1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_format.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_mount.h" 29 #include "xfs_da_btree.h" 30 #include "xfs_dir2_format.h" 31 #include "xfs_dir2.h" 32 #include "xfs_bmap_btree.h" 33 #include "xfs_alloc_btree.h" 34 #include "xfs_ialloc_btree.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_quota.h" 44 #include "xfs_fsops.h" 45 #include "xfs_trace.h" 46 #include "xfs_icache.h" 47 #include "xfs_cksum.h" 48 #include "xfs_buf_item.h" 49 50 51 #ifdef HAVE_PERCPU_SB 52 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 53 int); 54 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 55 int); 56 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 57 #else 58 59 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 60 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 61 #endif 62 63 static DEFINE_MUTEX(xfs_uuid_table_mutex); 64 static int xfs_uuid_table_size; 65 static uuid_t *xfs_uuid_table; 66 67 /* 68 * See if the UUID is unique among mounted XFS filesystems. 69 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 70 */ 71 STATIC int 72 xfs_uuid_mount( 73 struct xfs_mount *mp) 74 { 75 uuid_t *uuid = &mp->m_sb.sb_uuid; 76 int hole, i; 77 78 if (mp->m_flags & XFS_MOUNT_NOUUID) 79 return 0; 80 81 if (uuid_is_nil(uuid)) { 82 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 83 return XFS_ERROR(EINVAL); 84 } 85 86 mutex_lock(&xfs_uuid_table_mutex); 87 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 88 if (uuid_is_nil(&xfs_uuid_table[i])) { 89 hole = i; 90 continue; 91 } 92 if (uuid_equal(uuid, &xfs_uuid_table[i])) 93 goto out_duplicate; 94 } 95 96 if (hole < 0) { 97 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 98 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 99 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 100 KM_SLEEP); 101 hole = xfs_uuid_table_size++; 102 } 103 xfs_uuid_table[hole] = *uuid; 104 mutex_unlock(&xfs_uuid_table_mutex); 105 106 return 0; 107 108 out_duplicate: 109 mutex_unlock(&xfs_uuid_table_mutex); 110 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 111 return XFS_ERROR(EINVAL); 112 } 113 114 STATIC void 115 xfs_uuid_unmount( 116 struct xfs_mount *mp) 117 { 118 uuid_t *uuid = &mp->m_sb.sb_uuid; 119 int i; 120 121 if (mp->m_flags & XFS_MOUNT_NOUUID) 122 return; 123 124 mutex_lock(&xfs_uuid_table_mutex); 125 for (i = 0; i < xfs_uuid_table_size; i++) { 126 if (uuid_is_nil(&xfs_uuid_table[i])) 127 continue; 128 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 129 continue; 130 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 131 break; 132 } 133 ASSERT(i < xfs_uuid_table_size); 134 mutex_unlock(&xfs_uuid_table_mutex); 135 } 136 137 138 STATIC void 139 __xfs_free_perag( 140 struct rcu_head *head) 141 { 142 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 143 144 ASSERT(atomic_read(&pag->pag_ref) == 0); 145 kmem_free(pag); 146 } 147 148 /* 149 * Free up the per-ag resources associated with the mount structure. 150 */ 151 STATIC void 152 xfs_free_perag( 153 xfs_mount_t *mp) 154 { 155 xfs_agnumber_t agno; 156 struct xfs_perag *pag; 157 158 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 159 spin_lock(&mp->m_perag_lock); 160 pag = radix_tree_delete(&mp->m_perag_tree, agno); 161 spin_unlock(&mp->m_perag_lock); 162 ASSERT(pag); 163 ASSERT(atomic_read(&pag->pag_ref) == 0); 164 call_rcu(&pag->rcu_head, __xfs_free_perag); 165 } 166 } 167 168 /* 169 * Check size of device based on the (data/realtime) block count. 170 * Note: this check is used by the growfs code as well as mount. 171 */ 172 int 173 xfs_sb_validate_fsb_count( 174 xfs_sb_t *sbp, 175 __uint64_t nblocks) 176 { 177 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 178 ASSERT(sbp->sb_blocklog >= BBSHIFT); 179 180 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 181 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 182 return EFBIG; 183 #else /* Limited by UINT_MAX of sectors */ 184 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 185 return EFBIG; 186 #endif 187 return 0; 188 } 189 190 int 191 xfs_initialize_perag( 192 xfs_mount_t *mp, 193 xfs_agnumber_t agcount, 194 xfs_agnumber_t *maxagi) 195 { 196 xfs_agnumber_t index; 197 xfs_agnumber_t first_initialised = 0; 198 xfs_perag_t *pag; 199 xfs_agino_t agino; 200 xfs_ino_t ino; 201 xfs_sb_t *sbp = &mp->m_sb; 202 int error = -ENOMEM; 203 204 /* 205 * Walk the current per-ag tree so we don't try to initialise AGs 206 * that already exist (growfs case). Allocate and insert all the 207 * AGs we don't find ready for initialisation. 208 */ 209 for (index = 0; index < agcount; index++) { 210 pag = xfs_perag_get(mp, index); 211 if (pag) { 212 xfs_perag_put(pag); 213 continue; 214 } 215 if (!first_initialised) 216 first_initialised = index; 217 218 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 219 if (!pag) 220 goto out_unwind; 221 pag->pag_agno = index; 222 pag->pag_mount = mp; 223 spin_lock_init(&pag->pag_ici_lock); 224 mutex_init(&pag->pag_ici_reclaim_lock); 225 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 226 spin_lock_init(&pag->pag_buf_lock); 227 pag->pag_buf_tree = RB_ROOT; 228 229 if (radix_tree_preload(GFP_NOFS)) 230 goto out_unwind; 231 232 spin_lock(&mp->m_perag_lock); 233 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 234 BUG(); 235 spin_unlock(&mp->m_perag_lock); 236 radix_tree_preload_end(); 237 error = -EEXIST; 238 goto out_unwind; 239 } 240 spin_unlock(&mp->m_perag_lock); 241 radix_tree_preload_end(); 242 } 243 244 /* 245 * If we mount with the inode64 option, or no inode overflows 246 * the legacy 32-bit address space clear the inode32 option. 247 */ 248 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 249 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 250 251 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 252 mp->m_flags |= XFS_MOUNT_32BITINODES; 253 else 254 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 255 256 if (mp->m_flags & XFS_MOUNT_32BITINODES) 257 index = xfs_set_inode32(mp); 258 else 259 index = xfs_set_inode64(mp); 260 261 if (maxagi) 262 *maxagi = index; 263 return 0; 264 265 out_unwind: 266 kmem_free(pag); 267 for (; index > first_initialised; index--) { 268 pag = radix_tree_delete(&mp->m_perag_tree, index); 269 kmem_free(pag); 270 } 271 return error; 272 } 273 274 /* 275 * xfs_readsb 276 * 277 * Does the initial read of the superblock. 278 */ 279 int 280 xfs_readsb( 281 struct xfs_mount *mp, 282 int flags) 283 { 284 unsigned int sector_size; 285 struct xfs_buf *bp; 286 struct xfs_sb *sbp = &mp->m_sb; 287 int error; 288 int loud = !(flags & XFS_MFSI_QUIET); 289 290 ASSERT(mp->m_sb_bp == NULL); 291 ASSERT(mp->m_ddev_targp != NULL); 292 293 /* 294 * Allocate a (locked) buffer to hold the superblock. 295 * This will be kept around at all times to optimize 296 * access to the superblock. 