1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 16 #include "xfs_da_format.h" 17 #include "xfs_da_btree.h" 18 #include "xfs_inode.h" 19 #include "xfs_dir2.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_alloc.h" 22 #include "xfs_rtalloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_log.h" 27 #include "xfs_error.h" 28 #include "xfs_quota.h" 29 #include "xfs_fsops.h" 30 #include "xfs_trace.h" 31 #include "xfs_icache.h" 32 #include "xfs_sysfs.h" 33 #include "xfs_rmap_btree.h" 34 #include "xfs_refcount_btree.h" 35 #include "xfs_reflink.h" 36 #include "xfs_extent_busy.h" 37 #include "xfs_health.h" 38 39 40 static DEFINE_MUTEX(xfs_uuid_table_mutex); 41 static int xfs_uuid_table_size; 42 static uuid_t *xfs_uuid_table; 43 44 void 45 xfs_uuid_table_free(void) 46 { 47 if (xfs_uuid_table_size == 0) 48 return; 49 kmem_free(xfs_uuid_table); 50 xfs_uuid_table = NULL; 51 xfs_uuid_table_size = 0; 52 } 53 54 /* 55 * See if the UUID is unique among mounted XFS filesystems. 56 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 57 */ 58 STATIC int 59 xfs_uuid_mount( 60 struct xfs_mount *mp) 61 { 62 uuid_t *uuid = &mp->m_sb.sb_uuid; 63 int hole, i; 64 65 /* Publish UUID in struct super_block */ 66 uuid_copy(&mp->m_super->s_uuid, uuid); 67 68 if (mp->m_flags & XFS_MOUNT_NOUUID) 69 return 0; 70 71 if (uuid_is_null(uuid)) { 72 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 73 return -EINVAL; 74 } 75 76 mutex_lock(&xfs_uuid_table_mutex); 77 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 78 if (uuid_is_null(&xfs_uuid_table[i])) { 79 hole = i; 80 continue; 81 } 82 if (uuid_equal(uuid, &xfs_uuid_table[i])) 83 goto out_duplicate; 84 } 85 86 if (hole < 0) { 87 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 88 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 89 KM_SLEEP); 90 hole = xfs_uuid_table_size++; 91 } 92 xfs_uuid_table[hole] = *uuid; 93 mutex_unlock(&xfs_uuid_table_mutex); 94 95 return 0; 96 97 out_duplicate: 98 mutex_unlock(&xfs_uuid_table_mutex); 99 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 100 return -EINVAL; 101 } 102 103 STATIC void 104 xfs_uuid_unmount( 105 struct xfs_mount *mp) 106 { 107 uuid_t *uuid = &mp->m_sb.sb_uuid; 108 int i; 109 110 if (mp->m_flags & XFS_MOUNT_NOUUID) 111 return; 112 113 mutex_lock(&xfs_uuid_table_mutex); 114 for (i = 0; i < xfs_uuid_table_size; i++) { 115 if (uuid_is_null(&xfs_uuid_table[i])) 116 continue; 117 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 118 continue; 119 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 120 break; 121 } 122 ASSERT(i < xfs_uuid_table_size); 123 mutex_unlock(&xfs_uuid_table_mutex); 124 } 125 126 127 STATIC void 128 __xfs_free_perag( 129 struct rcu_head *head) 130 { 131 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 132 133 ASSERT(atomic_read(&pag->pag_ref) == 0); 134 kmem_free(pag); 135 } 136 137 /* 138 * Free up the per-ag resources associated with the mount structure. 139 */ 140 STATIC void 141 xfs_free_perag( 142 xfs_mount_t *mp) 143 { 144 xfs_agnumber_t agno; 145 struct xfs_perag *pag; 146 147 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 148 spin_lock(&mp->m_perag_lock); 149 pag = radix_tree_delete(&mp->m_perag_tree, agno); 150 spin_unlock(&mp->m_perag_lock); 151 ASSERT(pag); 152 ASSERT(atomic_read(&pag->pag_ref) == 0); 153 xfs_iunlink_destroy(pag); 154 xfs_buf_hash_destroy(pag); 155 mutex_destroy(&pag->pag_ici_reclaim_lock); 156 call_rcu(&pag->rcu_head, __xfs_free_perag); 157 } 158 } 159 160 /* 161 * Check size of device based on the (data/realtime) block count. 162 * Note: this check is used by the growfs code as well as mount. 163 */ 164 int 165 xfs_sb_validate_fsb_count( 166 xfs_sb_t *sbp, 167 uint64_t nblocks) 168 { 169 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 170 ASSERT(sbp->sb_blocklog >= BBSHIFT); 171 172 /* Limited by ULONG_MAX of page cache index */ 173 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 174 return -EFBIG; 175 return 0; 176 } 177 178 int 179 xfs_initialize_perag( 180 xfs_mount_t *mp, 181 xfs_agnumber_t agcount, 182 xfs_agnumber_t *maxagi) 183 { 184 xfs_agnumber_t index; 185 xfs_agnumber_t first_initialised = NULLAGNUMBER; 186 xfs_perag_t *pag; 187 int error = -ENOMEM; 188 189 /* 190 * Walk the current per-ag tree so we don't try to initialise AGs 191 * that already exist (growfs case). Allocate and insert all the 192 * AGs we don't find ready for initialisation. 193 */ 194 for (index = 0; index < agcount; index++) { 195 pag = xfs_perag_get(mp, index); 196 if (pag) { 197 xfs_perag_put(pag); 198 continue; 199 } 200 201 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 202 if (!pag) 203 goto out_unwind_new_pags; 204 pag->pag_agno = index; 205 pag->pag_mount = mp; 206 spin_lock_init(&pag->pag_ici_lock); 207 mutex_init(&pag->pag_ici_reclaim_lock); 208 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 209 if (xfs_buf_hash_init(pag)) 210 goto out_free_pag; 211 init_waitqueue_head(&pag->pagb_wait); 212 spin_lock_init(&pag->pagb_lock); 213 pag->pagb_count = 0; 214 pag->pagb_tree = RB_ROOT; 215 216 if (radix_tree_preload(GFP_NOFS)) 217 goto out_hash_destroy; 218 219 spin_lock(&mp->m_perag_lock); 220 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 221 BUG(); 222 spin_unlock(&mp->m_perag_lock); 223 