1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_mount.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_btree.h" 35 #include "xfs_ialloc.h" 36 #include "xfs_alloc.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_bmap.h" 39 #include "xfs_error.h" 40 #include "xfs_rw.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 47 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 48 49 50 #ifdef HAVE_PERCPU_SB 51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 56 #else 57 58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 60 #endif 61 62 static const struct { 63 short offset; 64 short type; /* 0 = integer 65 * 1 = binary / string (no translation) 66 */ 67 } xfs_sb_info[] = { 68 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 69 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 70 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 71 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 72 { offsetof(xfs_sb_t, sb_rextents), 0 }, 73 { offsetof(xfs_sb_t, sb_uuid), 1 }, 74 { offsetof(xfs_sb_t, sb_logstart), 0 }, 75 { offsetof(xfs_sb_t, sb_rootino), 0 }, 76 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 77 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 78 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 79 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_agcount), 0 }, 81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 83 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 84 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 85 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 86 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 87 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 88 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 89 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 90 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 91 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 92 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 93 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 94 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 95 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 96 { offsetof(xfs_sb_t, sb_icount), 0 }, 97 { offsetof(xfs_sb_t, sb_ifree), 0 }, 98 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 99 { offsetof(xfs_sb_t, sb_frextents), 0 }, 100 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 101 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 102 { offsetof(xfs_sb_t, sb_qflags), 0 }, 103 { offsetof(xfs_sb_t, sb_flags), 0 }, 104 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 106 { offsetof(xfs_sb_t, sb_unit), 0 }, 107 { offsetof(xfs_sb_t, sb_width), 0 }, 108 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 109 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 110 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 111 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 112 { offsetof(xfs_sb_t, sb_features2), 0 }, 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 114 { sizeof(xfs_sb_t), 0 } 115 }; 116 117 static DEFINE_MUTEX(xfs_uuid_table_mutex); 118 static int xfs_uuid_table_size; 119 static uuid_t *xfs_uuid_table; 120 121 /* 122 * See if the UUID is unique among mounted XFS filesystems. 123 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 124 */ 125 STATIC int 126 xfs_uuid_mount( 127 struct xfs_mount *mp) 128 { 129 uuid_t *uuid = &mp->m_sb.sb_uuid; 130 int hole, i; 131 132 if (mp->m_flags & XFS_MOUNT_NOUUID) 133 return 0; 134 135 if (uuid_is_nil(uuid)) { 136 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 137 return XFS_ERROR(EINVAL); 138 } 139 140 mutex_lock(&xfs_uuid_table_mutex); 141 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 142 if (uuid_is_nil(&xfs_uuid_table[i])) { 143 hole = i; 144 continue; 145 } 146 if (uuid_equal(uuid, &xfs_uuid_table[i])) 147 goto out_duplicate; 148 } 149 150 if (hole < 0) { 151 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 152 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 153 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 154 KM_SLEEP); 155 hole = xfs_uuid_table_size++; 156 } 157 xfs_uuid_table[hole] = *uuid; 158 mutex_unlock(&xfs_uuid_table_mutex); 159 160 return 0; 161 162 out_duplicate: 163 mutex_unlock(&xfs_uuid_table_mutex); 164 xfs_warn(mp, "Filesystem has duplicate UUID - can't mount"); 165 return XFS_ERROR(EINVAL); 166 } 167 168 STATIC void 169 xfs_uuid_unmount( 170 struct xfs_mount *mp) 171 { 172 uuid_t *uuid = &mp->m_sb.sb_uuid; 173 int i; 174 175 if (mp->m_flags & XFS_MOUNT_NOUUID) 176 return; 177 178 mutex_lock(&xfs_uuid_table_mutex); 179 for (i = 0; i < xfs_uuid_table_size; i++) { 180 if (uuid_is_nil(&xfs_uuid_table[i])) 181 continue; 182 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 183 continue; 184 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 185 break; 186 } 187 ASSERT(i < xfs_uuid_table_size); 188 mutex_unlock(&xfs_uuid_table_mutex); 189 } 190 191 192 /* 193 * Reference counting access wrappers to the perag structures. 194 * Because we never free per-ag structures, the only thing we 195 * have to protect against changes is the tree structure itself. 196 */ 197 struct xfs_perag * 198 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 199 { 200 struct xfs_perag *pag; 201 int ref = 0; 202 203 rcu_read_lock(); 204 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 205 if (pag) { 206 ASSERT(atomic_read(&pag->pag_ref) >= 0); 207 ref = atomic_inc_return(&pag->pag_ref); 208 } 209 rcu_read_unlock(); 210 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 211 return pag; 212 } 213 214 /* 215 * search from @first to find the next perag with the given tag set. 216 */ 217 struct xfs_perag * 218 xfs_perag_get_tag( 219 struct xfs_mount *mp, 220 xfs_agnumber_t first, 221 int tag) 222 { 223 struct xfs_perag *pag; 224 int found; 225 int ref; 226 227 rcu_read_lock(); 228 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 229 (void **)&pag, first, 1, tag); 230 if (found <= 0) { 231 rcu_read_unlock(); 232 return NULL; 233 } 234 ref = atomic_inc_return(&pag->pag_ref); 235 rcu_read_unlock(); 236 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 237 return pag; 238 } 239 240 void 241 xfs_perag_put(struct xfs_perag *pag) 242 { 243 int ref; 244 245 ASSERT(atomic_read(&pag->pag_ref) > 0); 246 ref = atomic_dec_return(&pag->pag_ref); 247 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 248 } 249 250 STATIC void 251 __xfs_free_perag( 252 struct rcu_head *head) 253 { 254 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 255 256 ASSERT(atomic_read(&pag->pag_ref) == 0); 257 kmem_free(pag); 258 } 259 260 /* 261 * Free up the per-ag resources associated with the mount structure. 262 */ 263 STATIC void 264 xfs_free_perag( 265 xfs_mount_t *mp) 266 { 267 xfs_agnumber_t agno; 268 struct xfs_perag *pag; 269 270 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 271 spin_lock(&mp->m_perag_lock); 272 pag = radix_tree_delete(&mp->m_perag_tree, agno); 273 spin_unlock(&mp->m_perag_lock); 274 ASSERT(pag); 275 ASSERT(atomic_read(&pag->pag_ref) == 0); 276 call_rcu(&pag->rcu_head, __xfs_free_perag); 277 } 278 } 279 280 /* 281 * Check size of device based on the (data/realtime) block count. 282 * Note: this check is used by the growfs code as well as mount. 283 */ 284 int 285 xfs_sb_validate_fsb_count( 286 xfs_sb_t *sbp, 287 __uint64_t nblocks) 288 { 289 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 290 ASSERT(sbp->sb_blocklog >= BBSHIFT); 291 292 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 293 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 294 return EFBIG; 295 #else /* Limited by UINT_MAX of sectors */ 296 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 297 return EFBIG; 298 #endif 299 return 0; 300 } 301 302 /* 303 * Check the validity of the SB found. 304 */ 305 STATIC int 306 xfs_mount_validate_sb( 307 xfs_mount_t *mp, 308 xfs_sb_t *sbp, 309 int flags) 310 { 311 int loud = !(flags & XFS_MFSI_QUIET); 312 313 /* 314 * If the log device and data device have the 315 * same device number, the log is internal. 316 * Consequently, the sb_logstart should be non-zero. If 317 * we have a zero sb_logstart in this case, we may be trying to mount 318 * a volume filesystem in a non-volume manner. 319 */ 320 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 321 if (loud) 322 xfs_warn(mp, "bad magic number"); 323 return XFS_ERROR(EWRONGFS); 324 } 325 326 if (!xfs_sb_good_version(sbp)) { 327 if (loud) 328 xfs_warn(mp, "bad version"); 329 return XFS_ERROR(EWRONGFS); 330 } 331 332 if (unlikely( 333 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 334 if (loud) 335 xfs_warn(mp, 336 "filesystem is marked as having an external log; " 337 "specify logdev on the mount command line."); 338 return XFS_ERROR(EINVAL); 339 } 340 341 if (unlikely( 342 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 343 if (loud) 344 xfs_warn(mp, 345 "filesystem is marked as having an internal log; " 346 "do not specify logdev on the mount command line."); 347 return XFS_ERROR(EINVAL); 348 } 349 350 /* 351 * More sanity checking. These were stolen directly from 352 * xfs_repair. 