297 */ 298 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 299 300 reread: 301 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 302 BTOBB(sector_size), 0, 303 loud ? &xfs_sb_buf_ops 304 : &xfs_sb_quiet_buf_ops); 305 if (!bp) { 306 if (loud) 307 xfs_warn(mp, "SB buffer read failed"); 308 return EIO; 309 } 310 if (bp->b_error) { 311 error = bp->b_error; 312 if (loud) 313 xfs_warn(mp, "SB validate failed with error %d.", error); 314 goto release_buf; 315 } 316 317 /* 318 * Initialize the mount structure from the superblock. 319 */ 320 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 321 xfs_sb_quota_from_disk(&mp->m_sb); 322 323 /* 324 * We must be able to do sector-sized and sector-aligned IO. 325 */ 326 if (sector_size > sbp->sb_sectsize) { 327 if (loud) 328 xfs_warn(mp, "device supports %u byte sectors (not %u)", 329 sector_size, sbp->sb_sectsize); 330 error = ENOSYS; 331 goto release_buf; 332 } 333 334 /* 335 * If device sector size is smaller than the superblock size, 336 * re-read the superblock so the buffer is correctly sized. 337 */ 338 if (sector_size < sbp->sb_sectsize) { 339 xfs_buf_relse(bp); 340 sector_size = sbp->sb_sectsize; 341 goto reread; 342 } 343 344 /* Initialize per-cpu counters */ 345 xfs_icsb_reinit_counters(mp); 346 347 /* no need to be quiet anymore, so reset the buf ops */ 348 bp->b_ops = &xfs_sb_buf_ops; 349 350 mp->m_sb_bp = bp; 351 xfs_buf_unlock(bp); 352 return 0; 353 354 release_buf: 355 xfs_buf_relse(bp); 356 return error; 357 } 358 359 /* 360 * Update alignment values based on mount options and sb values 361 */ 362 STATIC int 363 xfs_update_alignment(xfs_mount_t *mp) 364 { 365 xfs_sb_t *sbp = &(mp->m_sb); 366 367 if (mp->m_dalign) { 368 /* 369 * If stripe unit and stripe width are not multiples 370 * of the fs blocksize turn off alignment. 371 */ 372 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 373 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 374 xfs_warn(mp, 375 "alignment check failed: sunit/swidth vs. blocksize(%d)", 376 sbp->sb_blocksize); 377 return XFS_ERROR(EINVAL); 378 } else { 379 /* 380 * Convert the stripe unit and width to FSBs. 381 */ 382 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 383 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 384 xfs_warn(mp, 385 "alignment check failed: sunit/swidth vs. agsize(%d)", 386 sbp->sb_agblocks); 387 return XFS_ERROR(EINVAL); 388 } else if (mp->m_dalign) { 389 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 390 } else { 391 xfs_warn(mp, 392 "alignment check failed: sunit(%d) less than bsize(%d)", 393 mp->m_dalign, sbp->sb_blocksize); 394 return XFS_ERROR(EINVAL); 395 } 396 } 397 398 /* 399 * Update superblock with new values 400 * and log changes 401 */ 402 if (xfs_sb_version_hasdalign(sbp)) { 403 if (sbp->sb_unit != mp->m_dalign) { 404 sbp->sb_unit = mp->m_dalign; 405 mp->m_update_flags |= XFS_SB_UNIT; 406 } 407 if (sbp->sb_width != mp->m_swidth) { 408 sbp->sb_width = mp->m_swidth; 409 mp->m_update_flags |= XFS_SB_WIDTH; 410 } 411 } else { 412 xfs_warn(mp, 413 "cannot change alignment: superblock does not support data alignment"); 414 return XFS_ERROR(EINVAL); 415 } 416 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 417 xfs_sb_version_hasdalign(&mp->m_sb)) { 418 mp->m_dalign = sbp->sb_unit; 419 mp->m_swidth = sbp->sb_width; 420 } 421 422 return 0; 423 } 424 425 /* 426 * Set the maximum inode count for this filesystem 427 */ 428 STATIC void 429 xfs_set_maxicount(xfs_mount_t *mp) 430 { 431 xfs_sb_t *sbp = &(mp->m_sb); 432 __uint64_t icount; 433 434 if (sbp->sb_imax_pct) { 435 /* 436 * Make sure the maximum inode count is a multiple 437 * of the units we allocate inodes in. 438 */ 439 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 440 do_div(icount, 100); 441 do_div(icount, mp->m_ialloc_blks); 442 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 443 sbp->sb_inopblog; 444 } else { 445 mp->m_maxicount = 0; 446 } 447 } 448 449 /* 450 * Set the default minimum read and write sizes unless 451 * already specified in a mount option. 452 * We use smaller I/O sizes when the file system 453 * is being used for NFS service (wsync mount option). 454 */ 455 STATIC void 456 xfs_set_rw_sizes(xfs_mount_t *mp) 457 { 458 xfs_sb_t *sbp = &(mp->m_sb); 459 int readio_log, writeio_log; 460 461 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 462 if (mp->m_flags & XFS_MOUNT_WSYNC) { 463 readio_log = XFS_WSYNC_READIO_LOG; 464 writeio_log = XFS_WSYNC_WRITEIO_LOG; 465 } else { 466 readio_log = XFS_READIO_LOG_LARGE; 467 writeio_log = XFS_WRITEIO_LOG_LARGE; 468 } 469 } else { 470 readio_log = mp->m_readio_log; 471 writeio_log = mp->m_writeio_log; 472 } 473 474 if (sbp->sb_blocklog > readio_log) { 475 mp->m_readio_log = sbp->sb_blocklog; 476 } else { 477 mp->m_readio_log = readio_log; 478 } 479 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 480 if (sbp->sb_blocklog > writeio_log) { 481 mp->m_writeio_log = sbp->sb_blocklog; 482 } else { 483 mp->m_writeio_log = writeio_log; 484 } 485 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 486 } 487 488 /* 489 * precalculate the low space thresholds for dynamic speculative preallocation. 490 */ 491 void 492 xfs_set_low_space_thresholds( 493 struct xfs_mount *mp) 494 { 495 int i; 496 497 for (i = 0; i < XFS_LOWSP_MAX; i++) { 498 __uint64_t space = mp->m_sb.sb_dblocks; 499 500 do_div(space, 100); 501 mp->m_low_space[i] = space * (i + 1); 502 } 503 } 504 505 506 /* 507 * Set whether we're using inode alignment. 508 */ 509 STATIC void 510 xfs_set_inoalignment(xfs_mount_t *mp) 511 { 512 if (xfs_sb_version_hasalign(&mp->m_sb) && 513 mp->m_sb.sb_inoalignmt >= 514 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 515 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 516 else 517 mp->m_inoalign_mask = 0; 518 /* 519 * If we are using stripe alignment, check whether 520 * the stripe unit is a multiple of the inode alignment 521 */ 522 if (mp->m_dalign && mp->m_inoalign_mask && 523 !(mp->m_dalign & mp->m_inoalign_mask)) 524 mp->m_sinoalign = mp->m_dalign; 525 else 526 mp->m_sinoalign = 0; 527 } 528 529 /* 530 * Check that the data (and log if separate) is an ok size. 531 */ 532 STATIC int 533 xfs_check_sizes(xfs_mount_t *mp) 534 { 535 xfs_buf_t *bp; 536 xfs_daddr_t d; 537 538 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 539 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 540 xfs_warn(mp, "filesystem size mismatch detected"); 541 return XFS_ERROR(EFBIG); 542 } 543 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 544 d - XFS_FSS_TO_BB(mp, 1), 545 XFS_FSS_TO_BB(mp, 1), 0, NULL); 546 if (!bp) { 547 xfs_warn(mp, "last sector read failed"); 548 return EIO; 549 } 550 xfs_buf_relse(bp); 551 552 if (mp->m_logdev_targp != mp->m_ddev_targp) { 553 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 554 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 555 xfs_warn(mp, "log size mismatch detected"); 556 return XFS_ERROR(EFBIG); 557 } 558 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 559 d - XFS_FSB_TO_BB(mp, 1), 560 XFS_FSB_TO_BB(mp, 1), 0, NULL); 561 if (!bp) { 562 xfs_warn(mp, "log device read failed"); 563 return EIO; 564 } 565 xfs_buf_relse(bp); 566 } 567 return 0; 568 } 569 570 /* 571 * Clear the quotaflags in memory and in the superblock. 