radix_tree_preload_end(); 224 error = -EEXIST; 225 goto out_hash_destroy; 226 } 227 spin_unlock(&mp->m_perag_lock); 228 radix_tree_preload_end(); 229 /* first new pag is fully initialized */ 230 if (first_initialised == NULLAGNUMBER) 231 first_initialised = index; 232 error = xfs_iunlink_init(pag); 233 if (error) 234 goto out_hash_destroy; 235 spin_lock_init(&pag->pag_state_lock); 236 } 237 238 index = xfs_set_inode_alloc(mp, agcount); 239 240 if (maxagi) 241 *maxagi = index; 242 243 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 244 return 0; 245 246 out_hash_destroy: 247 xfs_buf_hash_destroy(pag); 248 out_free_pag: 249 mutex_destroy(&pag->pag_ici_reclaim_lock); 250 kmem_free(pag); 251 out_unwind_new_pags: 252 /* unwind any prior newly initialized pags */ 253 for (index = first_initialised; index < agcount; index++) { 254 pag = radix_tree_delete(&mp->m_perag_tree, index); 255 if (!pag) 256 break; 257 xfs_buf_hash_destroy(pag); 258 xfs_iunlink_destroy(pag); 259 mutex_destroy(&pag->pag_ici_reclaim_lock); 260 kmem_free(pag); 261 } 262 return error; 263 } 264 265 /* 266 * xfs_readsb 267 * 268 * Does the initial read of the superblock. 269 */ 270 int 271 xfs_readsb( 272 struct xfs_mount *mp, 273 int flags) 274 { 275 unsigned int sector_size; 276 struct xfs_buf *bp; 277 struct xfs_sb *sbp = &mp->m_sb; 278 int error; 279 int loud = !(flags & XFS_MFSI_QUIET); 280 const struct xfs_buf_ops *buf_ops; 281 282 ASSERT(mp->m_sb_bp == NULL); 283 ASSERT(mp->m_ddev_targp != NULL); 284 285 /* 286 * For the initial read, we must guess at the sector 287 * size based on the block device. It's enough to 288 * get the sb_sectsize out of the superblock and 289 * then reread with the proper length. 290 * We don't verify it yet, because it may not be complete. 291 */ 292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 293 buf_ops = NULL; 294 295 /* 296 * Allocate a (locked) buffer to hold the superblock. This will be kept 297 * around at all times to optimize access to the superblock. Therefore, 298 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 299 * elevated. 300 */ 301 reread: 302 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 303 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 304 buf_ops); 305 if (error) { 306 if (loud) 307 xfs_warn(mp, "SB validate failed with error %d.", error); 308 /* bad CRC means corrupted metadata */ 309 if (error == -EFSBADCRC) 310 error = -EFSCORRUPTED; 311 return error; 312 } 313 314 /* 315 * Initialize the mount structure from the superblock. 316 */ 317 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 318 319 /* 320 * If we haven't validated the superblock, do so now before we try 321 * to check the sector size and reread the superblock appropriately. 322 */ 323 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 324 if (loud) 325 xfs_warn(mp, "Invalid superblock magic number"); 326 error = -EINVAL; 327 goto release_buf; 328 } 329 330 /* 331 * We must be able to do sector-sized and sector-aligned IO. 332 */ 333 if (sector_size > sbp->sb_sectsize) { 334 if (loud) 335 xfs_warn(mp, "device supports %u byte sectors (not %u)", 336 sector_size, sbp->sb_sectsize); 337 error = -ENOSYS; 338 goto release_buf; 339 } 340 341 if (buf_ops == NULL) { 342 /* 343 * Re-read the superblock so the buffer is correctly sized, 344 * and properly verified. 345 */ 346 xfs_buf_relse(bp); 347 sector_size = sbp->sb_sectsize; 348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 349 goto reread; 350 } 351 352 xfs_reinit_percpu_counters(mp); 353 354 /* no need to be quiet anymore, so reset the buf ops */ 355 bp->b_ops = &xfs_sb_buf_ops; 356 357 mp->m_sb_bp = bp; 358 xfs_buf_unlock(bp); 359 return 0; 360 361 release_buf: 362 xfs_buf_relse(bp); 363 return error; 364 } 365 366 /* 367 * Update alignment values based on mount options and sb values 368 */ 369 STATIC int 370 xfs_update_alignment(xfs_mount_t *mp) 371 { 372 xfs_sb_t *sbp = &(mp->m_sb); 373 374 if (mp->m_dalign) { 375 /* 376 * If stripe unit and stripe width are not multiples 377 * of the fs blocksize turn off alignment. 378 */ 379 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 380 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 381 xfs_warn(mp, 382 "alignment check failed: sunit/swidth vs. blocksize(%d)", 383 sbp->sb_blocksize); 384 return -EINVAL; 385 } else { 386 /* 387 * Convert the stripe unit and width to FSBs. 388 */ 389 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 390 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 391 xfs_warn(mp, 392 "alignment check failed: sunit/swidth vs. agsize(%d)", 393 sbp->sb_agblocks); 394 return -EINVAL; 395 } else if (mp->m_dalign) { 396 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 397 } else { 398 xfs_warn(mp, 399 "alignment check failed: sunit(%d) less than bsize(%d)", 400 mp->m_dalign, sbp->sb_blocksize); 401 return -EINVAL; 402 } 403 } 404 405 /* 406 * Update superblock with new values 407 * and log changes 408 */ 409 if (xfs_sb_version_hasdalign(sbp)) { 410 if (sbp->sb_unit != mp->m_dalign) { 411 sbp->sb_unit = mp->m_dalign; 412 mp->m_update_sb = true; 413 } 414 if (sbp->sb_width != mp->m_swidth) { 415 sbp->sb_width = mp->m_swidth; 416 mp->m_update_sb = true; 417 } 418 } else { 419 xfs_warn(mp, 420 "cannot change alignment: superblock