1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_shared.h" 21 #include "xfs_format.h" 22 #include "xfs_log_format.h" 23 #include "xfs_trans_resv.h" 24 #include "xfs_bit.h" 25 #include "xfs_sb.h" 26 #include "xfs_mount.h" 27 #include "xfs_da_format.h" 28 #include "xfs_da_btree.h" 29 #include "xfs_inode.h" 30 #include "xfs_dir2.h" 31 #include "xfs_ialloc.h" 32 #include "xfs_alloc.h" 33 #include "xfs_rtalloc.h" 34 #include "xfs_bmap.h" 35 #include "xfs_trans.h" 36 #include "xfs_trans_priv.h" 37 #include "xfs_log.h" 38 #include "xfs_error.h" 39 #include "xfs_quota.h" 40 #include "xfs_fsops.h" 41 #include "xfs_trace.h" 42 #include "xfs_icache.h" 43 #include "xfs_sysfs.h" 44 45 46 static DEFINE_MUTEX(xfs_uuid_table_mutex); 47 static int xfs_uuid_table_size; 48 static uuid_t *xfs_uuid_table; 49 50 void 51 xfs_uuid_table_free(void) 52 { 53 if (xfs_uuid_table_size == 0) 54 return; 55 kmem_free(xfs_uuid_table); 56 xfs_uuid_table = NULL; 57 xfs_uuid_table_size = 0; 58 } 59 60 /* 61 * See if the UUID is unique among mounted XFS filesystems. 62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 63 */ 64 STATIC int 65 xfs_uuid_mount( 66 struct xfs_mount *mp) 67 { 68 uuid_t *uuid = &mp->m_sb.sb_uuid; 69 int hole, i; 70 71 if (mp->m_flags & XFS_MOUNT_NOUUID) 72 return 0; 73 74 if (uuid_is_nil(uuid)) { 75 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 76 return -EINVAL; 77 } 78 79 mutex_lock(&xfs_uuid_table_mutex); 80 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 81 if (uuid_is_nil(&xfs_uuid_table[i])) { 82 hole = i; 83 continue; 84 } 85 if (uuid_equal(uuid, &xfs_uuid_table[i])) 86 goto out_duplicate; 87 } 88 89 if (hole < 0) { 90 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 91 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 92 KM_SLEEP); 93 hole = xfs_uuid_table_size++; 94 } 95 xfs_uuid_table[hole] = *uuid; 96 mutex_unlock(&xfs_uuid_table_mutex); 97 98 return 0; 99 100 out_duplicate: 101 mutex_unlock(&xfs_uuid_table_mutex); 102 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 103 return -EINVAL; 104 } 105 106 STATIC void 107 xfs_uuid_unmount( 108 struct xfs_mount *mp) 109 { 110 uuid_t *uuid = &mp->m_sb.sb_uuid; 111 int i; 112 113 if (mp->m_flags & XFS_MOUNT_NOUUID) 114 return; 115 116 mutex_lock(&xfs_uuid_table_mutex); 117 for (i = 0; i < xfs_uuid_table_size; i++) { 118 if (uuid_is_nil(&xfs_uuid_table[i])) 119 continue; 120 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 121 continue; 122 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 123 break; 124 } 125 ASSERT(i < xfs_uuid_table_size); 126 mutex_unlock(&xfs_uuid_table_mutex); 127 } 128 129 130 STATIC void 131 __xfs_free_perag( 132 struct rcu_head *head) 133 { 134 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 135 136 ASSERT(atomic_read(&pag->pag_ref) == 0); 137 kmem_free(pag); 138 } 139 140 /* 141 * Free up the per-ag resources associated with the mount structure. 142 */ 143 STATIC void 144 xfs_free_perag( 145 xfs_mount_t *mp) 146 { 147 xfs_agnumber_t agno; 148 struct xfs_perag *pag; 149 150 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 151 spin_lock(&mp->m_perag_lock); 152 pag = radix_tree_delete(&mp->m_perag_tree, agno); 153 spin_unlock(&mp->m_perag_lock); 154 ASSERT(pag); 155 ASSERT(atomic_read(&pag->pag_ref) == 0); 156 call_rcu(&pag->rcu_head, __xfs_free_perag); 157 } 158 } 159 160 /* 161 * Check size of device based on the (data/realtime) block count. 162 * Note: this check is used by the growfs code as well as mount. 163 */ 164 int 165 xfs_sb_validate_fsb_count( 166 xfs_sb_t *sbp, 167 __uint64_t nblocks) 168 { 169 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 170 ASSERT(sbp->sb_blocklog >= BBSHIFT); 171 172 /* Limited by ULONG_MAX of page cache index */ 173 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 174 return -EFBIG; 175 return 0; 176 } 177 178 int 179 xfs_initialize_perag( 180 xfs_mount_t *mp, 181 xfs_agnumber_t agcount, 182 xfs_agnumber_t *maxagi) 183 { 184 xfs_agnumber_t index; 185 xfs_agnumber_t first_initialised = 0; 186 xfs_perag_t *pag; 187 int error = -ENOMEM; 188 189 /* 190 * Walk the current per-ag tree so we don't try to initialise AGs 191 * that already exist (growfs case). Allocate and insert all the 192 * AGs we don't find ready for initialisation. 