353 */ 354 if (unlikely( 355 sbp->sb_agcount <= 0 || 356 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 357 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 358 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 359 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 360 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 361 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 362 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 363 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 364 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 365 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 366 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 367 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 368 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 369 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 370 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 371 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 372 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 373 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 374 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 375 if (loud) 376 xfs_warn(mp, "SB sanity check 1 failed"); 377 return XFS_ERROR(EFSCORRUPTED); 378 } 379 380 /* 381 * Sanity check AG count, size fields against data size field 382 */ 383 if (unlikely( 384 sbp->sb_dblocks == 0 || 385 sbp->sb_dblocks > 386 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 387 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 388 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 389 if (loud) 390 xfs_warn(mp, "SB sanity check 2 failed"); 391 return XFS_ERROR(EFSCORRUPTED); 392 } 393 394 /* 395 * Until this is fixed only page-sized or smaller data blocks work. 396 */ 397 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 398 if (loud) { 399 xfs_warn(mp, 400 "File system with blocksize %d bytes. " 401 "Only pagesize (%ld) or less will currently work.", 402 sbp->sb_blocksize, PAGE_SIZE); 403 } 404 return XFS_ERROR(ENOSYS); 405 } 406 407 /* 408 * Currently only very few inode sizes are supported. 409 */ 410 switch (sbp->sb_inodesize) { 411 case 256: 412 case 512: 413 case 1024: 414 case 2048: 415 break; 416 default: 417 if (loud) 418 xfs_warn(mp, "inode size of %d bytes not supported", 419 sbp->sb_inodesize); 420 return XFS_ERROR(ENOSYS); 421 } 422 423 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 424 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 425 if (loud) 426 xfs_warn(mp, 427 "file system too large to be mounted on this system."); 428 return XFS_ERROR(EFBIG); 429 } 430 431 if (unlikely(sbp->sb_inprogress)) { 432 if (loud) 433 xfs_warn(mp, "file system busy"); 434 return XFS_ERROR(EFSCORRUPTED); 435 } 436 437 /* 438 * Version 1 directory format has never worked on Linux. 439 */ 440 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 441 if (loud) 442 xfs_warn(mp, 443 "file system using version 1 directory format"); 444 return XFS_ERROR(ENOSYS); 445 } 446 447 return 0; 448 } 449 450 int 451 xfs_initialize_perag( 452 xfs_mount_t *mp, 453 xfs_agnumber_t agcount, 454 xfs_agnumber_t *maxagi) 455 { 456 xfs_agnumber_t index, max_metadata; 457 xfs_agnumber_t first_initialised = 0; 458 xfs_perag_t *pag; 459 xfs_agino_t agino; 460 xfs_ino_t ino; 461 xfs_sb_t *sbp = &mp->m_sb; 462 int error = -ENOMEM; 463 464 /* 465 * Walk the current per-ag tree so we don't try to initialise AGs 466 * that already exist (growfs case). Allocate and insert all the 467 * AGs we don't find ready for initialisation. 468 */ 469 for (index = 0; index < agcount; index++) { 470 pag = xfs_perag_get(mp, index); 471 if (pag) { 472 xfs_perag_put(pag); 473 continue; 474 } 475 if (!first_initialised) 476 first_initialised = index; 477 478 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 479 if (!pag) 480 goto out_unwind; 481 pag->pag_agno = index; 482 pag->pag_mount = mp; 483 spin_lock_init(&pag->pag_ici_lock); 484 mutex_init(&pag->pag_ici_reclaim_lock); 485 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 486 spin_lock_init(&pag->pag_buf_lock); 487 pag->pag_buf_tree = RB_ROOT; 488 489 if (radix_tree_preload(GFP_NOFS)) 490 goto out_unwind; 491 492 spin_lock(&mp->m_perag_lock); 493 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 494 BUG(); 495 spin_unlock(&mp->m_perag_lock); 496 radix_tree_preload_end(); 497 error = -EEXIST; 498 goto out_unwind; 499 } 500 spin_unlock(&mp->m_perag_lock); 501 radix_tree_preload_end(); 502 } 503 504 /* 505 * If we mount with the inode64 option, or no inode overflows 506 * the legacy 32-bit address space clear the inode32 option. 507 */ 508 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 509 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 510 511 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 512 mp->m_flags |= XFS_MOUNT_32BITINODES; 513 else 514 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 515 516 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 517 /* 518 * Calculate how much should be reserved for inodes to meet 519 * the max inode percentage. 520 */ 521 if (mp->m_maxicount) { 522 __uint64_t icount; 523 524 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 525 do_div(icount, 100); 526 icount += sbp->sb_agblocks - 1; 527 do_div(icount, sbp->sb_agblocks); 528 max_metadata = icount; 529 } else { 530 max_metadata = agcount; 531 } 532 533 for (index = 0; index < agcount; index++) { 534 ino = XFS_AGINO_TO_INO(mp, index, agino); 535 if (ino > XFS_MAXINUMBER_32) { 536 index++; 537 break; 538 } 539 540 pag = xfs_perag_get(mp, index); 541 pag->pagi_inodeok = 1; 542 if (index < max_metadata) 543 pag->pagf_metadata = 1; 544 xfs_perag_put(pag); 545 } 546 } else { 547 for (index = 0; index < agcount; index++) { 548 pag = xfs_perag_get(mp, index); 549 pag->pagi_inodeok = 1; 550 xfs_perag_put(pag); 551 } 552 } 553 554 if (maxagi) 555 *maxagi = index; 556 return 0; 557 558 out_unwind: 559 kmem_free(pag); 560 for (; index > first_initialised; index--) { 561 pag = radix_tree_delete(&mp->m_perag_tree, index); 562 kmem_free(pag); 563 } 564 return error; 565 } 566 567 void 568 xfs_sb_from_disk( 569 xfs_sb_t *to, 570 xfs_dsb_t *from) 571 { 572 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 573 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 574 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 575 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 576 to->sb_rextents = be64_to_cpu(from->sb_rextents); 577 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 578 to->sb_logstart = be64_to_cpu(from->sb_logstart); 579 to->sb_rootino = be64_to_cpu(from->sb_rootino); 580 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 581 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 582 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 583 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 584 to->sb_agcount = be32_to_cpu(from->sb_agcount); 585 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 586 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 587 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 588 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 589 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 590 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 591 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 592 to->sb_blocklog = from->sb_blocklog; 593 to->sb_sectlog = from->sb_sectlog; 594 to->sb_inodelog = from->sb_inodelog; 595 to->sb_inopblog = from->sb_inopblog; 596 to->sb_agblklog = from->sb_agblklog; 597 to->sb_rextslog = from->sb_rextslog; 598 to->sb_inprogress = from->sb_inprogress; 599 to->sb_imax_pct = from->sb_imax_pct; 600 to->sb_icount = be64_to_cpu(from->sb_icount); 601 to->sb_ifree = be64_to_cpu(from->sb_ifree); 602 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 603 to->sb_frextents = be64_to_cpu(from->sb_frextents); 604 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 605 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 606 to->sb_qflags = be16_to_cpu(from->sb_qflags); 607 to->sb_flags = from->sb_flags; 608 to->sb_shared_vn = from->sb_shared_vn; 609 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 610 to->sb_unit = be32_to_cpu(from->sb_unit); 611 to->sb_width = be32_to_cpu(from->sb_width); 612 to->sb_dirblklog = from->sb_dirblklog; 613 to->sb_logsectlog = from->sb_logsectlog; 614 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 615 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 616 to->sb_features2 = be32_to_cpu(from->sb_features2); 617 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 618 } 619 620 /* 621 * Copy in core superblock to ondisk one. 622 * 623 * The fields argument is mask of superblock fields to copy. 624 */ 625 void 626 xfs_sb_to_disk( 627 xfs_dsb_t *to, 628 xfs_sb_t *from, 629 __int64_t fields) 630 { 631 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 632 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 633 xfs_sb_field_t f; 634 int first; 635 int size; 636 637 ASSERT(fields); 638 if (!fields) 639 return; 640 641 while (fields) { 642 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 643 first = xfs_sb_info[f].offset; 644 size = xfs_sb_info[f + 1].offset - first; 645 646 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 647 648 if (size == 1 || xfs_sb_info[f].type == 1) { 649 memcpy(to_ptr + first, from_ptr + first, size); 650 } else { 651 switch (size) { 652 case 2: 653 *(__be16 *)(to_ptr + first) = 654 cpu_to_be16(*(__u16 *)(from_ptr + first)); 655 break; 656 case 4: 657 *(__be32 *)(to_ptr + first) = 658 cpu_to_be32(*(__u32 *)(from_ptr + first)); 659 break; 660 case 8: 661 *(__be64 *)(to_ptr + first) = 662 cpu_to_be64(*(__u64 *)(from_ptr + first)); 663 break; 664 default: 665 ASSERT(0); 666 } 667 } 668 669 fields &= ~(1LL << f); 670 } 671 } 672 673 /* 674 * xfs_readsb 675 * 676 * Does the initial read of the superblock. 