1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_mount.h" 29 #include "xfs_bmap_btree.h" 30 #include "xfs_alloc_btree.h" 31 #include "xfs_ialloc_btree.h" 32 #include "xfs_dinode.h" 33 #include "xfs_inode.h" 34 #include "xfs_btree.h" 35 #include "xfs_ialloc.h" 36 #include "xfs_alloc.h" 37 #include "xfs_rtalloc.h" 38 #include "xfs_bmap.h" 39 #include "xfs_error.h" 40 #include "xfs_rw.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 47 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 48 49 50 #ifdef HAVE_PERCPU_SB 51 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 52 int); 53 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 54 int); 55 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 56 #else 57 58 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 59 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 60 #endif 61 62 static const struct { 63 short offset; 64 short type; /* 0 = integer 65 * 1 = binary / string (no translation) 66 */ 67 } xfs_sb_info[] = { 68 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 69 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 70 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 71 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 72 { offsetof(xfs_sb_t, sb_rextents), 0 }, 73 { offsetof(xfs_sb_t, sb_uuid), 1 }, 74 { offsetof(xfs_sb_t, sb_logstart), 0 }, 75 { offsetof(xfs_sb_t, sb_rootino), 0 }, 76 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 77 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 78 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 79 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_agcount), 0 }, 81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 83 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 84 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 85 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 86 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 87 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 88 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 89 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 90 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 91 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 92 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 93 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 94 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 95 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 96 { offsetof(xfs_sb_t, sb_icount), 0 }, 97 { offsetof(xfs_sb_t, sb_ifree), 0 }, 98 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 99 { offsetof(xfs_sb_t, sb_frextents), 0 }, 100 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 101 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 102 { offsetof(xfs_sb_t, sb_qflags), 0 }, 103 { offsetof(xfs_sb_t, sb_flags), 0 }, 104 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 106 { offsetof(xfs_sb_t, sb_unit), 0 }, 107 { offsetof(xfs_sb_t, sb_width), 0 }, 108 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 109 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 110 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 111 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 112 { offsetof(xfs_sb_t, sb_features2), 0 }, 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 114 { sizeof(xfs_sb_t), 0 } 115 }; 116 117 static DEFINE_MUTEX(xfs_uuid_table_mutex); 118 static int xfs_uuid_table_size; 119 static uuid_t *xfs_uuid_table; 120 121 /* 122 * See if the UUID is unique among mounted XFS filesystems. 123 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 124 */ 125 STATIC int 126 xfs_uuid_mount( 127 struct xfs_mount *mp) 128 { 129 uuid_t *uuid = &mp->m_sb.sb_uuid; 130 int hole, i; 131 132 if (mp->m_flags & XFS_MOUNT_NOUUID) 133 return 0; 134 135 if (uuid_is_nil(uuid)) { 136 cmn_err(CE_WARN, 137 "XFS: Filesystem %s has nil UUID - can't mount", 138 mp->m_fsname); 139 return XFS_ERROR(EINVAL); 140 } 141 142 mutex_lock(&xfs_uuid_table_mutex); 143 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 144 if (uuid_is_nil(&xfs_uuid_table[i])) { 145 hole = i; 146 continue; 147 } 148 if (uuid_equal(uuid, &xfs_uuid_table[i])) 149 goto out_duplicate; 150 } 151 152 if (hole < 0) { 153 