does not support data alignment"); 421 return -EINVAL; 422 } 423 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 424 xfs_sb_version_hasdalign(&mp->m_sb)) { 425 mp->m_dalign = sbp->sb_unit; 426 mp->m_swidth = sbp->sb_width; 427 } 428 429 return 0; 430 } 431 432 /* 433 * Set the maximum inode count for this filesystem 434 */ 435 STATIC void 436 xfs_set_maxicount(xfs_mount_t *mp) 437 { 438 xfs_sb_t *sbp = &(mp->m_sb); 439 uint64_t icount; 440 441 if (sbp->sb_imax_pct) { 442 /* 443 * Make sure the maximum inode count is a multiple 444 * of the units we allocate inodes in. 445 */ 446 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 447 do_div(icount, 100); 448 do_div(icount, mp->m_ialloc_blks); 449 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 450 sbp->sb_inopblog; 451 } else { 452 mp->m_maxicount = 0; 453 } 454 } 455 456 /* 457 * Set the default minimum read and write sizes unless 458 * already specified in a mount option. 459 * We use smaller I/O sizes when the file system 460 * is being used for NFS service (wsync mount option). 461 */ 462 STATIC void 463 xfs_set_rw_sizes(xfs_mount_t *mp) 464 { 465 xfs_sb_t *sbp = &(mp->m_sb); 466 int readio_log, writeio_log; 467 468 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 469 if (mp->m_flags & XFS_MOUNT_WSYNC) { 470 readio_log = XFS_WSYNC_READIO_LOG; 471 writeio_log = XFS_WSYNC_WRITEIO_LOG; 472 } else { 473 readio_log = XFS_READIO_LOG_LARGE; 474 writeio_log = XFS_WRITEIO_LOG_LARGE; 475 } 476 } else { 477 readio_log = mp->m_readio_log; 478 writeio_log = mp->m_writeio_log; 479 } 480 481 if (sbp->sb_blocklog > readio_log) { 482 mp->m_readio_log = sbp->sb_blocklog; 483 } else { 484 mp->m_readio_log = readio_log; 485 } 486 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 487 if (sbp->sb_blocklog > writeio_log) { 488 mp->m_writeio_log = sbp->sb_blocklog; 489 } else { 490 mp->m_writeio_log = writeio_log; 491 } 492 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 493 } 494 495 /* 496 * precalculate the low space thresholds for dynamic speculative preallocation. 497 */ 498 void 499 xfs_set_low_space_thresholds( 500 struct xfs_mount *mp) 501 { 502 int i; 503 504 for (i = 0; i < XFS_LOWSP_MAX; i++) { 505 uint64_t space = mp->m_sb.sb_dblocks; 506 507 do_div(space, 100); 508 mp->m_low_space[i] = space * (i + 1); 509 } 510 } 511 512 513 /* 514 * Set whether we're using inode alignment. 515 */ 516 STATIC void 517 xfs_set_inoalignment(xfs_mount_t *mp) 518 { 519 if (xfs_sb_version_hasalign(&mp->m_sb) && 520 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) 521 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 522 else 523 mp->m_inoalign_mask = 0; 524 /* 525 * If we are using stripe alignment, check whether 526 * the stripe unit is a multiple of the inode alignment 527 */ 528 if (mp->m_dalign && mp->m_inoalign_mask && 529 !(mp->m_dalign & mp->m_inoalign_mask)) 530 mp->m_sinoalign = mp->m_dalign; 531 else 532 mp->m_sinoalign = 0; 533 } 534 535 /* 536 * Check that the data (and log if separate) is an ok size. 537 */ 538 STATIC int 539 xfs_check_sizes( 540 struct xfs_mount *mp) 541 { 542 struct xfs_buf *bp; 543 xfs_daddr_t d; 544 int error; 545 546 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 547 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 548 xfs_warn(mp, "filesystem size mismatch detected"); 549 return -EFBIG; 550 } 551 error = xfs_buf_read_uncached(mp->m_ddev_targp, 552 d - XFS_FSS_TO_BB(mp, 1), 553 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 554 if (error) { 555 xfs_warn(mp, "last sector read failed"); 556 return error; 557 } 558 xfs_buf_relse(bp); 559 560 if (mp->m_logdev_targp == mp->m_ddev_targp) 561 return 0; 562 563 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 564 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 565 xfs_warn(mp, "log size mismatch detected"); 566 return -EFBIG; 567 } 568 error = xfs_buf_read_uncached(mp->m_logdev_targp, 569 d - XFS_FSB_TO_BB(mp, 1), 570 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 571 if (error) { 572 xfs_warn(mp, "log device read failed"); 573 return error; 574 } 575 xfs_buf_relse(bp); 576 return 0; 577 } 578 579 /* 580 * Clear the quotaflags in memory and in the superblock. 581 */ 582 int 583 xfs_mount_reset_sbqflags( 584 struct xfs_mount *mp) 585 { 586 mp->m_qflags = 0; 587 588 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 589 if (mp->m_sb.sb_qflags == 0) 590 return 0; 591 spin_lock(&mp->m_sb_lock); 592 mp->m_sb.sb_qflags = 0; 593 spin_unlock(&mp->m_sb_lock); 594 595 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 596 return 0; 597 598 return xfs_sync_sb(mp, false); 599 } 600 601 uint64_t 602 xfs_default_resblks(xfs_mount_t *mp) 603 { 604 uint64_t resblks; 605 606 /* 607 * We default to 5% or 8192 fsbs of space reserved, whichever is 608 * smaller. This is intended to cover concurrent allocation 609 * transactions when we initially hit enospc. These each require a 4 610 * block reservation. Hence by default we cover roughly 2000 concurrent 611 * allocation reservations. 612 */ 613 resblks = mp->m_sb.sb_dblocks; 614 do_div(resblks, 20); 615 resblks = min_t(uint64_t, resblks, 8192); 616 return resblks; 617 } 618 619 /* Ensure the summary counts are correct. */ 620 STATIC int 621 xfs_check_summary_counts( 622 struct xfs_mount *mp) 623 { 624 /* 625 * The AG0 superblock verifier rejects in-progress filesystems, 626 * so we should never see the flag set this far into mounting. 