677 */ 678 int 679 xfs_readsb(xfs_mount_t *mp, int flags) 680 { 681 unsigned int sector_size; 682 xfs_buf_t *bp; 683 int error; 684 int loud = !(flags & XFS_MFSI_QUIET); 685 686 ASSERT(mp->m_sb_bp == NULL); 687 ASSERT(mp->m_ddev_targp != NULL); 688 689 /* 690 * Allocate a (locked) buffer to hold the superblock. 691 * This will be kept around at all times to optimize 692 * access to the superblock. 693 */ 694 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 695 696 reread: 697 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp, 698 XFS_SB_DADDR, sector_size, 0); 699 if (!bp) { 700 if (loud) 701 xfs_warn(mp, "SB buffer read failed"); 702 return EIO; 703 } 704 705 /* 706 * Initialize the mount structure from the superblock. 707 * But first do some basic consistency checking. 708 */ 709 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 710 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 711 if (error) { 712 if (loud) 713 xfs_warn(mp, "SB validate failed"); 714 goto release_buf; 715 } 716 717 /* 718 * We must be able to do sector-sized and sector-aligned IO. 719 */ 720 if (sector_size > mp->m_sb.sb_sectsize) { 721 if (loud) 722 xfs_warn(mp, "device supports %u byte sectors (not %u)", 723 sector_size, mp->m_sb.sb_sectsize); 724 error = ENOSYS; 725 goto release_buf; 726 } 727 728 /* 729 * If device sector size is smaller than the superblock size, 730 * re-read the superblock so the buffer is correctly sized. 731 */ 732 if (sector_size < mp->m_sb.sb_sectsize) { 733 xfs_buf_relse(bp); 734 sector_size = mp->m_sb.sb_sectsize; 735 goto reread; 736 } 737 738 /* Initialize per-cpu counters */ 739 xfs_icsb_reinit_counters(mp); 740 741 mp->m_sb_bp = bp; 742 xfs_buf_unlock(bp); 743 return 0; 744 745 release_buf: 746 xfs_buf_relse(bp); 747 return error; 748 } 749 750 751 /* 752 * xfs_mount_common 753 * 754 * Mount initialization code establishing various mount 755 * fields from the superblock associated with the given 756 * mount structure 757 */ 758 STATIC void 759 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 760 { 761 mp->m_agfrotor = mp->m_agirotor = 0; 762 spin_lock_init(&mp->m_agirotor_lock); 763 mp->m_maxagi = mp->m_sb.sb_agcount; 764 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 765 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 766 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 767 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 768 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 769 mp->m_blockmask = sbp->sb_blocksize - 1; 770 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 771 mp->m_blockwmask = mp->m_blockwsize - 1; 772 773 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 774 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 775 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 776 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 777 778 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 779 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 780 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 781 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 782 783 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 784 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 785 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 786 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 787 788 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 789 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 790 sbp->sb_inopblock); 791 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 792 } 793 794 /* 795 * xfs_initialize_perag_data 796 * 797 * Read in each per-ag structure so we can count up the number of 798 * allocated inodes, free inodes and used filesystem blocks as this 799 * information is no longer persistent in the superblock. Once we have 800 * this information, write it into the in-core superblock structure. 801 */ 802 STATIC int 803 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 804 { 805 xfs_agnumber_t index; 806 xfs_perag_t *pag; 807 xfs_sb_t *sbp = &mp->m_sb; 808 uint64_t ifree = 0; 809 uint64_t ialloc = 0; 810 uint64_t bfree = 0; 811 uint64_t bfreelst = 0; 812 uint64_t btree = 0; 813 int error; 814 815 for (index = 0; index < agcount; index++) { 816 /* 817 * read the agf, then the agi. This gets us 818 * all the information we need and populates the 819 * per-ag structures for us. 820 */ 821 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 822 if (error) 823 return error; 824 825 error = xfs_ialloc_pagi_init(mp, NULL, index); 826 if (error) 827 return error; 828 pag = xfs_perag_get(mp, index); 829 ifree += pag->pagi_freecount; 830 ialloc += pag->pagi_count; 831 bfree += pag->pagf_freeblks; 832 bfreelst += pag->pagf_flcount; 833 btree += pag->pagf_btreeblks; 834 xfs_perag_put(pag); 835 } 836 /* 837 * Overwrite incore superblock counters with just-read data 838 */ 839 spin_lock(&mp->m_sb_lock); 840 sbp->sb_ifree = ifree; 841 sbp->sb_icount = ialloc; 842 sbp->sb_fdblocks = bfree + bfreelst + btree; 843 spin_unlock(&mp->m_sb_lock); 844 845 /* Fixup the per-cpu counters as well. */ 846 xfs_icsb_reinit_counters(mp); 847 848 return 0; 849 } 850 851 /* 852 * Update alignment values based on mount options and sb values 853 */ 854 STATIC int 855 xfs_update_alignment(xfs_mount_t *mp) 856 { 857 xfs_sb_t *sbp = &(mp->m_sb); 858 859 if (mp->m_dalign) { 860 /* 861 * If stripe unit and stripe width are not multiples 862 * of the fs blocksize turn off alignment. 863 */ 864 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 865 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 866 if (mp->m_flags & XFS_MOUNT_RETERR) { 867 xfs_warn(mp, "alignment check 1 failed"); 868 return XFS_ERROR(EINVAL); 869 } 870 mp->m_dalign = mp->m_swidth = 0; 871 } else { 872 /* 873 * Convert the stripe unit and width to FSBs. 874 */ 875 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 876 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 877 if (mp->m_flags & XFS_MOUNT_RETERR) { 878 return XFS_ERROR(EINVAL); 879 } 880 xfs_warn(mp, 881 "stripe alignment turned off: sunit(%d)/swidth(%d) " 882 "incompatible with agsize(%d)", 883 mp->m_dalign, mp->m_swidth, 884 sbp->sb_agblocks); 885 886 mp->m_dalign = 0; 887 mp->m_swidth = 0; 888 } else if (mp->m_dalign) { 889 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 890 } else { 891 if (mp->m_flags & XFS_MOUNT_RETERR) { 892 xfs_warn(mp, 893 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 894 mp->m_dalign, 895 mp->m_blockmask +1); 896 return XFS_ERROR(EINVAL); 897 } 898 mp->m_swidth = 0; 899 } 900 } 901 902 /* 903 * Update superblock with new values 904 * and log changes 905 */ 906 if (xfs_sb_version_hasdalign(sbp)) { 907 if (sbp->sb_unit != mp->m_dalign) { 908 sbp->sb_unit = mp->m_dalign; 909 mp->m_update_flags |= XFS_SB_UNIT; 910 } 911 if (sbp->sb_width != mp->m_swidth) { 912 sbp->sb_width = mp->m_swidth; 913 mp->m_update_flags |= XFS_SB_WIDTH; 914 } 915 } 916 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 917 xfs_sb_version_hasdalign(&mp->m_sb)) { 918 mp->m_dalign = sbp->sb_unit; 919 mp->m_swidth = sbp->sb_width; 920 } 921 922 return 0; 923 } 924 925 /* 926 * Set the maximum inode count for this filesystem 927 */ 928 STATIC void 929 xfs_set_maxicount(xfs_mount_t *mp) 930 { 931 xfs_sb_t *sbp = &(mp->m_sb); 932 __uint64_t icount; 933 934 if (sbp->sb_imax_pct) { 935 /* 936 * Make sure the maximum inode count is a multiple 937 * of the units we allocate inodes in. 938 */ 939 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 940 do_div(icount, 100); 941 do_div(icount, mp->m_ialloc_blks); 942 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 943 sbp->sb_inopblog; 944 } else { 945 mp->m_maxicount = 0; 946 } 947 } 948 949 /* 950 * Set the default minimum read and write sizes unless 951 * already specified in a mount option. 952 * We use smaller I/O sizes when the file system 953 * is being used for NFS service (wsync mount option). 954 */ 955 STATIC void 956 xfs_set_rw_sizes(xfs_mount_t *mp) 957 { 958 xfs_sb_t *sbp = &(mp->m_sb); 959 int readio_log, writeio_log; 960 961 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 962 if (mp->m_flags & XFS_MOUNT_WSYNC) { 963 readio_log = XFS_WSYNC_READIO_LOG; 964 writeio_log = XFS_WSYNC_WRITEIO_LOG; 965 } else { 966 readio_log = XFS_READIO_LOG_LARGE; 967 writeio_log = XFS_WRITEIO_LOG_LARGE; 968 } 969 } else { 970 readio_log = mp->m_readio_log; 971 writeio_log = mp->m_writeio_log; 972 } 973 974 if (sbp->sb_blocklog > readio_log) { 975 mp->m_readio_log = sbp->sb_blocklog; 976 } else { 977 mp->m_readio_log = readio_log; 978 } 979 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 980 if (sbp->sb_blocklog > writeio_log) { 981 mp->m_writeio_log = sbp->sb_blocklog; 982 } else { 983 mp->m_writeio_log = writeio_log; 984 } 985 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 986 } 987 988 /* 989 * precalculate the low space thresholds for dynamic speculative preallocation. 990 */ 991 void 992 xfs_set_low_space_thresholds( 993 struct xfs_mount *mp) 994 { 995 int i; 996 997 for (i = 0; i < XFS_LOWSP_MAX; i++) { 998 __uint64_t space = mp->m_sb.sb_dblocks; 999 1000 do_div(space, 100); 1001 mp->m_low_space[i] = space * (i + 1); 1002 } 1003 } 1004 1005 1006 /* 1007 * Set whether we're using inode alignment. 