572 */ 573 int 574 xfs_mount_reset_sbqflags( 575 struct xfs_mount *mp) 576 { 577 int error; 578 struct xfs_trans *tp; 579 580 mp->m_qflags = 0; 581 582 /* 583 * It is OK to look at sb_qflags here in mount path, 584 * without m_sb_lock. 585 */ 586 if (mp->m_sb.sb_qflags == 0) 587 return 0; 588 spin_lock(&mp->m_sb_lock); 589 mp->m_sb.sb_qflags = 0; 590 spin_unlock(&mp->m_sb_lock); 591 592 /* 593 * If the fs is readonly, let the incore superblock run 594 * with quotas off but don't flush the update out to disk 595 */ 596 if (mp->m_flags & XFS_MOUNT_RDONLY) 597 return 0; 598 599 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 600 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0); 601 if (error) { 602 xfs_trans_cancel(tp, 0); 603 xfs_alert(mp, "%s: Superblock update failed!", __func__); 604 return error; 605 } 606 607 xfs_mod_sb(tp, XFS_SB_QFLAGS); 608 return xfs_trans_commit(tp, 0); 609 } 610 611 __uint64_t 612 xfs_default_resblks(xfs_mount_t *mp) 613 { 614 __uint64_t resblks; 615 616 /* 617 * We default to 5% or 8192 fsbs of space reserved, whichever is 618 * smaller. This is intended to cover concurrent allocation 619 * transactions when we initially hit enospc. These each require a 4 620 * block reservation. Hence by default we cover roughly 2000 concurrent 621 * allocation reservations. 622 */ 623 resblks = mp->m_sb.sb_dblocks; 624 do_div(resblks, 20); 625 resblks = min_t(__uint64_t, resblks, 8192); 626 return resblks; 627 } 628 629 /* 630 * This function does the following on an initial mount of a file system: 631 * - reads the superblock from disk and init the mount struct 632 * - if we're a 32-bit kernel, do a size check on the superblock 633 * so we don't mount terabyte filesystems 634 * - init mount struct realtime fields 635 * - allocate inode hash table for fs 636 * - init directory manager 637 * - perform recovery and init the log manager 638 */ 639 int 640 xfs_mountfs( 641 xfs_mount_t *mp) 642 { 643 xfs_sb_t *sbp = &(mp->m_sb); 644 xfs_inode_t *rip; 645 __uint64_t resblks; 646 uint quotamount = 0; 647 uint quotaflags = 0; 648 int error = 0; 649 650 xfs_sb_mount_common(mp, sbp); 651 652 /* 653 * Check for a mismatched features2 values. Older kernels 654 * read & wrote into the wrong sb offset for sb_features2 655 * on some platforms due to xfs_sb_t not being 64bit size aligned 656 * when sb_features2 was added, which made older superblock 657 * reading/writing routines swap it as a 64-bit value. 658 * 659 * For backwards compatibility, we make both slots equal. 660 * 661 * If we detect a mismatched field, we OR the set bits into the 662 * existing features2 field in case it has already been modified; we 663 * don't want to lose any features. We then update the bad location 664 * with the ORed value so that older kernels will see any features2 665 * flags, and mark the two fields as needing updates once the 666 * transaction subsystem is online. 667 */ 668 if (xfs_sb_has_mismatched_features2(sbp)) { 669 xfs_warn(mp, "correcting sb_features alignment problem"); 670 sbp->sb_features2 |= sbp->sb_bad_features2; 671 sbp->sb_bad_features2 = sbp->sb_features2; 672 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 673 674 /* 675 * Re-check for ATTR2 in case it was found in bad_features2 676 * slot. 677 */ 678 if (xfs_sb_version_hasattr2(&mp->m_sb) && 679 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 680 mp->m_flags |= XFS_MOUNT_ATTR2; 681 } 682 683 if (xfs_sb_version_hasattr2(&mp->m_sb) && 684 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 685 xfs_sb_version_removeattr2(&mp->m_sb); 686 mp->m_update_flags |= XFS_SB_FEATURES2; 687 688 /* update sb_versionnum for the clearing of the morebits */ 689 if (!sbp->sb_features2) 690 mp->m_update_flags |= XFS_SB_VERSIONNUM; 691 } 692 693 /* 694 * Check if sb_agblocks is aligned at stripe boundary 695 * If sb_agblocks is NOT aligned turn off m_dalign since 696 * allocator alignment is within an ag, therefore ag has 697 * to be aligned at stripe boundary. 698 */ 699 error = xfs_update_alignment(mp); 700 if (error) 701 goto out; 702 703 xfs_alloc_compute_maxlevels(mp); 704 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 705 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 706 xfs_ialloc_compute_maxlevels(mp); 707 708 xfs_set_maxicount(mp); 709 710 error = xfs_uuid_mount(mp); 711 if (error) 712 goto out; 713 714 /* 715 * Set the minimum read and write sizes 716 */ 717 xfs_set_rw_sizes(mp); 718 719 /* set the low space thresholds for dynamic preallocation */ 720 xfs_set_low_space_thresholds(mp); 721 722 /* 723 * Set the inode cluster size. 724 * This may still be overridden by the file system 725 * block size if it is larger than the chosen cluster size. 726 */ 727 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 728 729 /* 730 * Set inode alignment fields 731 */ 732 xfs_set_inoalignment(mp); 733 734 /* 735 * Check that the data (and log if separate) is an ok size. 736 */ 737 error = xfs_check_sizes(mp); 738 if (error) 739 goto out_remove_uuid; 740 741 /* 742 * Initialize realtime fields in the mount structure 743 */ 744 error = xfs_rtmount_init(mp); 745 if (error) { 746 xfs_warn(mp, "RT mount failed"); 747 goto out_remove_uuid; 748 } 749 750 /* 751 * Copies the low order bits of the timestamp and the randomly 752 * set "sequence" number out of a UUID. 753 */ 754 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 755 756 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 757 758 xfs_dir_mount(mp); 759 760 /* 761 * Initialize the attribute manager's entries. 762 */ 763 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 764 765 /* 766 * Initialize the precomputed transaction reservations values. 767 */ 768 xfs_trans_init(mp); 769 770 /* 771 * Allocate and initialize the per-ag data. 772 */ 773 spin_lock_init(&mp->m_perag_lock); 774 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 775 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 776 if (error) { 777 xfs_warn(mp, "Failed per-ag init: %d", error); 778 goto out_remove_uuid; 779 } 780 781 if (!sbp->sb_logblocks) { 782 xfs_warn(mp, "no log defined"); 783 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 784 error = XFS_ERROR(EFSCORRUPTED); 785 goto out_free_perag; 786 } 787 788 /* 789 * log's mount-time initialization. Perform 1st part recovery if needed 790 */ 791 error = xfs_log_mount(mp, mp->m_logdev_targp, 792 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 793 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 794 if (error) { 795 xfs_warn(mp, "log mount failed"); 796 goto out_fail_wait; 797 } 798 799 /* 800 * Now the log is mounted, we know if it was an unclean shutdown or 801 * not. If it was, with the first phase of recovery has completed, we 802 * have consistent AG blocks on disk. We have not recovered EFIs yet, 803 * but they are recovered transactionally in the second recovery phase 804 * later. 