193 */ 194 for (index = 0; index < agcount; index++) { 195 pag = xfs_perag_get(mp, index); 196 if (pag) { 197 xfs_perag_put(pag); 198 continue; 199 } 200 if (!first_initialised) 201 first_initialised = index; 202 203 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 204 if (!pag) 205 goto out_unwind; 206 pag->pag_agno = index; 207 pag->pag_mount = mp; 208 spin_lock_init(&pag->pag_ici_lock); 209 mutex_init(&pag->pag_ici_reclaim_lock); 210 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 211 spin_lock_init(&pag->pag_buf_lock); 212 pag->pag_buf_tree = RB_ROOT; 213 214 if (radix_tree_preload(GFP_NOFS)) 215 goto out_unwind; 216 217 spin_lock(&mp->m_perag_lock); 218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 219 BUG(); 220 spin_unlock(&mp->m_perag_lock); 221 radix_tree_preload_end(); 222 error = -EEXIST; 223 goto out_unwind; 224 } 225 spin_unlock(&mp->m_perag_lock); 226 radix_tree_preload_end(); 227 } 228 229 index = xfs_set_inode_alloc(mp, agcount); 230 231 if (maxagi) 232 *maxagi = index; 233 return 0; 234 235 out_unwind: 236 kmem_free(pag); 237 for (; index > first_initialised; index--) { 238 pag = radix_tree_delete(&mp->m_perag_tree, index); 239 kmem_free(pag); 240 } 241 return error; 242 } 243 244 /* 245 * xfs_readsb 246 * 247 * Does the initial read of the superblock. 248 */ 249 int 250 xfs_readsb( 251 struct xfs_mount *mp, 252 int flags) 253 { 254 unsigned int sector_size; 255 struct xfs_buf *bp; 256 struct xfs_sb *sbp = &mp->m_sb; 257 int error; 258 int loud = !(flags & XFS_MFSI_QUIET); 259 const struct xfs_buf_ops *buf_ops; 260 261 ASSERT(mp->m_sb_bp == NULL); 262 ASSERT(mp->m_ddev_targp != NULL); 263 264 /* 265 * For the initial read, we must guess at the sector 266 * size based on the block device. It's enough to 267 * get the sb_sectsize out of the superblock and 268 * then reread with the proper length. 269 * We don't verify it yet, because it may not be complete. 270 */ 271 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 272 buf_ops = NULL; 273 274 /* 275 * Allocate a (locked) buffer to hold the superblock. This will be kept 276 * around at all times to optimize access to the superblock. Therefore, 277 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 278 * elevated. 279 */ 280 reread: 281 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 282 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 283 buf_ops); 284 if (error) { 285 if (loud) 286 xfs_warn(mp, "SB validate failed with error %d.", error); 287 /* bad CRC means corrupted metadata */ 288 if (error == -EFSBADCRC) 289 error = -EFSCORRUPTED; 290 return error; 291 } 292 293 /* 294 * Initialize the mount structure from the superblock. 295 */ 296 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 297 298 /* 299 * If we haven't validated the superblock, do so now before we try 300 * to check the sector size and reread the superblock appropriately. 301 */ 302 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 303 if (loud) 304 xfs_warn(mp, "Invalid superblock magic number"); 305 error = -EINVAL; 306 goto release_buf; 307 } 308 309 /* 310 * We must be able to do sector-sized and sector-aligned IO. 311 */ 312 if (sector_size > sbp->sb_sectsize) { 313 if (loud) 314 xfs_warn(mp, "device supports %u byte sectors (not %u)", 315 sector_size, sbp->sb_sectsize); 316 error = -ENOSYS; 317 goto release_buf; 318 } 319 320 if (buf_ops == NULL) { 321 /* 322 * Re-read the superblock so the buffer is correctly sized, 323 * and properly verified. 324 */ 325 xfs_buf_relse(bp); 326 sector_size = sbp->sb_sectsize; 327 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 328 goto reread; 329 } 330 331 xfs_reinit_percpu_counters(mp); 332 333 /* no need to be quiet anymore, so reset the buf ops */ 334 bp->b_ops = &xfs_sb_buf_ops; 335 336 mp->m_sb_bp = bp; 337 xfs_buf_unlock(bp); 338 return 0; 339 340 release_buf: 341 xfs_buf_relse(bp); 342 return error; 343 } 344 345 /* 346 * Update alignment values based on mount options and sb values 347 */ 348 STATIC int 349 xfs_update_alignment(xfs_mount_t *mp) 350 { 351 xfs_sb_t *sbp = &(mp->m_sb); 352 353 if (mp->m_dalign) { 354 /* 355 * If stripe unit and stripe width are not multiples 356 * of the fs blocksize turn off alignment. 357 */ 358 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 359 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 360 xfs_warn(mp, 361 "alignment check failed: sunit/swidth vs. blocksize(%d)", 362 sbp->sb_blocksize); 363 return -EINVAL; 364 } else { 365 /* 366 * Convert the stripe unit and width to FSBs. 367 */ 368 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 369 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 370 xfs_warn(mp, 371 "alignment check failed: sunit/swidth vs. agsize(%d)", 372 sbp->sb_agblocks); 373 return -EINVAL; 374 } else if (mp->m_dalign) { 375 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 376 } else { 377 xfs_warn(mp, 378 "alignment check failed: sunit(%d) less than bsize(%d)", 379 mp->m_dalign, sbp->sb_blocksize); 380 return -EINVAL; 381 } 382 } 383 384 /* 385 * Update superblock with new values 386 * and log changes 387 */ 388 if (xfs_sb_version_hasdalign(sbp)) { 389 if (sbp->sb_unit != mp->m_dalign) { 390 sbp->sb_unit = mp->m_dalign; 391 mp->m_update_sb = true; 392 } 393 if (sbp->sb_width != mp->m_swidth) { 394 sbp->sb_width = mp->m_swidth; 395 mp->m_update_sb = true; 396 } 397 } else { 398 xfs_warn(mp, 399 "cannot change alignment: superblock does not support data alignment"); 400 return -EINVAL; 401 } 402 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 403 xfs_sb_version_hasdalign(&mp->m_sb)) { 404 mp->m_dalign = sbp->sb_unit; 405 mp->m_swidth = sbp->sb_width; 406 } 407 408 return 0; 409 } 410 411 /* 412 * Set the maximum inode count for this filesystem 413 */ 414 STATIC void 415 xfs_set_maxicount(xfs_mount_t *mp) 416 { 417 xfs_sb_t *sbp = &(mp->m_sb); 418 __uint64_t icount; 419 420 if (sbp->sb_imax_pct) { 421 /* 422 * Make sure the maximum inode count is a multiple 423 * of the units we allocate inodes in. 424 */ 425 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 426 do_div(icount, 100); 427 do_div(icount, mp->m_ialloc_blks); 428 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 429 sbp->sb_inopblog; 430 } else { 431 mp->m_maxicount = 0; 432 } 433 } 434 435 /* 436 * Set the default minimum read and write sizes unless 437 * already specified in a mount option. 438 * We use smaller I/O sizes when the file system 439 * is being used for NFS service (wsync mount option). 440 */ 441 STATIC void 442 xfs_set_rw_sizes(xfs_mount_t *mp) 443 { 444 xfs_sb_t *sbp = &(mp->m_sb); 445 int readio_log, writeio_log; 446 447 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 448 if (mp->m_flags & XFS_MOUNT_WSYNC) { 449 readio_log = XFS_WSYNC_READIO_LOG; 450 writeio_log = XFS_WSYNC_WRITEIO_LOG; 451 } else { 452 readio_log = XFS_READIO_LOG_LARGE; 453 writeio_log = XFS_WRITEIO_LOG_LARGE; 454 } 455 } else { 456 readio_log = mp->m_readio_log; 457 writeio_log = mp->m_writeio_log; 458 } 459 460 if (sbp->sb_blocklog > readio_log) { 461 mp->m_readio_log = sbp->sb_blocklog; 462 } else { 463 mp->m_readio_log = readio_log; 464 } 465 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 466 if (sbp->sb_blocklog > writeio_log) { 467 mp->m_writeio_log = sbp->sb_blocklog; 468 } else { 469 mp->m_writeio_log = writeio_log; 470 } 471 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 472 } 473 474 /* 475 * precalculate the low space thresholds for dynamic speculative preallocation. 476 */ 477 void 478 xfs_set_low_space_thresholds( 479 struct xfs_mount *mp) 480 { 481 int i; 482 483 for (i = 0; i < XFS_LOWSP_MAX; i++) { 484 __uint64_t space = mp->m_sb.sb_dblocks; 485 486 do_div(space, 100); 487 mp->m_low_space[i] = space * (i + 1); 488 } 489 } 490 491 492 /* 493 * Set whether we're using inode alignment. 494 */ 495 STATIC void 496 xfs_set_inoalignment(xfs_mount_t *mp) 497 { 498 if (xfs_sb_version_hasalign(&mp->m_sb) && 499 mp->m_sb.sb_inoalignmt >= 500 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 501 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 502 else 503 mp->m_inoalign_mask = 0; 504 /* 505 * If we are using stripe alignment, check whether 506 * the stripe unit is a multiple of the inode alignment 507 */ 508 if (mp->m_dalign && mp->m_inoalign_mask && 509 !(mp->m_dalign & mp->m_inoalign_mask)) 510 mp->m_sinoalign = mp->m_dalign; 511 else 512 mp->m_sinoalign = 0; 513 } 514 515 /* 516 * Check that the data (and log if separate) is an ok size. 517 */ 518 STATIC int 519 xfs_check_sizes( 520 struct xfs_mount *mp) 521 { 522 struct xfs_buf *bp; 523 xfs_daddr_t d; 524 int error; 525 526 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 527 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 528 xfs_warn(mp, "filesystem size mismatch detected"); 529 return -EFBIG; 530 } 531 error = xfs_buf_read_uncached(mp->m_ddev_targp, 532 d - XFS_FSS_TO_BB(mp, 1), 533 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 534 if (error) { 535 xfs_warn(mp, "last sector read failed"); 536 return error; 537 } 538 xfs_buf_relse(bp); 539 540 if (mp->m_logdev_targp == mp->m_ddev_targp) 541 return 0; 542 543 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 544 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 545 xfs_warn(mp, "log size mismatch detected"); 546 return -EFBIG; 547 } 548 error = xfs_buf_read_uncached(mp->m_logdev_targp, 549 d - XFS_FSB_TO_BB(mp, 1), 550 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 551 if (error) { 552 xfs_warn(mp, "log device read failed"); 553 return error; 554 } 555 xfs_buf_relse(bp); 556 return 0; 557 } 558 559 /* 560 * Clear the quotaflags in memory and in the superblock. 