xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 77a87824)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_dir2.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_bmap.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_log.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
44 
45 
46 static DEFINE_MUTEX(xfs_uuid_table_mutex);
47 static int xfs_uuid_table_size;
48 static uuid_t *xfs_uuid_table;
49 
50 void
51 xfs_uuid_table_free(void)
52 {
53 	if (xfs_uuid_table_size == 0)
54 		return;
55 	kmem_free(xfs_uuid_table);
56 	xfs_uuid_table = NULL;
57 	xfs_uuid_table_size = 0;
58 }
59 
60 /*
61  * See if the UUID is unique among mounted XFS filesystems.
62  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
63  */
64 STATIC int
65 xfs_uuid_mount(
66 	struct xfs_mount	*mp)
67 {
68 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
69 	int			hole, i;
70 
71 	if (mp->m_flags & XFS_MOUNT_NOUUID)
72 		return 0;
73 
74 	if (uuid_is_nil(uuid)) {
75 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
76 		return -EINVAL;
77 	}
78 
79 	mutex_lock(&xfs_uuid_table_mutex);
80 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
81 		if (uuid_is_nil(&xfs_uuid_table[i])) {
82 			hole = i;
83 			continue;
84 		}
85 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
86 			goto out_duplicate;
87 	}
88 
89 	if (hole < 0) {
90 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
91 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
92 			KM_SLEEP);
93 		hole = xfs_uuid_table_size++;
94 	}
95 	xfs_uuid_table[hole] = *uuid;
96 	mutex_unlock(&xfs_uuid_table_mutex);
97 
98 	return 0;
99 
100  out_duplicate:
101 	mutex_unlock(&xfs_uuid_table_mutex);
102 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
103 	return -EINVAL;
104 }
105 
106 STATIC void
107 xfs_uuid_unmount(
108 	struct xfs_mount	*mp)
109 {
110 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
111 	int			i;
112 
113 	if (mp->m_flags & XFS_MOUNT_NOUUID)
114 		return;
115 
116 	mutex_lock(&xfs_uuid_table_mutex);
117 	for (i = 0; i < xfs_uuid_table_size; i++) {
118 		if (uuid_is_nil(&xfs_uuid_table[i]))
119 			continue;
120 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
121 			continue;
122 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
123 		break;
124 	}
125 	ASSERT(i < xfs_uuid_table_size);
126 	mutex_unlock(&xfs_uuid_table_mutex);
127 }
128 
129 
130 STATIC void
131 __xfs_free_perag(
132 	struct rcu_head	*head)
133 {
134 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
135 
136 	ASSERT(atomic_read(&pag->pag_ref) == 0);
137 	kmem_free(pag);
138 }
139 
140 /*
141  * Free up the per-ag resources associated with the mount structure.
142  */
143 STATIC void
144 xfs_free_perag(
145 	xfs_mount_t	*mp)
146 {
147 	xfs_agnumber_t	agno;
148 	struct xfs_perag *pag;
149 
150 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
151 		spin_lock(&mp->m_perag_lock);
152 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
153 		spin_unlock(&mp->m_perag_lock);
154 		ASSERT(pag);
155 		ASSERT(atomic_read(&pag->pag_ref) == 0);
156 		call_rcu(&pag->rcu_head, __xfs_free_perag);
157 	}
158 }
159 
160 /*
161  * Check size of device based on the (data/realtime) block count.
162  * Note: this check is used by the growfs code as well as mount.
163  */
164 int
165 xfs_sb_validate_fsb_count(
166 	xfs_sb_t	*sbp,
167 	__uint64_t	nblocks)
168 {
169 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
170 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
171 
172 	/* Limited by ULONG_MAX of page cache index */
173 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
174 		return -EFBIG;
175 	return 0;
176 }
177 
178 int
179 xfs_initialize_perag(
180 	xfs_mount_t	*mp,
181 	xfs_agnumber_t	agcount,
182 	xfs_agnumber_t	*maxagi)
183 {
184 	xfs_agnumber_t	index;
185 	xfs_agnumber_t	first_initialised = 0;
186 	xfs_perag_t	*pag;
187 	int		error = -ENOMEM;
188 
189 	/*
190 	 * Walk the current per-ag tree so we don't try to initialise AGs
191 	 * that already exist (growfs case). Allocate and insert all the
192 	 * AGs we don't find ready for initialisation.
