xfs_mount_t	*mp)
2049 {
2050 	if (mp->m_sb_cnts) {
2051 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2052 		free_percpu(mp->m_sb_cnts);
2053 	}
2054 	mutex_destroy(&mp->m_icsb_mutex);
2055 }
2056 
2057 STATIC_INLINE void
2058 xfs_icsb_lock_cntr(
2059 	xfs_icsb_cnts_t	*icsbp)
2060 {
2061 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2062 		ndelay(1000);
2063 	}
2064 }
2065 
2066 STATIC_INLINE void
2067 xfs_icsb_unlock_cntr(
2068 	xfs_icsb_cnts_t	*icsbp)
2069 {
2070 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2071 }
2072 
2073 
2074 STATIC_INLINE void
2075 xfs_icsb_lock_all_counters(
2076 	xfs_mount_t	*mp)
2077 {
2078 	xfs_icsb_cnts_t *cntp;
2079 	int		i;
2080 
2081 	for_each_online_cpu(i) {
2082 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2083 		xfs_icsb_lock_cntr(cntp);
2084 	}
2085 }
2086 
2087 STATIC_INLINE void
2088 xfs_icsb_unlock_all_counters(
2089 	xfs_mount_t	*mp)
2090 {
2091 	xfs_icsb_cnts_t *cntp;
2092 	int		i;
2093 
2094 	for_each_online_cpu(i) {
2095 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2096 		xfs_icsb_unlock_cntr(cntp);
2097 	}
2098 }
2099 
2100 STATIC void
2101 xfs_icsb_count(
2102 	xfs_mount_t	*mp,
2103 	xfs_icsb_cnts_t	*cnt,
2104 	int		flags)
2105 {
2106 	xfs_icsb_cnts_t *cntp;
2107 	int		i;
2108 
2109 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2110 
2111 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2112 		xfs_icsb_lock_all_counters(mp);
2113 
2114 	for_each_online_cpu(i) {
2115 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2116 		cnt->icsb_icount += cntp->icsb_icount;
2117 		cnt->icsb_ifree += cntp->icsb_ifree;
2118 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2119 	}
2120 
2121 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2122 		xfs_icsb_unlock_all_counters(mp);
2123 }
2124 
2125 STATIC int
2126 xfs_icsb_counter_disabled(
2127 	xfs_mount_t	*mp,
2128 	xfs_sb_field_t	field)
2129 {
2130 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2131 	return test_bit(field, &mp->m_icsb_counters);
2132 }
2133 
2134 STATIC void
2135 xfs_icsb_disable_counter(
2136 	xfs_mount_t	*mp,
2137 	xfs_sb_field_t	field)
2138 {
2139 	xfs_icsb_cnts_t	cnt;
2140 
2141 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2142 
2143 	/*
2144 	 * If we are already disabled, then there is nothing to do
2145 	 * here. We check before locking all the counters to avoid
2146 	 * the expensive lock operation when being called in the
2147 	 * slow path and the counter is already disabled. This is
2148 	 * safe because the only time we set or clear this state is under
2149 	 * the m_icsb_mutex.