805 * 806 * Hence we can safely re-initialise incore superblock counters from 807 * the per-ag data. These may not be correct if the filesystem was not 808 * cleanly unmounted, so we need to wait for recovery to finish before 809 * doing this. 810 * 811 * If the filesystem was cleanly unmounted, then we can trust the 812 * values in the superblock to be correct and we don't need to do 813 * anything here. 814 * 815 * If we are currently making the filesystem, the initialisation will 816 * fail as the perag data is in an undefined state. 817 */ 818 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 819 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 820 !mp->m_sb.sb_inprogress) { 821 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 822 if (error) 823 goto out_fail_wait; 824 } 825 826 /* 827 * Get and sanity-check the root inode. 828 * Save the pointer to it in the mount structure. 829 */ 830 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 831 if (error) { 832 xfs_warn(mp, "failed to read root inode"); 833 goto out_log_dealloc; 834 } 835 836 ASSERT(rip != NULL); 837 838 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 839 xfs_warn(mp, "corrupted root inode %llu: not a directory", 840 (unsigned long long)rip->i_ino); 841 xfs_iunlock(rip, XFS_ILOCK_EXCL); 842 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 843 mp); 844 error = XFS_ERROR(EFSCORRUPTED); 845 goto out_rele_rip; 846 } 847 mp->m_rootip = rip; /* save it */ 848 849 xfs_iunlock(rip, XFS_ILOCK_EXCL); 850 851 /* 852 * Initialize realtime inode pointers in the mount structure 853 */ 854 error = xfs_rtmount_inodes(mp); 855 if (error) { 856 /* 857 * Free up the root inode. 858 */ 859 xfs_warn(mp, "failed to read RT inodes"); 860 goto out_rele_rip; 861 } 862 863 /* 864 * If this is a read-only mount defer the superblock updates until 865 * the next remount into writeable mode. Otherwise we would never 866 * perform the update e.g. for the root filesystem. 867 */ 868 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 869 error = xfs_mount_log_sb(mp, mp->m_update_flags); 870 if (error) { 871 xfs_warn(mp, "failed to write sb changes"); 872 goto out_rtunmount; 873 } 874 } 875 876 /* 877 * Initialise the XFS quota management subsystem for this mount 878 */ 879 if (XFS_IS_QUOTA_RUNNING(mp)) { 880 error = xfs_qm_newmount(mp, "amount, "aflags); 881 if (error) 882 goto out_rtunmount; 883 } else { 884 ASSERT(!XFS_IS_QUOTA_ON(mp)); 885 886 /* 887 * If a file system had quotas running earlier, but decided to 888 * mount without -o uquota/pquota/gquota options, revoke the 889 * quotachecked license. 890 */ 891 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 892 xfs_notice(mp, "resetting quota flags"); 893 error = xfs_mount_reset_sbqflags(mp); 894 if (error) 895 return error; 896 } 897 } 898 899 /* 900 * Finish recovering the file system. This part needed to be 901 * delayed until after the root and real-time bitmap inodes 902 * were consistently read in. 903 */ 904 error = xfs_log_mount_finish(mp); 905 if (error) { 906 xfs_warn(mp, "log mount finish failed"); 907 goto out_rtunmount; 908 } 909 910 /* 911 * Complete the quota initialisation, post-log-replay component. 912 */ 913 if (quotamount) { 914 ASSERT(mp->m_qflags == 0); 915 mp->m_qflags = quotaflags; 916 917 xfs_qm_mount_quotas(mp); 918 } 919 920 /* 921 * Now we are mounted, reserve a small amount of unused space for 922 * privileged transactions. This is needed so that transaction 923 * space required for critical operations can dip into this pool 924 * when at ENOSPC. This is needed for operations like create with 925 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 926 * are not allowed to use this reserved space. 927 * 928 * This may drive us straight to ENOSPC on mount, but that implies 929 * we were already there on the last unmount. Warn if this occurs. 930 */ 931 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 932 resblks = xfs_default_resblks(mp); 933 error = xfs_reserve_blocks(mp, &resblks, NULL); 934 if (error) 935 xfs_warn(mp, 936 "Unable to allocate reserve blocks. Continuing without reserve pool."); 937 } 938 939 return 0; 940 941 out_rtunmount: 942 xfs_rtunmount_inodes(mp); 943 out_rele_rip: 944 IRELE(rip); 945 out_log_dealloc: 946 xfs_log_unmount(mp); 947 out_fail_wait: 948 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 949 xfs_wait_buftarg(mp->m_logdev_targp); 950 xfs_wait_buftarg(mp->m_ddev_targp); 951 out_free_perag: 952 xfs_free_perag(mp); 953 out_remove_uuid: 954 xfs_uuid_unmount(mp); 955 out: 956 return error; 957 } 958 959 /* 960 * This flushes out the inodes,dquots and the superblock, unmounts the 961 * log and makes sure that incore structures are freed. 962 */ 963 void 964 xfs_unmountfs( 965 struct xfs_mount *mp) 966 { 967 __uint64_t resblks; 968 int error; 969 970 cancel_delayed_work_sync(&mp->m_eofblocks_work); 971 972 xfs_qm_unmount_quotas(mp); 973 xfs_rtunmount_inodes(mp); 974 IRELE(mp->m_rootip); 975 976 /* 977 * We can potentially deadlock here if we have an inode cluster 978 * that has been freed has its buffer still pinned in memory because 979 * the transaction is still sitting in a iclog. The stale inodes 980 * on that buffer will have their flush locks held until the 981 * transaction hits the disk and the callbacks run. the inode 982 * flush takes the flush lock unconditionally and with nothing to 983 * push out the iclog we will never get that unlocked. hence we 984 * need to force the log first. 985 */ 986 xfs_log_force(mp, XFS_LOG_SYNC); 987 988 /* 989 * Flush all pending changes from the AIL. 990 */ 991 xfs_ail_push_all_sync(mp->m_ail); 992 993 /* 994 * And reclaim all inodes. At this point there should be no dirty 995 * inodes and none should be pinned or locked, but use synchronous 996 * reclaim just to be sure. We can stop background inode reclaim 997 * here as well if it is still running. 998 */ 999 cancel_delayed_work_sync(&mp->m_reclaim_work); 1000 xfs_reclaim_inodes(mp, SYNC_WAIT); 1001 1002 xfs_qm_unmount(mp); 1003 1004 /* 1005 * Unreserve any blocks we have so that when we unmount we don't account 1006 * the reserved free space as used. This is really only necessary for 1007 * lazy superblock counting because it trusts the incore superblock 1008 * counters to be absolutely correct on clean unmount. 1009 * 1010 * We don't bother correcting this elsewhere for lazy superblock 1011 * counting because on mount of an unclean filesystem we reconstruct the 1012 * correct counter value and this is irrelevant. 1013 * 1014 * For non-lazy counter filesystems, this doesn't matter at all because 1015 * we only every apply deltas to the superblock and hence the incore 1016 * value does not matter.... 