193 	 */
194 	for (index = 0; index < agcount; index++) {
195 		pag = xfs_perag_get(mp, index);
196 		if (pag) {
197 			xfs_perag_put(pag);
198 			continue;
199 		}
200 		if (!first_initialised)
201 			first_initialised = index;
202 
203 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
204 		if (!pag)
205 			goto out_unwind;
206 		pag->pag_agno = index;
207 		pag->pag_mount = mp;
208 		spin_lock_init(&pag->pag_ici_lock);
209 		mutex_init(&pag->pag_ici_reclaim_lock);
210 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
211 		spin_lock_init(&pag->pag_buf_lock);
212 		pag->pag_buf_tree = RB_ROOT;
213 
214 		if (radix_tree_preload(GFP_NOFS))
215 			goto out_unwind;
216 
217 		spin_lock(&mp->m_perag_lock);
218 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
219 			BUG();
220 			spin_unlock(&mp->m_perag_lock);
221 			radix_tree_preload_end();
222 			error = -EEXIST;
223 			goto out_unwind;
224 		}
225 		spin_unlock(&mp->m_perag_lock);
226 		radix_tree_preload_end();
227 	}
228 
229 	index = xfs_set_inode_alloc(mp, agcount);
230 
231 	if (maxagi)
232 		*maxagi = index;
233 	return 0;
234 
235 out_unwind:
236 	kmem_free(pag);
237 	for (; index > first_initialised; index--) {
238 		pag = radix_tree_delete(&mp->m_perag_tree, index);
239 		kmem_free(pag);
240 	}
241 	return error;
242 }
243 
244 /*
245  * xfs_readsb
246  *
247  * Does the initial read of the superblock.
248  */
249 int
250 xfs_readsb(
251 	struct xfs_mount *mp,
252 	int		flags)
253 {
254 	unsigned int	sector_size;
255 	struct xfs_buf	*bp;
256 	struct xfs_sb	*sbp = &mp->m_sb;
257 	int		error;
258 	int		loud = !(flags & XFS_MFSI_QUIET);
259 	const struct xfs_buf_ops *buf_ops;
260 
261 	ASSERT(mp->m_sb_bp == NULL);
262 	ASSERT(mp->m_ddev_targp != NULL);
263 
264 	/*
265 	 * For the initial read, we must guess at the sector
266 	 * size based on the block device.  It's enough to
267 	 * get the sb_sectsize out of the superblock and
268 	 * then reread with the proper length.
269 	 * We don't verify it yet, because it may not be complete.
270 	 */
271 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
272 	buf_ops = NULL;
273 
274 	/*
275 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
276 	 * around at all times to optimize access to the superblock. Therefore,
277 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
278 	 * elevated.
279 	 */
280 reread:
281 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
282 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
283 				      buf_ops);
284 	if (error) {
285 		if (loud)
286 			xfs_warn(mp, "SB validate failed with error %d.", error);
287 		/* bad CRC means corrupted metadata */
288 		if (error == -EFSBADCRC)
289 			error = -EFSCORRUPTED;
290 		return error;
291 	}
292 
293 	/*
294 	 * Initialize the mount structure from the superblock.
295 	 */
296 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
297 
298 	/*
299 	 * If we haven't validated the superblock, do so now before we try
300 	 * to check the sector size and reread the superblock appropriately.
301 	 */
302 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
303 		if (loud)
304 			xfs_warn(mp, "Invalid superblock magic number");
305 		error = -EINVAL;
306 		goto release_buf;
307 	}
308 
309 	/*
310 	 * We must be able to do sector-sized and sector-aligned IO.
311 	 */
312 	if (sector_size > sbp->sb_sectsize) {
313 		if (loud)
314 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
315 				sector_size, sbp->sb_sectsize);
316 		error = -ENOSYS;
317 		goto release_buf;
318 	}
319 
320 	if (buf_ops == NULL) {
321 		/*
322 		 * Re-read the superblock so the buffer is correctly sized,
323 		 * and properly verified.
324 		 */
325 		xfs_buf_relse(bp);
326 		sector_size = sbp->sb_sectsize;
327 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
328 		goto reread;
329 	}
330 
331 	xfs_reinit_percpu_counters(mp);
332 
333 	/* no need to be quiet anymore, so reset the buf ops */
334 	bp->b_ops = &xfs_sb_buf_ops;
335 
336 	mp->m_sb_bp = bp;
337 	xfs_buf_unlock(bp);
338 	return 0;
339 
340 release_buf:
341 	xfs_buf_relse(bp);
342 	return error;
343 }
344 
345 /*
346  * Update alignment values based on mount options and sb values
347  */
348 STATIC int
349 xfs_update_alignment(xfs_mount_t *mp)
350 {
351 	xfs_sb_t	*sbp = &(mp->m_sb);
352 
353 	if (mp->m_dalign) {
354 		/*
355 		 * If stripe unit and stripe width are not multiples
356 		 * of the fs blocksize turn off alignment.
357 		 */
358 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
359 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
360 			xfs_warn(mp,
361 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
362 				sbp->sb_blocksize);
363 			return -EINVAL;
364 		} else {
365 			/*
366 			 * Convert the stripe unit and width to FSBs.
