xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 5bd8e16d)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_format.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_dir2_format.h"
31 #include "xfs_dir2.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_fsops.h"
45 #include "xfs_trace.h"
46 #include "xfs_icache.h"
47 #include "xfs_cksum.h"
48 #include "xfs_buf_item.h"
49 
50 
51 #ifdef HAVE_PERCPU_SB
52 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
53 						int);
54 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
55 						int);
56 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
57 #else
58 
59 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
60 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
61 #endif
62 
63 static DEFINE_MUTEX(xfs_uuid_table_mutex);
64 static int xfs_uuid_table_size;
65 static uuid_t *xfs_uuid_table;
66 
67 /*
68  * See if the UUID is unique among mounted XFS filesystems.
69  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
70  */
71 STATIC int
72 xfs_uuid_mount(
73 	struct xfs_mount	*mp)
74 {
75 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
76 	int			hole, i;
77 
78 	if (mp->m_flags & XFS_MOUNT_NOUUID)
79 		return 0;
80 
81 	if (uuid_is_nil(uuid)) {
82 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
83 		return XFS_ERROR(EINVAL);
84 	}
85 
86 	mutex_lock(&xfs_uuid_table_mutex);
87 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
88 		if (uuid_is_nil(&xfs_uuid_table[i])) {
89 			hole = i;
90 			continue;
91 		}
92 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
93 			goto out_duplicate;
94 	}
95 
96 	if (hole < 0) {
97 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
98 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
99 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
100 			KM_SLEEP);
101 		hole = xfs_uuid_table_size++;
102 	}
103 	xfs_uuid_table[hole] = *uuid;
104 	mutex_unlock(&xfs_uuid_table_mutex);
105 
106 	return 0;
107 
108  out_duplicate:
109 	mutex_unlock(&xfs_uuid_table_mutex);
110 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
111 	return XFS_ERROR(EINVAL);
112 }
113 
114 STATIC void
115 xfs_uuid_unmount(
116 	struct xfs_mount	*mp)
117 {
118 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
119 	int			i;
120 
121 	if (mp->m_flags & XFS_MOUNT_NOUUID)
122 		return;
123 
124 	mutex_lock(&xfs_uuid_table_mutex);
125 	for (i = 0; i < xfs_uuid_table_size; i++) {
126 		if (uuid_is_nil(&xfs_uuid_table[i]))
127 			continue;
128 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
129 			continue;
130 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
131 		break;
132 	}
133 	ASSERT(i < xfs_uuid_table_size);
134 	mutex_unlock(&xfs_uuid_table_mutex);
135 }
136 
137 
138 STATIC void
139 __xfs_free_perag(
140 	struct rcu_head	*head)
141 {
142 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
143 
144 	ASSERT(atomic_read(&pag->pag_ref) == 0);
145 	kmem_free(pag);
146 }
147 
148 /*
149  * Free up the per-ag resources associated with the mount structure.
150  */
151 STATIC void
152 xfs_free_perag(
153 	xfs_mount_t	*mp)
154 {
155 	xfs_agnumber_t	agno;
156 	struct xfs_perag *pag;
157 
158 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
159 		spin_lock(&mp->m_perag_lock);
160 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
161 		spin_unlock(&mp->m_perag_lock);
162 		ASSERT(pag);
163 		ASSERT(atomic_read(&pag->pag_ref) == 0);
164 		call_rcu(&pag->rcu_head, __xfs_free_perag);
165 	}
166 }
167 
168 /*
169  * Check size of device based on the (data/realtime) block count.
170  * Note: this check is used by the growfs code as well as mount.
171  */
172 int
173 xfs_sb_validate_fsb_count(
174 	xfs_sb_t	*sbp,
175 	__uint64_t	nblocks)
176 {
177 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
178 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
179 
180 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
181 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
182 		return EFBIG;
183 #else                  /* Limited by UINT_MAX of sectors */
184 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
185 		return EFBIG;
186 #endif
187 	return 0;
188 }
189 
190 int
191 xfs_initialize_perag(
192 	xfs_mount_t	*mp,
193 	xfs_agnumber_t	agcount,
194 	xfs_agnumber_t	*maxagi)
195 {
196 	xfs_agnumber_t	index;
197 	xfs_agnumber_t	first_initialised = 0;
198 	xfs_perag_t	*pag;
199 	xfs_agino_t	agino;
200 	xfs_ino_t	ino;
201 	xfs_sb_t	*sbp = &mp->m_sb;
202 	int		error = -ENOMEM;
203 
204 	/*
205 	 * Walk the current per-ag tree so we don't try to initialise AGs
206 	 * that already exist (growfs case). Allocate and insert all the
207 	 * AGs we don't find ready for initialisation.
208 	 */
209 	for (index = 0; index < agcount; index++) {
210 		pag = xfs_perag_get(mp, index);
211 		if (pag) {
212 			xfs_perag_put(pag);
213 			continue;
214 		}
215 		if (!first_initialised)
216 			first_initialised = index;
217 
218 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
219 		if (!pag)
220 			goto out_unwind;
221 		pag->pag_agno = index;
222 		pag->pag_mount = mp;
223 		spin_lock_init(&pag->pag_ici_lock);
224 		mutex_init(&pag->pag_ici_reclaim_lock);
225 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
226 		spin_lock_init(&pag->pag_buf_lock);
227 		pag->pag_buf_tree = RB_ROOT;
228 
229 		if (radix_tree_preload(GFP_NOFS))
230 			goto out_unwind;
231 
232 		spin_lock(&mp->m_perag_lock);
233 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
234 			BUG();
235 			spin_unlock(&mp->m_perag_lock);
236 			radix_tree_preload_end();
237 			error = -EEXIST;
238 			goto out_unwind;
239 		}
240 		spin_unlock(&mp->m_perag_lock);
241 		radix_tree_preload_end();
242 	}
243 
244 	/*
245 	 * If we mount with the inode64 option, or no inode overflows
246 	 * the legacy 32-bit address space clear the inode32 option.
247 	 */
248 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
249 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
250 
251 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
252 		mp->m_flags |= XFS_MOUNT_32BITINODES;
253 	else
254 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
255 
256 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
257 		index = xfs_set_inode32(mp);
258 	else
259 		index = xfs_set_inode64(mp);
260 
261 	if (maxagi)
262 		*maxagi = index;
263 	return 0;
264 
265 out_unwind:
266 	kmem_free(pag);
267 	for (; index > first_initialised; index--) {
268 		pag = radix_tree_delete(&mp->m_perag_tree, index);
269 		kmem_free(pag);
270 	}
271 	return error;
272 }
273 
274 /*
275  * xfs_readsb
276  *
277  * Does the initial read of the superblock.
278  */
279 int
280 xfs_readsb(
281 	struct xfs_mount *mp,
282 	int		flags)
283 {
284 	unsigned int	sector_size;
285 	struct xfs_buf	*bp;
286 	struct xfs_sb	*sbp = &mp->m_sb;
287 	int		error;
288 	int		loud = !(flags & XFS_MFSI_QUIET);
289 
290 	ASSERT(mp->m_sb_bp == NULL);
291 	ASSERT(mp->m_ddev_targp != NULL);
292 
293 	/*
294 	 * Allocate a (locked) buffer to hold the superblock.
295 	 * This will be kept around at all times to optimize
296 	 * access to the superblock.
297 	 */
298 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
299 
300 reread:
301 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
302 				   BTOBB(sector_size), 0,
303 				   loud ? &xfs_sb_buf_ops
304 				        : &xfs_sb_quiet_buf_ops);
305 	if (!bp) {
306 		if (loud)
307 			xfs_warn(mp, "SB buffer read failed");
308 		return EIO;
309 	}
310 	if (bp->b_error) {
311 		error = bp->b_error;
312 		if (loud)
313 			xfs_warn(mp, "SB validate failed with error %d.", error);
314 		goto release_buf;
315 	}
316 
317 	/*
318 	 * Initialize the mount structure from the superblock.