1017 */ 1018 resblks = 0; 1019 error = xfs_reserve_blocks(mp, &resblks, NULL); 1020 if (error) 1021 xfs_warn(mp, "Unable to free reserved block pool. " 1022 "Freespace may not be correct on next mount."); 1023 1024 error = xfs_log_sbcount(mp); 1025 if (error) 1026 xfs_warn(mp, "Unable to update superblock counters. " 1027 "Freespace may not be correct on next mount."); 1028 1029 xfs_log_unmount(mp); 1030 xfs_uuid_unmount(mp); 1031 1032 #if defined(DEBUG) 1033 xfs_errortag_clearall(mp, 0); 1034 #endif 1035 xfs_free_perag(mp); 1036 } 1037 1038 int 1039 xfs_fs_writable(xfs_mount_t *mp) 1040 { 1041 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1042 (mp->m_flags & XFS_MOUNT_RDONLY)); 1043 } 1044 1045 /* 1046 * xfs_log_sbcount 1047 * 1048 * Sync the superblock counters to disk. 1049 * 1050 * Note this code can be called during the process of freezing, so 1051 * we may need to use the transaction allocator which does not 1052 * block when the transaction subsystem is in its frozen state. 1053 */ 1054 int 1055 xfs_log_sbcount(xfs_mount_t *mp) 1056 { 1057 xfs_trans_t *tp; 1058 int error; 1059 1060 if (!xfs_fs_writable(mp)) 1061 return 0; 1062 1063 xfs_icsb_sync_counters(mp, 0); 1064 1065 /* 1066 * we don't need to do this if we are updating the superblock 1067 * counters on every modification. 1068 */ 1069 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1070 return 0; 1071 1072 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1073 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1074 if (error) { 1075 xfs_trans_cancel(tp, 0); 1076 return error; 1077 } 1078 1079 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1080 xfs_trans_set_sync(tp); 1081 error = xfs_trans_commit(tp, 0); 1082 return error; 1083 } 1084 1085 /* 1086 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply 1087 * a delta to a specified field in the in-core superblock. Simply 1088 * switch on the field indicated and apply the delta to that field. 1089 * Fields are not allowed to dip below zero, so if the delta would 1090 * do this do not apply it and return EINVAL. 1091 * 1092 * The m_sb_lock must be held when this routine is called. 1093 */ 1094 STATIC int 1095 xfs_mod_incore_sb_unlocked( 1096 xfs_mount_t *mp, 1097 xfs_sb_field_t field, 1098 int64_t delta, 1099 int rsvd) 1100 { 1101 int scounter; /* short counter for 32 bit fields */ 1102 long long lcounter; /* long counter for 64 bit fields */ 1103 long long res_used, rem; 1104 1105 /* 1106 * With the in-core superblock spin lock held, switch 1107 * on the indicated field. Apply the delta to the 1108 * proper field. If the fields value would dip below 1109 * 0, then do not apply the delta and return EINVAL. 1110 */ 1111 switch (field) { 1112 case XFS_SBS_ICOUNT: 1113 lcounter = (long long)mp->m_sb.sb_icount; 1114 lcounter += delta; 1115 if (lcounter < 0) { 1116 ASSERT(0); 1117 return XFS_ERROR(EINVAL); 1118 } 1119 mp->m_sb.sb_icount = lcounter; 1120 return 0; 1121 case XFS_SBS_IFREE: 1122 lcounter = (long long)mp->m_sb.sb_ifree; 1123 lcounter += delta; 1124 if (lcounter < 0) { 1125 ASSERT(0); 1126 return XFS_ERROR(EINVAL); 1127 } 1128 mp->m_sb.sb_ifree = lcounter; 1129 return 0; 1130 case XFS_SBS_FDBLOCKS: 1131 lcounter = (long long) 1132 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1133 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1134 1135 if (delta > 0) { /* Putting blocks back */ 1136 if (res_used > delta) { 1137 mp->m_resblks_avail += delta; 1138 } else { 1139 rem = delta - res_used; 1140 mp->m_resblks_avail = mp->m_resblks; 1141 lcounter += rem; 1142 } 1143 } else { /* Taking blocks away */ 1144 lcounter += delta; 1145 if (lcounter >= 0) { 1146 mp->m_sb.sb_fdblocks = lcounter + 1147 XFS_ALLOC_SET_ASIDE(mp); 1148 return 0; 1149 } 1150 1151 /* 1152 * We are out of blocks, use any available reserved 1153 * blocks if were allowed to. 1154 */ 1155 if (!rsvd) 1156 return XFS_ERROR(ENOSPC); 1157 1158 lcounter = (long long)mp->m_resblks_avail + delta; 1159 if (lcounter >= 0) { 1160 mp->m_resblks_avail = lcounter; 1161 return 0; 1162 } 1163 printk_once(KERN_WARNING 1164 "Filesystem \"%s\": reserve blocks depleted! " 1165 "Consider increasing reserve pool size.", 1166 mp->m_fsname); 1167 return XFS_ERROR(ENOSPC); 1168 } 1169 1170 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1171 return 0; 1172 case XFS_SBS_FREXTENTS: 1173 lcounter = (long long)mp->m_sb.sb_frextents; 1174 lcounter += delta; 1175 if (lcounter < 0) { 1176 return XFS_ERROR(ENOSPC); 1177 } 1178 mp->m_sb.sb_frextents = lcounter; 1179 return 0; 1180 case XFS_SBS_DBLOCKS: 1181 lcounter = (long long)mp->m_sb.sb_dblocks; 1182 lcounter += delta; 1183 if (lcounter < 0) { 1184 ASSERT(0); 1185 return XFS_ERROR(EINVAL); 1186 } 1187 mp->m_sb.sb_dblocks = lcounter; 1188 return 0; 1189 case XFS_SBS_AGCOUNT: 1190 scounter = mp->m_sb.sb_agcount; 1191 scounter += delta; 1192 if (scounter < 0) { 1193 ASSERT(0); 1194 return XFS_ERROR(EINVAL); 1195 } 1196 mp->m_sb.sb_agcount = scounter; 1197 return 0; 1198 case XFS_SBS_IMAX_PCT: 1199 scounter = mp->m_sb.sb_imax_pct; 1200 scounter += delta; 1201 if (scounter < 0) { 1202 ASSERT(0); 1203 return XFS_ERROR(EINVAL); 1204 } 1205 mp->m_sb.sb_imax_pct = scounter; 1206 return 0; 1207 case XFS_SBS_REXTSIZE: 1208 scounter = mp->m_sb.sb_rextsize; 1209 scounter += delta; 1210 if (scounter < 0) { 1211 ASSERT(0); 1212 return XFS_ERROR(EINVAL); 1213 } 1214 mp->m_sb.sb_rextsize = scounter; 1215 return 0; 1216 case XFS_SBS_RBMBLOCKS: 1217 scounter = mp->m_sb.sb_rbmblocks; 1218 scounter += delta; 1219 if (scounter < 0) { 1220 ASSERT(0); 1221 return XFS_ERROR(EINVAL); 1222 } 1223 mp->m_sb.sb_rbmblocks = scounter; 1224 return 0; 1225 case XFS_SBS_RBLOCKS: 1226 lcounter = (long long)mp->m_sb.sb_rblocks; 1227 lcounter += delta; 1228 if (lcounter < 0) { 1229 ASSERT(0); 1230 return XFS_ERROR(EINVAL); 1231 } 1232 mp->m_sb.sb_rblocks = lcounter; 1233 return 0; 1234 case XFS_SBS_REXTENTS: 1235 lcounter = (long long)mp->m_sb.sb_rextents; 1236 lcounter += delta; 1237 if (lcounter < 0) { 1238 ASSERT(0); 1239 return XFS_ERROR(EINVAL); 1240 } 1241 mp->m_sb.sb_rextents = lcounter; 1242 return 0; 1243 case XFS_SBS_REXTSLOG: 1244 scounter = mp->m_sb.sb_rextslog; 1245 scounter += delta; 1246 if (scounter < 0) { 1247 ASSERT(0); 1248 return XFS_ERROR(EINVAL); 1249 } 1250 mp->m_sb.sb_rextslog = scounter; 1251 return 0; 1252 default: 1253 ASSERT(0); 1254 return XFS_ERROR(EINVAL); 1255 } 1256 } 1257 1258 /* 1259 * xfs_mod_incore_sb() is used to change a field in the in-core 1260 * superblock structure by the specified delta. This modification 1261 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1262 * routine to do the work. 1263 */ 1264 int 1265 xfs_mod_incore_sb( 1266 struct xfs_mount *mp, 1267 xfs_sb_field_t field, 1268 int64_t delta, 1269 int rsvd) 1270 { 1271 int status; 1272 1273 #ifdef HAVE_PERCPU_SB 1274 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1275 #endif 1276 spin_lock(&mp->m_sb_lock); 1277 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1278 spin_unlock(&mp->m_sb_lock); 1279 1280 return status; 1281 } 1282 1283 /* 1284 * Change more than one field in the in-core superblock structure at a time. 1285 * 1286 * The fields and changes to those fields are specified in the array of 1287 * xfs_mod_sb structures passed in. Either all of the specified deltas 1288 * will be applied or none of them will. If any modified field dips below 0, 1289 * then all modifications will be backed out and EINVAL will be returned. 