627 */ 628 if (mp->m_sb.sb_inprogress) { 629 xfs_err(mp, "sb_inprogress set after log recovery??"); 630 WARN_ON(1); 631 return -EFSCORRUPTED; 632 } 633 634 /* 635 * Now the log is mounted, we know if it was an unclean shutdown or 636 * not. If it was, with the first phase of recovery has completed, we 637 * have consistent AG blocks on disk. We have not recovered EFIs yet, 638 * but they are recovered transactionally in the second recovery phase 639 * later. 640 * 641 * If the log was clean when we mounted, we can check the summary 642 * counters. If any of them are obviously incorrect, we can recompute 643 * them from the AGF headers in the next step. 644 */ 645 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 646 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 647 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 648 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 649 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 650 651 /* 652 * We can safely re-initialise incore superblock counters from the 653 * per-ag data. These may not be correct if the filesystem was not 654 * cleanly unmounted, so we waited for recovery to finish before doing 655 * this. 656 * 657 * If the filesystem was cleanly unmounted or the previous check did 658 * not flag anything weird, then we can trust the values in the 659 * superblock to be correct and we don't need to do anything here. 660 * Otherwise, recalculate the summary counters. 661 */ 662 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 663 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 664 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 665 return 0; 666 667 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 668 } 669 670 /* 671 * This function does the following on an initial mount of a file system: 672 * - reads the superblock from disk and init the mount struct 673 * - if we're a 32-bit kernel, do a size check on the superblock 674 * so we don't mount terabyte filesystems 675 * - init mount struct realtime fields 676 * - allocate inode hash table for fs 677 * - init directory manager 678 * - perform recovery and init the log manager 679 */ 680 int 681 xfs_mountfs( 682 struct xfs_mount *mp) 683 { 684 struct xfs_sb *sbp = &(mp->m_sb); 685 struct xfs_inode *rip; 686 uint64_t resblks; 687 uint quotamount = 0; 688 uint quotaflags = 0; 689 int error = 0; 690 691 xfs_sb_mount_common(mp, sbp); 692 693 /* 694 * Check for a mismatched features2 values. Older kernels read & wrote 695 * into the wrong sb offset for sb_features2 on some platforms due to 696 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 697 * which made older superblock reading/writing routines swap it as a 698 * 64-bit value. 699 * 700 * For backwards compatibility, we make both slots equal. 701 * 702 * If we detect a mismatched field, we OR the set bits into the existing 703 * features2 field in case it has already been modified; we don't want 704 * to lose any features. We then update the bad location with the ORed 705 * value so that older kernels will see any features2 flags. The 706 * superblock writeback code ensures the new sb_features2 is copied to 707 * sb_bad_features2 before it is logged or written to disk. 708 */ 709 if (xfs_sb_has_mismatched_features2(sbp)) { 710 xfs_warn(mp, "correcting sb_features alignment problem"); 711 sbp->sb_features2 |= sbp->sb_bad_features2; 712 mp->m_update_sb = true; 713 714 /* 715 * Re-check for ATTR2 in case it was found in bad_features2 716 * slot. 717 */ 718 if (xfs_sb_version_hasattr2(&mp->m_sb) && 719 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 720 mp->m_flags |= XFS_MOUNT_ATTR2; 721 } 722 723 if (xfs_sb_version_hasattr2(&mp->m_sb) && 724 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 725 xfs_sb_version_removeattr2(&mp->m_sb); 726 mp->m_update_sb = true; 727 728 /* update sb_versionnum for the clearing of the morebits */ 729 if (!sbp->sb_features2) 730 mp->m_update_sb = true; 731 } 732 733 /* always use v2 inodes by default now */ 734 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 735 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 736 mp->m_update_sb = true; 737 } 738 739 /* 740 * Check if sb_agblocks is aligned at stripe boundary 741 * If sb_agblocks is NOT aligned turn off m_dalign since 742 * allocator alignment is within an ag, therefore ag has 743 * to be aligned at stripe boundary. 