319 	 */
320 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
321 	xfs_sb_quota_from_disk(&mp->m_sb);
322 
323 	/*
324 	 * We must be able to do sector-sized and sector-aligned IO.
325 	 */
326 	if (sector_size > sbp->sb_sectsize) {
327 		if (loud)
328 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
329 				sector_size, sbp->sb_sectsize);
330 		error = ENOSYS;
331 		goto release_buf;
332 	}
333 
334 	/*
335 	 * If device sector size is smaller than the superblock size,
336 	 * re-read the superblock so the buffer is correctly sized.
337 	 */
338 	if (sector_size < sbp->sb_sectsize) {
339 		xfs_buf_relse(bp);
340 		sector_size = sbp->sb_sectsize;
341 		goto reread;
342 	}
343 
344 	/* Initialize per-cpu counters */
345 	xfs_icsb_reinit_counters(mp);
346 
347 	/* no need to be quiet anymore, so reset the buf ops */
348 	bp->b_ops = &xfs_sb_buf_ops;
349 
350 	mp->m_sb_bp = bp;
351 	xfs_buf_unlock(bp);
352 	return 0;
353 
354 release_buf:
355 	xfs_buf_relse(bp);
356 	return error;
357 }
358 
359 /*
360  * Update alignment values based on mount options and sb values
361  */
362 STATIC int
363 xfs_update_alignment(xfs_mount_t *mp)
364 {
365 	xfs_sb_t	*sbp = &(mp->m_sb);
366 
367 	if (mp->m_dalign) {
368 		/*
369 		 * If stripe unit and stripe width are not multiples
370 		 * of the fs blocksize turn off alignment.
371 		 */
372 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
373 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
374 			xfs_warn(mp,
375 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
376 				sbp->sb_blocksize);
377 			return XFS_ERROR(EINVAL);
378 		} else {
379 			/*
380 			 * Convert the stripe unit and width to FSBs.
381 			 */
382 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
383 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
384 				xfs_warn(mp,
385 			"alignment check failed: sunit/swidth vs. agsize(%d)",
386 					 sbp->sb_agblocks);
387 				return XFS_ERROR(EINVAL);
388 			} else if (mp->m_dalign) {
389 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
390 			} else {
391 				xfs_warn(mp,
392 			"alignment check failed: sunit(%d) less than bsize(%d)",
393 					 mp->m_dalign, sbp->sb_blocksize);
394 				return XFS_ERROR(EINVAL);
395 			}
396 		}
397 
398 		/*
399 		 * Update superblock with new values
400 		 * and log changes
401 		 */
402 		if (xfs_sb_version_hasdalign(sbp)) {
403 			if (sbp->sb_unit != mp->m_dalign) {
404 				sbp->sb_unit = mp->m_dalign;
405 				mp->m_update_flags |= XFS_SB_UNIT;
406 			}
407 			if (sbp->sb_width != mp->m_swidth) {
408 				sbp->sb_width = mp->m_swidth;
409 				mp->m_update_flags |= XFS_SB_WIDTH;
410 			}
411 		} else {
412 			xfs_warn(mp,
413 	"cannot change alignment: superblock does not support data alignment");
414 			return XFS_ERROR(EINVAL);
415 		}
416 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
417 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
418 			mp->m_dalign = sbp->sb_unit;
419 			mp->m_swidth = sbp->sb_width;
420 	}
421 
422 	return 0;
423 }
424 
425 /*
426  * Set the maximum inode count for this filesystem
427  */
428 STATIC void
429 xfs_set_maxicount(xfs_mount_t *mp)
430 {
431 	xfs_sb_t	*sbp = &(mp->m_sb);
432 	__uint64_t	icount;
433 
434 	if (sbp->sb_imax_pct) {
435 		/*
436 		 * Make sure the maximum inode count is a multiple
437 		 * of the units we allocate inodes in.
438 		 */
439 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
440 		do_div(icount, 100);
441 		do_div(icount, mp->m_ialloc_blks);
442 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
443 				   sbp->sb_inopblog;
444 	} else {
445 		mp->m_maxicount = 0;
446 	}
447 }
448 
449 /*
450  * Set the default minimum read and write sizes unless
451  * already specified in a mount option.
452  * We use smaller I/O sizes when the file system
453  * is being used for NFS service (wsync mount option).
454  */
455 STATIC void
456 xfs_set_rw_sizes(xfs_mount_t *mp)
457 {
458 	xfs_sb_t	*sbp = &(mp->m_sb);
459 	int		readio_log, writeio_log;
460 
461 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
462 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
463 			readio_log = XFS_WSYNC_READIO_LOG;
464 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
465 		} else {
466 			readio_log = XFS_READIO_LOG_LARGE;
467 			writeio_log = XFS_WRITEIO_LOG_LARGE;
468 		}
469 	} else {
470 		readio_log = mp->m_readio_log;
471 		writeio_log = mp->m_writeio_log;
472 	}
473 
474 	if (sbp->sb_blocklog > readio_log) {
475 		mp->m_readio_log = sbp->sb_blocklog;
476 	} else {
477 		mp->m_readio_log = readio_log;
478 	}
479 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
480 	if (sbp->sb_blocklog > writeio_log) {
481 		mp->m_writeio_log = sbp->sb_blocklog;
482 	} else {
483 		mp->m_writeio_log = writeio_log;
484 	}
485 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
486 }
487 
488 /*
489  * precalculate the low space thresholds for dynamic speculative preallocation.
490  */
491 void
492 xfs_set_low_space_thresholds(
493 	struct xfs_mount	*mp)
494 {
495 	int i;
496 
497 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
498 		__uint64_t space = mp->m_sb.sb_dblocks;
499 
500 		do_div(space, 100);
501 		mp->m_low_space[i] = space * (i + 1);
502 	}
503 }
504 
505 
506 /*
507  * Set whether we're using inode alignment.
508  */
509 STATIC void
510 xfs_set_inoalignment(xfs_mount_t *mp)
511 {
512 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
513 	    mp->m_sb.sb_inoalignmt >=
514 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
515 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
516 	else
517 		mp->m_inoalign_mask = 0;
518 	/*
519 	 * If we are using stripe alignment, check whether
520 	 * the stripe unit is a multiple of the inode alignment
521 	 */
522 	if (mp->m_dalign && mp->m_inoalign_mask &&
523 	    !(mp->m_dalign & mp->m_inoalign_mask))
524 		mp->m_sinoalign = mp->m_dalign;
525 	else
526 		mp->m_sinoalign = 0;
527 }
528 
529 /*
530  * Check that the data (and log if separate) is an ok size.
531  */
532 STATIC int
533 xfs_check_sizes(xfs_mount_t *mp)
534 {
535 	xfs_buf_t	*bp;
536 	xfs_daddr_t	d;
537 
538 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
539 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
540 		xfs_warn(mp, "filesystem size mismatch detected");
541 		return XFS_ERROR(EFBIG);
542 	}
543 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
544 					d - XFS_FSS_TO_BB(mp, 1),
545 					XFS_FSS_TO_BB(mp, 1), 0, NULL);
546 	if (!bp) {
547 		xfs_warn(mp, "last sector read failed");
548 		return EIO;
549 	}
550 	xfs_buf_relse(bp);
551 
552 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
553 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
554 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
555 			xfs_warn(mp, "log size mismatch detected");
556 			return XFS_ERROR(EFBIG);
557 		}
558 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
559 					d - XFS_FSB_TO_BB(mp, 1),
560 					XFS_FSB_TO_BB(mp, 1), 0, NULL);
561 		if (!bp) {
562 			xfs_warn(mp, "log device read failed");
563 			return EIO;
564 		}
565 		xfs_buf_relse(bp);
566 	}
567 	return 0;
568 }
569 
570 /*
571  * Clear the quotaflags in memory and in the superblock.