1290 * 1291 * Note that this function may not be used for the superblock values that 1292 * are tracked with the in-memory per-cpu counters - a direct call to 1293 * xfs_icsb_modify_counters is required for these. 1294 */ 1295 int 1296 xfs_mod_incore_sb_batch( 1297 struct xfs_mount *mp, 1298 xfs_mod_sb_t *msb, 1299 uint nmsb, 1300 int rsvd) 1301 { 1302 xfs_mod_sb_t *msbp; 1303 int error = 0; 1304 1305 /* 1306 * Loop through the array of mod structures and apply each individually. 1307 * If any fail, then back out all those which have already been applied. 1308 * Do all of this within the scope of the m_sb_lock so that all of the 1309 * changes will be atomic. 1310 */ 1311 spin_lock(&mp->m_sb_lock); 1312 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1313 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1314 msbp->msb_field > XFS_SBS_FDBLOCKS); 1315 1316 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1317 msbp->msb_delta, rsvd); 1318 if (error) 1319 goto unwind; 1320 } 1321 spin_unlock(&mp->m_sb_lock); 1322 return 0; 1323 1324 unwind: 1325 while (--msbp >= msb) { 1326 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1327 -msbp->msb_delta, rsvd); 1328 ASSERT(error == 0); 1329 } 1330 spin_unlock(&mp->m_sb_lock); 1331 return error; 1332 } 1333 1334 /* 1335 * xfs_getsb() is called to obtain the buffer for the superblock. 1336 * The buffer is returned locked and read in from disk. 1337 * The buffer should be released with a call to xfs_brelse(). 1338 * 1339 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1340 * the superblock buffer if it can be locked without sleeping. 1341 * If it can't then we'll return NULL. 1342 */ 1343 struct xfs_buf * 1344 xfs_getsb( 1345 struct xfs_mount *mp, 1346 int flags) 1347 { 1348 struct xfs_buf *bp = mp->m_sb_bp; 1349 1350 if (!xfs_buf_trylock(bp)) { 1351 if (flags & XBF_TRYLOCK) 1352 return NULL; 1353 xfs_buf_lock(bp); 1354 } 1355 1356 xfs_buf_hold(bp); 1357 ASSERT(XFS_BUF_ISDONE(bp)); 1358 return bp; 1359 } 1360 1361 /* 1362 * Used to free the superblock along various error paths. 1363 */ 1364 void 1365 xfs_freesb( 1366 struct xfs_mount *mp) 1367 { 1368 struct xfs_buf *bp = mp->m_sb_bp; 1369 1370 xfs_buf_lock(bp); 1371 mp->m_sb_bp = NULL; 1372 xfs_buf_relse(bp); 1373 } 1374 1375 /* 1376 * Used to log changes to the superblock unit and width fields which could 1377 * be altered by the mount options, as well as any potential sb_features2 1378 * fixup. Only the first superblock is updated. 1379 */ 1380 int 1381 xfs_mount_log_sb( 1382 xfs_mount_t *mp, 1383 __int64_t fields) 1384 { 1385 xfs_trans_t *tp; 1386 int error; 1387 1388 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1389 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1390 XFS_SB_VERSIONNUM)); 1391 1392 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1393 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0); 1394 if (error) { 1395 xfs_trans_cancel(tp, 0); 1396 return error; 1397 } 1398 xfs_mod_sb(tp, fields); 1399 error = xfs_trans_commit(tp, 0); 1400 return error; 1401 } 1402 1403 /* 1404 * If the underlying (data/log/rt) device is readonly, there are some 1405 * operations that cannot proceed. 1406 */ 1407 int 1408 xfs_dev_is_read_only( 1409 struct xfs_mount *mp, 1410 char *message) 1411 { 1412 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1413 xfs_readonly_buftarg(mp->m_logdev_targp) || 1414 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1415 xfs_notice(mp, "%s required on read-only device.", message); 1416 xfs_notice(mp, "write access unavailable, cannot proceed."); 1417 return EROFS; 1418 } 1419 return 0; 1420 } 1421 1422 #ifdef HAVE_PERCPU_SB 1423 /* 1424 * Per-cpu incore superblock counters 1425 * 1426 * Simple concept, difficult implementation 1427 * 1428 * Basically, replace the incore superblock counters with a distributed per cpu 1429 * counter for contended fields (e.g. free block count). 1430 * 1431 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1432 * hence needs to be accurately read when we are running low on space. Hence 1433 * there is a method to enable and disable the per-cpu counters based on how 1434 * much "stuff" is available in them. 1435 * 1436 * Basically, a counter is enabled if there is enough free resource to justify 1437 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1438 * ENOSPC), then we disable the counters to synchronise all callers and 1439 * re-distribute the available resources. 1440 * 1441 * If, once we redistributed the available resources, we still get a failure, 1442 * we disable the per-cpu counter and go through the slow path. 1443 * 1444 * The slow path is the current xfs_mod_incore_sb() function. This means that 1445 * when we disable a per-cpu counter, we need to drain its resources back to 1446 * the global superblock. We do this after disabling the counter to prevent 1447 * more threads from queueing up on the counter. 1448 * 1449 * Essentially, this means that we still need a lock in the fast path to enable 1450 * synchronisation between the global counters and the per-cpu counters. This 1451 * is not a problem because the lock will be local to a CPU almost all the time 1452 * and have little contention except when we get to ENOSPC conditions. 1453 * 1454 * Basically, this lock becomes a barrier that enables us to lock out the fast 1455 * path while we do things like enabling and disabling counters and 1456 * synchronising the counters. 1457 * 1458 * Locking rules: 1459 * 1460 * 1. m_sb_lock before picking up per-cpu locks 1461 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1462 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1463 * 4. modifying per-cpu counters requires holding per-cpu lock 1464 * 5. modifying global counters requires holding m_sb_lock 1465 * 6. enabling or disabling a counter requires holding the m_sb_lock 1466 * and _none_ of the per-cpu locks. 1467 * 1468 * Disabled counters are only ever re-enabled by a balance operation 1469 * that results in more free resources per CPU than a given threshold. 1470 * To ensure counters don't remain disabled, they are rebalanced when 1471 * the global resource goes above a higher threshold (i.e. some hysteresis 1472 * is present to prevent thrashing). 1473 */ 1474 1475 #ifdef CONFIG_HOTPLUG_CPU 1476 /* 1477 * hot-plug CPU notifier support. 1478 * 1479 * We need a notifier per filesystem as we need to be able to identify 1480 * the filesystem to balance the counters out. This is achieved by 1481 * having a notifier block embedded in the xfs_mount_t and doing pointer 1482 * magic to get the mount pointer from the notifier block address. 