xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 4e1a33b1)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_da_format.h"
29 #include "xfs_da_btree.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
44 #include "xfs_sysfs.h"
45 #include "xfs_rmap_btree.h"
46 #include "xfs_refcount_btree.h"
47 #include "xfs_reflink.h"
48 #include "xfs_extent_busy.h"
49 
50 
51 static DEFINE_MUTEX(xfs_uuid_table_mutex);
52 static int xfs_uuid_table_size;
53 static uuid_t *xfs_uuid_table;
54 
55 void
56 xfs_uuid_table_free(void)
57 {
58 	if (xfs_uuid_table_size == 0)
59 		return;
60 	kmem_free(xfs_uuid_table);
61 	xfs_uuid_table = NULL;
62 	xfs_uuid_table_size = 0;
63 }
64 
65 /*
66  * See if the UUID is unique among mounted XFS filesystems.
67  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68  */
69 STATIC int
70 xfs_uuid_mount(
71 	struct xfs_mount	*mp)
72 {
73 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
74 	int			hole, i;
75 
76 	if (mp->m_flags & XFS_MOUNT_NOUUID)
77 		return 0;
78 
79 	if (uuid_is_nil(uuid)) {
80 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
81 		return -EINVAL;
82 	}
83 
84 	mutex_lock(&xfs_uuid_table_mutex);
85 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
86 		if (uuid_is_nil(&xfs_uuid_table[i])) {
87 			hole = i;
88 			continue;
89 		}
90 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
91 			goto out_duplicate;
92 	}
93 
94 	if (hole < 0) {
95 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
96 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
97 			KM_SLEEP);
98 		hole = xfs_uuid_table_size++;
99 	}
100 	xfs_uuid_table[hole] = *uuid;
101 	mutex_unlock(&xfs_uuid_table_mutex);
102 
103 	return 0;
104 
105  out_duplicate:
106 	mutex_unlock(&xfs_uuid_table_mutex);
107 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
108 	return -EINVAL;
109 }
110 
111 STATIC void
112 xfs_uuid_unmount(
113 	struct xfs_mount	*mp)
114 {
115 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
116 	int			i;
117 
118 	if (mp->m_flags & XFS_MOUNT_NOUUID)
119 		return;
120 
121 	mutex_lock(&xfs_uuid_table_mutex);
122 	for (i = 0; i < xfs_uuid_table_size; i++) {
123 		if (uuid_is_nil(&xfs_uuid_table[i]))
124 			continue;
125 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126 			continue;
127 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128 		break;
129 	}
130 	ASSERT(i < xfs_uuid_table_size);
131 	mutex_unlock(&xfs_uuid_table_mutex);
132 }
133 
134 
135 STATIC void
136 __xfs_free_perag(
137 	struct rcu_head	*head)
138 {
139 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140 
141 	ASSERT(atomic_read(&pag->pag_ref) == 0);
142 	kmem_free(pag);
143 }
144 
145 /*
146  * Free up the per-ag resources associated with the mount structure.
147  */
148 STATIC void
149 xfs_free_perag(
150 	xfs_mount_t	*mp)
151 {
152 	xfs_agnumber_t	agno;
153 	struct xfs_perag *pag;
154 
155 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 		spin_lock(&mp->m_perag_lock);
157 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 		spin_unlock(&mp->m_perag_lock);
159 		ASSERT(pag);
160 		ASSERT(atomic_read(&pag->pag_ref) == 0);
161 		xfs_buf_hash_destroy(pag);
162 		call_rcu(&pag->rcu_head, __xfs_free_perag);
163 	}
164 }
165 
166 /*
167  * Check size of device based on the (data/realtime) block count.
168  * Note: this check is used by the growfs code as well as mount.
169  */
170 int
171 xfs_sb_validate_fsb_count(
172 	xfs_sb_t	*sbp,
173 	__uint64_t	nblocks)
174 {
175 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
176 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
177 
178 	/* Limited by ULONG_MAX of page cache index */
179 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
180 		return -EFBIG;
181 	return 0;
182 }
183 
184 int
185 xfs_initialize_perag(
186 	xfs_mount_t	*mp,
187 	xfs_agnumber_t	agcount,
188 	xfs_agnumber_t	*maxagi)
189 {
190 	xfs_agnumber_t	index;
191 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
192 	xfs_perag_t	*pag;
193 	int		error = -ENOMEM;
194 
195 	/*
196 	 * Walk the current per-ag tree so we don't try to initialise AGs
197 	 * that already exist (growfs case). Allocate and insert all the
198 	 * AGs we don't find ready for initialisation.