561 */ 562 int 563 xfs_mount_reset_sbqflags( 564 struct xfs_mount *mp) 565 { 566 mp->m_qflags = 0; 567 568 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 569 if (mp->m_sb.sb_qflags == 0) 570 return 0; 571 spin_lock(&mp->m_sb_lock); 572 mp->m_sb.sb_qflags = 0; 573 spin_unlock(&mp->m_sb_lock); 574 575 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 576 return 0; 577 578 return xfs_sync_sb(mp, false); 579 } 580 581 __uint64_t 582 xfs_default_resblks(xfs_mount_t *mp) 583 { 584 __uint64_t resblks; 585 586 /* 587 * We default to 5% or 8192 fsbs of space reserved, whichever is 588 * smaller. This is intended to cover concurrent allocation 589 * transactions when we initially hit enospc. These each require a 4 590 * block reservation. Hence by default we cover roughly 2000 concurrent 591 * allocation reservations. 592 */ 593 resblks = mp->m_sb.sb_dblocks; 594 do_div(resblks, 20); 595 resblks = min_t(__uint64_t, resblks, 8192); 596 return resblks; 597 } 598 599 /* 600 * This function does the following on an initial mount of a file system: 601 * - reads the superblock from disk and init the mount struct 602 * - if we're a 32-bit kernel, do a size check on the superblock 603 * so we don't mount terabyte filesystems 604 * - init mount struct realtime fields 605 * - allocate inode hash table for fs 606 * - init directory manager 607 * - perform recovery and init the log manager 608 */ 609 int 610 xfs_mountfs( 611 struct xfs_mount *mp) 612 { 613 struct xfs_sb *sbp = &(mp->m_sb); 614 struct xfs_inode *rip; 615 __uint64_t resblks; 616 uint quotamount = 0; 617 uint quotaflags = 0; 618 int error = 0; 619 620 xfs_sb_mount_common(mp, sbp); 621 622 /* 623 * Check for a mismatched features2 values. Older kernels read & wrote 624 * into the wrong sb offset for sb_features2 on some platforms due to 625 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 626 * which made older superblock reading/writing routines swap it as a 627 * 64-bit value. 628 * 629 * For backwards compatibility, we make both slots equal. 630 * 631 * If we detect a mismatched field, we OR the set bits into the existing 632 * features2 field in case it has already been modified; we don't want 633 * to lose any features. We then update the bad location with the ORed 634 * value so that older kernels will see any features2 flags. The 635 * superblock writeback code ensures the new sb_features2 is copied to 636 * sb_bad_features2 before it is logged or written to disk. 637 */ 638 if (xfs_sb_has_mismatched_features2(sbp)) { 639 xfs_warn(mp, "correcting sb_features alignment problem"); 640 sbp->sb_features2 |= sbp->sb_bad_features2; 641 mp->m_update_sb = true; 642 643 /* 644 * Re-check for ATTR2 in case it was found in bad_features2 645 * slot. 646 */ 647 if (xfs_sb_version_hasattr2(&mp->m_sb) && 648 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 649 mp->m_flags |= XFS_MOUNT_ATTR2; 650 } 651 652 if (xfs_sb_version_hasattr2(&mp->m_sb) && 653 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 654 xfs_sb_version_removeattr2(&mp->m_sb); 655 mp->m_update_sb = true; 656 657 /* update sb_versionnum for the clearing of the morebits */ 658 if (!sbp->sb_features2) 659 mp->m_update_sb = true; 660 } 661 662 /* always use v2 inodes by default now */ 663 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 664 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 665 mp->m_update_sb = true; 666 } 667 668 /* 669 * Check if sb_agblocks is aligned at stripe boundary 670 * If sb_agblocks is NOT aligned turn off m_dalign since 671 * allocator alignment is within an ag, therefore ag has 672 * to be aligned at stripe boundary. 673 */ 674 error = xfs_update_alignment(mp); 675 if (error) 676 goto out; 677 678 xfs_alloc_compute_maxlevels(mp); 679 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 680 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 681 xfs_ialloc_compute_maxlevels(mp); 682 683 xfs_set_maxicount(mp); 684 685 /* enable fail_at_unmount as default */ 686 mp->m_fail_unmount = 1; 687 688 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 689 if (error) 690 goto out; 691 692 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 693 &mp->m_kobj, "stats"); 694 if (error) 695 goto out_remove_sysfs; 696 697 error = xfs_error_sysfs_init(mp); 698 if (error) 699 goto out_del_stats; 700 701 702 error = xfs_uuid_mount(mp); 703 if (error) 704 goto out_remove_error_sysfs; 705 706 /* 707 * Set the minimum read and write sizes 708 */ 709 xfs_set_rw_sizes(mp); 710 711 /* set the low space thresholds for dynamic preallocation */ 712 xfs_set_low_space_thresholds(mp); 713 714 /* 715 * Set the inode cluster size. 716 * This may still be overridden by the file system 717 * block size if it is larger than the chosen cluster size. 718 * 719 * For v5 filesystems, scale the cluster size with the inode size to 720 * keep a constant ratio of inode per cluster buffer, but only if mkfs 721 * has set the inode alignment value appropriately for larger cluster 722 * sizes. 