572  */
573 int
574 xfs_mount_reset_sbqflags(
575 	struct xfs_mount	*mp)
576 {
577 	int			error;
578 	struct xfs_trans	*tp;
579 
580 	mp->m_qflags = 0;
581 
582 	/*
583 	 * It is OK to look at sb_qflags here in mount path,
584 	 * without m_sb_lock.
585 	 */
586 	if (mp->m_sb.sb_qflags == 0)
587 		return 0;
588 	spin_lock(&mp->m_sb_lock);
589 	mp->m_sb.sb_qflags = 0;
590 	spin_unlock(&mp->m_sb_lock);
591 
592 	/*
593 	 * If the fs is readonly, let the incore superblock run
594 	 * with quotas off but don't flush the update out to disk
595 	 */
596 	if (mp->m_flags & XFS_MOUNT_RDONLY)
597 		return 0;
598 
599 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
600 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
601 	if (error) {
602 		xfs_trans_cancel(tp, 0);
603 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
604 		return error;
605 	}
606 
607 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
608 	return xfs_trans_commit(tp, 0);
609 }
610 
611 __uint64_t
612 xfs_default_resblks(xfs_mount_t *mp)
613 {
614 	__uint64_t resblks;
615 
616 	/*
617 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
618 	 * smaller.  This is intended to cover concurrent allocation
619 	 * transactions when we initially hit enospc. These each require a 4
620 	 * block reservation. Hence by default we cover roughly 2000 concurrent
621 	 * allocation reservations.
622 	 */
623 	resblks = mp->m_sb.sb_dblocks;
624 	do_div(resblks, 20);
625 	resblks = min_t(__uint64_t, resblks, 8192);
626 	return resblks;
627 }
628 
629 /*
630  * This function does the following on an initial mount of a file system:
631  *	- reads the superblock from disk and init the mount struct
632  *	- if we're a 32-bit kernel, do a size check on the superblock
633  *		so we don't mount terabyte filesystems
634  *	- init mount struct realtime fields
635  *	- allocate inode hash table for fs
636  *	- init directory manager
637  *	- perform recovery and init the log manager
638  */
639 int
640 xfs_mountfs(
641 	xfs_mount_t	*mp)
642 {
643 	xfs_sb_t	*sbp = &(mp->m_sb);
644 	xfs_inode_t	*rip;
645 	__uint64_t	resblks;
646 	uint		quotamount = 0;
647 	uint		quotaflags = 0;
648 	int		error = 0;
649 
650 	xfs_sb_mount_common(mp, sbp);
651 
652 	/*
653 	 * Check for a mismatched features2 values.  Older kernels
654 	 * read & wrote into the wrong sb offset for sb_features2
655 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
656 	 * when sb_features2 was added, which made older superblock
657 	 * reading/writing routines swap it as a 64-bit value.
658 	 *
659 	 * For backwards compatibility, we make both slots equal.
660 	 *
661 	 * If we detect a mismatched field, we OR the set bits into the
662 	 * existing features2 field in case it has already been modified; we
663 	 * don't want to lose any features.  We then update the bad location
664 	 * with the ORed value so that older kernels will see any features2
665 	 * flags, and mark the two fields as needing updates once the
666 	 * transaction subsystem is online.
667 	 */
668 	if (xfs_sb_has_mismatched_features2(sbp)) {
669 		xfs_warn(mp, "correcting sb_features alignment problem");
670 		sbp->sb_features2 |= sbp->sb_bad_features2;
671 		sbp->sb_bad_features2 = sbp->sb_features2;
672 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
673 
674 		/*
675 		 * Re-check for ATTR2 in case it was found in bad_features2
676 		 * slot.
677 		 */
678 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
679 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
680 			mp->m_flags |= XFS_MOUNT_ATTR2;
681 	}
682 
683 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
684 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
685 		xfs_sb_version_removeattr2(&mp->m_sb);
686 		mp->m_update_flags |= XFS_SB_FEATURES2;
687 
688 		/* update sb_versionnum for the clearing of the morebits */
689 		if (!sbp->sb_features2)
690 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
691 	}
692 
693 	/*
694 	 * Check if sb_agblocks is aligned at stripe boundary
695 	 * If sb_agblocks is NOT aligned turn off m_dalign since
696 	 * allocator alignment is within an ag, therefore ag has
697 	 * to be aligned at stripe boundary.
698 	 */
699 	error = xfs_update_alignment(mp);
700 	if (error)
701 		goto out;
702 
703 	xfs_alloc_compute_maxlevels(mp);
704 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
705 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
706 	xfs_ialloc_compute_maxlevels(mp);
707 
708 	xfs_set_maxicount(mp);
709 
710 	error = xfs_uuid_mount(mp);
711 	if (error)
712 		goto out;
713 
714 	/*
715 	 * Set the minimum read and write sizes
716 	 */
717 	xfs_set_rw_sizes(mp);
718 
719 	/* set the low space thresholds for dynamic preallocation */
720 	xfs_set_low_space_thresholds(mp);
721 
722 	/*
723 	 * Set the inode cluster size.
724 	 * This may still be overridden by the file system
725 	 * block size if it is larger than the chosen cluster size.
726 	 */
727 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
728 
729 	/*
730 	 * Set inode alignment fields
731 	 */
732 	xfs_set_inoalignment(mp);
733 
734 	/*
735 	 * Check that the data (and log if separate) is an ok size.
736 	 */
737 	error = xfs_check_sizes(mp);
738 	if (error)
739 		goto out_remove_uuid;
740 
741 	/*
742 	 * Initialize realtime fields in the mount structure
743 	 */
744 	error = xfs_rtmount_init(mp);
745 	if (error) {
746 		xfs_warn(mp, "RT mount failed");
747 		goto out_remove_uuid;
748 	}
749 
750 	/*
751 	 *  Copies the low order bits of the timestamp and the randomly
752 	 *  set "sequence" number out of a UUID.
753 	 */
754 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
755 
756 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
757 
758 	xfs_dir_mount(mp);
759 
760 	/*
761 	 * Initialize the attribute manager's entries.
762 	 */
763 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
764 
765 	/*
766 	 * Initialize the precomputed transaction reservations values.
767 	 */
768 	xfs_trans_init(mp);
769 
770 	/*
771 	 * Allocate and initialize the per-ag data.
772 	 */
773 	spin_lock_init(&mp->m_perag_lock);
774 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
775 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
776 	if (error) {
777 		xfs_warn(mp, "Failed per-ag init: %d", error);
778 		goto out_remove_uuid;
779 	}
780 
781 	if (!sbp->sb_logblocks) {
782 		xfs_warn(mp, "no log defined");
783 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
784 		error = XFS_ERROR(EFSCORRUPTED);
785 		goto out_free_perag;
786 	}
787 
788 	/*
789 	 * log's mount-time initialization. Perform 1st part recovery if needed
790 	 */
791 	error = xfs_log_mount(mp, mp->m_logdev_targp,
792 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
793 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
794 	if (error) {
795 		xfs_warn(mp, "log mount failed");
796 		goto out_fail_wait;
797 	}
798 
799 	/*
800 	 * Now the log is mounted, we know if it was an unclean shutdown or
801 	 * not. If it was, with the first phase of recovery has completed, we
802 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
803 	 * but they are recovered transactionally in the second recovery phase
804 	 * later.
805 	 *
806 	 * Hence we can safely re-initialise incore superblock counters from
807 	 * the per-ag data. These may not be correct if the filesystem was not
808 	 * cleanly unmounted, so we need to wait for recovery to finish before
809 	 * doing this.
810 	 *
811 	 * If the filesystem was cleanly unmounted, then we can trust the
812 	 * values in the superblock to be correct and we don't need to do
813 	 * anything here.