199 	 */
200 	for (index = 0; index < agcount; index++) {
201 		pag = xfs_perag_get(mp, index);
202 		if (pag) {
203 			xfs_perag_put(pag);
204 			continue;
205 		}
206 
207 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 		if (!pag)
209 			goto out_unwind_new_pags;
210 		pag->pag_agno = index;
211 		pag->pag_mount = mp;
212 		spin_lock_init(&pag->pag_ici_lock);
213 		mutex_init(&pag->pag_ici_reclaim_lock);
214 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
215 		if (xfs_buf_hash_init(pag))
216 			goto out_free_pag;
217 		init_waitqueue_head(&pag->pagb_wait);
218 
219 		if (radix_tree_preload(GFP_NOFS))
220 			goto out_hash_destroy;
221 
222 		spin_lock(&mp->m_perag_lock);
223 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
224 			BUG();
225 			spin_unlock(&mp->m_perag_lock);
226 			radix_tree_preload_end();
227 			error = -EEXIST;
228 			goto out_hash_destroy;
229 		}
230 		spin_unlock(&mp->m_perag_lock);
231 		radix_tree_preload_end();
232 		/* first new pag is fully initialized */
233 		if (first_initialised == NULLAGNUMBER)
234 			first_initialised = index;
235 	}
236 
237 	index = xfs_set_inode_alloc(mp, agcount);
238 
239 	if (maxagi)
240 		*maxagi = index;
241 
242 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
243 	return 0;
244 
245 out_hash_destroy:
246 	xfs_buf_hash_destroy(pag);
247 out_free_pag:
248 	kmem_free(pag);
249 out_unwind_new_pags:
250 	/* unwind any prior newly initialized pags */
251 	for (index = first_initialised; index < agcount; index++) {
252 		pag = radix_tree_delete(&mp->m_perag_tree, index);
253 		if (!pag)
254 			break;
255 		xfs_buf_hash_destroy(pag);
256 		kmem_free(pag);
257 	}
258 	return error;
259 }
260 
261 /*
262  * xfs_readsb
263  *
264  * Does the initial read of the superblock.
265  */
266 int
267 xfs_readsb(
268 	struct xfs_mount *mp,
269 	int		flags)
270 {
271 	unsigned int	sector_size;
272 	struct xfs_buf	*bp;
273 	struct xfs_sb	*sbp = &mp->m_sb;
274 	int		error;
275 	int		loud = !(flags & XFS_MFSI_QUIET);
276 	const struct xfs_buf_ops *buf_ops;
277 
278 	ASSERT(mp->m_sb_bp == NULL);
279 	ASSERT(mp->m_ddev_targp != NULL);
280 
281 	/*
282 	 * For the initial read, we must guess at the sector
283 	 * size based on the block device.  It's enough to
284 	 * get the sb_sectsize out of the superblock and
285 	 * then reread with the proper length.
286 	 * We don't verify it yet, because it may not be complete.
287 	 */
288 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 	buf_ops = NULL;
290 
291 	/*
292 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 	 * around at all times to optimize access to the superblock. Therefore,
294 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 	 * elevated.
296 	 */
297 reread:
298 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 				      buf_ops);
301 	if (error) {
302 		if (loud)
303 			xfs_warn(mp, "SB validate failed with error %d.", error);
304 		/* bad CRC means corrupted metadata */
305 		if (error == -EFSBADCRC)
306 			error = -EFSCORRUPTED;
307 		return error;
308 	}
309 
310 	/*
311 	 * Initialize the mount structure from the superblock.
312 	 */
313 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314 
315 	/*
316 	 * If we haven't validated the superblock, do so now before we try
317 	 * to check the sector size and reread the superblock appropriately.
318 	 */
319 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 		if (loud)
321 			xfs_warn(mp, "Invalid superblock magic number");
322 		error = -EINVAL;
323 		goto release_buf;
324 	}
325 
326 	/*
327 	 * We must be able to do sector-sized and sector-aligned IO.
328 	 */
329 	if (sector_size > sbp->sb_sectsize) {
330 		if (loud)
331 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 				sector_size, sbp->sb_sectsize);
333 		error = -ENOSYS;
334 		goto release_buf;
335 	}
336 
337 	if (buf_ops == NULL) {
338 		/*
339 		 * Re-read the superblock so the buffer is correctly sized,
340 		 * and properly verified.
341 		 */
342 		xfs_buf_relse(bp);
343 		sector_size = sbp->sb_sectsize;
344 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 		goto reread;
346 	}
347 
348 	xfs_reinit_percpu_counters(mp);
349 
350 	/* no need to be quiet anymore, so reset the buf ops */
351 	bp->b_ops = &xfs_sb_buf_ops;
352 
353 	mp->m_sb_bp = bp;
354 	xfs_buf_unlock(bp);
355 	return 0;
356 
357 release_buf:
358 	xfs_buf_relse(bp);
359 	return error;
360 }
361 
362 /*
363  * Update alignment values based on mount options and sb values
364  */
365 STATIC int
366 xfs_update_alignment(xfs_mount_t *mp)
367 {
368 	xfs_sb_t	*sbp = &(mp->m_sb);
369 
370 	if (mp->m_dalign) {
371 		/*
372 		 * If stripe unit and stripe width are not multiples
373 		 * of the fs blocksize turn off alignment.
374 		 */
375 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 			xfs_warn(mp,
378 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
379 				sbp->sb_blocksize);
380 			return -EINVAL;
381 		} else {
382 			/*
383 			 * Convert the stripe unit and width to FSBs.