367 			 */
368 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
369 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
370 				xfs_warn(mp,
371 			"alignment check failed: sunit/swidth vs. agsize(%d)",
372 					 sbp->sb_agblocks);
373 				return -EINVAL;
374 			} else if (mp->m_dalign) {
375 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
376 			} else {
377 				xfs_warn(mp,
378 			"alignment check failed: sunit(%d) less than bsize(%d)",
379 					 mp->m_dalign, sbp->sb_blocksize);
380 				return -EINVAL;
381 			}
382 		}
383 
384 		/*
385 		 * Update superblock with new values
386 		 * and log changes
387 		 */
388 		if (xfs_sb_version_hasdalign(sbp)) {
389 			if (sbp->sb_unit != mp->m_dalign) {
390 				sbp->sb_unit = mp->m_dalign;
391 				mp->m_update_sb = true;
392 			}
393 			if (sbp->sb_width != mp->m_swidth) {
394 				sbp->sb_width = mp->m_swidth;
395 				mp->m_update_sb = true;
396 			}
397 		} else {
398 			xfs_warn(mp,
399 	"cannot change alignment: superblock does not support data alignment");
400 			return -EINVAL;
401 		}
402 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
403 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
404 			mp->m_dalign = sbp->sb_unit;
405 			mp->m_swidth = sbp->sb_width;
406 	}
407 
408 	return 0;
409 }
410 
411 /*
412  * Set the maximum inode count for this filesystem
413  */
414 STATIC void
415 xfs_set_maxicount(xfs_mount_t *mp)
416 {
417 	xfs_sb_t	*sbp = &(mp->m_sb);
418 	__uint64_t	icount;
419 
420 	if (sbp->sb_imax_pct) {
421 		/*
422 		 * Make sure the maximum inode count is a multiple
423 		 * of the units we allocate inodes in.
424 		 */
425 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
426 		do_div(icount, 100);
427 		do_div(icount, mp->m_ialloc_blks);
428 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
429 				   sbp->sb_inopblog;
430 	} else {
431 		mp->m_maxicount = 0;
432 	}
433 }
434 
435 /*
436  * Set the default minimum read and write sizes unless
437  * already specified in a mount option.
438  * We use smaller I/O sizes when the file system
439  * is being used for NFS service (wsync mount option).
440  */
441 STATIC void
442 xfs_set_rw_sizes(xfs_mount_t *mp)
443 {
444 	xfs_sb_t	*sbp = &(mp->m_sb);
445 	int		readio_log, writeio_log;
446 
447 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
448 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
449 			readio_log = XFS_WSYNC_READIO_LOG;
450 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
451 		} else {
452 			readio_log = XFS_READIO_LOG_LARGE;
453 			writeio_log = XFS_WRITEIO_LOG_LARGE;
454 		}
455 	} else {
456 		readio_log = mp->m_readio_log;
457 		writeio_log = mp->m_writeio_log;
458 	}
459 
460 	if (sbp->sb_blocklog > readio_log) {
461 		mp->m_readio_log = sbp->sb_blocklog;
462 	} else {
463 		mp->m_readio_log = readio_log;
464 	}
465 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
466 	if (sbp->sb_blocklog > writeio_log) {
467 		mp->m_writeio_log = sbp->sb_blocklog;
468 	} else {
469 		mp->m_writeio_log = writeio_log;
470 	}
471 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
472 }
473 
474 /*
475  * precalculate the low space thresholds for dynamic speculative preallocation.
476  */
477 void
478 xfs_set_low_space_thresholds(
479 	struct xfs_mount	*mp)
480 {
481 	int i;
482 
483 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
484 		__uint64_t space = mp->m_sb.sb_dblocks;
485 
486 		do_div(space, 100);
487 		mp->m_low_space[i] = space * (i + 1);
488 	}
489 }
490 
491 
492 /*
493  * Set whether we're using inode alignment.
494  */
495 STATIC void
496 xfs_set_inoalignment(xfs_mount_t *mp)
497 {
498 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
499 	    mp->m_sb.sb_inoalignmt >=
500 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
501 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
502 	else
503 		mp->m_inoalign_mask = 0;
504 	/*
505 	 * If we are using stripe alignment, check whether
506 	 * the stripe unit is a multiple of the inode alignment
507 	 */
508 	if (mp->m_dalign && mp->m_inoalign_mask &&
509 	    !(mp->m_dalign & mp->m_inoalign_mask))
510 		mp->m_sinoalign = mp->m_dalign;
511 	else
512 		mp->m_sinoalign = 0;
513 }
514 
515 /*
516  * Check that the data (and log if separate) is an ok size.
517  */
518 STATIC int
519 xfs_check_sizes(
520 	struct xfs_mount *mp)
521 {
522 	struct xfs_buf	*bp;
523 	xfs_daddr_t	d;
524 	int		error;
525 
526 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
527 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
528 		xfs_warn(mp, "filesystem size mismatch detected");
529 		return -EFBIG;
530 	}
531 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
532 					d - XFS_FSS_TO_BB(mp, 1),
533 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
534 	if (error) {
535 		xfs_warn(mp, "last sector read failed");
536 		return error;
537 	}
538 	xfs_buf_relse(bp);
539 
540 	if (mp->m_logdev_targp == mp->m_ddev_targp)
541 		return 0;
542 
543 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
544 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
545 		xfs_warn(mp, "log size mismatch detected");
546 		return -EFBIG;
547 	}
548 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
549 					d - XFS_FSB_TO_BB(mp, 1),
550 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
551 	if (error) {
552 		xfs_warn(mp, "log device read failed");
553 		return error;
554 	}
555 	xfs_buf_relse(bp);
556 	return 0;
557 }
558 
559 /*
560  * Clear the quotaflags in memory and in the superblock.