814 	 *
815 	 * If we are currently making the filesystem, the initialisation will
816 	 * fail as the perag data is in an undefined state.
817 	 */
818 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
819 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
820 	     !mp->m_sb.sb_inprogress) {
821 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
822 		if (error)
823 			goto out_fail_wait;
824 	}
825 
826 	/*
827 	 * Get and sanity-check the root inode.
828 	 * Save the pointer to it in the mount structure.
829 	 */
830 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
831 	if (error) {
832 		xfs_warn(mp, "failed to read root inode");
833 		goto out_log_dealloc;
834 	}
835 
836 	ASSERT(rip != NULL);
837 
838 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
839 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
840 			(unsigned long long)rip->i_ino);
841 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
842 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
843 				 mp);
844 		error = XFS_ERROR(EFSCORRUPTED);
845 		goto out_rele_rip;
846 	}
847 	mp->m_rootip = rip;	/* save it */
848 
849 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
850 
851 	/*
852 	 * Initialize realtime inode pointers in the mount structure
853 	 */
854 	error = xfs_rtmount_inodes(mp);
855 	if (error) {
856 		/*
857 		 * Free up the root inode.
858 		 */
859 		xfs_warn(mp, "failed to read RT inodes");
860 		goto out_rele_rip;
861 	}
862 
863 	/*
864 	 * If this is a read-only mount defer the superblock updates until
865 	 * the next remount into writeable mode.  Otherwise we would never
866 	 * perform the update e.g. for the root filesystem.
867 	 */
868 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
869 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
870 		if (error) {
871 			xfs_warn(mp, "failed to write sb changes");
872 			goto out_rtunmount;
873 		}
874 	}
875 
876 	/*
877 	 * Initialise the XFS quota management subsystem for this mount
878 	 */
879 	if (XFS_IS_QUOTA_RUNNING(mp)) {
880 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
881 		if (error)
882 			goto out_rtunmount;
883 	} else {
884 		ASSERT(!XFS_IS_QUOTA_ON(mp));
885 
886 		/*
887 		 * If a file system had quotas running earlier, but decided to
888 		 * mount without -o uquota/pquota/gquota options, revoke the
889 		 * quotachecked license.
890 		 */
891 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
892 			xfs_notice(mp, "resetting quota flags");
893 			error = xfs_mount_reset_sbqflags(mp);
894 			if (error)
895 				return error;
896 		}
897 	}
898 
899 	/*
900 	 * Finish recovering the file system.  This part needed to be
901 	 * delayed until after the root and real-time bitmap inodes
902 	 * were consistently read in.
903 	 */
904 	error = xfs_log_mount_finish(mp);
905 	if (error) {
906 		xfs_warn(mp, "log mount finish failed");
907 		goto out_rtunmount;
908 	}
909 
910 	/*
911 	 * Complete the quota initialisation, post-log-replay component.
912 	 */
913 	if (quotamount) {
914 		ASSERT(mp->m_qflags == 0);
915 		mp->m_qflags = quotaflags;
916 
917 		xfs_qm_mount_quotas(mp);
918 	}
919 
920 	/*
921 	 * Now we are mounted, reserve a small amount of unused space for
922 	 * privileged transactions. This is needed so that transaction
923 	 * space required for critical operations can dip into this pool
924 	 * when at ENOSPC. This is needed for operations like create with
925 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
926 	 * are not allowed to use this reserved space.
927 	 *
928 	 * This may drive us straight to ENOSPC on mount, but that implies
929 	 * we were already there on the last unmount. Warn if this occurs.
930 	 */
931 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
932 		resblks = xfs_default_resblks(mp);
933 		error = xfs_reserve_blocks(mp, &resblks, NULL);
934 		if (error)
935 			xfs_warn(mp,
936 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
937 	}
938 
939 	return 0;
940 
941  out_rtunmount:
942 	xfs_rtunmount_inodes(mp);
943  out_rele_rip:
944 	IRELE(rip);
945  out_log_dealloc:
946 	xfs_log_unmount(mp);
947  out_fail_wait:
948 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
949 		xfs_wait_buftarg(mp->m_logdev_targp);
950 	xfs_wait_buftarg(mp->m_ddev_targp);
951  out_free_perag:
952 	xfs_free_perag(mp);
953  out_remove_uuid:
954 	xfs_uuid_unmount(mp);
955  out:
956 	return error;
957 }
958 
959 /*
960  * This flushes out the inodes,dquots and the superblock, unmounts the
961  * log and makes sure that incore structures are freed.
962  */
963 void
964 xfs_unmountfs(
965 	struct xfs_mount	*mp)
966 {
967 	__uint64_t		resblks;
968 	int			error;
969 
970 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
971 
972 	xfs_qm_unmount_quotas(mp);
973 	xfs_rtunmount_inodes(mp);
974 	IRELE(mp->m_rootip);
975 
976 	/*
977 	 * We can potentially deadlock here if we have an inode cluster
978 	 * that has been freed has its buffer still pinned in memory because
979 	 * the transaction is still sitting in a iclog. The stale inodes
980 	 * on that buffer will have their flush locks held until the
981 	 * transaction hits the disk and the callbacks run. the inode
982 	 * flush takes the flush lock unconditionally and with nothing to
983 	 * push out the iclog we will never get that unlocked. hence we
984 	 * need to force the log first.
985 	 */
986 	xfs_log_force(mp, XFS_LOG_SYNC);
987 
988 	/*
989 	 * Flush all pending changes from the AIL.
990 	 */
991 	xfs_ail_push_all_sync(mp->m_ail);
992 
993 	/*
994 	 * And reclaim all inodes.  At this point there should be no dirty
995 	 * inodes and none should be pinned or locked, but use synchronous
996 	 * reclaim just to be sure. We can stop background inode reclaim
997 	 * here as well if it is still running.
998 	 */
999 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1000 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1001 
1002 	xfs_qm_unmount(mp);
1003 
1004 	/*
1005 	 * Unreserve any blocks we have so that when we unmount we don't account
1006 	 * the reserved free space as used. This is really only necessary for
1007 	 * lazy superblock counting because it trusts the incore superblock
1008 	 * counters to be absolutely correct on clean unmount.
1009 	 *
1010 	 * We don't bother correcting this elsewhere for lazy superblock
1011 	 * counting because on mount of an unclean filesystem we reconstruct the
1012 	 * correct counter value and this is irrelevant.
1013 	 *
1014 	 * For non-lazy counter filesystems, this doesn't matter at all because
1015 	 * we only every apply deltas to the superblock and hence the incore
1016 	 * value does not matter....
1017 	 */
1018 	resblks = 0;
1019 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1020 	if (error)
1021 		xfs_warn(mp, "Unable to free reserved block pool. "
1022 				"Freespace may not be correct on next mount.");
1023 
1024 	error = xfs_log_sbcount(mp);
1025 	if (error)
1026 		xfs_warn(mp, "Unable to update superblock counters. "
1027 				"Freespace may not be correct on next mount.");
1028 
1029 	xfs_log_unmount(mp);
1030 	xfs_uuid_unmount(mp);
1031 
1032 #if defined(DEBUG)
1033 	xfs_errortag_clearall(mp, 0);
1034 #endif
1035 	xfs_free_perag(mp);
1036 }
1037 
1038 int
1039 xfs_fs_writable(xfs_mount_t *mp)
1040 {
1041 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1042 		(mp->m_flags & XFS_MOUNT_RDONLY));
1043 }
1044 
1045 /*
1046  * xfs_log_sbcount
1047  *
1048  * Sync the superblock counters to disk.
1049  *
1050  * Note this code can be called during the process of freezing, so
1051  * we may need to use the transaction allocator which does not
1052  * block when the transaction subsystem is in its frozen state.