384 			 */
385 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 				xfs_warn(mp,
388 			"alignment check failed: sunit/swidth vs. agsize(%d)",
389 					 sbp->sb_agblocks);
390 				return -EINVAL;
391 			} else if (mp->m_dalign) {
392 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 			} else {
394 				xfs_warn(mp,
395 			"alignment check failed: sunit(%d) less than bsize(%d)",
396 					 mp->m_dalign, sbp->sb_blocksize);
397 				return -EINVAL;
398 			}
399 		}
400 
401 		/*
402 		 * Update superblock with new values
403 		 * and log changes
404 		 */
405 		if (xfs_sb_version_hasdalign(sbp)) {
406 			if (sbp->sb_unit != mp->m_dalign) {
407 				sbp->sb_unit = mp->m_dalign;
408 				mp->m_update_sb = true;
409 			}
410 			if (sbp->sb_width != mp->m_swidth) {
411 				sbp->sb_width = mp->m_swidth;
412 				mp->m_update_sb = true;
413 			}
414 		} else {
415 			xfs_warn(mp,
416 	"cannot change alignment: superblock does not support data alignment");
417 			return -EINVAL;
418 		}
419 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
421 			mp->m_dalign = sbp->sb_unit;
422 			mp->m_swidth = sbp->sb_width;
423 	}
424 
425 	return 0;
426 }
427 
428 /*
429  * Set the maximum inode count for this filesystem
430  */
431 STATIC void
432 xfs_set_maxicount(xfs_mount_t *mp)
433 {
434 	xfs_sb_t	*sbp = &(mp->m_sb);
435 	__uint64_t	icount;
436 
437 	if (sbp->sb_imax_pct) {
438 		/*
439 		 * Make sure the maximum inode count is a multiple
440 		 * of the units we allocate inodes in.
441 		 */
442 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
443 		do_div(icount, 100);
444 		do_div(icount, mp->m_ialloc_blks);
445 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
446 				   sbp->sb_inopblog;
447 	} else {
448 		mp->m_maxicount = 0;
449 	}
450 }
451 
452 /*
453  * Set the default minimum read and write sizes unless
454  * already specified in a mount option.
455  * We use smaller I/O sizes when the file system
456  * is being used for NFS service (wsync mount option).
457  */
458 STATIC void
459 xfs_set_rw_sizes(xfs_mount_t *mp)
460 {
461 	xfs_sb_t	*sbp = &(mp->m_sb);
462 	int		readio_log, writeio_log;
463 
464 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
465 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
466 			readio_log = XFS_WSYNC_READIO_LOG;
467 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
468 		} else {
469 			readio_log = XFS_READIO_LOG_LARGE;
470 			writeio_log = XFS_WRITEIO_LOG_LARGE;
471 		}
472 	} else {
473 		readio_log = mp->m_readio_log;
474 		writeio_log = mp->m_writeio_log;
475 	}
476 
477 	if (sbp->sb_blocklog > readio_log) {
478 		mp->m_readio_log = sbp->sb_blocklog;
479 	} else {
480 		mp->m_readio_log = readio_log;
481 	}
482 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
483 	if (sbp->sb_blocklog > writeio_log) {
484 		mp->m_writeio_log = sbp->sb_blocklog;
485 	} else {
486 		mp->m_writeio_log = writeio_log;
487 	}
488 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
489 }
490 
491 /*
492  * precalculate the low space thresholds for dynamic speculative preallocation.
493  */
494 void
495 xfs_set_low_space_thresholds(
496 	struct xfs_mount	*mp)
497 {
498 	int i;
499 
500 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
501 		__uint64_t space = mp->m_sb.sb_dblocks;
502 
503 		do_div(space, 100);
504 		mp->m_low_space[i] = space * (i + 1);
505 	}
506 }
507 
508 
509 /*
510  * Set whether we're using inode alignment.
511  */
512 STATIC void
513 xfs_set_inoalignment(xfs_mount_t *mp)
514 {
515 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
516 	    mp->m_sb.sb_inoalignmt >=
517 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
518 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
519 	else
520 		mp->m_inoalign_mask = 0;
521 	/*
522 	 * If we are using stripe alignment, check whether
523 	 * the stripe unit is a multiple of the inode alignment
524 	 */
525 	if (mp->m_dalign && mp->m_inoalign_mask &&
526 	    !(mp->m_dalign & mp->m_inoalign_mask))
527 		mp->m_sinoalign = mp->m_dalign;
528 	else
529 		mp->m_sinoalign = 0;
530 }
531 
532 /*
533  * Check that the data (and log if separate) is an ok size.
534  */
535 STATIC int
536 xfs_check_sizes(
537 	struct xfs_mount *mp)
538 {
539 	struct xfs_buf	*bp;
540 	xfs_daddr_t	d;
541 	int		error;
542 
543 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
544 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
545 		xfs_warn(mp, "filesystem size mismatch detected");
546 		return -EFBIG;
547 	}
548 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
549 					d - XFS_FSS_TO_BB(mp, 1),
550 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
551 	if (error) {
552 		xfs_warn(mp, "last sector read failed");
553 		return error;
554 	}
555 	xfs_buf_relse(bp);
556 
557 	if (mp->m_logdev_targp == mp->m_ddev_targp)
558 		return 0;
559 
560 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
561 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
562 		xfs_warn(mp, "log size mismatch detected");
563 		return -EFBIG;
564 	}
565 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
566 					d - XFS_FSB_TO_BB(mp, 1),
567 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
568 	if (error) {
569 		xfs_warn(mp, "log device read failed");
570 		return error;
571 	}
572 	xfs_buf_relse(bp);
573 	return 0;
574 }
575 
576 /*
577  * Clear the quotaflags in memory and in the superblock.