1008 */ 1009 STATIC void 1010 xfs_set_inoalignment(xfs_mount_t *mp) 1011 { 1012 if (xfs_sb_version_hasalign(&mp->m_sb) && 1013 mp->m_sb.sb_inoalignmt >= 1014 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 1015 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 1016 else 1017 mp->m_inoalign_mask = 0; 1018 /* 1019 * If we are using stripe alignment, check whether 1020 * the stripe unit is a multiple of the inode alignment 1021 */ 1022 if (mp->m_dalign && mp->m_inoalign_mask && 1023 !(mp->m_dalign & mp->m_inoalign_mask)) 1024 mp->m_sinoalign = mp->m_dalign; 1025 else 1026 mp->m_sinoalign = 0; 1027 } 1028 1029 /* 1030 * Check that the data (and log if separate) are an ok size. 1031 */ 1032 STATIC int 1033 xfs_check_sizes(xfs_mount_t *mp) 1034 { 1035 xfs_buf_t *bp; 1036 xfs_daddr_t d; 1037 1038 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 1039 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 1040 xfs_warn(mp, "filesystem size mismatch detected"); 1041 return XFS_ERROR(EFBIG); 1042 } 1043 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp, 1044 d - XFS_FSS_TO_BB(mp, 1), 1045 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0); 1046 if (!bp) { 1047 xfs_warn(mp, "last sector read failed"); 1048 return EIO; 1049 } 1050 xfs_buf_relse(bp); 1051 1052 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1053 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1054 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1055 xfs_warn(mp, "log size mismatch detected"); 1056 return XFS_ERROR(EFBIG); 1057 } 1058 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp, 1059 d - XFS_FSB_TO_BB(mp, 1), 1060 XFS_FSB_TO_B(mp, 1), 0); 1061 if (!bp) { 1062 xfs_warn(mp, "log device read failed"); 1063 return EIO; 1064 } 1065 xfs_buf_relse(bp); 1066 } 1067 return 0; 1068 } 1069 1070 /* 1071 * Clear the quotaflags in memory and in the superblock. 1072 */ 1073 int 1074 xfs_mount_reset_sbqflags( 1075 struct xfs_mount *mp) 1076 { 1077 int error; 1078 struct xfs_trans *tp; 1079 1080 mp->m_qflags = 0; 1081 1082 /* 1083 * It is OK to look at sb_qflags here in mount path, 1084 * without m_sb_lock. 1085 */ 1086 if (mp->m_sb.sb_qflags == 0) 1087 return 0; 1088 spin_lock(&mp->m_sb_lock); 1089 mp->m_sb.sb_qflags = 0; 1090 spin_unlock(&mp->m_sb_lock); 1091 1092 /* 1093 * If the fs is readonly, let the incore superblock run 1094 * with quotas off but don't flush the update out to disk 1095 */ 1096 if (mp->m_flags & XFS_MOUNT_RDONLY) 1097 return 0; 1098 1099 #ifdef QUOTADEBUG 1100 xfs_notice(mp, "Writing superblock quota changes"); 1101 #endif 1102 1103 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1104 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1105 XFS_DEFAULT_LOG_COUNT); 1106 if (error) { 1107 xfs_trans_cancel(tp, 0); 1108 xfs_alert(mp, "%s: Superblock update failed!", __func__); 1109 return error; 1110 } 1111 1112 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1113 return xfs_trans_commit(tp, 0); 1114 } 1115 1116 __uint64_t 1117 xfs_default_resblks(xfs_mount_t *mp) 1118 { 1119 __uint64_t resblks; 1120 1121 /* 1122 * We default to 5% or 8192 fsbs of space reserved, whichever is 1123 * smaller. This is intended to cover concurrent allocation 1124 * transactions when we initially hit enospc. These each require a 4 1125 * block reservation. Hence by default we cover roughly 2000 concurrent 1126 * allocation reservations. 1127 */ 1128 resblks = mp->m_sb.sb_dblocks; 1129 do_div(resblks, 20); 1130 resblks = min_t(__uint64_t, resblks, 8192); 1131 return resblks; 1132 } 1133 1134 /* 1135 * This function does the following on an initial mount of a file system: 1136 * - reads the superblock from disk and init the mount struct 1137 * - if we're a 32-bit kernel, do a size check on the superblock 1138 * so we don't mount terabyte filesystems 1139 * - init mount struct realtime fields 1140 * - allocate inode hash table for fs 1141 * - init directory manager 1142 * - perform recovery and init the log manager 1143 */ 1144 int 1145 xfs_mountfs( 1146 xfs_mount_t *mp) 1147 { 1148 xfs_sb_t *sbp = &(mp->m_sb); 1149 xfs_inode_t *rip; 1150 __uint64_t resblks; 1151 uint quotamount = 0; 1152 uint quotaflags = 0; 1153 int error = 0; 1154 1155 xfs_mount_common(mp, sbp); 1156 1157 /* 1158 * Check for a mismatched features2 values. Older kernels 1159 * read & wrote into the wrong sb offset for sb_features2 1160 * on some platforms due to xfs_sb_t not being 64bit size aligned 1161 * when sb_features2 was added, which made older superblock 1162 * reading/writing routines swap it as a 64-bit value. 1163 * 1164 * For backwards compatibility, we make both slots equal. 1165 * 1166 * If we detect a mismatched field, we OR the set bits into the 1167 * existing features2 field in case it has already been modified; we 1168 * don't want to lose any features. We then update the bad location 1169 * with the ORed value so that older kernels will see any features2 1170 * flags, and mark the two fields as needing updates once the 1171 * transaction subsystem is online. 1172 */ 1173 if (xfs_sb_has_mismatched_features2(sbp)) { 1174 xfs_warn(mp, "correcting sb_features alignment problem"); 1175 sbp->sb_features2 |= sbp->sb_bad_features2; 1176 sbp->sb_bad_features2 = sbp->sb_features2; 1177 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1178 1179 /* 1180 * Re-check for ATTR2 in case it was found in bad_features2 1181 * slot. 1182 */ 1183 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1184 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1185 mp->m_flags |= XFS_MOUNT_ATTR2; 1186 } 1187 1188 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1189 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1190 xfs_sb_version_removeattr2(&mp->m_sb); 1191 mp->m_update_flags |= XFS_SB_FEATURES2; 1192 1193 /* update sb_versionnum for the clearing of the morebits */ 1194 if (!sbp->sb_features2) 1195 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1196 } 1197 1198 /* 1199 * Check if sb_agblocks is aligned at stripe boundary 1200 * If sb_agblocks is NOT aligned turn off m_dalign since 1201 * allocator alignment is within an ag, therefore ag has 1202 * to be aligned at stripe boundary. 1203 */ 1204 error = xfs_update_alignment(mp); 1205 if (error) 1206 goto out; 1207 1208 xfs_alloc_compute_maxlevels(mp); 1209 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1210 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1211 xfs_ialloc_compute_maxlevels(mp); 1212 1213 xfs_set_maxicount(mp); 1214 1215 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1216 1217 error = xfs_uuid_mount(mp); 1218 if (error) 1219 goto out; 1220 1221 /* 1222 * Set the minimum read and write sizes 1223 */ 1224 xfs_set_rw_sizes(mp); 1225 1226 /* set the low space thresholds for dynamic preallocation */ 1227 xfs_set_low_space_thresholds(mp); 1228 1229 /* 1230 * Set the inode cluster size. 1231 * This may still be overridden by the file system 1232 * block size if it is larger than the chosen cluster size. 1233 */ 1234 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1235 1236 /* 1237 * Set inode alignment fields 1238 */ 1239 xfs_set_inoalignment(mp); 1240 1241 /* 1242 * Check that the data (and log if separate) are an ok size. 1243 */ 1244 error = xfs_check_sizes(mp); 1245 if (error) 1246 goto out_remove_uuid; 1247 1248 /* 1249 * Initialize realtime fields in the mount structure 1250 */ 1251 error = xfs_rtmount_init(mp); 1252 if (error) { 1253 xfs_warn(mp, "RT mount failed"); 1254 goto out_remove_uuid; 1255 } 1256 1257 /* 1258 * Copies the low order bits of the timestamp and the randomly 1259 * set "sequence" number out of a UUID. 1260 */ 1261 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1262 1263 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1264 1265 xfs_dir_mount(mp); 1266 1267 /* 1268 * Initialize the attribute manager's entries. 1269 */ 1270 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1271 1272 /* 1273 * Initialize the precomputed transaction reservations values. 1274 */ 1275 xfs_trans_init(mp); 1276 1277 /* 1278 * Allocate and initialize the per-ag data. 1279 */ 1280 spin_lock_init(&mp->m_perag_lock); 1281 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1282 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1283 if (error) { 1284 xfs_warn(mp, "Failed per-ag init: %d", error); 1285 goto out_remove_uuid; 1286 } 1287 1288 if (!sbp->sb_logblocks) { 1289 xfs_warn(mp, "no log defined"); 1290 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1291 error = XFS_ERROR(EFSCORRUPTED); 1292 goto out_free_perag; 1293 } 1294 1295 /* 1296 * log's mount-time initialization. Perform 1st part recovery if needed 1297 */ 1298 error = xfs_log_mount(mp, mp->m_logdev_targp, 1299 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1300 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1301 if (error) { 1302 xfs_warn(mp, "log mount failed"); 1303 goto out_free_perag; 1304 } 1305 1306 /* 1307 * Now the log is mounted, we know if it was an unclean shutdown or 1308 * not. If it was, with the first phase of recovery has completed, we 1309 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1310 * but they are recovered transactionally in the second recovery phase 1311 * later. 