744 */ 745 error = xfs_update_alignment(mp); 746 if (error) 747 goto out; 748 749 xfs_alloc_compute_maxlevels(mp); 750 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 751 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 752 xfs_ialloc_compute_maxlevels(mp); 753 xfs_rmapbt_compute_maxlevels(mp); 754 xfs_refcountbt_compute_maxlevels(mp); 755 756 xfs_set_maxicount(mp); 757 758 /* enable fail_at_unmount as default */ 759 mp->m_fail_unmount = true; 760 761 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 762 if (error) 763 goto out; 764 765 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 766 &mp->m_kobj, "stats"); 767 if (error) 768 goto out_remove_sysfs; 769 770 error = xfs_error_sysfs_init(mp); 771 if (error) 772 goto out_del_stats; 773 774 error = xfs_errortag_init(mp); 775 if (error) 776 goto out_remove_error_sysfs; 777 778 error = xfs_uuid_mount(mp); 779 if (error) 780 goto out_remove_errortag; 781 782 /* 783 * Set the minimum read and write sizes 784 */ 785 xfs_set_rw_sizes(mp); 786 787 /* set the low space thresholds for dynamic preallocation */ 788 xfs_set_low_space_thresholds(mp); 789 790 /* 791 * Set the inode cluster size. 792 * This may still be overridden by the file system 793 * block size if it is larger than the chosen cluster size. 794 * 795 * For v5 filesystems, scale the cluster size with the inode size to 796 * keep a constant ratio of inode per cluster buffer, but only if mkfs 797 * has set the inode alignment value appropriately for larger cluster 798 * sizes. 799 */ 800 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 801 if (xfs_sb_version_hascrc(&mp->m_sb)) { 802 int new_size = mp->m_inode_cluster_size; 803 804 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; 805 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) 806 mp->m_inode_cluster_size = new_size; 807 } 808 mp->m_blocks_per_cluster = xfs_icluster_size_fsb(mp); 809 mp->m_inodes_per_cluster = XFS_FSB_TO_INO(mp, mp->m_blocks_per_cluster); 810 mp->m_cluster_align = xfs_ialloc_cluster_alignment(mp); 811 mp->m_cluster_align_inodes = XFS_FSB_TO_INO(mp, mp->m_cluster_align); 812 813 /* 814 * If enabled, sparse inode chunk alignment is expected to match the 815 * cluster size. Full inode chunk alignment must match the chunk size, 816 * but that is checked on sb read verification... 817 */ 818 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 819 mp->m_sb.sb_spino_align != 820 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { 821 xfs_warn(mp, 822 "Sparse inode block alignment (%u) must match cluster size (%llu).", 823 mp->m_sb.sb_spino_align, 824 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); 825 error = -EINVAL; 826 goto out_remove_uuid; 827 } 828 829 /* 830 * Set inode alignment fields 831 */ 832 xfs_set_inoalignment(mp); 833 834 /* 835 * Check that the data (and log if separate) is an ok size. 836 */ 837 error = xfs_check_sizes(mp); 838 if (error) 839 goto out_remove_uuid; 840 841 /* 842 * Initialize realtime fields in the mount structure 843 */ 844 error = xfs_rtmount_init(mp); 845 if (error) { 846 xfs_warn(mp, "RT mount failed"); 847 goto out_remove_uuid; 848 } 849 850 /* 851 * Copies the low order bits of the timestamp and the randomly 852 * set "sequence" number out of a UUID. 853 */ 854 mp->m_fixedfsid[0] = 855 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 856 get_unaligned_be16(&sbp->sb_uuid.b[4]); 857 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 858 859 error = xfs_da_mount(mp); 860 if (error) { 861 xfs_warn(mp, "Failed dir/attr init: %d", error); 862 goto out_remove_uuid; 863 } 864 865 /* 866 * Initialize the precomputed transaction reservations values. 867 */ 868 xfs_trans_init(mp); 869 870 /* 871 * Allocate and initialize the per-ag data. 872 */ 873 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 874 if (error) { 875 xfs_warn(mp, "Failed per-ag init: %d", error); 876 goto out_free_dir; 877 } 878 879 if (!sbp->sb_logblocks) { 880 xfs_warn(mp, "no log defined"); 881 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 882 error = -EFSCORRUPTED; 883 goto out_free_perag; 884 } 885 886 /* 887 * Log's mount-time initialization. The first part of recovery can place 888 * some items on the AIL, to be handled when recovery is finished or 889 * cancelled. 890 */ 891 error = xfs_log_mount(mp, mp->m_logdev_targp, 892 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 893 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 894 if (error) { 895 xfs_warn(mp, "log mount failed"); 896 goto out_fail_wait; 897 } 898 899 /* Make sure the summary counts are ok. */ 900 error = xfs_check_summary_counts(mp); 901 if (error) 902 goto out_log_dealloc; 903 904 /* 905 * Get and sanity-check the root inode. 906 * Save the pointer to it in the mount structure. 907 */ 908 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 909 XFS_ILOCK_EXCL, &rip); 910 if (error) { 911 xfs_warn(mp, 912 "Failed to read root inode 0x%llx, error %d", 913 sbp->sb_rootino, -error); 914 goto out_log_dealloc; 915 } 916 917 ASSERT(rip != NULL); 918 919 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 920 xfs_warn(mp, "corrupted root inode %llu: not a directory", 921 (unsigned long long)rip->i_ino); 922 xfs_iunlock(rip, XFS_ILOCK_EXCL); 923 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 924 mp); 925 error = -EFSCORRUPTED; 926 goto out_rele_rip; 927 } 928 mp->m_rootip = rip; /* save it */ 929 930 xfs_iunlock(rip, XFS_ILOCK_EXCL); 931 932 /* 933 * Initialize realtime inode pointers in the mount structure 934 */ 935 error = xfs_rtmount_inodes(mp); 936 if (error) { 937 /* 938 * Free up the root inode. 939 */ 940 xfs_warn(mp, "failed to read RT inodes"); 941 goto out_rele_rip; 942 } 943 944 /* 945 * If this is a read-only mount defer the superblock updates until 946 * the next remount into writeable mode. Otherwise we would never 947 * perform the update e.g. for the root filesystem. 