578  */
579 int
580 xfs_mount_reset_sbqflags(
581 	struct xfs_mount	*mp)
582 {
583 	mp->m_qflags = 0;
584 
585 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
586 	if (mp->m_sb.sb_qflags == 0)
587 		return 0;
588 	spin_lock(&mp->m_sb_lock);
589 	mp->m_sb.sb_qflags = 0;
590 	spin_unlock(&mp->m_sb_lock);
591 
592 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
593 		return 0;
594 
595 	return xfs_sync_sb(mp, false);
596 }
597 
598 __uint64_t
599 xfs_default_resblks(xfs_mount_t *mp)
600 {
601 	__uint64_t resblks;
602 
603 	/*
604 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
605 	 * smaller.  This is intended to cover concurrent allocation
606 	 * transactions when we initially hit enospc. These each require a 4
607 	 * block reservation. Hence by default we cover roughly 2000 concurrent
608 	 * allocation reservations.
609 	 */
610 	resblks = mp->m_sb.sb_dblocks;
611 	do_div(resblks, 20);
612 	resblks = min_t(__uint64_t, resblks, 8192);
613 	return resblks;
614 }
615 
616 /*
617  * This function does the following on an initial mount of a file system:
618  *	- reads the superblock from disk and init the mount struct
619  *	- if we're a 32-bit kernel, do a size check on the superblock
620  *		so we don't mount terabyte filesystems
621  *	- init mount struct realtime fields
622  *	- allocate inode hash table for fs
623  *	- init directory manager
624  *	- perform recovery and init the log manager
625  */
626 int
627 xfs_mountfs(
628 	struct xfs_mount	*mp)
629 {
630 	struct xfs_sb		*sbp = &(mp->m_sb);
631 	struct xfs_inode	*rip;
632 	__uint64_t		resblks;
633 	uint			quotamount = 0;
634 	uint			quotaflags = 0;
635 	int			error = 0;
636 
637 	xfs_sb_mount_common(mp, sbp);
638 
639 	/*
640 	 * Check for a mismatched features2 values.  Older kernels read & wrote
641 	 * into the wrong sb offset for sb_features2 on some platforms due to
642 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
643 	 * which made older superblock reading/writing routines swap it as a
644 	 * 64-bit value.
645 	 *
646 	 * For backwards compatibility, we make both slots equal.
647 	 *
648 	 * If we detect a mismatched field, we OR the set bits into the existing
649 	 * features2 field in case it has already been modified; we don't want
650 	 * to lose any features.  We then update the bad location with the ORed
651 	 * value so that older kernels will see any features2 flags. The
652 	 * superblock writeback code ensures the new sb_features2 is copied to
653 	 * sb_bad_features2 before it is logged or written to disk.
654 	 */
655 	if (xfs_sb_has_mismatched_features2(sbp)) {
656 		xfs_warn(mp, "correcting sb_features alignment problem");
657 		sbp->sb_features2 |= sbp->sb_bad_features2;
658 		mp->m_update_sb = true;
659 
660 		/*
661 		 * Re-check for ATTR2 in case it was found in bad_features2
662 		 * slot.
663 		 */
664 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
665 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
666 			mp->m_flags |= XFS_MOUNT_ATTR2;
667 	}
668 
669 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
670 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
671 		xfs_sb_version_removeattr2(&mp->m_sb);
672 		mp->m_update_sb = true;
673 
674 		/* update sb_versionnum for the clearing of the morebits */
675 		if (!sbp->sb_features2)
676 			mp->m_update_sb = true;
677 	}
678 
679 	/* always use v2 inodes by default now */
680 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
681 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
682 		mp->m_update_sb = true;
683 	}
684 
685 	/*
686 	 * Check if sb_agblocks is aligned at stripe boundary
687 	 * If sb_agblocks is NOT aligned turn off m_dalign since
688 	 * allocator alignment is within an ag, therefore ag has
689 	 * to be aligned at stripe boundary.
690 	 */
691 	error = xfs_update_alignment(mp);
692 	if (error)
693 		goto out;
694 
695 	xfs_alloc_compute_maxlevels(mp);
696 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
697 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
698 	xfs_ialloc_compute_maxlevels(mp);
699 	xfs_rmapbt_compute_maxlevels(mp);
700 	xfs_refcountbt_compute_maxlevels(mp);
701 
702 	xfs_set_maxicount(mp);
703 
704 	/* enable fail_at_unmount as default */
705 	mp->m_fail_unmount = 1;
706 
707 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
708 	if (error)
709 		goto out;
710 
711 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
712 			       &mp->m_kobj, "stats");
713 	if (error)
714 		goto out_remove_sysfs;
715 
716 	error = xfs_error_sysfs_init(mp);
717 	if (error)
718 		goto out_del_stats;
719 
720 
721 	error = xfs_uuid_mount(mp);
722 	if (error)
723 		goto out_remove_error_sysfs;
724 
725 	/*
726 	 * Set the minimum read and write sizes
727 	 */
728 	xfs_set_rw_sizes(mp);
729 
730 	/* set the low space thresholds for dynamic preallocation */
731 	xfs_set_low_space_thresholds(mp);
732 
733 	/*
734 	 * Set the inode cluster size.
735 	 * This may still be overridden by the file system
736 	 * block size if it is larger than the chosen cluster size.
737 	 *
738 	 * For v5 filesystems, scale the cluster size with the inode size to
739 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs
740 	 * has set the inode alignment value appropriately for larger cluster
741 	 * sizes.