2150 	 */
2151 	if (xfs_icsb_counter_disabled(mp, field))
2152 		return;
2153 
2154 	xfs_icsb_lock_all_counters(mp);
2155 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2156 		/* drain back to superblock */
2157 
2158 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2159 		switch(field) {
2160 		case XFS_SBS_ICOUNT:
2161 			mp->m_sb.sb_icount = cnt.icsb_icount;
2162 			break;
2163 		case XFS_SBS_IFREE:
2164 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2165 			break;
2166 		case XFS_SBS_FDBLOCKS:
2167 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2168 			break;
2169 		default:
2170 			BUG();
2171 		}
2172 	}
2173 
2174 	xfs_icsb_unlock_all_counters(mp);
2175 }
2176 
2177 STATIC void
2178 xfs_icsb_enable_counter(
2179 	xfs_mount_t	*mp,
2180 	xfs_sb_field_t	field,
2181 	uint64_t	count,
2182 	uint64_t	resid)
2183 {
2184 	xfs_icsb_cnts_t	*cntp;
2185 	int		i;
2186 
2187 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2188 
2189 	xfs_icsb_lock_all_counters(mp);
2190 	for_each_online_cpu(i) {
2191 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2192 		switch (field) {
2193 		case XFS_SBS_ICOUNT:
2194 			cntp->icsb_icount = count + resid;
2195 			break;
2196 		case XFS_SBS_IFREE:
2197 			cntp->icsb_ifree = count + resid;
2198 			break;
2199 		case XFS_SBS_FDBLOCKS:
2200 			cntp->icsb_fdblocks = count + resid;
2201 			break;
2202 		default:
2203 			BUG();
2204 			break;
2205 		}
2206 		resid = 0;
2207 	}
2208 	clear_bit(field, &mp->m_icsb_counters);
2209 	xfs_icsb_unlock_all_counters(mp);
2210 }
2211 
2212 void
2213 xfs_icsb_sync_counters_locked(
2214 	xfs_mount_t	*mp,
2215 	int		flags)
2216 {
2217 	xfs_icsb_cnts_t	cnt;
2218 
2219 	xfs_icsb_count(mp, &cnt, flags);
2220 
2221 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2222 		mp->m_sb.sb_icount = cnt.icsb_icount;
2223 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2224 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2225 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2226 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2227 }
2228 
2229 /*
2230  * Accurate update of per-cpu counters to incore superblock
2231  */
2232 void
2233 xfs_icsb_sync_counters(
2234 	xfs_mount_t	*mp,
2235 	int		flags)
2236 {
2237 	spin_lock(&mp->m_sb_lock);
2238 	xfs_icsb_sync_counters_locked(mp, flags);
2239 	spin_unlock(&mp->m_sb_lock);
2240 }
2241 
2242 /*
2243  * Balance and enable/disable counters as necessary.
2244  *
2245  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2246  * chosen to be the same number as single on disk allocation chunk per CPU, and
2247  * free blocks is something far enough zero that we aren't going thrash when we
2248  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2249  * prevent looping endlessly when xfs_alloc_space asks for more than will
2250  * be distributed to a single CPU but each CPU has enough blocks to be
2251  * reenabled.
2252  *
2253  * Note that we can be called when counters are already disabled.
2254  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2255  * prevent locking every per-cpu counter needlessly.
2256  */
2257 
2258 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2259 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2260 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2261 STATIC void
2262 xfs_icsb_balance_counter_locked(
2263 	xfs_mount_t	*mp,
2264 	xfs_sb_field_t  field,
2265 	int		min_per_cpu)
2266 {
2267 	uint64_t	count, resid;
2268 	int		weight = num_online_cpus();
2269 	uint64_t	min = (uint64_t)min_per_cpu;
2270 
2271 	/* disable counter and sync counter */
2272 	xfs_icsb_disable_counter(mp, field);
2273 
2274 	/* update counters  - first CPU gets residual*/
2275 	switch (field) {
2276 	case XFS_SBS_ICOUNT:
2277 		count = mp->m_sb.sb_icount;
2278 		resid = do_div(count, weight);
2279 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2280 			return;
2281 		break;
2282 	case XFS_SBS_IFREE:
2283 		count = mp->m_sb.sb_ifree;
2284 		resid = do_div(count, weight);
2285 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2286 			return;
2287 		break;
2288 	case XFS_SBS_FDBLOCKS:
2289 		count = mp->m_sb.sb_fdblocks;
2290 		resid = do_div(count, weight);
2291 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2292 			return;
2293 		break;
2294 	default:
2295 		BUG();
2296 		count = resid = 0;	/* quiet, gcc */
2297 		break;