561  */
562 int
563 xfs_mount_reset_sbqflags(
564 	struct xfs_mount	*mp)
565 {
566 	mp->m_qflags = 0;
567 
568 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
569 	if (mp->m_sb.sb_qflags == 0)
570 		return 0;
571 	spin_lock(&mp->m_sb_lock);
572 	mp->m_sb.sb_qflags = 0;
573 	spin_unlock(&mp->m_sb_lock);
574 
575 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
576 		return 0;
577 
578 	return xfs_sync_sb(mp, false);
579 }
580 
581 __uint64_t
582 xfs_default_resblks(xfs_mount_t *mp)
583 {
584 	__uint64_t resblks;
585 
586 	/*
587 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
588 	 * smaller.  This is intended to cover concurrent allocation
589 	 * transactions when we initially hit enospc. These each require a 4
590 	 * block reservation. Hence by default we cover roughly 2000 concurrent
591 	 * allocation reservations.
592 	 */
593 	resblks = mp->m_sb.sb_dblocks;
594 	do_div(resblks, 20);
595 	resblks = min_t(__uint64_t, resblks, 8192);
596 	return resblks;
597 }
598 
599 /*
600  * This function does the following on an initial mount of a file system:
601  *	- reads the superblock from disk and init the mount struct
602  *	- if we're a 32-bit kernel, do a size check on the superblock
603  *		so we don't mount terabyte filesystems
604  *	- init mount struct realtime fields
605  *	- allocate inode hash table for fs
606  *	- init directory manager
607  *	- perform recovery and init the log manager
608  */
609 int
610 xfs_mountfs(
611 	struct xfs_mount	*mp)
612 {
613 	struct xfs_sb		*sbp = &(mp->m_sb);
614 	struct xfs_inode	*rip;
615 	__uint64_t		resblks;
616 	uint			quotamount = 0;
617 	uint			quotaflags = 0;
618 	int			error = 0;
619 
620 	xfs_sb_mount_common(mp, sbp);
621 
622 	/*
623 	 * Check for a mismatched features2 values.  Older kernels read & wrote
624 	 * into the wrong sb offset for sb_features2 on some platforms due to
625 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
626 	 * which made older superblock reading/writing routines swap it as a
627 	 * 64-bit value.
628 	 *
629 	 * For backwards compatibility, we make both slots equal.
630 	 *
631 	 * If we detect a mismatched field, we OR the set bits into the existing
632 	 * features2 field in case it has already been modified; we don't want
633 	 * to lose any features.  We then update the bad location with the ORed
634 	 * value so that older kernels will see any features2 flags. The
635 	 * superblock writeback code ensures the new sb_features2 is copied to
636 	 * sb_bad_features2 before it is logged or written to disk.
637 	 */
638 	if (xfs_sb_has_mismatched_features2(sbp)) {
639 		xfs_warn(mp, "correcting sb_features alignment problem");
640 		sbp->sb_features2 |= sbp->sb_bad_features2;
641 		mp->m_update_sb = true;
642 
643 		/*
644 		 * Re-check for ATTR2 in case it was found in bad_features2
645 		 * slot.
646 		 */
647 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
648 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
649 			mp->m_flags |= XFS_MOUNT_ATTR2;
650 	}
651 
652 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
653 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
654 		xfs_sb_version_removeattr2(&mp->m_sb);
655 		mp->m_update_sb = true;
656 
657 		/* update sb_versionnum for the clearing of the morebits */
658 		if (!sbp->sb_features2)
659 			mp->m_update_sb = true;
660 	}
661 
662 	/* always use v2 inodes by default now */
663 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
664 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
665 		mp->m_update_sb = true;
666 	}
667 
668 	/*
669 	 * Check if sb_agblocks is aligned at stripe boundary
670 	 * If sb_agblocks is NOT aligned turn off m_dalign since
671 	 * allocator alignment is within an ag, therefore ag has
672 	 * to be aligned at stripe boundary.
673 	 */
674 	error = xfs_update_alignment(mp);
675 	if (error)
676 		goto out;
677 
678 	xfs_alloc_compute_maxlevels(mp);
679 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
680 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
681 	xfs_ialloc_compute_maxlevels(mp);
682 
683 	xfs_set_maxicount(mp);
684 
685 	/* enable fail_at_unmount as default */
686 	mp->m_fail_unmount = 1;
687 
688 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
689 	if (error)
690 		goto out;
691 
692 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
693 			       &mp->m_kobj, "stats");
694 	if (error)
695 		goto out_remove_sysfs;
696 
697 	error = xfs_error_sysfs_init(mp);
698 	if (error)
699 		goto out_del_stats;
700 
701 
702 	error = xfs_uuid_mount(mp);
703 	if (error)
704 		goto out_remove_error_sysfs;
705 
706 	/*
707 	 * Set the minimum read and write sizes
708 	 */
709 	xfs_set_rw_sizes(mp);
710 
711 	/* set the low space thresholds for dynamic preallocation */
712 	xfs_set_low_space_thresholds(mp);
713 
714 	/*
715 	 * Set the inode cluster size.