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 154 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 155 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 156 KM_SLEEP); 157 hole = xfs_uuid_table_size++; 158 } 159 xfs_uuid_table[hole] = *uuid; 160 mutex_unlock(&xfs_uuid_table_mutex); 161 162 return 0; 163 164 out_duplicate: 165 mutex_unlock(&xfs_uuid_table_mutex); 166 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount", 167 mp->m_fsname); 168 return XFS_ERROR(EINVAL); 169 } 170 171 STATIC void 172 xfs_uuid_unmount( 173 struct xfs_mount *mp) 174 { 175 uuid_t *uuid = &mp->m_sb.sb_uuid; 176 int i; 177 178 if (mp->m_flags & XFS_MOUNT_NOUUID) 179 return; 180 181 mutex_lock(&xfs_uuid_table_mutex); 182 for (i = 0; i < xfs_uuid_table_size; i++) { 183 if (uuid_is_nil(&xfs_uuid_table[i])) 184 continue; 185 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 186 continue; 187 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 188 break; 189 } 190 ASSERT(i < xfs_uuid_table_size); 191 mutex_unlock(&xfs_uuid_table_mutex); 192 } 193 194 195 /* 196 * Reference counting access wrappers to the perag structures. 197 * Because we never free per-ag structures, the only thing we 198 * have to protect against changes is the tree structure itself. 199 */ 200 struct xfs_perag * 201 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 202 { 203 struct xfs_perag *pag; 204 int ref = 0; 205 206 rcu_read_lock(); 207 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 208 if (pag) { 209 ASSERT(atomic_read(&pag->pag_ref) >= 0); 210 ref = atomic_inc_return(&pag->pag_ref); 211 } 212 rcu_read_unlock(); 213 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 214 return pag; 215 } 216 217 /* 218 * search from @first to find the next perag with the given tag set. 219 */ 220 struct xfs_perag * 221 xfs_perag_get_tag( 222 struct xfs_mount *mp, 223 xfs_agnumber_t first, 224 int tag) 225 { 226 struct xfs_perag *pag; 227 int found; 228 int ref; 229 230 rcu_read_lock(); 231 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 232 (void **)&pag, first, 1, tag); 233 if (found <= 0) { 234 rcu_read_unlock(); 235 return NULL; 236 } 237 ref = atomic_inc_return(&pag->pag_ref); 238 rcu_read_unlock(); 239 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 240 return pag; 241 } 242 243 void 244 xfs_perag_put(struct xfs_perag *pag) 245 { 246 int ref; 247 248 ASSERT(atomic_read(&pag->pag_ref) > 0); 249 ref = atomic_dec_return(&pag->pag_ref); 250 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 251 } 252 253 STATIC void 254 __xfs_free_perag( 255 struct rcu_head *head) 256 { 257 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 258 259 ASSERT(atomic_read(&pag->pag_ref) == 0); 260 kmem_free(pag); 261 } 262 263 /* 264 * Free up the per-ag resources associated with the mount structure. 265 */ 266 STATIC void 267 xfs_free_perag( 268 xfs_mount_t *mp) 269 { 270 xfs_agnumber_t agno; 271 struct xfs_perag *pag; 272 273 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 274 spin_lock(&mp->m_perag_lock); 275 pag = radix_tree_delete(&mp->m_perag_tree, agno); 276 spin_unlock(&mp->m_perag_lock); 277 ASSERT(pag); 278 ASSERT(atomic_read(&pag->pag_ref) == 0); 279 call_rcu(&pag->rcu_head, __xfs_free_perag); 280 } 281 } 282 283 /* 284 * Check size of device based on the (data/realtime) block count. 285 * Note: this check is used by the growfs code as well as mount. 286 */ 287 int 288 xfs_sb_validate_fsb_count( 289 xfs_sb_t *sbp, 290 __uint64_t nblocks) 291 { 292 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 293 ASSERT(sbp->sb_blocklog >= BBSHIFT); 294 295 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 296 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 297 return EFBIG; 298 #else /* Limited by UINT_MAX of sectors */ 299 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 300 return EFBIG; 301 #endif 302 return 0; 303 } 304 305 /* 306 * Check the validity of the SB found. 307 */ 308 STATIC int 309 xfs_mount_validate_sb( 310 xfs_mount_t *mp, 311 xfs_sb_t *sbp, 312 int flags) 313 { 314 /* 315 * If the log device and data device have the 316 * same device number, the log is internal. 