1053  */
1054 int
1055 xfs_log_sbcount(xfs_mount_t *mp)
1056 {
1057 	xfs_trans_t	*tp;
1058 	int		error;
1059 
1060 	if (!xfs_fs_writable(mp))
1061 		return 0;
1062 
1063 	xfs_icsb_sync_counters(mp, 0);
1064 
1065 	/*
1066 	 * we don't need to do this if we are updating the superblock
1067 	 * counters on every modification.
1068 	 */
1069 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1070 		return 0;
1071 
1072 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1073 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1074 	if (error) {
1075 		xfs_trans_cancel(tp, 0);
1076 		return error;
1077 	}
1078 
1079 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1080 	xfs_trans_set_sync(tp);
1081 	error = xfs_trans_commit(tp, 0);
1082 	return error;
1083 }
1084 
1085 /*
1086  * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1087  * a delta to a specified field in the in-core superblock.  Simply
1088  * switch on the field indicated and apply the delta to that field.
1089  * Fields are not allowed to dip below zero, so if the delta would
1090  * do this do not apply it and return EINVAL.
1091  *
1092  * The m_sb_lock must be held when this routine is called.
1093  */
1094 STATIC int
1095 xfs_mod_incore_sb_unlocked(
1096 	xfs_mount_t	*mp,
1097 	xfs_sb_field_t	field,
1098 	int64_t		delta,
1099 	int		rsvd)
1100 {
1101 	int		scounter;	/* short counter for 32 bit fields */
1102 	long long	lcounter;	/* long counter for 64 bit fields */
1103 	long long	res_used, rem;
1104 
1105 	/*
1106 	 * With the in-core superblock spin lock held, switch
1107 	 * on the indicated field.  Apply the delta to the
1108 	 * proper field.  If the fields value would dip below
1109 	 * 0, then do not apply the delta and return EINVAL.
1110 	 */
1111 	switch (field) {
1112 	case XFS_SBS_ICOUNT:
1113 		lcounter = (long long)mp->m_sb.sb_icount;
1114 		lcounter += delta;
1115 		if (lcounter < 0) {
1116 			ASSERT(0);
1117 			return XFS_ERROR(EINVAL);
1118 		}
1119 		mp->m_sb.sb_icount = lcounter;
1120 		return 0;
1121 	case XFS_SBS_IFREE:
1122 		lcounter = (long long)mp->m_sb.sb_ifree;
1123 		lcounter += delta;
1124 		if (lcounter < 0) {
1125 			ASSERT(0);
1126 			return XFS_ERROR(EINVAL);
1127 		}
1128 		mp->m_sb.sb_ifree = lcounter;
1129 		return 0;
1130 	case XFS_SBS_FDBLOCKS:
1131 		lcounter = (long long)
1132 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1133 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1134 
1135 		if (delta > 0) {		/* Putting blocks back */
1136 			if (res_used > delta) {
1137 				mp->m_resblks_avail += delta;
1138 			} else {
1139 				rem = delta - res_used;
1140 				mp->m_resblks_avail = mp->m_resblks;
1141 				lcounter += rem;
1142 			}
1143 		} else {				/* Taking blocks away */
1144 			lcounter += delta;
1145 			if (lcounter >= 0) {
1146 				mp->m_sb.sb_fdblocks = lcounter +
1147 							XFS_ALLOC_SET_ASIDE(mp);
1148 				return 0;
1149 			}
1150 
1151 			/*
1152 			 * We are out of blocks, use any available reserved
1153 			 * blocks if were allowed to.
1154 			 */
1155 			if (!rsvd)
1156 				return XFS_ERROR(ENOSPC);
1157 
1158 			lcounter = (long long)mp->m_resblks_avail + delta;
1159 			if (lcounter >= 0) {
1160 				mp->m_resblks_avail = lcounter;
1161 				return 0;
1162 			}
1163 			printk_once(KERN_WARNING
1164 				"Filesystem \"%s\": reserve blocks depleted! "
1165 				"Consider increasing reserve pool size.",
1166 				mp->m_fsname);
1167 			return XFS_ERROR(ENOSPC);
1168 		}
1169 
1170 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1171 		return 0;
1172 	case XFS_SBS_FREXTENTS:
1173 		lcounter = (long long)mp->m_sb.sb_frextents;
1174 		lcounter += delta;
1175 		if (lcounter < 0) {
1176 			return XFS_ERROR(ENOSPC);
1177 		}
1178 		mp->m_sb.sb_frextents = lcounter;
1179 		return 0;
1180 	case XFS_SBS_DBLOCKS:
1181 		lcounter = (long long)mp->m_sb.sb_dblocks;
1182 		lcounter += delta;
1183 		if (lcounter < 0) {
1184 			ASSERT(0);
1185 			return XFS_ERROR(EINVAL);
1186 		}
1187 		mp->m_sb.sb_dblocks = lcounter;
1188 		return 0;
1189 	case XFS_SBS_AGCOUNT:
1190 		scounter = mp->m_sb.sb_agcount;
1191 		scounter += delta;
1192 		if (scounter < 0) {
1193 			ASSERT(0);
1194 			return XFS_ERROR(EINVAL);
1195 		}
1196 		mp->m_sb.sb_agcount = scounter;
1197 		return 0;
1198 	case XFS_SBS_IMAX_PCT:
1199 		scounter = mp->m_sb.sb_imax_pct;
1200 		scounter += delta;
1201 		if (scounter < 0) {
1202 			ASSERT(0);
1203 			return XFS_ERROR(EINVAL);
1204 		}
1205 		mp->m_sb.sb_imax_pct = scounter;
1206 		return 0;
1207 	case XFS_SBS_REXTSIZE:
1208 		scounter = mp->m_sb.sb_rextsize;
1209 		scounter += delta;
1210 		if (scounter < 0) {
1211 			ASSERT(0);
1212 			return XFS_ERROR(EINVAL);
1213 		}
1214 		mp->m_sb.sb_rextsize = scounter;
1215 		return 0;
1216 	case XFS_SBS_RBMBLOCKS:
1217 		scounter = mp->m_sb.sb_rbmblocks;
1218 		scounter += delta;
1219 		if (scounter < 0) {
1220 			ASSERT(0);
1221 			return XFS_ERROR(EINVAL);
1222 		}
1223 		mp->m_sb.sb_rbmblocks = scounter;
1224 		return 0;
1225 	case XFS_SBS_RBLOCKS:
1226 		lcounter = (long long)mp->m_sb.sb_rblocks;
1227 		lcounter += delta;
1228 		if (lcounter < 0) {
1229 			ASSERT(0);
1230 			return XFS_ERROR(EINVAL);
1231 		}
1232 		mp->m_sb.sb_rblocks = lcounter;
1233 		return 0;
1234 	case XFS_SBS_REXTENTS:
1235 		lcounter = (long long)mp->m_sb.sb_rextents;
1236 		lcounter += delta;
1237 		if (lcounter < 0) {
1238 			ASSERT(0);
1239 			return XFS_ERROR(EINVAL);
1240 		}
1241 		mp->m_sb.sb_rextents = lcounter;
1242 		return 0;
1243 	case XFS_SBS_REXTSLOG:
1244 		scounter = mp->m_sb.sb_rextslog;
1245 		scounter += delta;
1246 		if (scounter < 0) {
1247 			ASSERT(0);
1248 			return XFS_ERROR(EINVAL);
1249 		}
1250 		mp->m_sb.sb_rextslog = scounter;
1251 		return 0;
1252 	default:
1253 		ASSERT(0);
1254 		return XFS_ERROR(EINVAL);
1255 	}
1256 }
1257 
1258 /*
1259  * xfs_mod_incore_sb() is used to change a field in the in-core
1260  * superblock structure by the specified delta.  This modification
1261  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1262  * routine to do the work.