716 	 * This may still be overridden by the file system
717 	 * block size if it is larger than the chosen cluster size.
718 	 *
719 	 * For v5 filesystems, scale the cluster size with the inode size to
720 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
721 	 * has set the inode alignment value appropriately for larger cluster
722 	 * sizes.
723 	 */
724 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
725 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
726 		int	new_size = mp->m_inode_cluster_size;
727 
728 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
729 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
730 			mp->m_inode_cluster_size = new_size;
731 	}
732 
733 	/*
734 	 * If enabled, sparse inode chunk alignment is expected to match the
735 	 * cluster size. Full inode chunk alignment must match the chunk size,
736 	 * but that is checked on sb read verification...
737 	 */
738 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
739 	    mp->m_sb.sb_spino_align !=
740 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
741 		xfs_warn(mp,
742 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
743 			 mp->m_sb.sb_spino_align,
744 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
745 		error = -EINVAL;
746 		goto out_remove_uuid;
747 	}
748 
749 	/*
750 	 * Set inode alignment fields
751 	 */
752 	xfs_set_inoalignment(mp);
753 
754 	/*
755 	 * Check that the data (and log if separate) is an ok size.
756 	 */
757 	error = xfs_check_sizes(mp);
758 	if (error)
759 		goto out_remove_uuid;
760 
761 	/*
762 	 * Initialize realtime fields in the mount structure
763 	 */
764 	error = xfs_rtmount_init(mp);
765 	if (error) {
766 		xfs_warn(mp, "RT mount failed");
767 		goto out_remove_uuid;
768 	}
769 
770 	/*
771 	 *  Copies the low order bits of the timestamp and the randomly
772 	 *  set "sequence" number out of a UUID.
773 	 */
774 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
775 
776 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
777 
778 	error = xfs_da_mount(mp);
779 	if (error) {
780 		xfs_warn(mp, "Failed dir/attr init: %d", error);
781 		goto out_remove_uuid;
782 	}
783 
784 	/*
785 	 * Initialize the precomputed transaction reservations values.
786 	 */
787 	xfs_trans_init(mp);
788 
789 	/*
790 	 * Allocate and initialize the per-ag data.
791 	 */
792 	spin_lock_init(&mp->m_perag_lock);
793 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
794 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
795 	if (error) {
796 		xfs_warn(mp, "Failed per-ag init: %d", error);
797 		goto out_free_dir;
798 	}
799 
800 	if (!sbp->sb_logblocks) {
801 		xfs_warn(mp, "no log defined");
802 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
803 		error = -EFSCORRUPTED;
804 		goto out_free_perag;
805 	}
806 
807 	/*
808 	 * Log's mount-time initialization. The first part of recovery can place
809 	 * some items on the AIL, to be handled when recovery is finished or
810 	 * cancelled.
811 	 */
812 	error = xfs_log_mount(mp, mp->m_logdev_targp,
813 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
814 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
815 	if (error) {
816 		xfs_warn(mp, "log mount failed");
817 		goto out_fail_wait;
818 	}
819 
820 	/*
821 	 * Now the log is mounted, we know if it was an unclean shutdown or
822 	 * not. If it was, with the first phase of recovery has completed, we
823 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
824 	 * but they are recovered transactionally in the second recovery phase
825 	 * later.
826 	 *
827 	 * Hence we can safely re-initialise incore superblock counters from
828 	 * the per-ag data. These may not be correct if the filesystem was not
829 	 * cleanly unmounted, so we need to wait for recovery to finish before
830 	 * doing this.
831 	 *
832 	 * If the filesystem was cleanly unmounted, then we can trust the
833 	 * values in the superblock to be correct and we don't need to do
834 	 * anything here.
835 	 *
836 	 * If we are currently making the filesystem, the initialisation will
837 	 * fail as the perag data is in an undefined state.
838 	 */
839 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
840 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
841 	     !mp->m_sb.sb_inprogress) {
842 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
843 		if (error)
844 			goto out_log_dealloc;
845 	}
846 
847 	/*
848 	 * Get and sanity-check the root inode.
849 	 * Save the pointer to it in the mount structure.
850 	 */
851 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
852 	if (error) {
853 		xfs_warn(mp, "failed to read root inode");
854 		goto out_log_dealloc;
855 	}
856 
857 	ASSERT(rip != NULL);
858 
859 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
860 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
861 			(unsigned long long)rip->i_ino);
862 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
863 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
864 				 mp);
865 		error = -EFSCORRUPTED;
866 		goto out_rele_rip;
867 	}
868 	mp->m_rootip = rip;	/* save it */
869 
870 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
871 
872 	/*
873 	 * Initialize realtime inode pointers in the mount structure
874 	 */
875 	error = xfs_rtmount_inodes(mp);
876 	if (error) {
877 		/*
878 		 * Free up the root inode.