742 	 */
743 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
744 	if (xfs_sb_version_hascrc(&mp->m_sb)) {
745 		int	new_size = mp->m_inode_cluster_size;
746 
747 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
748 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
749 			mp->m_inode_cluster_size = new_size;
750 	}
751 
752 	/*
753 	 * If enabled, sparse inode chunk alignment is expected to match the
754 	 * cluster size. Full inode chunk alignment must match the chunk size,
755 	 * but that is checked on sb read verification...
756 	 */
757 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
758 	    mp->m_sb.sb_spino_align !=
759 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
760 		xfs_warn(mp,
761 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
762 			 mp->m_sb.sb_spino_align,
763 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
764 		error = -EINVAL;
765 		goto out_remove_uuid;
766 	}
767 
768 	/*
769 	 * Set inode alignment fields
770 	 */
771 	xfs_set_inoalignment(mp);
772 
773 	/*
774 	 * Check that the data (and log if separate) is an ok size.
775 	 */
776 	error = xfs_check_sizes(mp);
777 	if (error)
778 		goto out_remove_uuid;
779 
780 	/*
781 	 * Initialize realtime fields in the mount structure
782 	 */
783 	error = xfs_rtmount_init(mp);
784 	if (error) {
785 		xfs_warn(mp, "RT mount failed");
786 		goto out_remove_uuid;
787 	}
788 
789 	/*
790 	 *  Copies the low order bits of the timestamp and the randomly
791 	 *  set "sequence" number out of a UUID.
792 	 */
793 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
794 
795 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
796 
797 	error = xfs_da_mount(mp);
798 	if (error) {
799 		xfs_warn(mp, "Failed dir/attr init: %d", error);
800 		goto out_remove_uuid;
801 	}
802 
803 	/*
804 	 * Initialize the precomputed transaction reservations values.
805 	 */
806 	xfs_trans_init(mp);
807 
808 	/*
809 	 * Allocate and initialize the per-ag data.
810 	 */
811 	spin_lock_init(&mp->m_perag_lock);
812 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
813 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
814 	if (error) {
815 		xfs_warn(mp, "Failed per-ag init: %d", error);
816 		goto out_free_dir;
817 	}
818 
819 	if (!sbp->sb_logblocks) {
820 		xfs_warn(mp, "no log defined");
821 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
822 		error = -EFSCORRUPTED;
823 		goto out_free_perag;
824 	}
825 
826 	/*
827 	 * Log's mount-time initialization. The first part of recovery can place
828 	 * some items on the AIL, to be handled when recovery is finished or
829 	 * cancelled.
830 	 */
831 	error = xfs_log_mount(mp, mp->m_logdev_targp,
832 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
833 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
834 	if (error) {
835 		xfs_warn(mp, "log mount failed");
836 		goto out_fail_wait;
837 	}
838 
839 	/*
840 	 * Now the log is mounted, we know if it was an unclean shutdown or
841 	 * not. If it was, with the first phase of recovery has completed, we
842 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
843 	 * but they are recovered transactionally in the second recovery phase
844 	 * later.
845 	 *
846 	 * Hence we can safely re-initialise incore superblock counters from
847 	 * the per-ag data. These may not be correct if the filesystem was not
848 	 * cleanly unmounted, so we need to wait for recovery to finish before
849 	 * doing this.
850 	 *
851 	 * If the filesystem was cleanly unmounted, then we can trust the
852 	 * values in the superblock to be correct and we don't need to do
853 	 * anything here.
854 	 *
855 	 * If we are currently making the filesystem, the initialisation will
856 	 * fail as the perag data is in an undefined state.
857 	 */
858 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
859 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
860 	     !mp->m_sb.sb_inprogress) {
861 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
862 		if (error)
863 			goto out_log_dealloc;
864 	}
865 
866 	/*
867 	 * Get and sanity-check the root inode.
868 	 * Save the pointer to it in the mount structure.
869 	 */
870 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
871 	if (error) {
872 		xfs_warn(mp, "failed to read root inode");
873 		goto out_log_dealloc;
874 	}
875 
876 	ASSERT(rip != NULL);
877 
878 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
879 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
880 			(unsigned long long)rip->i_ino);
881 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
882 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
883 				 mp);
884 		error = -EFSCORRUPTED;
885 		goto out_rele_rip;
886 	}
887 	mp->m_rootip = rip;	/* save it */
888 
889 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
890 
891 	/*
892 	 * Initialize realtime inode pointers in the mount structure
893 	 */
894 	error = xfs_rtmount_inodes(mp);
895 	if (error) {
896 		/*
897 		 * Free up the root inode.
898 		 */
899 		xfs_warn(mp, "failed to read RT inodes");
900 		goto out_rele_rip;
901 	}
902 
903 	/*
904 	 * If this is a read-only mount defer the superblock updates until
905 	 * the next remount into writeable mode.  Otherwise we would never
906 	 * perform the update e.g. for the root filesystem.
907 	 */
908 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
909 		error = xfs_sync_sb(mp, false);
910 		if (error) {
911 			xfs_warn(mp, "failed to write sb changes");
912 			goto out_rtunmount;
913 		}
914 	}
915 
916 	/*
917 	 * Initialise the XFS quota management subsystem for this mount
918 	 */
919 	if (XFS_IS_QUOTA_RUNNING(mp)) {
920 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
921 		if (error)
922 			goto out_rtunmount;
923 	} else {
924 		ASSERT(!XFS_IS_QUOTA_ON(mp));
925 
926 		/*
927 		 * If a file system had quotas running earlier, but decided to
928 		 * mount without -o uquota/pquota/gquota options, revoke the
929 		 * quotachecked license.