1263  */
1264 int
1265 xfs_mod_incore_sb(
1266 	struct xfs_mount	*mp,
1267 	xfs_sb_field_t		field,
1268 	int64_t			delta,
1269 	int			rsvd)
1270 {
1271 	int			status;
1272 
1273 #ifdef HAVE_PERCPU_SB
1274 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1275 #endif
1276 	spin_lock(&mp->m_sb_lock);
1277 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1278 	spin_unlock(&mp->m_sb_lock);
1279 
1280 	return status;
1281 }
1282 
1283 /*
1284  * Change more than one field in the in-core superblock structure at a time.
1285  *
1286  * The fields and changes to those fields are specified in the array of
1287  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1288  * will be applied or none of them will.  If any modified field dips below 0,
1289  * then all modifications will be backed out and EINVAL will be returned.
1290  *
1291  * Note that this function may not be used for the superblock values that
1292  * are tracked with the in-memory per-cpu counters - a direct call to
1293  * xfs_icsb_modify_counters is required for these.
1294  */
1295 int
1296 xfs_mod_incore_sb_batch(
1297 	struct xfs_mount	*mp,
1298 	xfs_mod_sb_t		*msb,
1299 	uint			nmsb,
1300 	int			rsvd)
1301 {
1302 	xfs_mod_sb_t		*msbp;
1303 	int			error = 0;
1304 
1305 	/*
1306 	 * Loop through the array of mod structures and apply each individually.
1307 	 * If any fail, then back out all those which have already been applied.
1308 	 * Do all of this within the scope of the m_sb_lock so that all of the
1309 	 * changes will be atomic.
1310 	 */
1311 	spin_lock(&mp->m_sb_lock);
1312 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1313 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1314 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1315 
1316 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1317 						   msbp->msb_delta, rsvd);
1318 		if (error)
1319 			goto unwind;
1320 	}
1321 	spin_unlock(&mp->m_sb_lock);
1322 	return 0;
1323 
1324 unwind:
1325 	while (--msbp >= msb) {
1326 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1327 						   -msbp->msb_delta, rsvd);
1328 		ASSERT(error == 0);
1329 	}
1330 	spin_unlock(&mp->m_sb_lock);
1331 	return error;
1332 }
1333 
1334 /*
1335  * xfs_getsb() is called to obtain the buffer for the superblock.
1336  * The buffer is returned locked and read in from disk.
1337  * The buffer should be released with a call to xfs_brelse().
1338  *
1339  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1340  * the superblock buffer if it can be locked without sleeping.
1341  * If it can't then we'll return NULL.
1342  */
1343 struct xfs_buf *
1344 xfs_getsb(
1345 	struct xfs_mount	*mp,
1346 	int			flags)
1347 {
1348 	struct xfs_buf		*bp = mp->m_sb_bp;
1349 
1350 	if (!xfs_buf_trylock(bp)) {
1351 		if (flags & XBF_TRYLOCK)
1352 			return NULL;
1353 		xfs_buf_lock(bp);
1354 	}
1355 
1356 	xfs_buf_hold(bp);
1357 	ASSERT(XFS_BUF_ISDONE(bp));
1358 	return bp;
1359 }
1360 
1361 /*
1362  * Used to free the superblock along various error paths.
1363  */
1364 void
1365 xfs_freesb(
1366 	struct xfs_mount	*mp)
1367 {
1368 	struct xfs_buf		*bp = mp->m_sb_bp;
1369 
1370 	xfs_buf_lock(bp);
1371 	mp->m_sb_bp = NULL;
1372 	xfs_buf_relse(bp);
1373 }
1374 
1375 /*
1376  * Used to log changes to the superblock unit and width fields which could
1377  * be altered by the mount options, as well as any potential sb_features2
1378  * fixup. Only the first superblock is updated.
1379  */
1380 int
1381 xfs_mount_log_sb(
1382 	xfs_mount_t	*mp,
1383 	__int64_t	fields)
1384 {
1385 	xfs_trans_t	*tp;
1386 	int		error;
1387 
1388 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1389 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1390 			 XFS_SB_VERSIONNUM));
1391 
1392 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1393 	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1394 	if (error) {
1395 		xfs_trans_cancel(tp, 0);
1396 		return error;
1397 	}
1398 	xfs_mod_sb(tp, fields);
1399 	error = xfs_trans_commit(tp, 0);
1400 	return error;
1401 }
1402 
1403 /*
1404  * If the underlying (data/log/rt) device is readonly, there are some
1405  * operations that cannot proceed.
1406  */
1407 int
1408 xfs_dev_is_read_only(
1409 	struct xfs_mount	*mp,
1410 	char			*message)
1411 {
1412 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1413 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1414 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1415 		xfs_notice(mp, "%s required on read-only device.", message);
1416 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1417 		return EROFS;
1418 	}
1419 	return 0;
1420 }
1421 
1422 #ifdef HAVE_PERCPU_SB
1423 /*
1424  * Per-cpu incore superblock counters
1425  *
1426  * Simple concept, difficult implementation
1427  *
1428  * Basically, replace the incore superblock counters with a distributed per cpu
1429  * counter for contended fields (e.g.  free block count).
1430  *
1431  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1432  * hence needs to be accurately read when we are running low on space. Hence
1433  * there is a method to enable and disable the per-cpu counters based on how
1434  * much "stuff" is available in them.
1435  *
1436  * Basically, a counter is enabled if there is enough free resource to justify
1437  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1438  * ENOSPC), then we disable the counters to synchronise all callers and
1439  * re-distribute the available resources.
1440  *
1441  * If, once we redistributed the available resources, we still get a failure,
1442  * we disable the per-cpu counter and go through the slow path.
1443  *
1444  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1445  * when we disable a per-cpu counter, we need to drain its resources back to
1446  * the global superblock. We do this after disabling the counter to prevent
1447  * more threads from queueing up on the counter.
1448  *
1449  * Essentially, this means that we still need a lock in the fast path to enable
1450  * synchronisation between the global counters and the per-cpu counters. This
1451  * is not a problem because the lock will be local to a CPU almost all the time
1452  * and have little contention except when we get to ENOSPC conditions.
1453  *
1454  * Basically, this lock becomes a barrier that enables us to lock out the fast
1455  * path while we do things like enabling and disabling counters and
1456  * synchronising the counters.
1457  *
1458  * Locking rules:
1459  *
1460  * 	1. m_sb_lock before picking up per-cpu locks
1461  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1462  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1463  * 	4. modifying per-cpu counters requires holding per-cpu lock
1464  * 	5. modifying global counters requires holding m_sb_lock
1465  *	6. enabling or disabling a counter requires holding the m_sb_lock
1466  *	   and _none_ of the per-cpu locks.
1467  *
1468  * Disabled counters are only ever re-enabled by a balance operation
1469  * that results in more free resources per CPU than a given threshold.
1470  * To ensure counters don't remain disabled, they are rebalanced when
1471  * the global resource goes above a higher threshold (i.e. some hysteresis
1472  * is present to prevent thrashing).
1473  */
1474 
1475 #ifdef CONFIG_HOTPLUG_CPU
1476 /*
1477  * hot-plug CPU notifier support.
1478  *
1479  * We need a notifier per filesystem as we need to be able to identify
1480  * the filesystem to balance the counters out. This is achieved by
1481  * having a notifier block embedded in the xfs_mount_t and doing pointer
1482  * magic to get the mount pointer from the notifier block address.