723 */ 724 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 725 if (xfs_sb_version_hascrc(&mp->m_sb)) { 726 int new_size = mp->m_inode_cluster_size; 727 728 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 729 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 730 mp->m_inode_cluster_size = new_size; 731 } 732 733 /* 734 * If enabled, sparse inode chunk alignment is expected to match the 735 * cluster size. Full inode chunk alignment must match the chunk size, 736 * but that is checked on sb read verification... 737 */ 738 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 739 mp->m_sb.sb_spino_align != 740 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 741 xfs_warn(mp, 742 "Sparse inode block alignment (%u) must match cluster size (%llu).", 743 mp->m_sb.sb_spino_align, 744 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 745 error = -EINVAL; 746 goto out_remove_uuid; 747 } 748 749 /* 750 * Set inode alignment fields 751 */ 752 xfs_set_inoalignment(mp); 753 754 /* 755 * Check that the data (and log if separate) is an ok size. 756 */ 757 error = xfs_check_sizes(mp); 758 if (error) 759 goto out_remove_uuid; 760 761 /* 762 * Initialize realtime fields in the mount structure 763 */ 764 error = xfs_rtmount_init(mp); 765 if (error) { 766 xfs_warn(mp, "RT mount failed"); 767 goto out_remove_uuid; 768 } 769 770 /* 771 * Copies the low order bits of the timestamp and the randomly 772 * set "sequence" number out of a UUID. 773 */ 774 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 775 776 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 777 778 error = xfs_da_mount(mp); 779 if (error) { 780 xfs_warn(mp, "Failed dir/attr init: %d", error); 781 goto out_remove_uuid; 782 } 783 784 /* 785 * Initialize the precomputed transaction reservations values. 786 */ 787 xfs_trans_init(mp); 788 789 /* 790 * Allocate and initialize the per-ag data. 791 */ 792 spin_lock_init(&mp->m_perag_lock); 793 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 794 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 795 if (error) { 796 xfs_warn(mp, "Failed per-ag init: %d", error); 797 goto out_free_dir; 798 } 799 800 if (!sbp->sb_logblocks) { 801 xfs_warn(mp, "no log defined"); 802 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 803 error = -EFSCORRUPTED; 804 goto out_free_perag; 805 } 806 807 /* 808 * Log's mount-time initialization. The first part of recovery can place 809 * some items on the AIL, to be handled when recovery is finished or 810 * cancelled. 811 */ 812 error = xfs_log_mount(mp, mp->m_logdev_targp, 813 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 814 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 815 if (error) { 816 xfs_warn(mp, "log mount failed"); 817 goto out_fail_wait; 818 } 819 820 /* 821 * Now the log is mounted, we know if it was an unclean shutdown or 822 * not. If it was, with the first phase of recovery has completed, we 823 * have consistent AG blocks on disk. We have not recovered EFIs yet, 824 * but they are recovered transactionally in the second recovery phase 825 * later. 826 * 827 * Hence we can safely re-initialise incore superblock counters from 828 * the per-ag data. These may not be correct if the filesystem was not 829 * cleanly unmounted, so we need to wait for recovery to finish before 830 * doing this. 831 * 832 * If the filesystem was cleanly unmounted, then we can trust the 833 * values in the superblock to be correct and we don't need to do 834 * anything here. 835 * 836 * If we are currently making the filesystem, the initialisation will 837 * fail as the perag data is in an undefined state. 838 */ 839 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 840 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 841 !mp->m_sb.sb_inprogress) { 842 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 843 if (error) 844 goto out_log_dealloc; 845 } 846 847 /* 848 * Get and sanity-check the root inode. 849 * Save the pointer to it in the mount structure. 