317 * Consequently, the sb_logstart should be non-zero. If 318 * we have a zero sb_logstart in this case, we may be trying to mount 319 * a volume filesystem in a non-volume manner. 320 */ 321 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 322 xfs_fs_mount_cmn_err(flags, "bad magic number"); 323 return XFS_ERROR(EWRONGFS); 324 } 325 326 if (!xfs_sb_good_version(sbp)) { 327 xfs_fs_mount_cmn_err(flags, "bad version"); 328 return XFS_ERROR(EWRONGFS); 329 } 330 331 if (unlikely( 332 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 333 xfs_fs_mount_cmn_err(flags, 334 "filesystem is marked as having an external log; " 335 "specify logdev on the\nmount command line."); 336 return XFS_ERROR(EINVAL); 337 } 338 339 if (unlikely( 340 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 341 xfs_fs_mount_cmn_err(flags, 342 "filesystem is marked as having an internal log; " 343 "do not specify logdev on\nthe mount command line."); 344 return XFS_ERROR(EINVAL); 345 } 346 347 /* 348 * More sanity checking. These were stolen directly from 349 * xfs_repair. 350 */ 351 if (unlikely( 352 sbp->sb_agcount <= 0 || 353 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 354 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 355 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 356 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 357 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 358 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 359 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 360 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 361 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 362 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 363 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 364 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 365 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 366 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 367 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 368 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 369 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 370 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 371 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 372 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 373 return XFS_ERROR(EFSCORRUPTED); 374 } 375 376 /* 377 * Sanity check AG count, size fields against data size field 378 */ 379 if (unlikely( 380 sbp->sb_dblocks == 0 || 381 sbp->sb_dblocks > 382 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 383 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 384 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 385 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 386 return XFS_ERROR(EFSCORRUPTED); 387 } 388 389 /* 390 * Until this is fixed only page-sized or smaller data blocks work. 391 */ 392 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 393 xfs_fs_mount_cmn_err(flags, 394 "file system with blocksize %d bytes", 395 sbp->sb_blocksize); 396 xfs_fs_mount_cmn_err(flags, 397 "only pagesize (%ld) or less will currently work.", 398 PAGE_SIZE); 399 return XFS_ERROR(ENOSYS); 400 } 401 402 /* 403 * Currently only very few inode sizes are supported. 404 */ 405 switch (sbp->sb_inodesize) { 406 case 256: 407 case 512: 408 case 1024: 409 case 2048: 410 break; 411 default: 412 xfs_fs_mount_cmn_err(flags, 413 "inode size of %d bytes not supported", 414 sbp->sb_inodesize); 415 return XFS_ERROR(ENOSYS); 416 } 417 418 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 419 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 420 xfs_fs_mount_cmn_err(flags, 421 "file system too large to be mounted on this system."); 422 return XFS_ERROR(EFBIG); 423 } 424 425 if (unlikely(sbp->sb_inprogress)) { 426 xfs_fs_mount_cmn_err(flags, "file system busy"); 427 return XFS_ERROR(EFSCORRUPTED); 428 } 429 430 /* 431 * Version 1 directory format has never worked on Linux. 432 */ 433 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 434 xfs_fs_mount_cmn_err(flags, 435 "file system using version 1 directory format"); 436 return XFS_ERROR(ENOSYS); 437 } 438 439 return 0; 440 } 441 442 int 443 xfs_initialize_perag( 444 xfs_mount_t *mp, 445 xfs_agnumber_t agcount, 446 xfs_agnumber_t *maxagi) 447 { 448 xfs_agnumber_t index, max_metadata; 449 xfs_agnumber_t first_initialised = 0; 450 xfs_perag_t *pag; 451 xfs_agino_t agino; 452 xfs_ino_t ino; 453 xfs_sb_t *sbp = &mp->m_sb; 454 int error = -ENOMEM; 455 456 /* 457 * Walk the current per-ag tree so we don't try to initialise AGs 458 * that already exist (growfs case). Allocate and insert all the 459 * AGs we don't find ready for initialisation. 