879 		 */
880 		xfs_warn(mp, "failed to read RT inodes");
881 		goto out_rele_rip;
882 	}
883 
884 	/*
885 	 * If this is a read-only mount defer the superblock updates until
886 	 * the next remount into writeable mode.  Otherwise we would never
887 	 * perform the update e.g. for the root filesystem.
888 	 */
889 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
890 		error = xfs_sync_sb(mp, false);
891 		if (error) {
892 			xfs_warn(mp, "failed to write sb changes");
893 			goto out_rtunmount;
894 		}
895 	}
896 
897 	/*
898 	 * Initialise the XFS quota management subsystem for this mount
899 	 */
900 	if (XFS_IS_QUOTA_RUNNING(mp)) {
901 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
902 		if (error)
903 			goto out_rtunmount;
904 	} else {
905 		ASSERT(!XFS_IS_QUOTA_ON(mp));
906 
907 		/*
908 		 * If a file system had quotas running earlier, but decided to
909 		 * mount without -o uquota/pquota/gquota options, revoke the
910 		 * quotachecked license.
911 		 */
912 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
913 			xfs_notice(mp, "resetting quota flags");
914 			error = xfs_mount_reset_sbqflags(mp);
915 			if (error)
916 				goto out_rtunmount;
917 		}
918 	}
919 
920 	/*
921 	 * Finish recovering the file system.  This part needed to be delayed
922 	 * until after the root and real-time bitmap inodes were consistently
923 	 * read in.
924 	 */
925 	error = xfs_log_mount_finish(mp);
926 	if (error) {
927 		xfs_warn(mp, "log mount finish failed");
928 		goto out_rtunmount;
929 	}
930 
931 	/*
932 	 * Complete the quota initialisation, post-log-replay component.
933 	 */
934 	if (quotamount) {
935 		ASSERT(mp->m_qflags == 0);
936 		mp->m_qflags = quotaflags;
937 
938 		xfs_qm_mount_quotas(mp);
939 	}
940 
941 	/*
942 	 * Now we are mounted, reserve a small amount of unused space for
943 	 * privileged transactions. This is needed so that transaction
944 	 * space required for critical operations can dip into this pool
945 	 * when at ENOSPC. This is needed for operations like create with
946 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
947 	 * are not allowed to use this reserved space.
948 	 *
949 	 * This may drive us straight to ENOSPC on mount, but that implies
950 	 * we were already there on the last unmount. Warn if this occurs.
951 	 */
952 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
953 		resblks = xfs_default_resblks(mp);
954 		error = xfs_reserve_blocks(mp, &resblks, NULL);
955 		if (error)
956 			xfs_warn(mp,
957 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
958 	}
959 
960 	return 0;
961 
962  out_rtunmount:
963 	xfs_rtunmount_inodes(mp);
964  out_rele_rip:
965 	IRELE(rip);
966 	cancel_delayed_work_sync(&mp->m_reclaim_work);
967 	xfs_reclaim_inodes(mp, SYNC_WAIT);
968  out_log_dealloc:
969 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
970 	xfs_log_mount_cancel(mp);
971  out_fail_wait:
972 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
973 		xfs_wait_buftarg(mp->m_logdev_targp);
974 	xfs_wait_buftarg(mp->m_ddev_targp);
975  out_free_perag:
976 	xfs_free_perag(mp);
977  out_free_dir:
978 	xfs_da_unmount(mp);
979  out_remove_uuid:
980 	xfs_uuid_unmount(mp);
981  out_remove_error_sysfs:
982 	xfs_error_sysfs_del(mp);
983  out_del_stats:
984 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
985  out_remove_sysfs:
986 	xfs_sysfs_del(&mp->m_kobj);
987  out:
988 	return error;
989 }
990 
991 /*
992  * This flushes out the inodes,dquots and the superblock, unmounts the
993  * log and makes sure that incore structures are freed.
994  */
995 void
996 xfs_unmountfs(
997 	struct xfs_mount	*mp)
998 {
999 	__uint64_t		resblks;
1000 	int			error;
1001 
1002 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1003 
1004 	xfs_qm_unmount_quotas(mp);
1005 	xfs_rtunmount_inodes(mp);
1006 	IRELE(mp->m_rootip);
1007 
1008 	/*
1009 	 * We can potentially deadlock here if we have an inode cluster
1010 	 * that has been freed has its buffer still pinned in memory because
1011 	 * the transaction is still sitting in a iclog. The stale inodes
1012 	 * on that buffer will have their flush locks held until the
1013 	 * transaction hits the disk and the callbacks run. the inode
1014 	 * flush takes the flush lock unconditionally and with nothing to
1015 	 * push out the iclog we will never get that unlocked. hence we
1016 	 * need to force the log first.
1017 	 */
1018 	xfs_log_force(mp, XFS_LOG_SYNC);
1019 
1020 	/*
1021 	 * We now need to tell the world we are unmounting. This will allow
1022 	 * us to detect that the filesystem is going away and we should error
1023 	 * out anything that we have been retrying in the background. This will
1024 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1025 	 */
1026 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1027 
1028 	/*
1029 	 * Flush all pending changes from the AIL.