850 */ 851 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 852 if (error) { 853 xfs_warn(mp, "failed to read root inode"); 854 goto out_log_dealloc; 855 } 856 857 ASSERT(rip != NULL); 858 859 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 860 xfs_warn(mp, "corrupted root inode %llu: not a directory", 861 (unsigned long long)rip->i_ino); 862 xfs_iunlock(rip, XFS_ILOCK_EXCL); 863 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 864 mp); 865 error = -EFSCORRUPTED; 866 goto out_rele_rip; 867 } 868 mp->m_rootip = rip; /* save it */ 869 870 xfs_iunlock(rip, XFS_ILOCK_EXCL); 871 872 /* 873 * Initialize realtime inode pointers in the mount structure 874 */ 875 error = xfs_rtmount_inodes(mp); 876 if (error) { 877 /* 878 * Free up the root inode. 879 */ 880 xfs_warn(mp, "failed to read RT inodes"); 881 goto out_rele_rip; 882 } 883 884 /* 885 * If this is a read-only mount defer the superblock updates until 886 * the next remount into writeable mode. Otherwise we would never 887 * perform the update e.g. for the root filesystem. 888 */ 889 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 890 error = xfs_sync_sb(mp, false); 891 if (error) { 892 xfs_warn(mp, "failed to write sb changes"); 893 goto out_rtunmount; 894 } 895 } 896 897 /* 898 * Initialise the XFS quota management subsystem for this mount 899 */ 900 if (XFS_IS_QUOTA_RUNNING(mp)) { 901 error = xfs_qm_newmount(mp, "amount, "aflags); 902 if (error) 903 goto out_rtunmount; 904 } else { 905 ASSERT(!XFS_IS_QUOTA_ON(mp)); 906 907 /* 908 * If a file system had quotas running earlier, but decided to 909 * mount without -o uquota/pquota/gquota options, revoke the 910 * quotachecked license. 911 */ 912 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 913 xfs_notice(mp, "resetting quota flags"); 914 error = xfs_mount_reset_sbqflags(mp); 915 if (error) 916 goto out_rtunmount; 917 } 918 } 919 920 /* 921 * Finish recovering the file system. This part needed to be delayed 922 * until after the root and real-time bitmap inodes were consistently 923 * read in. 924 */ 925 error = xfs_log_mount_finish(mp); 926 if (error) { 927 xfs_warn(mp, "log mount finish failed"); 928 goto out_rtunmount; 929 } 930 931 /* 932 * Complete the quota initialisation, post-log-replay component. 933 */ 934 if (quotamount) { 935 ASSERT(mp->m_qflags == 0); 936 mp->m_qflags = quotaflags; 937 938 xfs_qm_mount_quotas(mp); 939 } 940 941 /* 942 * Now we are mounted, reserve a small amount of unused space for 943 * privileged transactions. This is needed so that transaction 944 * space required for critical operations can dip into this pool 945 * when at ENOSPC. This is needed for operations like create with 946 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 947 * are not allowed to use this reserved space. 948 * 949 * This may drive us straight to ENOSPC on mount, but that implies 950 * we were already there on the last unmount. Warn if this occurs. 951 */ 952 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 953 resblks = xfs_default_resblks(mp); 954 error = xfs_reserve_blocks(mp, &resblks, NULL); 955 if (error) 956 xfs_warn(mp, 957 "Unable to allocate reserve blocks. Continuing without reserve pool."); 958 } 959 960 return 0; 961 962 out_rtunmount: 963 xfs_rtunmount_inodes(mp); 964 out_rele_rip: 965 IRELE(rip); 966 cancel_delayed_work_sync(&mp->m_reclaim_work); 967 xfs_reclaim_inodes(mp, SYNC_WAIT); 968 out_log_dealloc: 969 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 970 xfs_log_mount_cancel(mp); 971 out_fail_wait: 972 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 973 xfs_wait_buftarg(mp->m_logdev_targp); 974 xfs_wait_buftarg(mp->m_ddev_targp); 975 out_free_perag: 976 xfs_free_perag(mp); 977 out_free_dir: 978 xfs_da_unmount(mp); 979 out_remove_uuid: 980 xfs_uuid_unmount(mp); 981 out_remove_error_sysfs: 982 xfs_error_sysfs_del(mp); 983 out_del_stats: 984 xfs_sysfs_del(&mp->m_stats.xs_kobj); 985 out_remove_sysfs: 986 xfs_sysfs_del(&mp->m_kobj); 987 out: 988 return error; 989 } 990 991 /* 992 * This flushes out the inodes,dquots and the superblock, unmounts the 993 * log and makes sure that incore structures are freed. 994 */ 995 void 996 xfs_unmountfs( 997 struct xfs_mount *mp) 998 { 999 __uint64_t resblks; 1000 int error; 1001 1002 cancel_delayed_work_sync(&mp->m_eofblocks_work); 1003 1004 xfs_qm_unmount_quotas(mp); 1005 xfs_rtunmount_inodes(mp); 1006 IRELE(mp->m_rootip); 1007 1008 /* 1009 * We can potentially deadlock here if we have an inode cluster 1010 * that has been freed has its buffer still pinned in memory because 1011 * the transaction is still sitting in a iclog. The stale inodes 1012 * on that buffer will have their flush locks held until the 1013 * transaction hits the disk and the callbacks run. the inode 1014 * flush takes the flush lock unconditionally and with nothing to 1015 * push out the iclog we will never get that unlocked. hence we 1016 * need to force the log first. 