2298 	}
2299 
2300 	xfs_icsb_enable_counter(mp, field, count, resid);
2301 }
2302 
2303 STATIC void
2304 xfs_icsb_balance_counter(
2305 	xfs_mount_t	*mp,
2306 	xfs_sb_field_t  fields,
2307 	int		min_per_cpu)
2308 {
2309 	spin_lock(&mp->m_sb_lock);
2310 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2311 	spin_unlock(&mp->m_sb_lock);
2312 }
2313 
2314 STATIC int
2315 xfs_icsb_modify_counters(
2316 	xfs_mount_t	*mp,
2317 	xfs_sb_field_t	field,
2318 	int64_t		delta,
2319 	int		rsvd)
2320 {
2321 	xfs_icsb_cnts_t	*icsbp;
2322 	long long	lcounter;	/* long counter for 64 bit fields */
2323 	int		cpu, ret = 0;
2324 
2325 	might_sleep();
2326 again:
2327 	cpu = get_cpu();
2328 	icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2329 
2330 	/*
2331 	 * if the counter is disabled, go to slow path
2332 	 */
2333 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2334 		goto slow_path;
2335 	xfs_icsb_lock_cntr(icsbp);
2336 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2337 		xfs_icsb_unlock_cntr(icsbp);
2338 		goto slow_path;
2339 	}
2340 
2341 	switch (field) {
2342 	case XFS_SBS_ICOUNT:
2343 		lcounter = icsbp->icsb_icount;
2344 		lcounter += delta;
2345 		if (unlikely(lcounter < 0))
2346 			goto balance_counter;
2347 		icsbp->icsb_icount = lcounter;
2348 		break;
2349 
2350 	case XFS_SBS_IFREE:
2351 		lcounter = icsbp->icsb_ifree;
2352 		lcounter += delta;
2353 		if (unlikely(lcounter < 0))
2354 			goto balance_counter;
2355 		icsbp->icsb_ifree = lcounter;
2356 		break;
2357 
2358 	case XFS_SBS_FDBLOCKS:
2359 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2360 
2361 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2362 		lcounter += delta;
2363 		if (unlikely(lcounter < 0))
2364 			goto balance_counter;
2365 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2366 		break;
2367 	default:
2368 		BUG();
2369 		break;
2370 	}
2371 	xfs_icsb_unlock_cntr(icsbp);
2372 	put_cpu();
2373 	return 0;
2374 
2375 slow_path:
2376 	put_cpu();
2377 
2378 	/*
2379 	 * serialise with a mutex so we don't burn lots of cpu on
2380 	 * the superblock lock. We still need to hold the superblock
2381 	 * lock, however, when we modify the global structures.
2382 	 */
2383 	xfs_icsb_lock(mp);
2384 
2385 	/*
2386 	 * Now running atomically.
2387 	 *
2388 	 * If the counter is enabled, someone has beaten us to rebalancing.
2389 	 * Drop the lock and try again in the fast path....
2390 	 */
2391 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2392 		xfs_icsb_unlock(mp);
2393 		goto again;
2394 	}
2395 
2396 	/*
2397 	 * The counter is currently disabled. Because we are
2398 	 * running atomically here, we know a rebalance cannot
2399 	 * be in progress. Hence we can go straight to operating
2400 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2401 	 * here even though we need to get the m_sb_lock. Doing so
2402 	 * will cause us to re-enter this function and deadlock.
2403 	 * Hence we get the m_sb_lock ourselves and then call
2404 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2405 	 * directly on the global counters.
2406 	 */
2407 	spin_lock(&mp->m_sb_lock);
2408 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2409 	spin_unlock(&mp->m_sb_lock);
2410 
2411 	/*
2412 	 * Now that we've modified the global superblock, we
2413 	 * may be able to re-enable the distributed counters
2414 	 * (e.g. lots of space just got freed). After that
2415 	 * we are done.
2416 	 */
2417 	if (ret != ENOSPC)
2418 		xfs_icsb_balance_counter(mp, field, 0);
2419 	xfs_icsb_unlock(mp);
2420 	return ret;
2421 
2422 balance_counter:
2423 	xfs_icsb_unlock_cntr(icsbp);
2424 	put_cpu();
2425 
2426 	/*
2427 	 * We may have multiple threads here if multiple per-cpu
2428 	 * counters run dry at the same time. This will mean we can
2429 	 * do more balances than strictly necessary but it is not
2430 	 * the common slowpath case.
2431 	 */
2432 	xfs_icsb_lock(mp);
2433 
2434 	/*
2435 	 * running atomically.
2436 	 *
2437 	 * This will leave the counter in the correct state for future
2438 	 * accesses. After the rebalance, we simply try again and our retry
2439 	 * will either succeed through the fast path or slow path without
2440 	 * another balance operation being required.
2441 	 */
2442 	xfs_icsb_balance_counter(mp, field, delta);
2443 	xfs_icsb_unlock(mp);
2444 	goto again;
2445 }
2446 
2447 #endif
2448