460 */ 461 for (index = 0; index < agcount; index++) { 462 pag = xfs_perag_get(mp, index); 463 if (pag) { 464 xfs_perag_put(pag); 465 continue; 466 } 467 if (!first_initialised) 468 first_initialised = index; 469 470 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 471 if (!pag) 472 goto out_unwind; 473 pag->pag_agno = index; 474 pag->pag_mount = mp; 475 spin_lock_init(&pag->pag_ici_lock); 476 mutex_init(&pag->pag_ici_reclaim_lock); 477 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 478 spin_lock_init(&pag->pag_buf_lock); 479 pag->pag_buf_tree = RB_ROOT; 480 481 if (radix_tree_preload(GFP_NOFS)) 482 goto out_unwind; 483 484 spin_lock(&mp->m_perag_lock); 485 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 486 BUG(); 487 spin_unlock(&mp->m_perag_lock); 488 radix_tree_preload_end(); 489 error = -EEXIST; 490 goto out_unwind; 491 } 492 spin_unlock(&mp->m_perag_lock); 493 radix_tree_preload_end(); 494 } 495 496 /* 497 * If we mount with the inode64 option, or no inode overflows 498 * the legacy 32-bit address space clear the inode32 option. 499 */ 500 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 501 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 502 503 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 504 mp->m_flags |= XFS_MOUNT_32BITINODES; 505 else 506 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 507 508 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 509 /* 510 * Calculate how much should be reserved for inodes to meet 511 * the max inode percentage. 512 */ 513 if (mp->m_maxicount) { 514 __uint64_t icount; 515 516 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 517 do_div(icount, 100); 518 icount += sbp->sb_agblocks - 1; 519 do_div(icount, sbp->sb_agblocks); 520 max_metadata = icount; 521 } else { 522 max_metadata = agcount; 523 } 524 525 for (index = 0; index < agcount; index++) { 526 ino = XFS_AGINO_TO_INO(mp, index, agino); 527 if (ino > XFS_MAXINUMBER_32) { 528 index++; 529 break; 530 } 531 532 pag = xfs_perag_get(mp, index); 533 pag->pagi_inodeok = 1; 534 if (index < max_metadata) 535 pag->pagf_metadata = 1; 536 xfs_perag_put(pag); 537 } 538 } else { 539 for (index = 0; index < agcount; index++) { 540 pag = xfs_perag_get(mp, index); 541 pag->pagi_inodeok = 1; 542 xfs_perag_put(pag); 543 } 544 } 545 546 if (maxagi) 547 *maxagi = index; 548 return 0; 549 550 out_unwind: 551 kmem_free(pag); 552 for (; index > first_initialised; index--) { 553 pag = radix_tree_delete(&mp->m_perag_tree, index); 554 kmem_free(pag); 555 } 556 return error; 557 } 558 559 void 560 xfs_sb_from_disk( 561 xfs_sb_t *to, 562 xfs_dsb_t *from) 563 { 564 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 565 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 566 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 567 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 568 to->sb_rextents = be64_to_cpu(from->sb_rextents); 569 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 570 to->sb_logstart = be64_to_cpu(from->sb_logstart); 571 to->sb_rootino = be64_to_cpu(from->sb_rootino); 572 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 573 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 574 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 575 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 576 to->sb_agcount = be32_to_cpu(from->sb_agcount); 577 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 578 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 579 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 580 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 581 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 582 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 583 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 584 to->sb_blocklog = from->sb_blocklog; 585 to->sb_sectlog = from->sb_sectlog; 586 to->sb_inodelog = from->sb_inodelog; 587 to->sb_inopblog = from->sb_inopblog; 588 to->sb_agblklog = from->sb_agblklog; 589 to->sb_rextslog = from->sb_rextslog; 590 to->sb_inprogress = from->sb_inprogress; 591 to->sb_imax_pct = from->sb_imax_pct; 592 to->sb_icount = be64_to_cpu(from->sb_icount); 593 to->sb_ifree = be64_to_cpu(from->sb_ifree); 594 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 595 to->sb_frextents = be64_to_cpu(from->sb_frextents); 596 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 597 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 598 to->sb_qflags = be16_to_cpu(from->sb_qflags); 599 to->sb_flags = from->sb_flags; 600 to->sb_shared_vn = from->sb_shared_vn; 601 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 602 to->sb_unit = be32_to_cpu(from->sb_unit); 603 to->sb_width = be32_to_cpu(from->sb_width); 604 to->sb_dirblklog = from->sb_dirblklog; 605 to->sb_logsectlog = from->sb_logsectlog; 606 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 607 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 608 to->sb_features2 = be32_to_cpu(from->sb_features2); 609 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 610 } 611 612 /* 613 * Copy in core superblock to ondisk one. 614 * 615 * The fields argument is mask of superblock fields to copy. 616 */ 617 void 618 xfs_sb_to_disk( 619 xfs_dsb_t *to, 620 xfs_sb_t *from, 621 __int64_t fields) 622 { 623 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 624 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 625 xfs_sb_field_t f; 626 int first; 627 int size; 628 629 ASSERT(fields); 630 if (!fields) 631 return; 632 633 while (fields) { 634 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 635 first = xfs_sb_info[f].offset; 636 size = xfs_sb_info[f + 1].offset - first; 637 638 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 639 640 if (size == 1 || xfs_sb_info[f].type == 1) { 641 memcpy(to_ptr + first, from_ptr + first, size); 642 } else { 643 switch (size) { 644 case 2: 645 *(__be16 *)(to_ptr + first) = 646 cpu_to_be16(*(__u16 *)(from_ptr + first)); 647 break; 648 case 4: 649 *(__be32 *)(to_ptr + first) = 650 cpu_to_be32(*(__u32 *)(from_ptr + first)); 651 break; 652 case 8: 653 *(__be64 *)(to_ptr + first) = 654 cpu_to_be64(*(__u64 *)(from_ptr + first)); 655 break; 656 default: 657 ASSERT(0); 658 } 659 } 660 661 fields &= ~(1LL << f); 662 } 663 } 664 665 /* 666 * xfs_readsb 667 * 668 * Does the initial read of the superblock. 669 */ 670 int 671 xfs_readsb(xfs_mount_t *mp, int flags) 672 { 673 unsigned int sector_size; 674 xfs_buf_t *bp; 675 int error; 676 677 ASSERT(mp->m_sb_bp == NULL); 678 ASSERT(mp->m_ddev_targp != NULL); 679 680 /* 681 * Allocate a (locked) buffer to hold the superblock. 682 * This will be kept around at all times to optimize 683 * access to the superblock. 684 */ 685 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 686 687 reread: 688 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp, 689 XFS_SB_DADDR, sector_size, 0); 690 if (!bp) { 691 xfs_fs_mount_cmn_err(flags, "SB buffer read failed"); 692 return EIO; 693 } 694 695 /* 696 * Initialize the mount structure from the superblock. 697 * But first do some basic consistency checking. 698 */ 699 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 700 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 701 if (error) { 702 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 703 goto release_buf; 704 } 705 706 /* 707 * We must be able to do sector-sized and sector-aligned IO. 708 */ 709 if (sector_size > mp->m_sb.sb_sectsize) { 710 xfs_fs_mount_cmn_err(flags, 711 "device supports only %u byte sectors (not %u)", 712 sector_size, mp->m_sb.sb_sectsize); 713 error = ENOSYS; 714 goto release_buf; 715 } 716 717 /* 718 * If device sector size is smaller than the superblock size, 719 * re-read the superblock so the buffer is correctly sized. 