1017 */ 1018 xfs_log_force(mp, XFS_LOG_SYNC); 1019 1020 /* 1021 * We now need to tell the world we are unmounting. This will allow 1022 * us to detect that the filesystem is going away and we should error 1023 * out anything that we have been retrying in the background. This will 1024 * prevent neverending retries in AIL pushing from hanging the unmount. 1025 */ 1026 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1027 1028 /* 1029 * Flush all pending changes from the AIL. 1030 */ 1031 xfs_ail_push_all_sync(mp->m_ail); 1032 1033 /* 1034 * And reclaim all inodes. At this point there should be no dirty 1035 * inodes and none should be pinned or locked, but use synchronous 1036 * reclaim just to be sure. We can stop background inode reclaim 1037 * here as well if it is still running. 1038 */ 1039 cancel_delayed_work_sync(&mp->m_reclaim_work); 1040 xfs_reclaim_inodes(mp, SYNC_WAIT); 1041 1042 xfs_qm_unmount(mp); 1043 1044 /* 1045 * Unreserve any blocks we have so that when we unmount we don't account 1046 * the reserved free space as used. This is really only necessary for 1047 * lazy superblock counting because it trusts the incore superblock 1048 * counters to be absolutely correct on clean unmount. 1049 * 1050 * We don't bother correcting this elsewhere for lazy superblock 1051 * counting because on mount of an unclean filesystem we reconstruct the 1052 * correct counter value and this is irrelevant. 1053 * 1054 * For non-lazy counter filesystems, this doesn't matter at all because 1055 * we only every apply deltas to the superblock and hence the incore 1056 * value does not matter.... 1057 */ 1058 resblks = 0; 1059 error = xfs_reserve_blocks(mp, &resblks, NULL); 1060 if (error) 1061 xfs_warn(mp, "Unable to free reserved block pool. " 1062 "Freespace may not be correct on next mount."); 1063 1064 error = xfs_log_sbcount(mp); 1065 if (error) 1066 xfs_warn(mp, "Unable to update superblock counters. " 1067 "Freespace may not be correct on next mount."); 1068 1069 1070 xfs_log_unmount(mp); 1071 xfs_da_unmount(mp); 1072 xfs_uuid_unmount(mp); 1073 1074 #if defined(DEBUG) 1075 xfs_errortag_clearall(mp, 0); 1076 #endif 1077 xfs_free_perag(mp); 1078 1079 xfs_error_sysfs_del(mp); 1080 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1081 xfs_sysfs_del(&mp->m_kobj); 1082 } 1083 1084 /* 1085 * Determine whether modifications can proceed. The caller specifies the minimum 1086 * freeze level for which modifications should not be allowed. This allows 1087 * certain operations to proceed while the freeze sequence is in progress, if 1088 * necessary. 1089 */ 1090 bool 1091 xfs_fs_writable( 1092 struct xfs_mount *mp, 1093 int level) 1094 { 1095 ASSERT(level > SB_UNFROZEN); 1096 if ((mp->m_super->s_writers.frozen >= level) || 1097 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1098 return false; 1099 1100 return true; 1101 } 1102 1103 /* 1104 * xfs_log_sbcount 1105 * 1106 * Sync the superblock counters to disk. 1107 * 1108 * Note this code can be called during the process of freezing, so we use the 1109 * transaction allocator that does not block when the transaction subsystem is 1110 * in its frozen state. 1111 */ 1112 int 1113 xfs_log_sbcount(xfs_mount_t *mp) 1114 { 1115 /* allow this to proceed during the freeze sequence... */ 1116 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1117 return 0; 1118 1119 /* 1120 * we don't need to do this if we are updating the superblock 1121 * counters on every modification. 1122 */ 1123 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1124 return 0; 1125 1126 return xfs_sync_sb(mp, true); 1127 } 1128 1129 /* 1130 * Deltas for the inode count are +/-64, hence we use a large batch size 1131 * of 128 so we don't need to take the counter lock on every update. 