1483 */ 1484 STATIC int 1485 xfs_icsb_cpu_notify( 1486 struct notifier_block *nfb, 1487 unsigned long action, 1488 void *hcpu) 1489 { 1490 xfs_icsb_cnts_t *cntp; 1491 xfs_mount_t *mp; 1492 1493 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 1494 cntp = (xfs_icsb_cnts_t *) 1495 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 1496 switch (action) { 1497 case CPU_UP_PREPARE: 1498 case CPU_UP_PREPARE_FROZEN: 1499 /* Easy Case - initialize the area and locks, and 1500 * then rebalance when online does everything else for us. */ 1501 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1502 break; 1503 case CPU_ONLINE: 1504 case CPU_ONLINE_FROZEN: 1505 xfs_icsb_lock(mp); 1506 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1507 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1508 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1509 xfs_icsb_unlock(mp); 1510 break; 1511 case CPU_DEAD: 1512 case CPU_DEAD_FROZEN: 1513 /* Disable all the counters, then fold the dead cpu's 1514 * count into the total on the global superblock and 1515 * re-enable the counters. */ 1516 xfs_icsb_lock(mp); 1517 spin_lock(&mp->m_sb_lock); 1518 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 1519 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 1520 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 1521 1522 mp->m_sb.sb_icount += cntp->icsb_icount; 1523 mp->m_sb.sb_ifree += cntp->icsb_ifree; 1524 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 1525 1526 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1527 1528 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 1529 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 1530 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 1531 spin_unlock(&mp->m_sb_lock); 1532 xfs_icsb_unlock(mp); 1533 break; 1534 } 1535 1536 return NOTIFY_OK; 1537 } 1538 #endif /* CONFIG_HOTPLUG_CPU */ 1539 1540 int 1541 xfs_icsb_init_counters( 1542 xfs_mount_t *mp) 1543 { 1544 xfs_icsb_cnts_t *cntp; 1545 int i; 1546 1547 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 1548 if (mp->m_sb_cnts == NULL) 1549 return -ENOMEM; 1550 1551 for_each_online_cpu(i) { 1552 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1553 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 1554 } 1555 1556 mutex_init(&mp->m_icsb_mutex); 1557 1558 /* 1559 * start with all counters disabled so that the 1560 * initial balance kicks us off correctly 1561 */ 1562 mp->m_icsb_counters = -1; 1563 1564 #ifdef CONFIG_HOTPLUG_CPU 1565 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 1566 mp->m_icsb_notifier.priority = 0; 1567 register_hotcpu_notifier(&mp->m_icsb_notifier); 1568 #endif /* CONFIG_HOTPLUG_CPU */ 1569 1570 return 0; 1571 } 1572 1573 void 1574 xfs_icsb_reinit_counters( 1575 xfs_mount_t *mp) 1576 { 1577 xfs_icsb_lock(mp); 1578 /* 1579 * start with all counters disabled so that the 1580 * initial balance kicks us off correctly 1581 */ 1582 mp->m_icsb_counters = -1; 1583 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 1584 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 1585 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 1586 xfs_icsb_unlock(mp); 1587 } 1588 1589 void 1590 xfs_icsb_destroy_counters( 1591 xfs_mount_t *mp) 1592 { 1593 if (mp->m_sb_cnts) { 1594 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 1595 free_percpu(mp->m_sb_cnts); 1596 } 1597 mutex_destroy(&mp->m_icsb_mutex); 1598 } 1599 1600 STATIC void 1601 xfs_icsb_lock_cntr( 1602 xfs_icsb_cnts_t *icsbp) 1603 { 1604 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 1605 ndelay(1000); 1606 } 1607 } 1608 1609 STATIC void 1610 xfs_icsb_unlock_cntr( 1611 xfs_icsb_cnts_t *icsbp) 1612 { 1613 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 1614 } 1615 1616 1617 STATIC void 1618 xfs_icsb_lock_all_counters( 1619 xfs_mount_t *mp) 1620 { 1621 xfs_icsb_cnts_t *cntp; 1622 int i; 1623 1624 for_each_online_cpu(i) { 1625 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1626 xfs_icsb_lock_cntr(cntp); 1627 } 1628 } 1629 1630 STATIC void 1631 xfs_icsb_unlock_all_counters( 1632 xfs_mount_t *mp) 1633 { 1634 xfs_icsb_cnts_t *cntp; 1635 int i; 1636 1637 for_each_online_cpu(i) { 1638 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1639 xfs_icsb_unlock_cntr(cntp); 1640 } 1641 } 1642 1643 STATIC void 1644 xfs_icsb_count( 1645 xfs_mount_t *mp, 1646 xfs_icsb_cnts_t *cnt, 1647 int flags) 1648 { 1649 xfs_icsb_cnts_t *cntp; 1650 int i; 1651 1652 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 1653 1654 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1655 xfs_icsb_lock_all_counters(mp); 1656 1657 for_each_online_cpu(i) { 1658 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 1659 cnt->icsb_icount += cntp->icsb_icount; 1660 cnt->icsb_ifree += cntp->icsb_ifree; 1661 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 1662 } 1663 1664 if (!(flags & XFS_ICSB_LAZY_COUNT)) 1665 xfs_icsb_unlock_all_counters(mp); 1666 } 1667 1668 STATIC int 1669 xfs_icsb_counter_disabled( 1670 xfs_mount_t *mp, 1671 xfs_sb_field_t field) 1672 { 1673 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1674 return test_bit(field, &mp->m_icsb_counters); 1675 } 1676 1677 STATIC void 1678 xfs_icsb_disable_counter( 1679 xfs_mount_t *mp, 1680 xfs_sb_field_t field) 1681 { 1682 xfs_icsb_cnts_t cnt; 1683 1684 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1685 1686 /* 1687 * If we are already disabled, then there is nothing to do 1688 * here. We check before locking all the counters to avoid 1689 * the expensive lock operation when being called in the 1690 * slow path and the counter is already disabled. This is 1691 * safe because the only time we set or clear this state is under 1692 * the m_icsb_mutex. 1693 */ 1694 if (xfs_icsb_counter_disabled(mp, field)) 1695 return; 1696 1697 xfs_icsb_lock_all_counters(mp); 1698 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 1699 /* drain back to superblock */ 1700 1701 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 1702 switch(field) { 1703 case XFS_SBS_ICOUNT: 1704 mp->m_sb.sb_icount = cnt.icsb_icount; 1705 break; 1706 case XFS_SBS_IFREE: 1707 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1708 break; 1709 case XFS_SBS_FDBLOCKS: 1710 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1711 break; 1712 default: 1713 BUG(); 1714 } 1715 } 1716 1717 xfs_icsb_unlock_all_counters(mp); 1718 } 1719 1720 STATIC void 1721 xfs_icsb_enable_counter( 1722 xfs_mount_t *mp, 1723 xfs_sb_field_t field, 1724 uint64_t count, 1725 uint64_t resid) 1726 { 1727 xfs_icsb_cnts_t *cntp; 1728 int i; 1729 1730 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 1731 1732 xfs_icsb_lock_all_counters(mp); 1733 for_each_online_cpu(i) { 1734 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 1735 switch (field) { 1736 case XFS_SBS_ICOUNT: 1737 cntp->icsb_icount = count + resid; 1738 break; 1739 case XFS_SBS_IFREE: 1740 cntp->icsb_ifree = count + resid; 1741 break; 1742 case XFS_SBS_FDBLOCKS: 1743 cntp->icsb_fdblocks = count + resid; 1744 break; 1745 default: 1746 BUG(); 1747 break; 1748 } 1749 resid = 0; 1750 } 1751 clear_bit(field, &mp->m_icsb_counters); 1752 xfs_icsb_unlock_all_counters(mp); 1753 } 1754 1755 void 1756 xfs_icsb_sync_counters_locked( 1757 xfs_mount_t *mp, 1758 int flags) 1759 { 1760 xfs_icsb_cnts_t cnt; 1761 1762 xfs_icsb_count(mp, &cnt, flags); 1763 1764 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 1765 mp->m_sb.sb_icount = cnt.icsb_icount; 1766 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 1767 mp->m_sb.sb_ifree = cnt.icsb_ifree; 1768 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 1769 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 1770 } 1771 1772 /* 1773 * Accurate update of per-cpu counters to incore superblock 1774 */ 1775 void 1776 xfs_icsb_sync_counters( 1777 xfs_mount_t *mp, 1778 int flags) 1779 { 1780 spin_lock(&mp->m_sb_lock); 1781 xfs_icsb_sync_counters_locked(mp, flags); 1782 spin_unlock(&mp->m_sb_lock); 1783 } 1784 1785 /* 1786 * Balance and enable/disable counters as necessary. 