1312 * 1313 * Hence we can safely re-initialise incore superblock counters from 1314 * the per-ag data. These may not be correct if the filesystem was not 1315 * cleanly unmounted, so we need to wait for recovery to finish before 1316 * doing this. 1317 * 1318 * If the filesystem was cleanly unmounted, then we can trust the 1319 * values in the superblock to be correct and we don't need to do 1320 * anything here. 1321 * 1322 * If we are currently making the filesystem, the initialisation will 1323 * fail as the perag data is in an undefined state. 1324 */ 1325 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1326 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1327 !mp->m_sb.sb_inprogress) { 1328 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1329 if (error) 1330 goto out_free_perag; 1331 } 1332 1333 /* 1334 * Get and sanity-check the root inode. 1335 * Save the pointer to it in the mount structure. 1336 */ 1337 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1338 if (error) { 1339 xfs_warn(mp, "failed to read root inode"); 1340 goto out_log_dealloc; 1341 } 1342 1343 ASSERT(rip != NULL); 1344 1345 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1346 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1347 (unsigned long long)rip->i_ino); 1348 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1349 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1350 mp); 1351 error = XFS_ERROR(EFSCORRUPTED); 1352 goto out_rele_rip; 1353 } 1354 mp->m_rootip = rip; /* save it */ 1355 1356 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1357 1358 /* 1359 * Initialize realtime inode pointers in the mount structure 1360 */ 1361 error = xfs_rtmount_inodes(mp); 1362 if (error) { 1363 /* 1364 * Free up the root inode. 1365 */ 1366 xfs_warn(mp, "failed to read RT inodes"); 1367 goto out_rele_rip; 1368 } 1369 1370 /* 1371 * If this is a read-only mount defer the superblock updates until 1372 * the next remount into writeable mode. Otherwise we would never 1373 * perform the update e.g. for the root filesystem. 1374 */ 1375 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1376 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1377 if (error) { 1378 xfs_warn(mp, "failed to write sb changes"); 1379 goto out_rtunmount; 1380 } 1381 } 1382 1383 /* 1384 * Initialise the XFS quota management subsystem for this mount 1385 */ 1386 if (XFS_IS_QUOTA_RUNNING(mp)) { 1387 error = xfs_qm_newmount(mp, "amount, "aflags); 1388 if (error) 1389 goto out_rtunmount; 1390 } else { 1391 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1392 1393 /* 1394 * If a file system had quotas running earlier, but decided to 1395 * mount without -o uquota/pquota/gquota options, revoke the 1396 * quotachecked license. 1397 */ 1398 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1399 xfs_notice(mp, "resetting quota flags"); 1400 error = xfs_mount_reset_sbqflags(mp); 1401 if (error) 1402 return error; 1403 } 1404 } 1405 1406 /* 1407 * Finish recovering the file system. This part needed to be 1408 * delayed until after the root and real-time bitmap inodes 1409 * were consistently read in. 1410 */ 1411 error = xfs_log_mount_finish(mp); 1412 if (error) { 1413 xfs_warn(mp, "log mount finish failed"); 1414 goto out_rtunmount; 1415 } 1416 1417 /* 1418 * Complete the quota initialisation, post-log-replay component. 1419 */ 1420 if (quotamount) { 1421 ASSERT(mp->m_qflags == 0); 1422 mp->m_qflags = quotaflags; 1423 1424 xfs_qm_mount_quotas(mp); 1425 } 1426 1427 /* 1428 * Now we are mounted, reserve a small amount of unused space for 1429 * privileged transactions. This is needed so that transaction 1430 * space required for critical operations can dip into this pool 1431 * when at ENOSPC. This is needed for operations like create with 1432 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1433 * are not allowed to use this reserved space. 1434 * 1435 * This may drive us straight to ENOSPC on mount, but that implies 1436 * we were already there on the last unmount. Warn if this occurs. 1437 */ 1438 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1439 resblks = xfs_default_resblks(mp); 1440 error = xfs_reserve_blocks(mp, &resblks, NULL); 1441 if (error) 1442 xfs_warn(mp, 1443 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1444 } 1445 1446 return 0; 1447 1448 out_rtunmount: 1449 xfs_rtunmount_inodes(mp); 1450 out_rele_rip: 1451 IRELE(rip); 1452 out_log_dealloc: 1453 xfs_log_unmount(mp); 1454 out_free_perag: 1455 xfs_free_perag(mp); 1456 out_remove_uuid: 1457 xfs_uuid_unmount(mp); 1458 out: 1459 return error; 1460 } 1461 1462 /* 1463 * This flushes out the inodes,dquots and the superblock, unmounts the 1464 * log and makes sure that incore structures are freed. 1465 */ 1466 void 1467 xfs_unmountfs( 1468 struct xfs_mount *mp) 1469 { 1470 __uint64_t resblks; 1471 int error; 1472 1473 xfs_qm_unmount_quotas(mp); 1474 xfs_rtunmount_inodes(mp); 1475 IRELE(mp->m_rootip); 1476 1477 /* 1478 * We can potentially deadlock here if we have an inode cluster 1479 * that has been freed has its buffer still pinned in memory because 1480 * the transaction is still sitting in a iclog. The stale inodes 1481 * on that buffer will have their flush locks held until the 1482 * transaction hits the disk and the callbacks run. the inode 1483 * flush takes the flush lock unconditionally and with nothing to 1484 * push out the iclog we will never get that unlocked. hence we 1485 * need to force the log first. 1486 */ 1487 xfs_log_force(mp, XFS_LOG_SYNC); 1488 1489 /* 1490 * Do a delwri reclaim pass first so that as many dirty inodes are 1491 * queued up for IO as possible. Then flush the buffers before making 1492 * a synchronous path to catch all the remaining inodes are reclaimed. 1493 * This makes the reclaim process as quick as possible by avoiding 1494 * synchronous writeout and blocking on inodes already in the delwri 1495 * state as much as possible. 1496 */ 1497 xfs_reclaim_inodes(mp, 0); 1498 XFS_bflush(mp->m_ddev_targp); 1499 xfs_reclaim_inodes(mp, SYNC_WAIT); 1500 1501 xfs_qm_unmount(mp); 1502 1503 /* 1504 * Flush out the log synchronously so that we know for sure 1505 * that nothing is pinned. This is important because bflush() 1506 * will skip pinned buffers. 1507 */ 1508 xfs_log_force(mp, XFS_LOG_SYNC); 1509 1510 xfs_binval(mp->m_ddev_targp); 1511 if (mp->m_rtdev_targp) { 1512 xfs_binval(mp->m_rtdev_targp); 1513 } 1514 1515 /* 1516 * Unreserve any blocks we have so that when we unmount we don't account 1517 * the reserved free space as used. This is really only necessary for 1518 * lazy superblock counting because it trusts the incore superblock 1519 * counters to be absolutely correct on clean unmount. 1520 * 1521 * We don't bother correcting this elsewhere for lazy superblock 1522 * counting because on mount of an unclean filesystem we reconstruct the 1523 * correct counter value and this is irrelevant. 1524 * 1525 * For non-lazy counter filesystems, this doesn't matter at all because 1526 * we only every apply deltas to the superblock and hence the incore 1527 * value does not matter.... 1528 */ 1529 resblks = 0; 1530 error = xfs_reserve_blocks(mp, &resblks, NULL); 1531 if (error) 1532 xfs_warn(mp, "Unable to free reserved block pool. " 1533 "Freespace may not be correct on next mount."); 1534 1535 error = xfs_log_sbcount(mp, 1); 1536 if (error) 1537 xfs_warn(mp, "Unable to update superblock counters. " 1538 "Freespace may not be correct on next mount."); 1539 xfs_unmountfs_writesb(mp); 1540 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1541 xfs_log_unmount_write(mp); 1542 xfs_log_unmount(mp); 1543 xfs_uuid_unmount(mp); 1544 1545 #if defined(DEBUG) 1546 xfs_errortag_clearall(mp, 0); 1547 #endif 1548 xfs_free_perag(mp); 1549 } 1550 1551 STATIC void 1552 xfs_unmountfs_wait(xfs_mount_t *mp) 1553 { 1554 if (mp->m_logdev_targp != mp->m_ddev_targp) 1555 xfs_wait_buftarg(mp->m_logdev_targp); 1556 if (mp->m_rtdev_targp) 1557 xfs_wait_buftarg(mp->m_rtdev_targp); 1558 xfs_wait_buftarg(mp->m_ddev_targp); 1559 } 1560 1561 int 1562 xfs_fs_writable(xfs_mount_t *mp) 1563 { 1564 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1565 (mp->m_flags & XFS_MOUNT_RDONLY)); 1566 } 1567 1568 /* 1569 * xfs_log_sbcount 1570 * 1571 * Called either periodically to keep the on disk superblock values 1572 * roughly up to date or from unmount to make sure the values are 1573 * correct on a clean unmount. 1574 * 1575 * Note this code can be called during the process of freezing, so 1576 * we may need to use the transaction allocator which does not not 1577 * block when the transaction subsystem is in its frozen state. 1578 */ 1579 int 1580 xfs_log_sbcount( 1581 xfs_mount_t *mp, 1582 uint sync) 1583 { 1584 xfs_trans_t *tp; 1585 int error; 1586 1587 if (!xfs_fs_writable(mp)) 1588 return 0; 1589 1590 xfs_icsb_sync_counters(mp, 0); 1591 1592 /* 1593 * we don't need to do this if we are updating the superblock 1594 * counters on every modification. 1595 */ 1596 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1597 return 0; 1598 1599 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1600 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1601 XFS_DEFAULT_LOG_COUNT); 1602 if (error) { 1603 xfs_trans_cancel(tp, 0); 1604 return error; 1605 } 1606 1607 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1608 if (sync) 1609 xfs_trans_set_sync(tp); 1610 error = xfs_trans_commit(tp, 0); 1611 return error; 1612 } 1613 1614 int 1615 xfs_unmountfs_writesb(xfs_mount_t *mp) 1616 { 1617 xfs_buf_t *sbp; 1618 int error = 0; 1619 1620 /* 1621 * skip superblock write if fs is read-only, or 1622 * if we are doing a forced umount. 