1132 */ 1133 #define XFS_ICOUNT_BATCH 128 1134 int 1135 xfs_mod_icount( 1136 struct xfs_mount *mp, 1137 int64_t delta) 1138 { 1139 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1140 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1141 ASSERT(0); 1142 percpu_counter_add(&mp->m_icount, -delta); 1143 return -EINVAL; 1144 } 1145 return 0; 1146 } 1147 1148 int 1149 xfs_mod_ifree( 1150 struct xfs_mount *mp, 1151 int64_t delta) 1152 { 1153 percpu_counter_add(&mp->m_ifree, delta); 1154 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1155 ASSERT(0); 1156 percpu_counter_add(&mp->m_ifree, -delta); 1157 return -EINVAL; 1158 } 1159 return 0; 1160 } 1161 1162 /* 1163 * Deltas for the block count can vary from 1 to very large, but lock contention 1164 * only occurs on frequent small block count updates such as in the delayed 1165 * allocation path for buffered writes (page a time updates). Hence we set 1166 * a large batch count (1024) to minimise global counter updates except when 1167 * we get near to ENOSPC and we have to be very accurate with our updates. 1168 */ 1169 #define XFS_FDBLOCKS_BATCH 1024 1170 int 1171 xfs_mod_fdblocks( 1172 struct xfs_mount *mp, 1173 int64_t delta, 1174 bool rsvd) 1175 { 1176 int64_t lcounter; 1177 long long res_used; 1178 s32 batch; 1179 1180 if (delta > 0) { 1181 /* 1182 * If the reserve pool is depleted, put blocks back into it 1183 * first. Most of the time the pool is full. 1184 */ 1185 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1186 percpu_counter_add(&mp->m_fdblocks, delta); 1187 return 0; 1188 } 1189 1190 spin_lock(&mp->m_sb_lock); 1191 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1192 1193 if (res_used > delta) { 1194 mp->m_resblks_avail += delta; 1195 } else { 1196 delta -= res_used; 1197 mp->m_resblks_avail = mp->m_resblks; 1198 percpu_counter_add(&mp->m_fdblocks, delta); 1199 } 1200 spin_unlock(&mp->m_sb_lock); 1201 return 0; 1202 } 1203 1204 /* 1205 * Taking blocks away, need to be more accurate the closer we 1206 * are to zero. 1207 * 1208 * If the counter has a value of less than 2 * max batch size, 1209 * then make everything serialise as we are real close to 1210 * ENOSPC. 1211 */ 1212 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1213 XFS_FDBLOCKS_BATCH) < 0) 1214 batch = 1; 1215 else 1216 batch = XFS_FDBLOCKS_BATCH; 1217 1218 __percpu_counter_add(&mp->m_fdblocks, delta, batch); 1219 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp), 1220 XFS_FDBLOCKS_BATCH) >= 0) { 1221 /* we had space! */ 1222 return 0; 1223 } 1224 1225 /* 1226 * lock up the sb for dipping into reserves before releasing the space 1227 * that took us to ENOSPC. 1228 */ 1229 spin_lock(&mp->m_sb_lock); 1230 percpu_counter_add(&mp->m_fdblocks, -delta); 1231 if (!rsvd) 1232 goto fdblocks_enospc; 1233 1234 lcounter = (long long)mp->m_resblks_avail + delta; 1235 if (lcounter >= 0) { 1236 mp->m_resblks_avail = lcounter; 1237 spin_unlock(&mp->m_sb_lock); 1238 return 0; 1239 } 1240 printk_once(KERN_WARNING 1241 "Filesystem \"%s\": reserve blocks depleted! " 1242 "Consider increasing reserve pool size.", 1243 mp->m_fsname); 1244 fdblocks_enospc: 1245 spin_unlock(&mp->m_sb_lock); 1246 return -ENOSPC; 1247 } 1248 1249 int 1250 xfs_mod_frextents( 1251 struct xfs_mount *mp, 1252 int64_t delta) 1253 { 1254 int64_t lcounter; 1255 int ret = 0; 1256 1257 spin_lock(&mp->m_sb_lock); 1258 lcounter = mp->m_sb.sb_frextents + delta; 1259 if (lcounter < 0) 1260 ret = -ENOSPC; 1261 else 1262 mp->m_sb.sb_frextents = lcounter; 1263 spin_unlock(&mp->m_sb_lock); 1264 return ret; 1265 } 1266 1267 /* 1268 * xfs_getsb() is called to obtain the buffer for the superblock. 1269 * The buffer is returned locked and read in from disk. 1270 * The buffer should be released with a call to xfs_brelse(). 1271 * 1272 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1273 * the superblock buffer if it can be locked without sleeping. 1274 * If it can't then we'll return NULL. 1275 */ 1276 struct xfs_buf * 1277 xfs_getsb( 1278 struct xfs_mount *mp, 1279 int flags) 1280 { 1281 struct xfs_buf *bp = mp->m_sb_bp; 1282 1283 if (!xfs_buf_trylock(bp)) { 1284 if (flags & XBF_TRYLOCK) 1285 return NULL; 1286 xfs_buf_lock(bp); 1287 } 1288 1289 xfs_buf_hold(bp); 1290 ASSERT(bp->b_flags & XBF_DONE); 1291 return bp; 1292 } 1293 1294 /* 1295 * Used to free the superblock along various error paths. 1296 */ 1297 void 1298 xfs_freesb( 1299 struct xfs_mount *mp) 1300 { 1301 struct xfs_buf *bp = mp->m_sb_bp; 1302 1303 xfs_buf_lock(bp); 1304 mp->m_sb_bp = NULL; 1305 xfs_buf_relse(bp); 1306 } 1307 1308 /* 1309 * If the underlying (data/log/rt) device is readonly, there are some 1310 * operations that cannot proceed. 1311 */ 1312 int 1313 xfs_dev_is_read_only( 1314 struct xfs_mount *mp, 1315 char *message) 1316 { 1317 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1318 xfs_readonly_buftarg(mp->m_logdev_targp) || 1319 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1320 xfs_notice(mp, "%s required on read-only device.", message); 1321 xfs_notice(mp, "write access unavailable, cannot proceed."); 1322 return -EROFS; 1323 } 1324 return 0; 1325 } 1326