1030 	 */
1031 	xfs_ail_push_all_sync(mp->m_ail);
1032 
1033 	/*
1034 	 * And reclaim all inodes.  At this point there should be no dirty
1035 	 * inodes and none should be pinned or locked, but use synchronous
1036 	 * reclaim just to be sure. We can stop background inode reclaim
1037 	 * here as well if it is still running.
1038 	 */
1039 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1040 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1041 
1042 	xfs_qm_unmount(mp);
1043 
1044 	/*
1045 	 * Unreserve any blocks we have so that when we unmount we don't account
1046 	 * the reserved free space as used. This is really only necessary for
1047 	 * lazy superblock counting because it trusts the incore superblock
1048 	 * counters to be absolutely correct on clean unmount.
1049 	 *
1050 	 * We don't bother correcting this elsewhere for lazy superblock
1051 	 * counting because on mount of an unclean filesystem we reconstruct the
1052 	 * correct counter value and this is irrelevant.
1053 	 *
1054 	 * For non-lazy counter filesystems, this doesn't matter at all because
1055 	 * we only every apply deltas to the superblock and hence the incore
1056 	 * value does not matter....
1057 	 */
1058 	resblks = 0;
1059 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1060 	if (error)
1061 		xfs_warn(mp, "Unable to free reserved block pool. "
1062 				"Freespace may not be correct on next mount.");
1063 
1064 	error = xfs_log_sbcount(mp);
1065 	if (error)
1066 		xfs_warn(mp, "Unable to update superblock counters. "
1067 				"Freespace may not be correct on next mount.");
1068 
1069 
1070 	xfs_log_unmount(mp);
1071 	xfs_da_unmount(mp);
1072 	xfs_uuid_unmount(mp);
1073 
1074 #if defined(DEBUG)
1075 	xfs_errortag_clearall(mp, 0);
1076 #endif
1077 	xfs_free_perag(mp);
1078 
1079 	xfs_error_sysfs_del(mp);
1080 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1081 	xfs_sysfs_del(&mp->m_kobj);
1082 }
1083 
1084 /*
1085  * Determine whether modifications can proceed. The caller specifies the minimum
1086  * freeze level for which modifications should not be allowed. This allows
1087  * certain operations to proceed while the freeze sequence is in progress, if
1088  * necessary.
1089  */
1090 bool
1091 xfs_fs_writable(
1092 	struct xfs_mount	*mp,
1093 	int			level)
1094 {
1095 	ASSERT(level > SB_UNFROZEN);
1096 	if ((mp->m_super->s_writers.frozen >= level) ||
1097 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1098 		return false;
1099 
1100 	return true;
1101 }
1102 
1103 /*
1104  * xfs_log_sbcount
1105  *
1106  * Sync the superblock counters to disk.
1107  *
1108  * Note this code can be called during the process of freezing, so we use the
1109  * transaction allocator that does not block when the transaction subsystem is
1110  * in its frozen state.
1111  */
1112 int
1113 xfs_log_sbcount(xfs_mount_t *mp)
1114 {
1115 	/* allow this to proceed during the freeze sequence... */
1116 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1117 		return 0;
1118 
1119 	/*
1120 	 * we don't need to do this if we are updating the superblock
1121 	 * counters on every modification.
1122 	 */
1123 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1124 		return 0;
1125 
1126 	return xfs_sync_sb(mp, true);
1127 }
1128 
1129 /*
1130  * Deltas for the inode count are +/-64, hence we use a large batch size
1131  * of 128 so we don't need to take the counter lock on every update.
1132  */
1133 #define XFS_ICOUNT_BATCH	128
1134 int
1135 xfs_mod_icount(
1136 	struct xfs_mount	*mp,
1137 	int64_t			delta)
1138 {
1139 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1140 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1141 		ASSERT(0);
1142 		percpu_counter_add(&mp->m_icount, -delta);
1143 		return -EINVAL;
1144 	}
1145 	return 0;
1146 }
1147 
1148 int
1149 xfs_mod_ifree(
1150 	struct xfs_mount	*mp,
1151 	int64_t			delta)
1152 {
1153 	percpu_counter_add(&mp->m_ifree, delta);
1154 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1155 		ASSERT(0);
1156 		percpu_counter_add(&mp->m_ifree, -delta);
1157 		return -EINVAL;
1158 	}
1159 	return 0;
1160 }
1161 
1162 /*
1163  * Deltas for the block count can vary from 1 to very large, but lock contention
1164  * only occurs on frequent small block count updates such as in the delayed
1165  * allocation path for buffered writes (page a time updates). Hence we set
1166  * a large batch count (1024) to minimise global counter updates except when
1167  * we get near to ENOSPC and we have to be very accurate with our updates.