930 		 */
931 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
932 			xfs_notice(mp, "resetting quota flags");
933 			error = xfs_mount_reset_sbqflags(mp);
934 			if (error)
935 				goto out_rtunmount;
936 		}
937 	}
938 
939 	/*
940 	 * During the second phase of log recovery, we need iget and
941 	 * iput to behave like they do for an active filesystem.
942 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
943 	 * of inodes before we're done replaying log items on those
944 	 * inodes.
945 	 */
946 	mp->m_super->s_flags |= MS_ACTIVE;
947 
948 	/*
949 	 * Finish recovering the file system.  This part needed to be delayed
950 	 * until after the root and real-time bitmap inodes were consistently
951 	 * read in.
952 	 */
953 	error = xfs_log_mount_finish(mp);
954 	if (error) {
955 		xfs_warn(mp, "log mount finish failed");
956 		goto out_rtunmount;
957 	}
958 
959 	/*
960 	 * Now the log is fully replayed, we can transition to full read-only
961 	 * mode for read-only mounts. This will sync all the metadata and clean
962 	 * the log so that the recovery we just performed does not have to be
963 	 * replayed again on the next mount.
964 	 *
965 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
966 	 * semantically identical operations.
967 	 */
968 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
969 							XFS_MOUNT_RDONLY) {
970 		xfs_quiesce_attr(mp);
971 	}
972 
973 	/*
974 	 * Complete the quota initialisation, post-log-replay component.
975 	 */
976 	if (quotamount) {
977 		ASSERT(mp->m_qflags == 0);
978 		mp->m_qflags = quotaflags;
979 
980 		xfs_qm_mount_quotas(mp);
981 	}
982 
983 	/*
984 	 * Now we are mounted, reserve a small amount of unused space for
985 	 * privileged transactions. This is needed so that transaction
986 	 * space required for critical operations can dip into this pool
987 	 * when at ENOSPC. This is needed for operations like create with
988 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
989 	 * are not allowed to use this reserved space.
990 	 *
991 	 * This may drive us straight to ENOSPC on mount, but that implies
992 	 * we were already there on the last unmount. Warn if this occurs.
993 	 */
994 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
995 		resblks = xfs_default_resblks(mp);
996 		error = xfs_reserve_blocks(mp, &resblks, NULL);
997 		if (error)
998 			xfs_warn(mp,
999 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1000 
1001 		/* Recover any CoW blocks that never got remapped. */
1002 		error = xfs_reflink_recover_cow(mp);
1003 		if (error) {
1004 			xfs_err(mp,
1005 	"Error %d recovering leftover CoW allocations.", error);
1006 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1007 			goto out_quota;
1008 		}
1009 
1010 		/* Reserve AG blocks for future btree expansion. */
1011 		error = xfs_fs_reserve_ag_blocks(mp);
1012 		if (error && error != -ENOSPC)
1013 			goto out_agresv;
1014 	}
1015 
1016 	return 0;
1017 
1018  out_agresv:
1019 	xfs_fs_unreserve_ag_blocks(mp);
1020  out_quota:
1021 	xfs_qm_unmount_quotas(mp);
1022  out_rtunmount:
1023 	mp->m_super->s_flags &= ~MS_ACTIVE;
1024 	xfs_rtunmount_inodes(mp);
1025  out_rele_rip:
1026 	IRELE(rip);
1027 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1028 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1029  out_log_dealloc:
1030 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1031 	xfs_log_mount_cancel(mp);
1032  out_fail_wait:
1033 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1034 		xfs_wait_buftarg(mp->m_logdev_targp);
1035 	xfs_wait_buftarg(mp->m_ddev_targp);
1036  out_free_perag:
1037 	xfs_free_perag(mp);
1038  out_free_dir:
1039 	xfs_da_unmount(mp);
1040  out_remove_uuid:
1041 	xfs_uuid_unmount(mp);
1042  out_remove_error_sysfs:
1043 	xfs_error_sysfs_del(mp);
1044  out_del_stats:
1045 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1046  out_remove_sysfs:
1047 	xfs_sysfs_del(&mp->m_kobj);
1048  out:
1049 	return error;
1050 }
1051 
1052 /*
1053  * This flushes out the inodes,dquots and the superblock, unmounts the
1054  * log and makes sure that incore structures are freed.
1055  */
1056 void
1057 xfs_unmountfs(
1058 	struct xfs_mount	*mp)
1059 {
1060 	__uint64_t		resblks;
1061 	int			error;
1062 
1063 	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1064 	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1065 
1066 	xfs_fs_unreserve_ag_blocks(mp);
1067 	xfs_qm_unmount_quotas(mp);
1068 	xfs_rtunmount_inodes(mp);
1069 	IRELE(mp->m_rootip);
1070 
1071 	/*
1072 	 * We can potentially deadlock here if we have an inode cluster
1073 	 * that has been freed has its buffer still pinned in memory because
1074 	 * the transaction is still sitting in a iclog. The stale inodes
1075 	 * on that buffer will have their flush locks held until the
1076 	 * transaction hits the disk and the callbacks run. the inode
1077 	 * flush takes the flush lock unconditionally and with nothing to
1078 	 * push out the iclog we will never get that unlocked. hence we
1079 	 * need to force the log first.