1623 */ 1624 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1625 XFS_FORCED_SHUTDOWN(mp))) { 1626 1627 sbp = xfs_getsb(mp, 0); 1628 1629 XFS_BUF_UNDONE(sbp); 1630 XFS_BUF_UNREAD(sbp); 1631 XFS_BUF_UNDELAYWRITE(sbp); 1632 XFS_BUF_WRITE(sbp); 1633 XFS_BUF_UNASYNC(sbp); 1634 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1635 xfsbdstrat(mp, sbp); 1636 error = xfs_buf_iowait(sbp); 1637 if (error) 1638 xfs_ioerror_alert("xfs_unmountfs_writesb", 1639 mp, sbp, XFS_BUF_ADDR(sbp)); 1640 xfs_buf_relse(sbp); 1641 } 1642 return error; 1643 } 1644 1645 /* 1646 * xfs_mod_sb() can be used to copy arbitrary changes to the 1647 * in-core superblock into the superblock buffer to be logged. 1648 * It does not provide the higher level of locking that is 1649 * needed to protect the in-core superblock from concurrent 1650 * access. 1651 */ 1652 void 1653 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1654 { 1655 xfs_buf_t *bp; 1656 int first; 1657 int last; 1658 xfs_mount_t *mp; 1659 xfs_sb_field_t f; 1660 1661 ASSERT(fields); 1662 if (!fields) 1663 return; 1664 mp = tp->t_mountp; 1665 bp = xfs_trans_getsb(tp, mp, 0); 1666 first = sizeof(xfs_sb_t); 1667 last = 0; 1668 1669 /* translate/copy */ 1670 1671 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1672 1673 /* find modified range */ 1674 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1675 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1676 last = xfs_sb_info[f + 1].offset - 1; 1677 1678 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1679 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1680 first = xfs_sb_info[f].offset; 1681 1682 xfs_trans_log_buf(tp, bp, first, last); 1683 } 1684 1685 1686 /* 1687 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1688 * a delta to a specified field in the in-core superblock. Simply 1689 * switch on the field indicated and apply the delta to that field. 1690 * Fields are not allowed to dip below zero, so if the delta would 1691 * do this do not apply it and return EINVAL. 1692 * 1693 * The m_sb_lock must be held when this routine is called. 1694 */ 1695 STATIC int 1696 xfs_mod_incore_sb_unlocked( 1697 xfs_mount_t *mp, 1698 xfs_sb_field_t field, 1699 int64_t delta, 1700 int rsvd) 1701 { 1702 int scounter; /* short counter for 32 bit fields */ 1703 long long lcounter; /* long counter for 64 bit fields */ 1704 long long res_used, rem; 1705 1706 /* 1707 * With the in-core superblock spin lock held, switch 1708 * on the indicated field. Apply the delta to the 1709 * proper field. If the fields value would dip below 1710 * 0, then do not apply the delta and return EINVAL. 1711 */ 1712 switch (field) { 1713 case XFS_SBS_ICOUNT: 1714 lcounter = (long long)mp->m_sb.sb_icount; 1715 lcounter += delta; 1716 if (lcounter < 0) { 1717 ASSERT(0); 1718 return XFS_ERROR(EINVAL); 1719 } 1720 mp->m_sb.sb_icount = lcounter; 1721 return 0; 1722 case XFS_SBS_IFREE: 1723 lcounter = (long long)mp->m_sb.sb_ifree; 1724 lcounter += delta; 1725 if (lcounter < 0) { 1726 ASSERT(0); 1727 return XFS_ERROR(EINVAL); 1728 } 1729 mp->m_sb.sb_ifree = lcounter; 1730 return 0; 1731 case XFS_SBS_FDBLOCKS: 1732 lcounter = (long long) 1733 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1734 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1735 1736 if (delta > 0) { /* Putting blocks back */ 1737 if (res_used > delta) { 1738 mp->m_resblks_avail += delta; 1739 } else { 1740 rem = delta - res_used; 1741 mp->m_resblks_avail = mp->m_resblks; 1742 lcounter += rem; 1743 } 1744 } else { /* Taking blocks away */ 1745 lcounter += delta; 1746 if (lcounter >= 0) { 1747 mp->m_sb.sb_fdblocks = lcounter + 1748 XFS_ALLOC_SET_ASIDE(mp); 1749 return 0; 1750 } 1751 1752 /* 1753 * We are out of blocks, use any available reserved 1754 * blocks if were allowed to. 1755 */ 1756 if (!rsvd) 1757 return XFS_ERROR(ENOSPC); 1758 1759 lcounter = (long long)mp->m_resblks_avail + delta; 1760 if (lcounter >= 0) { 1761 mp->m_resblks_avail = lcounter; 1762 return 0; 1763 } 1764 printk_once(KERN_WARNING 1765 "Filesystem \"%s\": reserve blocks depleted! " 1766 "Consider increasing reserve pool size.", 1767 mp->m_fsname); 1768 return XFS_ERROR(ENOSPC); 1769 } 1770 1771 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1772 return 0; 1773 case XFS_SBS_FREXTENTS: 1774 lcounter = (long long)mp->m_sb.sb_frextents; 1775 lcounter += delta; 1776 if (lcounter < 0) { 1777 return XFS_ERROR(ENOSPC); 1778 } 1779 mp->m_sb.sb_frextents = lcounter; 1780 return 0; 1781 case XFS_SBS_DBLOCKS: 1782 lcounter = (long long)mp->m_sb.sb_dblocks; 1783 lcounter += delta; 1784 if (lcounter < 0) { 1785 ASSERT(0); 1786 return XFS_ERROR(EINVAL); 1787 } 1788 mp->m_sb.sb_dblocks = lcounter; 1789 return 0; 1790 case XFS_SBS_AGCOUNT: 1791 scounter = mp->m_sb.sb_agcount; 1792 scounter += delta; 1793 if (scounter < 0) { 1794 ASSERT(0); 1795 return XFS_ERROR(EINVAL); 1796 } 1797 mp->m_sb.sb_agcount = scounter; 1798 return 0; 1799 case XFS_SBS_IMAX_PCT: 1800 scounter = mp->m_sb.sb_imax_pct; 1801 scounter += delta; 1802 if (scounter < 0) { 1803 ASSERT(0); 1804 return XFS_ERROR(EINVAL); 1805 } 1806 mp->m_sb.sb_imax_pct = scounter; 1807 return 0; 1808 case XFS_SBS_REXTSIZE: 1809 scounter = mp->m_sb.sb_rextsize; 1810 scounter += delta; 1811 if (scounter < 0) { 1812 ASSERT(0); 1813 return XFS_ERROR(EINVAL); 1814 } 1815 mp->m_sb.sb_rextsize = scounter; 1816 return 0; 1817 case XFS_SBS_RBMBLOCKS: 1818 scounter = mp->m_sb.sb_rbmblocks; 1819 scounter += delta; 1820 if (scounter < 0) { 1821 ASSERT(0); 1822 return XFS_ERROR(EINVAL); 1823 } 1824 mp->m_sb.sb_rbmblocks = scounter; 1825 return 0; 1826 case XFS_SBS_RBLOCKS: 1827 lcounter = (long long)mp->m_sb.sb_rblocks; 1828 lcounter += delta; 1829 if (lcounter < 0) { 1830 ASSERT(0); 1831 return XFS_ERROR(EINVAL); 1832 } 1833 mp->m_sb.sb_rblocks = lcounter; 1834 return 0; 1835 case XFS_SBS_REXTENTS: 1836 lcounter = (long long)mp->m_sb.sb_rextents; 1837 lcounter += delta; 1838 if (lcounter < 0) { 1839 ASSERT(0); 1840 return XFS_ERROR(EINVAL); 1841 } 1842 mp->m_sb.sb_rextents = lcounter; 1843 return 0; 1844 case XFS_SBS_REXTSLOG: 1845 scounter = mp->m_sb.sb_rextslog; 1846 scounter += delta; 1847 if (scounter < 0) { 1848 ASSERT(0); 1849 return XFS_ERROR(EINVAL); 1850 } 1851 mp->m_sb.sb_rextslog = scounter; 1852 return 0; 1853 default: 1854 ASSERT(0); 1855 return XFS_ERROR(EINVAL); 1856 } 1857 } 1858 1859 /* 1860 * xfs_mod_incore_sb() is used to change a field in the in-core 1861 * superblock structure by the specified delta. This modification 1862 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1863 * routine to do the work. 1864 */ 1865 int 1866 xfs_mod_incore_sb( 1867 struct xfs_mount *mp, 1868 xfs_sb_field_t field, 1869 int64_t delta, 1870 int rsvd) 1871 { 1872 int status; 1873 1874 #ifdef HAVE_PERCPU_SB 1875 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1876 #endif 1877 spin_lock(&mp->m_sb_lock); 1878 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1879 spin_unlock(&mp->m_sb_lock); 1880 1881 return status; 1882 } 1883 1884 /* 1885 * Change more than one field in the in-core superblock structure at a time. 1886 * 1887 * The fields and changes to those fields are specified in the array of 1888 * xfs_mod_sb structures passed in. Either all of the specified deltas 1889 * will be applied or none of them will. If any modified field dips below 0, 1890 * then all modifications will be backed out and EINVAL will be returned. 1891 * 1892 * Note that this function may not be used for the superblock values that 1893 * are tracked with the in-memory per-cpu counters - a direct call to 1894 * xfs_icsb_modify_counters is required for these. 1895 */ 1896 int 1897 xfs_mod_incore_sb_batch( 1898 struct xfs_mount *mp, 1899 xfs_mod_sb_t *msb, 1900 uint nmsb, 1901 int rsvd) 1902 { 1903 xfs_mod_sb_t *msbp = &msb[0]; 1904 int error = 0; 1905 1906 /* 1907 * Loop through the array of mod structures and apply each individually. 1908 * If any fail, then back out all those which have already been applied. 1909 * Do all of this within the scope of the m_sb_lock so that all of the 1910 * changes will be atomic. 1911 */ 1912 spin_lock(&mp->m_sb_lock); 1913 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1914 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1915 msbp->msb_field > XFS_SBS_FDBLOCKS); 1916 1917 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1918 msbp->msb_delta, rsvd); 1919 if (error) 1920 goto unwind; 1921 } 1922 spin_unlock(&mp->m_sb_lock); 1923 return 0; 1924 1925 unwind: 1926 while (--msbp >= msb) { 1927 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1928 -msbp->msb_delta, rsvd); 1929 ASSERT(error == 0); 1930 } 1931 spin_unlock(&mp->m_sb_lock); 1932 return error; 1933 } 1934 1935 /* 1936 * xfs_getsb() is called to obtain the buffer for the superblock. 1937 * The buffer is returned locked and read in from disk. 1938 * The buffer should be released with a call to xfs_brelse(). 1939 * 1940 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1941 * the superblock buffer if it can be locked without sleeping. 1942 * If it can't then we'll return NULL. 1943 */ 1944 xfs_buf_t * 1945 xfs_getsb( 1946 xfs_mount_t *mp, 1947 int flags) 1948 { 1949 xfs_buf_t *bp; 1950 1951 ASSERT(mp->m_sb_bp != NULL); 1952 bp = mp->m_sb_bp; 1953 if (flags & XBF_TRYLOCK) { 1954 if (!XFS_BUF_CPSEMA(bp)) { 1955 return NULL; 1956 } 1957 } else { 1958 XFS_BUF_PSEMA(bp, PRIBIO); 1959 } 1960 XFS_BUF_HOLD(bp); 1961 ASSERT(XFS_BUF_ISDONE(bp)); 1962 return bp; 1963 } 1964 1965 /* 1966 * Used to free the superblock along various error paths. 