948 */ 949 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 950 error = xfs_sync_sb(mp, false); 951 if (error) { 952 xfs_warn(mp, "failed to write sb changes"); 953 goto out_rtunmount; 954 } 955 } 956 957 /* 958 * Initialise the XFS quota management subsystem for this mount 959 */ 960 if (XFS_IS_QUOTA_RUNNING(mp)) { 961 error = xfs_qm_newmount(mp, "amount, "aflags); 962 if (error) 963 goto out_rtunmount; 964 } else { 965 ASSERT(!XFS_IS_QUOTA_ON(mp)); 966 967 /* 968 * If a file system had quotas running earlier, but decided to 969 * mount without -o uquota/pquota/gquota options, revoke the 970 * quotachecked license. 971 */ 972 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 973 xfs_notice(mp, "resetting quota flags"); 974 error = xfs_mount_reset_sbqflags(mp); 975 if (error) 976 goto out_rtunmount; 977 } 978 } 979 980 /* 981 * Finish recovering the file system. This part needed to be delayed 982 * until after the root and real-time bitmap inodes were consistently 983 * read in. 984 */ 985 error = xfs_log_mount_finish(mp); 986 if (error) { 987 xfs_warn(mp, "log mount finish failed"); 988 goto out_rtunmount; 989 } 990 991 /* 992 * Now the log is fully replayed, we can transition to full read-only 993 * mode for read-only mounts. This will sync all the metadata and clean 994 * the log so that the recovery we just performed does not have to be 995 * replayed again on the next mount. 996 * 997 * We use the same quiesce mechanism as the rw->ro remount, as they are 998 * semantically identical operations. 999 */ 1000 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 1001 XFS_MOUNT_RDONLY) { 1002 xfs_quiesce_attr(mp); 1003 } 1004 1005 /* 1006 * Complete the quota initialisation, post-log-replay component. 1007 */ 1008 if (quotamount) { 1009 ASSERT(mp->m_qflags == 0); 1010 mp->m_qflags = quotaflags; 1011 1012 xfs_qm_mount_quotas(mp); 1013 } 1014 1015 /* 1016 * Now we are mounted, reserve a small amount of unused space for 1017 * privileged transactions. This is needed so that transaction 1018 * space required for critical operations can dip into this pool 1019 * when at ENOSPC. This is needed for operations like create with 1020 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1021 * are not allowed to use this reserved space. 1022 * 1023 * This may drive us straight to ENOSPC on mount, but that implies 1024 * we were already there on the last unmount. Warn if this occurs. 1025 */ 1026 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1027 resblks = xfs_default_resblks(mp); 1028 error = xfs_reserve_blocks(mp, &resblks, NULL); 1029 if (error) 1030 xfs_warn(mp, 1031 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1032 1033 /* Recover any CoW blocks that never got remapped. */ 1034 error = xfs_reflink_recover_cow(mp); 1035 if (error) { 1036 xfs_err(mp, 1037 "Error %d recovering leftover CoW allocations.", error); 1038 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1039 goto out_quota; 1040 } 1041 1042 /* Reserve AG blocks for future btree expansion. */ 1043 error = xfs_fs_reserve_ag_blocks(mp); 1044 if (error && error != -ENOSPC) 1045 goto out_agresv; 1046 } 1047 1048 return 0; 1049 1050 out_agresv: 1051 xfs_fs_unreserve_ag_blocks(mp); 1052 out_quota: 1053 xfs_qm_unmount_quotas(mp); 1054 out_rtunmount: 1055 xfs_rtunmount_inodes(mp); 1056 out_rele_rip: 1057 xfs_irele(rip); 1058 /* Clean out dquots that might be in memory after quotacheck. */ 1059 xfs_qm_unmount(mp); 1060 /* 1061 * Cancel all delayed reclaim work and reclaim the inodes directly. 1062 * We have to do this /after/ rtunmount and qm_unmount because those 1063 * two will have scheduled delayed reclaim for the rt/quota inodes. 1064 * 1065 * This is slightly different from the unmountfs call sequence 1066 * because we could be tearing down a partially set up mount. In 1067 * particular, if log_mount_finish fails we bail out without calling 1068 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1069 * quota inodes. 1070 */ 1071 cancel_delayed_work_sync(&mp->m_reclaim_work); 1072 xfs_reclaim_inodes(mp, SYNC_WAIT); 1073 xfs_health_unmount(mp); 1074 out_log_dealloc: 1075 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1076 xfs_log_mount_cancel(mp); 1077 out_fail_wait: 1078 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1079 xfs_wait_buftarg(mp->m_logdev_targp); 1080 xfs_wait_buftarg(mp->m_ddev_targp); 1081 out_free_perag: 1082 xfs_free_perag(mp); 1083 out_free_dir: 1084 xfs_da_unmount(mp); 1085 out_remove_uuid: 1086 xfs_uuid_unmount(mp); 1087 out_remove_errortag: 1088 xfs_errortag_del(mp); 1089 out_remove_error_sysfs: 1090 xfs_error_sysfs_del(mp); 1091 out_del_stats: 1092 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1093 out_remove_sysfs: 1094 xfs_sysfs_del(&mp->m_kobj); 1095 out: 1096 return error; 1097 } 1098 1099 /* 1100 * This flushes out the inodes,dquots and the superblock, unmounts the 1101 * log and makes sure that incore structures are freed. 1102 */ 1103 void 1104 xfs_unmountfs( 1105 struct xfs_mount *mp) 1106 { 1107 uint64_t resblks; 1108 int error; 1109 1110 xfs_stop_block_reaping(mp); 1111 xfs_fs_unreserve_ag_blocks(mp); 1112 xfs_qm_unmount_quotas(mp); 1113 xfs_rtunmount_inodes(mp); 1114 xfs_irele(mp->m_rootip); 1115 1116 /* 1117 * We can potentially deadlock here if we have an inode cluster 1118 * that has been freed has its buffer still pinned in memory because 1119 * the transaction is still sitting in a iclog. The stale inodes 1120 * on that buffer will have their flush locks held until the 1121 * transaction hits the disk and the callbacks run. the inode 1122 * flush takes the flush lock unconditionally and with nothing to 1123 * push out the iclog we will never get that unlocked. hence we 1124 * need to force the log first. 