1168  */
1169 #define XFS_FDBLOCKS_BATCH	1024
1170 int
1171 xfs_mod_fdblocks(
1172 	struct xfs_mount	*mp,
1173 	int64_t			delta,
1174 	bool			rsvd)
1175 {
1176 	int64_t			lcounter;
1177 	long long		res_used;
1178 	s32			batch;
1179 
1180 	if (delta > 0) {
1181 		/*
1182 		 * If the reserve pool is depleted, put blocks back into it
1183 		 * first. Most of the time the pool is full.
1184 		 */
1185 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1186 			percpu_counter_add(&mp->m_fdblocks, delta);
1187 			return 0;
1188 		}
1189 
1190 		spin_lock(&mp->m_sb_lock);
1191 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1192 
1193 		if (res_used > delta) {
1194 			mp->m_resblks_avail += delta;
1195 		} else {
1196 			delta -= res_used;
1197 			mp->m_resblks_avail = mp->m_resblks;
1198 			percpu_counter_add(&mp->m_fdblocks, delta);
1199 		}
1200 		spin_unlock(&mp->m_sb_lock);
1201 		return 0;
1202 	}
1203 
1204 	/*
1205 	 * Taking blocks away, need to be more accurate the closer we
1206 	 * are to zero.
1207 	 *
1208 	 * If the counter has a value of less than 2 * max batch size,
1209 	 * then make everything serialise as we are real close to
1210 	 * ENOSPC.
1211 	 */
1212 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1213 				     XFS_FDBLOCKS_BATCH) < 0)
1214 		batch = 1;
1215 	else
1216 		batch = XFS_FDBLOCKS_BATCH;
1217 
1218 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1219 	if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1220 				     XFS_FDBLOCKS_BATCH) >= 0) {
1221 		/* we had space! */
1222 		return 0;
1223 	}
1224 
1225 	/*
1226 	 * lock up the sb for dipping into reserves before releasing the space
1227 	 * that took us to ENOSPC.
1228 	 */
1229 	spin_lock(&mp->m_sb_lock);
1230 	percpu_counter_add(&mp->m_fdblocks, -delta);
1231 	if (!rsvd)
1232 		goto fdblocks_enospc;
1233 
1234 	lcounter = (long long)mp->m_resblks_avail + delta;
1235 	if (lcounter >= 0) {
1236 		mp->m_resblks_avail = lcounter;
1237 		spin_unlock(&mp->m_sb_lock);
1238 		return 0;
1239 	}
1240 	printk_once(KERN_WARNING
1241 		"Filesystem \"%s\": reserve blocks depleted! "
1242 		"Consider increasing reserve pool size.",
1243 		mp->m_fsname);
1244 fdblocks_enospc:
1245 	spin_unlock(&mp->m_sb_lock);
1246 	return -ENOSPC;
1247 }
1248 
1249 int
1250 xfs_mod_frextents(
1251 	struct xfs_mount	*mp,
1252 	int64_t			delta)
1253 {
1254 	int64_t			lcounter;
1255 	int			ret = 0;
1256 
1257 	spin_lock(&mp->m_sb_lock);
1258 	lcounter = mp->m_sb.sb_frextents + delta;
1259 	if (lcounter < 0)
1260 		ret = -ENOSPC;
1261 	else
1262 		mp->m_sb.sb_frextents = lcounter;
1263 	spin_unlock(&mp->m_sb_lock);
1264 	return ret;
1265 }
1266 
1267 /*
1268  * xfs_getsb() is called to obtain the buffer for the superblock.
1269  * The buffer is returned locked and read in from disk.
1270  * The buffer should be released with a call to xfs_brelse().
1271  *
1272  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1273  * the superblock buffer if it can be locked without sleeping.
1274  * If it can't then we'll return NULL.
1275  */
1276 struct xfs_buf *
1277 xfs_getsb(
1278 	struct xfs_mount	*mp,
1279 	int			flags)
1280 {
1281 	struct xfs_buf		*bp = mp->m_sb_bp;
1282 
1283 	if (!xfs_buf_trylock(bp)) {
1284 		if (flags & XBF_TRYLOCK)
1285 			return NULL;
1286 		xfs_buf_lock(bp);
1287 	}
1288 
1289 	xfs_buf_hold(bp);
1290 	ASSERT(bp->b_flags & XBF_DONE);
1291 	return bp;
1292 }
1293 
1294 /*
1295  * Used to free the superblock along various error paths.
1296  */
1297 void
1298 xfs_freesb(
1299 	struct xfs_mount	*mp)
1300 {
1301 	struct xfs_buf		*bp = mp->m_sb_bp;
1302 
1303 	xfs_buf_lock(bp);
1304 	mp->m_sb_bp = NULL;
1305 	xfs_buf_relse(bp);
1306 }
1307 
1308 /*
1309  * If the underlying (data/log/rt) device is readonly, there are some
1310  * operations that cannot proceed.
1311  */
1312 int
1313 xfs_dev_is_read_only(
1314 	struct xfs_mount	*mp,
1315 	char			*message)
1316 {
1317 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1318 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1319 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1320 		xfs_notice(mp, "%s required on read-only device.", message);
1321 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1322 		return -EROFS;
1323 	}
1324 	return 0;
1325 }
1326