1080 	 */
1081 	xfs_log_force(mp, XFS_LOG_SYNC);
1082 
1083 	/*
1084 	 * Wait for all busy extents to be freed, including completion of
1085 	 * any discard operation.
1086 	 */
1087 	xfs_extent_busy_wait_all(mp);
1088 	flush_workqueue(xfs_discard_wq);
1089 
1090 	/*
1091 	 * We now need to tell the world we are unmounting. This will allow
1092 	 * us to detect that the filesystem is going away and we should error
1093 	 * out anything that we have been retrying in the background. This will
1094 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1095 	 */
1096 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1097 
1098 	/*
1099 	 * Flush all pending changes from the AIL.
1100 	 */
1101 	xfs_ail_push_all_sync(mp->m_ail);
1102 
1103 	/*
1104 	 * And reclaim all inodes.  At this point there should be no dirty
1105 	 * inodes and none should be pinned or locked, but use synchronous
1106 	 * reclaim just to be sure. We can stop background inode reclaim
1107 	 * here as well if it is still running.
1108 	 */
1109 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1110 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1111 
1112 	xfs_qm_unmount(mp);
1113 
1114 	/*
1115 	 * Unreserve any blocks we have so that when we unmount we don't account
1116 	 * the reserved free space as used. This is really only necessary for
1117 	 * lazy superblock counting because it trusts the incore superblock
1118 	 * counters to be absolutely correct on clean unmount.
1119 	 *
1120 	 * We don't bother correcting this elsewhere for lazy superblock
1121 	 * counting because on mount of an unclean filesystem we reconstruct the
1122 	 * correct counter value and this is irrelevant.
1123 	 *
1124 	 * For non-lazy counter filesystems, this doesn't matter at all because
1125 	 * we only every apply deltas to the superblock and hence the incore
1126 	 * value does not matter....
1127 	 */
1128 	resblks = 0;
1129 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1130 	if (error)
1131 		xfs_warn(mp, "Unable to free reserved block pool. "
1132 				"Freespace may not be correct on next mount.");
1133 
1134 	error = xfs_log_sbcount(mp);
1135 	if (error)
1136 		xfs_warn(mp, "Unable to update superblock counters. "
1137 				"Freespace may not be correct on next mount.");
1138 
1139 
1140 	xfs_log_unmount(mp);
1141 	xfs_da_unmount(mp);
1142 	xfs_uuid_unmount(mp);
1143 
1144 #if defined(DEBUG)
1145 	xfs_errortag_clearall(mp, 0);
1146 #endif
1147 	xfs_free_perag(mp);
1148 
1149 	xfs_error_sysfs_del(mp);
1150 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1151 	xfs_sysfs_del(&mp->m_kobj);
1152 }
1153 
1154 /*
1155  * Determine whether modifications can proceed. The caller specifies the minimum
1156  * freeze level for which modifications should not be allowed. This allows
1157  * certain operations to proceed while the freeze sequence is in progress, if
1158  * necessary.
1159  */
1160 bool
1161 xfs_fs_writable(
1162 	struct xfs_mount	*mp,
1163 	int			level)
1164 {
1165 	ASSERT(level > SB_UNFROZEN);
1166 	if ((mp->m_super->s_writers.frozen >= level) ||
1167 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1168 		return false;
1169 
1170 	return true;
1171 }
1172 
1173 /*
1174  * xfs_log_sbcount
1175  *
1176  * Sync the superblock counters to disk.
1177  *
1178  * Note this code can be called during the process of freezing, so we use the
1179  * transaction allocator that does not block when the transaction subsystem is
1180  * in its frozen state.
1181  */
1182 int
1183 xfs_log_sbcount(xfs_mount_t *mp)
1184 {
1185 	/* allow this to proceed during the freeze sequence... */
1186 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1187 		return 0;
1188 
1189 	/*
1190 	 * we don't need to do this if we are updating the superblock
1191 	 * counters on every modification.
1192 	 */
1193 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1194 		return 0;
1195 
1196 	return xfs_sync_sb(mp, true);
1197 }
1198 
1199 /*
1200  * Deltas for the inode count are +/-64, hence we use a large batch size
1201  * of 128 so we don't need to take the counter lock on every update.
1202  */
1203 #define XFS_ICOUNT_BATCH	128
1204 int
1205 xfs_mod_icount(
1206 	struct xfs_mount	*mp,
1207 	int64_t			delta)
1208 {
1209 	__percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1210 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1211 		ASSERT(0);
1212 		percpu_counter_add(&mp->m_icount, -delta);
1213 		return -EINVAL;
1214 	}
1215 	return 0;
1216 }
1217 
1218 int
1219 xfs_mod_ifree(
1220 	struct xfs_mount	*mp,
1221 	int64_t			delta)
1222 {
1223 	percpu_counter_add(&mp->m_ifree, delta);
1224 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1225 		ASSERT(0);
1226 		percpu_counter_add(&mp->m_ifree, -delta);
1227 		return -EINVAL;
1228 	}
1229 	return 0;
1230 }
1231 
1232 /*
1233  * Deltas for the block count can vary from 1 to very large, but lock contention
1234  * only occurs on frequent small block count updates such as in the delayed
1235  * allocation path for buffered writes (page a time updates). Hence we set
1236  * a large batch count (1024) to minimise global counter updates except when
1237  * we get near to ENOSPC and we have to be very accurate with our updates.