1125 */ 1126 xfs_log_force(mp, XFS_LOG_SYNC); 1127 1128 /* 1129 * Wait for all busy extents to be freed, including completion of 1130 * any discard operation. 1131 */ 1132 xfs_extent_busy_wait_all(mp); 1133 flush_workqueue(xfs_discard_wq); 1134 1135 /* 1136 * We now need to tell the world we are unmounting. This will allow 1137 * us to detect that the filesystem is going away and we should error 1138 * out anything that we have been retrying in the background. This will 1139 * prevent neverending retries in AIL pushing from hanging the unmount. 1140 */ 1141 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1142 1143 /* 1144 * Flush all pending changes from the AIL. 1145 */ 1146 xfs_ail_push_all_sync(mp->m_ail); 1147 1148 /* 1149 * And reclaim all inodes. At this point there should be no dirty 1150 * inodes and none should be pinned or locked, but use synchronous 1151 * reclaim just to be sure. We can stop background inode reclaim 1152 * here as well if it is still running. 1153 */ 1154 cancel_delayed_work_sync(&mp->m_reclaim_work); 1155 xfs_reclaim_inodes(mp, SYNC_WAIT); 1156 xfs_health_unmount(mp); 1157 1158 xfs_qm_unmount(mp); 1159 1160 /* 1161 * Unreserve any blocks we have so that when we unmount we don't account 1162 * the reserved free space as used. This is really only necessary for 1163 * lazy superblock counting because it trusts the incore superblock 1164 * counters to be absolutely correct on clean unmount. 1165 * 1166 * We don't bother correcting this elsewhere for lazy superblock 1167 * counting because on mount of an unclean filesystem we reconstruct the 1168 * correct counter value and this is irrelevant. 1169 * 1170 * For non-lazy counter filesystems, this doesn't matter at all because 1171 * we only every apply deltas to the superblock and hence the incore 1172 * value does not matter.... 1173 */ 1174 resblks = 0; 1175 error = xfs_reserve_blocks(mp, &resblks, NULL); 1176 if (error) 1177 xfs_warn(mp, "Unable to free reserved block pool. " 1178 "Freespace may not be correct on next mount."); 1179 1180 error = xfs_log_sbcount(mp); 1181 if (error) 1182 xfs_warn(mp, "Unable to update superblock counters. " 1183 "Freespace may not be correct on next mount."); 1184 1185 1186 xfs_log_unmount(mp); 1187 xfs_da_unmount(mp); 1188 xfs_uuid_unmount(mp); 1189 1190 #if defined(DEBUG) 1191 xfs_errortag_clearall(mp); 1192 #endif 1193 xfs_free_perag(mp); 1194 1195 xfs_errortag_del(mp); 1196 xfs_error_sysfs_del(mp); 1197 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1198 xfs_sysfs_del(&mp->m_kobj); 1199 } 1200 1201 /* 1202 * Determine whether modifications can proceed. The caller specifies the minimum 1203 * freeze level for which modifications should not be allowed. This allows 1204 * certain operations to proceed while the freeze sequence is in progress, if 1205 * necessary. 1206 */ 1207 bool 1208 xfs_fs_writable( 1209 struct xfs_mount *mp, 1210 int level) 1211 { 1212 ASSERT(level > SB_UNFROZEN); 1213 if ((mp->m_super->s_writers.frozen >= level) || 1214 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1215 return false; 1216 1217 return true; 1218 } 1219 1220 /* 1221 * xfs_log_sbcount 1222 * 1223 * Sync the superblock counters to disk. 1224 * 1225 * Note this code can be called during the process of freezing, so we use the 1226 * transaction allocator that does not block when the transaction subsystem is 1227 * in its frozen state. 1228 */ 1229 int 1230 xfs_log_sbcount(xfs_mount_t *mp) 1231 { 1232 /* allow this to proceed during the freeze sequence... */ 1233 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1234 return 0; 1235 1236 /* 1237 * we don't need to do this if we are updating the superblock 1238 * counters on every modification. 1239 */ 1240 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1241 return 0; 1242 1243 return xfs_sync_sb(mp, true); 1244 } 1245 1246 /* 1247 * Deltas for the inode count are +/-64, hence we use a large batch size 1248 * of 128 so we don't need to take the counter lock on every update. 1249 */ 1250 #define XFS_ICOUNT_BATCH 128 1251 int 1252 xfs_mod_icount( 1253 struct xfs_mount *mp, 1254 int64_t delta) 1255 { 1256 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1257 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1258 ASSERT(0); 1259 percpu_counter_add(&mp->m_icount, -delta); 1260 return -EINVAL; 1261 } 1262 return 0; 1263 } 1264 1265 int 1266 xfs_mod_ifree( 1267 struct xfs_mount *mp, 1268 int64_t delta) 1269 { 1270 percpu_counter_add(&mp->m_ifree, delta); 1271 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1272 ASSERT(0); 1273 percpu_counter_add(&mp->m_ifree, -delta); 1274 return -EINVAL; 1275 } 1276 return 0; 1277 } 1278 1279 /* 1280 * Deltas for the block count can vary from 1 to very large, but lock contention 1281 * only occurs on frequent small block count updates such as in the delayed 1282 * allocation path for buffered writes (page a time updates). Hence we set 1283 * a large batch count (1024) to minimise global counter updates except when 1284 * we get near to ENOSPC and we have to be very accurate with our updates. 