1787 * 1788 * Thresholds for re-enabling counters are somewhat magic. inode counts are 1789 * chosen to be the same number as single on disk allocation chunk per CPU, and 1790 * free blocks is something far enough zero that we aren't going thrash when we 1791 * get near ENOSPC. We also need to supply a minimum we require per cpu to 1792 * prevent looping endlessly when xfs_alloc_space asks for more than will 1793 * be distributed to a single CPU but each CPU has enough blocks to be 1794 * reenabled. 1795 * 1796 * Note that we can be called when counters are already disabled. 1797 * xfs_icsb_disable_counter() optimises the counter locking in this case to 1798 * prevent locking every per-cpu counter needlessly. 1799 */ 1800 1801 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 1802 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 1803 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 1804 STATIC void 1805 xfs_icsb_balance_counter_locked( 1806 xfs_mount_t *mp, 1807 xfs_sb_field_t field, 1808 int min_per_cpu) 1809 { 1810 uint64_t count, resid; 1811 int weight = num_online_cpus(); 1812 uint64_t min = (uint64_t)min_per_cpu; 1813 1814 /* disable counter and sync counter */ 1815 xfs_icsb_disable_counter(mp, field); 1816 1817 /* update counters - first CPU gets residual*/ 1818 switch (field) { 1819 case XFS_SBS_ICOUNT: 1820 count = mp->m_sb.sb_icount; 1821 resid = do_div(count, weight); 1822 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1823 return; 1824 break; 1825 case XFS_SBS_IFREE: 1826 count = mp->m_sb.sb_ifree; 1827 resid = do_div(count, weight); 1828 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 1829 return; 1830 break; 1831 case XFS_SBS_FDBLOCKS: 1832 count = mp->m_sb.sb_fdblocks; 1833 resid = do_div(count, weight); 1834 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 1835 return; 1836 break; 1837 default: 1838 BUG(); 1839 count = resid = 0; /* quiet, gcc */ 1840 break; 1841 } 1842 1843 xfs_icsb_enable_counter(mp, field, count, resid); 1844 } 1845 1846 STATIC void 1847 xfs_icsb_balance_counter( 1848 xfs_mount_t *mp, 1849 xfs_sb_field_t fields, 1850 int min_per_cpu) 1851 { 1852 spin_lock(&mp->m_sb_lock); 1853 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 1854 spin_unlock(&mp->m_sb_lock); 1855 } 1856 1857 int 1858 xfs_icsb_modify_counters( 1859 xfs_mount_t *mp, 1860 xfs_sb_field_t field, 1861 int64_t delta, 1862 int rsvd) 1863 { 1864 xfs_icsb_cnts_t *icsbp; 1865 long long lcounter; /* long counter for 64 bit fields */ 1866 int ret = 0; 1867 1868 might_sleep(); 1869 again: 1870 preempt_disable(); 1871 icsbp = this_cpu_ptr(mp->m_sb_cnts); 1872 1873 /* 1874 * if the counter is disabled, go to slow path 1875 */ 1876 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 1877 goto slow_path; 1878 xfs_icsb_lock_cntr(icsbp); 1879 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 1880 xfs_icsb_unlock_cntr(icsbp); 1881 goto slow_path; 1882 } 1883 1884 switch (field) { 1885 case XFS_SBS_ICOUNT: 1886 lcounter = icsbp->icsb_icount; 1887 lcounter += delta; 1888 if (unlikely(lcounter < 0)) 1889 goto balance_counter; 1890 icsbp->icsb_icount = lcounter; 1891 break; 1892 1893 case XFS_SBS_IFREE: 1894 lcounter = icsbp->icsb_ifree; 1895 lcounter += delta; 1896 if (unlikely(lcounter < 0)) 1897 goto balance_counter; 1898 icsbp->icsb_ifree = lcounter; 1899 break; 1900 1901 case XFS_SBS_FDBLOCKS: 1902 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 1903 1904 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1905 lcounter += delta; 1906 if (unlikely(lcounter < 0)) 1907 goto balance_counter; 1908 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1909 break; 1910 default: 1911 BUG(); 1912 break; 1913 } 1914 xfs_icsb_unlock_cntr(icsbp); 1915 preempt_enable(); 1916 return 0; 1917 1918 slow_path: 1919 preempt_enable(); 1920 1921 /* 1922 * serialise with a mutex so we don't burn lots of cpu on 1923 * the superblock lock. We still need to hold the superblock 1924 * lock, however, when we modify the global structures. 1925 */ 1926 xfs_icsb_lock(mp); 1927 1928 /* 1929 * Now running atomically. 1930 * 1931 * If the counter is enabled, someone has beaten us to rebalancing. 1932 * Drop the lock and try again in the fast path.... 1933 */ 1934 if (!(xfs_icsb_counter_disabled(mp, field))) { 1935 xfs_icsb_unlock(mp); 1936 goto again; 1937 } 1938 1939 /* 1940 * The counter is currently disabled. Because we are 1941 * running atomically here, we know a rebalance cannot 1942 * be in progress. Hence we can go straight to operating 1943 * on the global superblock. We do not call xfs_mod_incore_sb() 1944 * here even though we need to get the m_sb_lock. Doing so 1945 * will cause us to re-enter this function and deadlock. 1946 * Hence we get the m_sb_lock ourselves and then call 1947 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 1948 * directly on the global counters. 1949 */ 1950 spin_lock(&mp->m_sb_lock); 1951 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1952 spin_unlock(&mp->m_sb_lock); 1953 1954 /* 1955 * Now that we've modified the global superblock, we 1956 * may be able to re-enable the distributed counters 1957 * (e.g. lots of space just got freed). After that 1958 * we are done. 1959 */ 1960 if (ret != ENOSPC) 1961 xfs_icsb_balance_counter(mp, field, 0); 1962 xfs_icsb_unlock(mp); 1963 return ret; 1964 1965 balance_counter: 1966 xfs_icsb_unlock_cntr(icsbp); 1967 preempt_enable(); 1968 1969 /* 1970 * We may have multiple threads here if multiple per-cpu 1971 * counters run dry at the same time. This will mean we can 1972 * do more balances than strictly necessary but it is not 1973 * the common slowpath case. 1974 */ 1975 xfs_icsb_lock(mp); 1976 1977 /* 1978 * running atomically. 1979 * 1980 * This will leave the counter in the correct state for future 1981 * accesses. After the rebalance, we simply try again and our retry 1982 * will either succeed through the fast path or slow path without 1983 * another balance operation being required. 1984 */ 1985 xfs_icsb_balance_counter(mp, field, delta); 1986 xfs_icsb_unlock(mp); 1987 goto again; 1988 } 1989 1990 #endif 1991