1483  */
1484 STATIC int
1485 xfs_icsb_cpu_notify(
1486 	struct notifier_block *nfb,
1487 	unsigned long action,
1488 	void *hcpu)
1489 {
1490 	xfs_icsb_cnts_t *cntp;
1491 	xfs_mount_t	*mp;
1492 
1493 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1494 	cntp = (xfs_icsb_cnts_t *)
1495 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1496 	switch (action) {
1497 	case CPU_UP_PREPARE:
1498 	case CPU_UP_PREPARE_FROZEN:
1499 		/* Easy Case - initialize the area and locks, and
1500 		 * then rebalance when online does everything else for us. */
1501 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1502 		break;
1503 	case CPU_ONLINE:
1504 	case CPU_ONLINE_FROZEN:
1505 		xfs_icsb_lock(mp);
1506 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1507 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1508 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1509 		xfs_icsb_unlock(mp);
1510 		break;
1511 	case CPU_DEAD:
1512 	case CPU_DEAD_FROZEN:
1513 		/* Disable all the counters, then fold the dead cpu's
1514 		 * count into the total on the global superblock and
1515 		 * re-enable the counters. */
1516 		xfs_icsb_lock(mp);
1517 		spin_lock(&mp->m_sb_lock);
1518 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1519 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1520 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1521 
1522 		mp->m_sb.sb_icount += cntp->icsb_icount;
1523 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
1524 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1525 
1526 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1527 
1528 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1529 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1530 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1531 		spin_unlock(&mp->m_sb_lock);
1532 		xfs_icsb_unlock(mp);
1533 		break;
1534 	}
1535 
1536 	return NOTIFY_OK;
1537 }
1538 #endif /* CONFIG_HOTPLUG_CPU */
1539 
1540 int
1541 xfs_icsb_init_counters(
1542 	xfs_mount_t	*mp)
1543 {
1544 	xfs_icsb_cnts_t *cntp;
1545 	int		i;
1546 
1547 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1548 	if (mp->m_sb_cnts == NULL)
1549 		return -ENOMEM;
1550 
1551 	for_each_online_cpu(i) {
1552 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1553 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1554 	}
1555 
1556 	mutex_init(&mp->m_icsb_mutex);
1557 
1558 	/*
1559 	 * start with all counters disabled so that the
1560 	 * initial balance kicks us off correctly
1561 	 */
1562 	mp->m_icsb_counters = -1;
1563 
1564 #ifdef CONFIG_HOTPLUG_CPU
1565 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1566 	mp->m_icsb_notifier.priority = 0;
1567 	register_hotcpu_notifier(&mp->m_icsb_notifier);
1568 #endif /* CONFIG_HOTPLUG_CPU */
1569 
1570 	return 0;
1571 }
1572 
1573 void
1574 xfs_icsb_reinit_counters(
1575 	xfs_mount_t	*mp)
1576 {
1577 	xfs_icsb_lock(mp);
1578 	/*
1579 	 * start with all counters disabled so that the
1580 	 * initial balance kicks us off correctly
1581 	 */
1582 	mp->m_icsb_counters = -1;
1583 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1584 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1585 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1586 	xfs_icsb_unlock(mp);
1587 }
1588 
1589 void
1590 xfs_icsb_destroy_counters(
1591 	xfs_mount_t	*mp)
1592 {
1593 	if (mp->m_sb_cnts) {
1594 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1595 		free_percpu(mp->m_sb_cnts);
1596 	}
1597 	mutex_destroy(&mp->m_icsb_mutex);
1598 }
1599 
1600 STATIC void
1601 xfs_icsb_lock_cntr(
1602 	xfs_icsb_cnts_t	*icsbp)
1603 {
1604 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1605 		ndelay(1000);
1606 	}
1607 }
1608 
1609 STATIC void
1610 xfs_icsb_unlock_cntr(
1611 	xfs_icsb_cnts_t	*icsbp)
1612 {
1613 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1614 }
1615 
1616 
1617 STATIC void
1618 xfs_icsb_lock_all_counters(
1619 	xfs_mount_t	*mp)
1620 {
1621 	xfs_icsb_cnts_t *cntp;
1622 	int		i;
1623 
1624 	for_each_online_cpu(i) {
1625 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1626 		xfs_icsb_lock_cntr(cntp);
1627 	}
1628 }
1629 
1630 STATIC void
1631 xfs_icsb_unlock_all_counters(
1632 	xfs_mount_t	*mp)
1633 {
1634 	xfs_icsb_cnts_t *cntp;
1635 	int		i;
1636 
1637 	for_each_online_cpu(i) {
1638 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1639 		xfs_icsb_unlock_cntr(cntp);
1640 	}
1641 }
1642 
1643 STATIC void
1644 xfs_icsb_count(
1645 	xfs_mount_t	*mp,
1646 	xfs_icsb_cnts_t	*cnt,
1647 	int		flags)
1648 {
1649 	xfs_icsb_cnts_t *cntp;
1650 	int		i;
1651 
1652 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1653 
1654 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1655 		xfs_icsb_lock_all_counters(mp);
1656 
1657 	for_each_online_cpu(i) {
1658 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1659 		cnt->icsb_icount += cntp->icsb_icount;
1660 		cnt->icsb_ifree += cntp->icsb_ifree;
1661 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1662 	}
1663 
1664 	if (!(flags & XFS_ICSB_LAZY_COUNT))
1665 		xfs_icsb_unlock_all_counters(mp);
1666 }
1667 
1668 STATIC int
1669 xfs_icsb_counter_disabled(
1670 	xfs_mount_t	*mp,
1671 	xfs_sb_field_t	field)
1672 {
1673 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1674 	return test_bit(field, &mp->m_icsb_counters);
1675 }
1676 
1677 STATIC void
1678 xfs_icsb_disable_counter(
1679 	xfs_mount_t	*mp,
1680 	xfs_sb_field_t	field)
1681 {
1682 	xfs_icsb_cnts_t	cnt;
1683 
1684 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1685 
1686 	/*
1687 	 * If we are already disabled, then there is nothing to do
1688 	 * here. We check before locking all the counters to avoid
1689 	 * the expensive lock operation when being called in the
1690 	 * slow path and the counter is already disabled. This is
1691 	 * safe because the only time we set or clear this state is under
1692 	 * the m_icsb_mutex.
1693 	 */
1694 	if (xfs_icsb_counter_disabled(mp, field))
1695 		return;
1696 
1697 	xfs_icsb_lock_all_counters(mp);
1698 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1699 		/* drain back to superblock */
1700 
1701 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1702 		switch(field) {
1703 		case XFS_SBS_ICOUNT:
1704 			mp->m_sb.sb_icount = cnt.icsb_icount;
1705 			break;
1706 		case XFS_SBS_IFREE:
1707 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
1708 			break;
1709 		case XFS_SBS_FDBLOCKS:
1710 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1711 			break;
1712 		default:
1713 			BUG();
1714 		}
1715 	}
1716 
1717 	xfs_icsb_unlock_all_counters(mp);
1718 }
1719 
1720 STATIC void
1721 xfs_icsb_enable_counter(
1722 	xfs_mount_t	*mp,
1723 	xfs_sb_field_t	field,
1724 	uint64_t	count,
1725 	uint64_t	resid)
1726 {
1727 	xfs_icsb_cnts_t	*cntp;
1728 	int		i;
1729 
1730 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1731 
1732 	xfs_icsb_lock_all_counters(mp);
1733 	for_each_online_cpu(i) {
1734 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1735 		switch (field) {
1736 		case XFS_SBS_ICOUNT:
1737 			cntp->icsb_icount = count + resid;
1738 			break;
1739 		case XFS_SBS_IFREE:
1740 			cntp->icsb_ifree = count + resid;
1741 			break;
1742 		case XFS_SBS_FDBLOCKS:
1743 			cntp->icsb_fdblocks = count + resid;
1744 			break;
1745 		default:
1746 			BUG();
1747 			break;
1748 		}
1749 		resid = 0;
1750 	}
1751 	clear_bit(field, &mp->m_icsb_counters);
1752 	xfs_icsb_unlock_all_counters(mp);
1753 }
1754 
1755 void
1756 xfs_icsb_sync_counters_locked(
1757 	xfs_mount_t	*mp,
1758 	int		flags)
1759 {
1760 	xfs_icsb_cnts_t	cnt;
1761 
1762 	xfs_icsb_count(mp, &cnt, flags);
1763 
1764 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1765 		mp->m_sb.sb_icount = cnt.icsb_icount;
1766 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1767 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
1768 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1769 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1770 }
1771 
1772 /*
1773  * Accurate update of per-cpu counters to incore superblock
1774  */
1775 void
1776 xfs_icsb_sync_counters(
1777 	xfs_mount_t	*mp,
1778 	int		flags)
1779 {
1780 	spin_lock(&mp->m_sb_lock);
1781 	xfs_icsb_sync_counters_locked(mp, flags);
1782 	spin_unlock(&mp->m_sb_lock);
1783 }
1784 
1785 /*
1786  * Balance and enable/disable counters as necessary.