1285 */ 1286 #define XFS_FDBLOCKS_BATCH 1024 1287 int 1288 xfs_mod_fdblocks( 1289 struct xfs_mount *mp, 1290 int64_t delta, 1291 bool rsvd) 1292 { 1293 int64_t lcounter; 1294 long long res_used; 1295 s32 batch; 1296 1297 if (delta > 0) { 1298 /* 1299 * If the reserve pool is depleted, put blocks back into it 1300 * first. Most of the time the pool is full. 1301 */ 1302 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1303 percpu_counter_add(&mp->m_fdblocks, delta); 1304 return 0; 1305 } 1306 1307 spin_lock(&mp->m_sb_lock); 1308 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1309 1310 if (res_used > delta) { 1311 mp->m_resblks_avail += delta; 1312 } else { 1313 delta -= res_used; 1314 mp->m_resblks_avail = mp->m_resblks; 1315 percpu_counter_add(&mp->m_fdblocks, delta); 1316 } 1317 spin_unlock(&mp->m_sb_lock); 1318 return 0; 1319 } 1320 1321 /* 1322 * Taking blocks away, need to be more accurate the closer we 1323 * are to zero. 1324 * 1325 * If the counter has a value of less than 2 * max batch size, 1326 * then make everything serialise as we are real close to 1327 * ENOSPC. 1328 */ 1329 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1330 XFS_FDBLOCKS_BATCH) < 0) 1331 batch = 1; 1332 else 1333 batch = XFS_FDBLOCKS_BATCH; 1334 1335 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1336 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1337 XFS_FDBLOCKS_BATCH) >= 0) { 1338 /* we had space! */ 1339 return 0; 1340 } 1341 1342 /* 1343 * lock up the sb for dipping into reserves before releasing the space 1344 * that took us to ENOSPC. 1345 */ 1346 spin_lock(&mp->m_sb_lock); 1347 percpu_counter_add(&mp->m_fdblocks, -delta); 1348 if (!rsvd) 1349 goto fdblocks_enospc; 1350 1351 lcounter = (long long)mp->m_resblks_avail + delta; 1352 if (lcounter >= 0) { 1353 mp->m_resblks_avail = lcounter; 1354 spin_unlock(&mp->m_sb_lock); 1355 return 0; 1356 } 1357 printk_once(KERN_WARNING 1358 "Filesystem \"%s\": reserve blocks depleted! " 1359 "Consider increasing reserve pool size.", 1360 mp->m_fsname); 1361 fdblocks_enospc: 1362 spin_unlock(&mp->m_sb_lock); 1363 return -ENOSPC; 1364 } 1365 1366 int 1367 xfs_mod_frextents( 1368 struct xfs_mount *mp, 1369 int64_t delta) 1370 { 1371 int64_t lcounter; 1372 int ret = 0; 1373 1374 spin_lock(&mp->m_sb_lock); 1375 lcounter = mp->m_sb.sb_frextents + delta; 1376 if (lcounter < 0) 1377 ret = -ENOSPC; 1378 else 1379 mp->m_sb.sb_frextents = lcounter; 1380 spin_unlock(&mp->m_sb_lock); 1381 return ret; 1382 } 1383 1384 /* 1385 * xfs_getsb() is called to obtain the buffer for the superblock. 1386 * The buffer is returned locked and read in from disk. 1387 * The buffer should be released with a call to xfs_brelse(). 1388 * 1389 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1390 * the superblock buffer if it can be locked without sleeping. 1391 * If it can't then we'll return NULL. 1392 */ 1393 struct xfs_buf * 1394 xfs_getsb( 1395 struct xfs_mount *mp, 1396 int flags) 1397 { 1398 struct xfs_buf *bp = mp->m_sb_bp; 1399 1400 if (!xfs_buf_trylock(bp)) { 1401 if (flags & XBF_TRYLOCK) 1402 return NULL; 1403 xfs_buf_lock(bp); 1404 } 1405 1406 xfs_buf_hold(bp); 1407 ASSERT(bp->b_flags & XBF_DONE); 1408 return bp; 1409 } 1410 1411 /* 1412 * Used to free the superblock along various error paths. 1413 */ 1414 void 1415 xfs_freesb( 1416 struct xfs_mount *mp) 1417 { 1418 struct xfs_buf *bp = mp->m_sb_bp; 1419 1420 xfs_buf_lock(bp); 1421 mp->m_sb_bp = NULL; 1422 xfs_buf_relse(bp); 1423 } 1424 1425 /* 1426 * If the underlying (data/log/rt) device is readonly, there are some 1427 * operations that cannot proceed. 1428 */ 1429 int 1430 xfs_dev_is_read_only( 1431 struct xfs_mount *mp, 1432 char *message) 1433 { 1434 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1435 xfs_readonly_buftarg(mp->m_logdev_targp) || 1436 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1437 xfs_notice(mp, "%s required on read-only device.", message); 1438 xfs_notice(mp, "write access unavailable, cannot proceed."); 1439 return -EROFS; 1440 } 1441 return 0; 1442 } 1443 1444 /* Force the summary counters to be recalculated at next mount. */ 1445 void 1446 xfs_force_summary_recalc( 1447 struct xfs_mount *mp) 1448 { 1449 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1450 return; 1451 1452 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1453 } 1454 1455 /* 1456 * Update the in-core delayed block counter. 1457 * 1458 * We prefer to update the counter without having to take a spinlock for every 1459 * counter update (i.e. batching). Each change to delayed allocation 1460 * reservations can change can easily exceed the default percpu counter 1461 * batching, so we use a larger batch factor here. 1462 * 1463 * Note that we don't currently have any callers requiring fast summation 1464 * (e.g. percpu_counter_read) so we can use a big batch value here. 1465 */ 1466 #define XFS_DELALLOC_BATCH (4096) 1467 void 1468 xfs_mod_delalloc( 1469 struct xfs_mount *mp, 1470 int64_t delta) 1471 { 1472 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1473 XFS_DELALLOC_BATCH); 1474 } 1475