1238  */
1239 #define XFS_FDBLOCKS_BATCH	1024
1240 int
1241 xfs_mod_fdblocks(
1242 	struct xfs_mount	*mp,
1243 	int64_t			delta,
1244 	bool			rsvd)
1245 {
1246 	int64_t			lcounter;
1247 	long long		res_used;
1248 	s32			batch;
1249 
1250 	if (delta > 0) {
1251 		/*
1252 		 * If the reserve pool is depleted, put blocks back into it
1253 		 * first. Most of the time the pool is full.
1254 		 */
1255 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1256 			percpu_counter_add(&mp->m_fdblocks, delta);
1257 			return 0;
1258 		}
1259 
1260 		spin_lock(&mp->m_sb_lock);
1261 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1262 
1263 		if (res_used > delta) {
1264 			mp->m_resblks_avail += delta;
1265 		} else {
1266 			delta -= res_used;
1267 			mp->m_resblks_avail = mp->m_resblks;
1268 			percpu_counter_add(&mp->m_fdblocks, delta);
1269 		}
1270 		spin_unlock(&mp->m_sb_lock);
1271 		return 0;
1272 	}
1273 
1274 	/*
1275 	 * Taking blocks away, need to be more accurate the closer we
1276 	 * are to zero.
1277 	 *
1278 	 * If the counter has a value of less than 2 * max batch size,
1279 	 * then make everything serialise as we are real close to
1280 	 * ENOSPC.
1281 	 */
1282 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1283 				     XFS_FDBLOCKS_BATCH) < 0)
1284 		batch = 1;
1285 	else
1286 		batch = XFS_FDBLOCKS_BATCH;
1287 
1288 	__percpu_counter_add(&mp->m_fdblocks, delta, batch);
1289 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1290 				     XFS_FDBLOCKS_BATCH) >= 0) {
1291 		/* we had space! */
1292 		return 0;
1293 	}
1294 
1295 	/*
1296 	 * lock up the sb for dipping into reserves before releasing the space
1297 	 * that took us to ENOSPC.
1298 	 */
1299 	spin_lock(&mp->m_sb_lock);
1300 	percpu_counter_add(&mp->m_fdblocks, -delta);
1301 	if (!rsvd)
1302 		goto fdblocks_enospc;
1303 
1304 	lcounter = (long long)mp->m_resblks_avail + delta;
1305 	if (lcounter >= 0) {
1306 		mp->m_resblks_avail = lcounter;
1307 		spin_unlock(&mp->m_sb_lock);
1308 		return 0;
1309 	}
1310 	printk_once(KERN_WARNING
1311 		"Filesystem \"%s\": reserve blocks depleted! "
1312 		"Consider increasing reserve pool size.",
1313 		mp->m_fsname);
1314 fdblocks_enospc:
1315 	spin_unlock(&mp->m_sb_lock);
1316 	return -ENOSPC;
1317 }
1318 
1319 int
1320 xfs_mod_frextents(
1321 	struct xfs_mount	*mp,
1322 	int64_t			delta)
1323 {
1324 	int64_t			lcounter;
1325 	int			ret = 0;
1326 
1327 	spin_lock(&mp->m_sb_lock);
1328 	lcounter = mp->m_sb.sb_frextents + delta;
1329 	if (lcounter < 0)
1330 		ret = -ENOSPC;
1331 	else
1332 		mp->m_sb.sb_frextents = lcounter;
1333 	spin_unlock(&mp->m_sb_lock);
1334 	return ret;
1335 }
1336 
1337 /*
1338  * xfs_getsb() is called to obtain the buffer for the superblock.
1339  * The buffer is returned locked and read in from disk.
1340  * The buffer should be released with a call to xfs_brelse().
1341  *
1342  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1343  * the superblock buffer if it can be locked without sleeping.
1344  * If it can't then we'll return NULL.
1345  */
1346 struct xfs_buf *
1347 xfs_getsb(
1348 	struct xfs_mount	*mp,
1349 	int			flags)
1350 {
1351 	struct xfs_buf		*bp = mp->m_sb_bp;
1352 
1353 	if (!xfs_buf_trylock(bp)) {
1354 		if (flags & XBF_TRYLOCK)
1355 			return NULL;
1356 		xfs_buf_lock(bp);
1357 	}
1358 
1359 	xfs_buf_hold(bp);
1360 	ASSERT(bp->b_flags & XBF_DONE);
1361 	return bp;
1362 }
1363 
1364 /*
1365  * Used to free the superblock along various error paths.
1366  */
1367 void
1368 xfs_freesb(
1369 	struct xfs_mount	*mp)
1370 {
1371 	struct xfs_buf		*bp = mp->m_sb_bp;
1372 
1373 	xfs_buf_lock(bp);
1374 	mp->m_sb_bp = NULL;
1375 	xfs_buf_relse(bp);
1376 }
1377 
1378 /*
1379  * If the underlying (data/log/rt) device is readonly, there are some
1380  * operations that cannot proceed.
1381  */
1382 int
1383 xfs_dev_is_read_only(
1384 	struct xfs_mount	*mp,
1385 	char			*message)
1386 {
1387 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1388 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1389 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1390 		xfs_notice(mp, "%s required on read-only device.", message);
1391 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1392 		return -EROFS;
1393 	}
1394 	return 0;
1395 }
1396