1787  *
1788  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
1789  * chosen to be the same number as single on disk allocation chunk per CPU, and
1790  * free blocks is something far enough zero that we aren't going thrash when we
1791  * get near ENOSPC. We also need to supply a minimum we require per cpu to
1792  * prevent looping endlessly when xfs_alloc_space asks for more than will
1793  * be distributed to a single CPU but each CPU has enough blocks to be
1794  * reenabled.
1795  *
1796  * Note that we can be called when counters are already disabled.
1797  * xfs_icsb_disable_counter() optimises the counter locking in this case to
1798  * prevent locking every per-cpu counter needlessly.
1799  */
1800 
1801 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
1802 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1803 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1804 STATIC void
1805 xfs_icsb_balance_counter_locked(
1806 	xfs_mount_t	*mp,
1807 	xfs_sb_field_t  field,
1808 	int		min_per_cpu)
1809 {
1810 	uint64_t	count, resid;
1811 	int		weight = num_online_cpus();
1812 	uint64_t	min = (uint64_t)min_per_cpu;
1813 
1814 	/* disable counter and sync counter */
1815 	xfs_icsb_disable_counter(mp, field);
1816 
1817 	/* update counters  - first CPU gets residual*/
1818 	switch (field) {
1819 	case XFS_SBS_ICOUNT:
1820 		count = mp->m_sb.sb_icount;
1821 		resid = do_div(count, weight);
1822 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1823 			return;
1824 		break;
1825 	case XFS_SBS_IFREE:
1826 		count = mp->m_sb.sb_ifree;
1827 		resid = do_div(count, weight);
1828 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1829 			return;
1830 		break;
1831 	case XFS_SBS_FDBLOCKS:
1832 		count = mp->m_sb.sb_fdblocks;
1833 		resid = do_div(count, weight);
1834 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1835 			return;
1836 		break;
1837 	default:
1838 		BUG();
1839 		count = resid = 0;	/* quiet, gcc */
1840 		break;
1841 	}
1842 
1843 	xfs_icsb_enable_counter(mp, field, count, resid);
1844 }
1845 
1846 STATIC void
1847 xfs_icsb_balance_counter(
1848 	xfs_mount_t	*mp,
1849 	xfs_sb_field_t  fields,
1850 	int		min_per_cpu)
1851 {
1852 	spin_lock(&mp->m_sb_lock);
1853 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1854 	spin_unlock(&mp->m_sb_lock);
1855 }
1856 
1857 int
1858 xfs_icsb_modify_counters(
1859 	xfs_mount_t	*mp,
1860 	xfs_sb_field_t	field,
1861 	int64_t		delta,
1862 	int		rsvd)
1863 {
1864 	xfs_icsb_cnts_t	*icsbp;
1865 	long long	lcounter;	/* long counter for 64 bit fields */
1866 	int		ret = 0;
1867 
1868 	might_sleep();
1869 again:
1870 	preempt_disable();
1871 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
1872 
1873 	/*
1874 	 * if the counter is disabled, go to slow path
1875 	 */
1876 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1877 		goto slow_path;
1878 	xfs_icsb_lock_cntr(icsbp);
1879 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1880 		xfs_icsb_unlock_cntr(icsbp);
1881 		goto slow_path;
1882 	}
1883 
1884 	switch (field) {
1885 	case XFS_SBS_ICOUNT:
1886 		lcounter = icsbp->icsb_icount;
1887 		lcounter += delta;
1888 		if (unlikely(lcounter < 0))
1889 			goto balance_counter;
1890 		icsbp->icsb_icount = lcounter;
1891 		break;
1892 
1893 	case XFS_SBS_IFREE:
1894 		lcounter = icsbp->icsb_ifree;
1895 		lcounter += delta;
1896 		if (unlikely(lcounter < 0))
1897 			goto balance_counter;
1898 		icsbp->icsb_ifree = lcounter;
1899 		break;
1900 
1901 	case XFS_SBS_FDBLOCKS:
1902 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1903 
1904 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1905 		lcounter += delta;
1906 		if (unlikely(lcounter < 0))
1907 			goto balance_counter;
1908 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1909 		break;
1910 	default:
1911 		BUG();
1912 		break;
1913 	}
1914 	xfs_icsb_unlock_cntr(icsbp);
1915 	preempt_enable();
1916 	return 0;
1917 
1918 slow_path:
1919 	preempt_enable();
1920 
1921 	/*
1922 	 * serialise with a mutex so we don't burn lots of cpu on
1923 	 * the superblock lock. We still need to hold the superblock
1924 	 * lock, however, when we modify the global structures.
1925 	 */
1926 	xfs_icsb_lock(mp);
1927 
1928 	/*
1929 	 * Now running atomically.
1930 	 *
1931 	 * If the counter is enabled, someone has beaten us to rebalancing.
1932 	 * Drop the lock and try again in the fast path....
1933 	 */
1934 	if (!(xfs_icsb_counter_disabled(mp, field))) {
1935 		xfs_icsb_unlock(mp);
1936 		goto again;
1937 	}
1938 
1939 	/*
1940 	 * The counter is currently disabled. Because we are
1941 	 * running atomically here, we know a rebalance cannot
1942 	 * be in progress. Hence we can go straight to operating
1943 	 * on the global superblock. We do not call xfs_mod_incore_sb()
1944 	 * here even though we need to get the m_sb_lock. Doing so
1945 	 * will cause us to re-enter this function and deadlock.
1946 	 * Hence we get the m_sb_lock ourselves and then call
1947 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1948 	 * directly on the global counters.
1949 	 */
1950 	spin_lock(&mp->m_sb_lock);
1951 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1952 	spin_unlock(&mp->m_sb_lock);
1953 
1954 	/*
1955 	 * Now that we've modified the global superblock, we
1956 	 * may be able to re-enable the distributed counters
1957 	 * (e.g. lots of space just got freed). After that
1958 	 * we are done.
1959 	 */
1960 	if (ret != ENOSPC)
1961 		xfs_icsb_balance_counter(mp, field, 0);
1962 	xfs_icsb_unlock(mp);
1963 	return ret;
1964 
1965 balance_counter:
1966 	xfs_icsb_unlock_cntr(icsbp);
1967 	preempt_enable();
1968 
1969 	/*
1970 	 * We may have multiple threads here if multiple per-cpu
1971 	 * counters run dry at the same time. This will mean we can
1972 	 * do more balances than strictly necessary but it is not
1973 	 * the common slowpath case.
1974 	 */
1975 	xfs_icsb_lock(mp);
1976 
1977 	/*
1978 	 * running atomically.
1979 	 *
1980 	 * This will leave the counter in the correct state for future
1981 	 * accesses. After the rebalance, we simply try again and our retry
1982 	 * will either succeed through the fast path or slow path without
1983 	 * another balance operation being required.
1984 	 */
1985 	xfs_icsb_balance_counter(mp, field, delta);
1986 	xfs_icsb_unlock(mp);
1987 	goto again;
1988 }
1989 
1990 #endif
1991