1967 */ 1968 void 1969 xfs_freesb( 1970 struct xfs_mount *mp) 1971 { 1972 struct xfs_buf *bp = mp->m_sb_bp; 1973 1974 xfs_buf_lock(bp); 1975 mp->m_sb_bp = NULL; 1976 xfs_buf_relse(bp); 1977 } 1978 1979 /* 1980 * Used to log changes to the superblock unit and width fields which could 1981 * be altered by the mount options, as well as any potential sb_features2 1982 * fixup. Only the first superblock is updated. 1983 */ 1984 int 1985 xfs_mount_log_sb( 1986 xfs_mount_t *mp, 1987 __int64_t fields) 1988 { 1989 xfs_trans_t *tp; 1990 int error; 1991 1992 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1993 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1994 XFS_SB_VERSIONNUM)); 1995 1996 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1997 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1998 XFS_DEFAULT_LOG_COUNT); 1999 if (error) { 2000 xfs_trans_cancel(tp, 0); 2001 return error; 2002 } 2003 xfs_mod_sb(tp, fields); 2004 error = xfs_trans_commit(tp, 0); 2005 return error; 2006 } 2007 2008 /* 2009 * If the underlying (data/log/rt) device is readonly, there are some 2010 * operations that cannot proceed. 2011 */ 2012 int 2013 xfs_dev_is_read_only( 2014 struct xfs_mount *mp, 2015 char *message) 2016 { 2017 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 2018 xfs_readonly_buftarg(mp->m_logdev_targp) || 2019 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 2020 xfs_notice(mp, "%s required on read-only device.", message); 2021 xfs_notice(mp, "write access unavailable, cannot proceed."); 2022 return EROFS; 2023 } 2024 return 0; 2025 } 2026 2027 #ifdef HAVE_PERCPU_SB 2028 /* 2029 * Per-cpu incore superblock counters 2030 * 2031 * Simple concept, difficult implementation 2032 * 2033 * Basically, replace the incore superblock counters with a distributed per cpu 2034 * counter for contended fields (e.g. free block count). 2035 * 2036 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 2037 * hence needs to be accurately read when we are running low on space. Hence 2038 * there is a method to enable and disable the per-cpu counters based on how 2039 * much "stuff" is available in them. 2040 * 2041 * Basically, a counter is enabled if there is enough free resource to justify 2042 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 2043 * ENOSPC), then we disable the counters to synchronise all callers and 2044 * re-distribute the available resources. 2045 * 2046 * If, once we redistributed the available resources, we still get a failure, 2047 * we disable the per-cpu counter and go through the slow path. 2048 * 2049 * The slow path is the current xfs_mod_incore_sb() function. This means that 2050 * when we disable a per-cpu counter, we need to drain its resources back to 2051 * the global superblock. We do this after disabling the counter to prevent 2052 * more threads from queueing up on the counter. 2053 * 2054 * Essentially, this means that we still need a lock in the fast path to enable 2055 * synchronisation between the global counters and the per-cpu counters. This 2056 * is not a problem because the lock will be local to a CPU almost all the time 2057 * and have little contention except when we get to ENOSPC conditions. 2058 * 2059 * Basically, this lock becomes a barrier that enables us to lock out the fast 2060 * path while we do things like enabling and disabling counters and 2061 * synchronising the counters. 2062 * 2063 * Locking rules: 2064 * 2065 * 1. m_sb_lock before picking up per-cpu locks 2066 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2067 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2068 * 4. modifying per-cpu counters requires holding per-cpu lock 2069 * 5. modifying global counters requires holding m_sb_lock 2070 * 6. enabling or disabling a counter requires holding the m_sb_lock 2071 * and _none_ of the per-cpu locks. 2072 * 2073 * Disabled counters are only ever re-enabled by a balance operation 2074 * that results in more free resources per CPU than a given threshold. 2075 * To ensure counters don't remain disabled, they are rebalanced when 2076 * the global resource goes above a higher threshold (i.e. some hysteresis 2077 * is present to prevent thrashing). 2078 */ 2079 2080 #ifdef CONFIG_HOTPLUG_CPU 2081 /* 2082 * hot-plug CPU notifier support. 2083 * 2084 * We need a notifier per filesystem as we need to be able to identify 2085 * the filesystem to balance the counters out. This is achieved by 2086 * having a notifier block embedded in the xfs_mount_t and doing pointer 2087 * magic to get the mount pointer from the notifier block address. 2088 */ 2089 STATIC int 2090 xfs_icsb_cpu_notify( 2091 struct notifier_block *nfb, 2092 unsigned long action, 2093 void *hcpu) 2094 { 2095 xfs_icsb_cnts_t *cntp; 2096 xfs_mount_t *mp; 2097 2098 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2099 cntp = (xfs_icsb_cnts_t *) 2100 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2101 switch (action) { 2102 case CPU_UP_PREPARE: 2103 case CPU_UP_PREPARE_FROZEN: 2104 /* Easy Case - initialize the area and locks, and 2105 * then rebalance when online does everything else for us. */ 2106 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2107 break; 2108 case CPU_ONLINE: 2109 case CPU_ONLINE_FROZEN: 2110 xfs_icsb_lock(mp); 2111 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2112 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2113 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2114 xfs_icsb_unlock(mp); 2115 break; 2116 case CPU_DEAD: 2117 case CPU_DEAD_FROZEN: 2118 /* Disable all the counters, then fold the dead cpu's 2119 * count into the total on the global superblock and 2120 * re-enable the counters. */ 2121 xfs_icsb_lock(mp); 2122 spin_lock(&mp->m_sb_lock); 2123 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2124 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2125 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2126 2127 mp->m_sb.sb_icount += cntp->icsb_icount; 2128 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2129 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2130 2131 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2132 2133 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2134 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2135 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2136 spin_unlock(&mp->m_sb_lock); 2137 xfs_icsb_unlock(mp); 2138 break; 2139 } 2140 2141 return NOTIFY_OK; 2142 } 2143 #endif /* CONFIG_HOTPLUG_CPU */ 2144 2145 int 2146 xfs_icsb_init_counters( 2147 xfs_mount_t *mp) 2148 { 2149 xfs_icsb_cnts_t *cntp; 2150 int i; 2151 2152 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2153 if (mp->m_sb_cnts == NULL) 2154 return -ENOMEM; 2155 2156 #ifdef CONFIG_HOTPLUG_CPU 2157 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2158 mp->m_icsb_notifier.priority = 0; 2159 register_hotcpu_notifier(&mp->m_icsb_notifier); 2160 #endif /* CONFIG_HOTPLUG_CPU */ 2161 2162 for_each_online_cpu(i) { 2163 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2164 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2165 } 2166 2167 mutex_init(&mp->m_icsb_mutex); 2168 2169 /* 2170 * start with all counters disabled so that the 2171 * initial balance kicks us off correctly 2172 */ 2173 mp->m_icsb_counters = -1; 2174 return 0; 2175 } 2176 2177 void 2178 xfs_icsb_reinit_counters( 2179 xfs_mount_t *mp) 2180 { 2181 xfs_icsb_lock(mp); 2182 /* 2183 * start with all counters disabled so that the 2184 * initial balance kicks us off correctly 2185 */ 2186 mp->m_icsb_counters = -1; 2187 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2188 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2189 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2190 xfs_icsb_unlock(mp); 2191 } 2192 2193 void 2194 xfs_icsb_destroy_counters( 2195 xfs_mount_t *mp) 2196 { 2197 if (mp->m_sb_cnts) { 2198 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2199 free_percpu(mp->m_sb_cnts); 2200 } 2201 mutex_destroy(&mp->m_icsb_mutex); 2202 } 2203 2204 STATIC void 2205 xfs_icsb_lock_cntr( 2206 xfs_icsb_cnts_t *icsbp) 2207 { 2208 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2209 ndelay(1000); 2210 } 2211 } 2212 2213 STATIC void 2214 xfs_icsb_unlock_cntr( 2215 xfs_icsb_cnts_t *icsbp) 2216 { 2217 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2218 } 2219 2220 2221 STATIC void 2222 xfs_icsb_lock_all_counters( 2223 xfs_mount_t *mp) 2224 { 2225 xfs_icsb_cnts_t *cntp; 2226 int i; 2227 2228 for_each_online_cpu(i) { 2229 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2230 xfs_icsb_lock_cntr(cntp); 2231 } 2232 } 2233 2234 STATIC void 2235 xfs_icsb_unlock_all_counters( 2236 xfs_mount_t *mp) 2237 { 2238 xfs_icsb_cnts_t *cntp; 2239 int i; 2240 2241 for_each_online_cpu(i) { 2242 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2243 xfs_icsb_unlock_cntr(cntp); 2244 } 2245 } 2246 2247 STATIC void 2248 xfs_icsb_count( 2249 xfs_mount_t *mp, 2250 xfs_icsb_cnts_t *cnt, 2251 int flags) 2252 { 2253 xfs_icsb_cnts_t *cntp; 2254 int i; 2255 2256 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2257 2258 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2259 xfs_icsb_lock_all_counters(mp); 2260 2261 for_each_online_cpu(i) { 2262 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2263 cnt->icsb_icount += cntp->icsb_icount; 2264 cnt->icsb_ifree += cntp->icsb_ifree; 2265 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2266 } 2267 2268 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2269 xfs_icsb_unlock_all_counters(mp); 2270 } 2271 2272 STATIC int 2273 xfs_icsb_counter_disabled( 2274 xfs_mount_t *mp, 2275 xfs_sb_field_t field) 2276 { 2277 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2278 return test_bit(field, &mp->m_icsb_counters); 2279 } 2280 2281 STATIC void 2282 xfs_icsb_disable_counter( 2283 xfs_mount_t *mp, 2284 xfs_sb_field_t field) 2285 { 2286 xfs_icsb_cnts_t cnt; 2287 2288 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2289 2290 /* 2291 * If we are already disabled, then there is nothing to do 2292 * here. We check before locking all the counters to avoid 2293 * the expensive lock operation when being called in the 2294 * slow path and the counter is already disabled. This is 2295 * safe because the only time we set or clear this state is under 2296 * the m_icsb_mutex. 2297 */ 2298 if (xfs_icsb_counter_disabled(mp, field)) 2299 return; 2300 2301 xfs_icsb_lock_all_counters(mp); 2302 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2303 /* drain back to superblock */ 2304 2305 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2306 switch(field) { 2307 case XFS_SBS_ICOUNT: 2308 mp->m_sb.sb_icount = cnt.icsb_icount; 2309 break; 2310 case XFS_SBS_IFREE: 2311 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2312 break; 2313 case XFS_SBS_FDBLOCKS: 2314 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2315 break; 2316 default: 2317 BUG(); 2318 } 2319 } 2320 2321 xfs_icsb_unlock_all_counters(mp); 2322 } 2323 2324 STATIC void 2325 xfs_icsb_enable_counter( 2326 xfs_mount_t *mp, 2327 xfs_sb_field_t field, 2328 uint64_t count, 2329 uint64_t resid) 2330 { 2331 xfs_icsb_cnts_t *cntp; 2332 int i; 2333 2334 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2335 2336 xfs_icsb_lock_all_counters(mp); 2337 for_each_online_cpu(i) { 2338 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2339 switch (field) { 2340 case XFS_SBS_ICOUNT: 2341 cntp->icsb_icount = count + resid; 2342 break; 2343 case XFS_SBS_IFREE: 2344 cntp->icsb_ifree = count + resid; 2345 break; 2346 case XFS_SBS_FDBLOCKS: 2347 cntp->icsb_fdblocks = count + resid; 2348 break; 2349 default: 2350 BUG(); 2351 break; 2352 } 2353 resid = 0; 2354 } 2355 clear_bit(field, &mp->m_icsb_counters); 2356 xfs_icsb_unlock_all_counters(mp); 2357 } 2358 2359 void 2360 xfs_icsb_sync_counters_locked( 2361 xfs_mount_t *mp, 2362 int flags) 2363 { 2364 xfs_icsb_cnts_t cnt; 2365 2366 xfs_icsb_count(mp, &cnt, flags); 2367 2368 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2369 mp->m_sb.sb_icount = cnt.icsb_icount; 2370 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2371 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2372 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2373 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2374 } 2375 2376 /* 2377 * Accurate update of per-cpu counters to incore superblock 2378 */ 2379 void 2380 xfs_icsb_sync_counters( 2381 xfs_mount_t *mp, 2382 int flags) 2383 { 2384 spin_lock(&mp->m_sb_lock); 2385 xfs_icsb_sync_counters_locked(mp, flags); 2386 spin_unlock(&mp->m_sb_lock); 2387 } 2388 2389 /* 2390 * Balance and enable/disable counters as necessary. 2391 * 2392 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2393 * chosen to be the same number as single on disk allocation chunk per CPU, and 2394 * free blocks is something far enough zero that we aren't going thrash when we 2395 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2396 * prevent looping endlessly when xfs_alloc_space asks for more than will 2397 * be distributed to a single CPU but each CPU has enough blocks to be 2398 * reenabled. 2399 * 2400 * Note that we can be called when counters are already disabled. 2401 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2402 * prevent locking every per-cpu counter needlessly. 2403 */ 2404 2405 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2406 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2407 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2408 STATIC void 2409 xfs_icsb_balance_counter_locked( 2410 xfs_mount_t *mp, 2411 xfs_sb_field_t field, 2412 int min_per_cpu) 2413 { 2414 uint64_t count, resid; 2415 int weight = num_online_cpus(); 2416 uint64_t min = (uint64_t)min_per_cpu; 2417 2418 /* disable counter and sync counter */ 2419 xfs_icsb_disable_counter(mp, field); 2420 2421 /* update counters - first CPU gets residual*/ 2422 switch (field) { 2423 case XFS_SBS_ICOUNT: 2424 count = mp->m_sb.sb_icount; 2425 resid = do_div(count, weight); 2426 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2427 return; 2428 break; 2429 case XFS_SBS_IFREE: 2430 count = mp->m_sb.sb_ifree; 2431 resid = do_div(count, weight); 2432 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2433 return; 2434 break; 2435 case XFS_SBS_FDBLOCKS: 2436 count = mp->m_sb.sb_fdblocks; 2437 resid = do_div(count, weight); 2438 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2439 return; 2440 break; 2441 default: 2442 BUG(); 2443 count = resid = 0; /* quiet, gcc */ 2444 break; 2445 } 2446 2447 xfs_icsb_enable_counter(mp, field, count, resid); 2448 } 2449 2450 STATIC void 2451 xfs_icsb_balance_counter( 2452 xfs_mount_t *mp, 2453 xfs_sb_field_t fields, 2454 int min_per_cpu) 2455 { 2456 spin_lock(&mp->m_sb_lock); 2457 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2458 spin_unlock(&mp->m_sb_lock); 2459 } 2460 2461 int 2462 xfs_icsb_modify_counters( 2463 xfs_mount_t *mp, 2464 xfs_sb_field_t field, 2465 int64_t delta, 2466 int rsvd) 2467 { 2468 xfs_icsb_cnts_t *icsbp; 2469 long long lcounter; /* long counter for 64 bit fields */ 2470 int ret = 0; 2471 2472 might_sleep(); 2473 again: 2474 preempt_disable(); 2475 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2476 2477 /* 2478 * if the counter is disabled, go to slow path 2479 */ 2480 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2481 goto slow_path; 2482 xfs_icsb_lock_cntr(icsbp); 2483 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2484 xfs_icsb_unlock_cntr(icsbp); 2485 goto slow_path; 2486 } 2487 2488 switch (field) { 2489 case XFS_SBS_ICOUNT: 2490 lcounter = icsbp->icsb_icount; 2491 lcounter += delta; 2492 if (unlikely(lcounter < 0)) 2493 goto balance_counter; 2494 icsbp->icsb_icount = lcounter; 2495 break; 2496 2497 case XFS_SBS_IFREE: 2498 lcounter = icsbp->icsb_ifree; 2499 lcounter += delta; 2500 if (unlikely(lcounter < 0)) 2501 goto balance_counter; 2502 icsbp->icsb_ifree = lcounter; 2503 break; 2504 2505 case XFS_SBS_FDBLOCKS: 2506 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2507 2508 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2509 lcounter += delta; 2510 if (unlikely(lcounter < 0)) 2511 goto balance_counter; 2512 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2513 break; 2514 default: 2515 BUG(); 2516 break; 2517 } 2518 xfs_icsb_unlock_cntr(icsbp); 2519 preempt_enable(); 2520 return 0; 2521 2522 slow_path: 2523 preempt_enable(); 2524 2525 /* 2526 * serialise with a mutex so we don't burn lots of cpu on 2527 * the superblock lock. We still need to hold the superblock 2528 * lock, however, when we modify the global structures. 2529 */ 2530 xfs_icsb_lock(mp); 2531 2532 /* 2533 * Now running atomically. 2534 * 2535 * If the counter is enabled, someone has beaten us to rebalancing. 2536 * Drop the lock and try again in the fast path.... 2537 */ 2538 if (!(xfs_icsb_counter_disabled(mp, field))) { 2539 xfs_icsb_unlock(mp); 2540 goto again; 2541 } 2542 2543 /* 2544 * The counter is currently disabled. Because we are 2545 * running atomically here, we know a rebalance cannot 2546 * be in progress. Hence we can go straight to operating 2547 * on the global superblock. We do not call xfs_mod_incore_sb() 2548 * here even though we need to get the m_sb_lock. Doing so 2549 * will cause us to re-enter this function and deadlock. 2550 * Hence we get the m_sb_lock ourselves and then call 2551 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2552 * directly on the global counters. 2553 */ 2554 spin_lock(&mp->m_sb_lock); 2555 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2556 spin_unlock(&mp->m_sb_lock); 2557 2558 /* 2559 * Now that we've modified the global superblock, we 2560 * may be able to re-enable the distributed counters 2561 * (e.g. lots of space just got freed). After that 2562 * we are done. 2563 */ 2564 if (ret != ENOSPC) 2565 xfs_icsb_balance_counter(mp, field, 0); 2566 xfs_icsb_unlock(mp); 2567 return ret; 2568 2569 balance_counter: 2570 xfs_icsb_unlock_cntr(icsbp); 2571 preempt_enable(); 2572 2573 /* 2574 * We may have multiple threads here if multiple per-cpu 2575 * counters run dry at the same time. This will mean we can 2576 * do more balances than strictly necessary but it is not 2577 * the common slowpath case. 2578 */ 2579 xfs_icsb_lock(mp); 2580 2581 /* 2582 * running atomically. 2583 * 2584 * This will leave the counter in the correct state for future 2585 * accesses. After the rebalance, we simply try again and our retry 2586 * will either succeed through the fast path or slow path without 2587 * another balance operation being required. 2588 */ 2589 xfs_icsb_balance_counter(mp, field, delta); 2590 xfs_icsb_unlock(mp); 2591 goto again; 2592 } 2593 2594 #endif 2595