720 */ 721 if (sector_size < mp->m_sb.sb_sectsize) { 722 xfs_buf_relse(bp); 723 sector_size = mp->m_sb.sb_sectsize; 724 goto reread; 725 } 726 727 /* Initialize per-cpu counters */ 728 xfs_icsb_reinit_counters(mp); 729 730 mp->m_sb_bp = bp; 731 xfs_buf_unlock(bp); 732 return 0; 733 734 release_buf: 735 xfs_buf_relse(bp); 736 return error; 737 } 738 739 740 /* 741 * xfs_mount_common 742 * 743 * Mount initialization code establishing various mount 744 * fields from the superblock associated with the given 745 * mount structure 746 */ 747 STATIC void 748 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 749 { 750 mp->m_agfrotor = mp->m_agirotor = 0; 751 spin_lock_init(&mp->m_agirotor_lock); 752 mp->m_maxagi = mp->m_sb.sb_agcount; 753 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 754 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 755 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 756 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 757 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 758 mp->m_blockmask = sbp->sb_blocksize - 1; 759 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 760 mp->m_blockwmask = mp->m_blockwsize - 1; 761 762 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 763 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 764 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 765 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 766 767 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 768 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 769 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 770 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 771 772 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 773 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 774 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 775 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 776 777 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 778 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 779 sbp->sb_inopblock); 780 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 781 } 782 783 /* 784 * xfs_initialize_perag_data 785 * 786 * Read in each per-ag structure so we can count up the number of 787 * allocated inodes, free inodes and used filesystem blocks as this 788 * information is no longer persistent in the superblock. Once we have 789 * this information, write it into the in-core superblock structure. 790 */ 791 STATIC int 792 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 793 { 794 xfs_agnumber_t index; 795 xfs_perag_t *pag; 796 xfs_sb_t *sbp = &mp->m_sb; 797 uint64_t ifree = 0; 798 uint64_t ialloc = 0; 799 uint64_t bfree = 0; 800 uint64_t bfreelst = 0; 801 uint64_t btree = 0; 802 int error; 803 804 for (index = 0; index < agcount; index++) { 805 /* 806 * read the agf, then the agi. This gets us 807 * all the information we need and populates the 808 * per-ag structures for us. 809 */ 810 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 811 if (error) 812 return error; 813 814 error = xfs_ialloc_pagi_init(mp, NULL, index); 815 if (error) 816 return error; 817 pag = xfs_perag_get(mp, index); 818 ifree += pag->pagi_freecount; 819 ialloc += pag->pagi_count; 820 bfree += pag->pagf_freeblks; 821 bfreelst += pag->pagf_flcount; 822 btree += pag->pagf_btreeblks; 823 xfs_perag_put(pag); 824 } 825 /* 826 * Overwrite incore superblock counters with just-read data 827 */ 828 spin_lock(&mp->m_sb_lock); 829 sbp->sb_ifree = ifree; 830 sbp->sb_icount = ialloc; 831 sbp->sb_fdblocks = bfree + bfreelst + btree; 832 spin_unlock(&mp->m_sb_lock); 833 834 /* Fixup the per-cpu counters as well. */ 835 xfs_icsb_reinit_counters(mp); 836 837 return 0; 838 } 839 840 /* 841 * Update alignment values based on mount options and sb values 842 */ 843 STATIC int 844 xfs_update_alignment(xfs_mount_t *mp) 845 { 846 xfs_sb_t *sbp = &(mp->m_sb); 847 848 if (mp->m_dalign) { 849 /* 850 * If stripe unit and stripe width are not multiples 851 * of the fs blocksize turn off alignment. 852 */ 853 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 854 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 855 if (mp->m_flags & XFS_MOUNT_RETERR) { 856 cmn_err(CE_WARN, 857 "XFS: alignment check 1 failed"); 858 return XFS_ERROR(EINVAL); 859 } 860 mp->m_dalign = mp->m_swidth = 0; 861 } else { 862 /* 863 * Convert the stripe unit and width to FSBs. 864 */ 865 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 866 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 867 if (mp->m_flags & XFS_MOUNT_RETERR) { 868 return XFS_ERROR(EINVAL); 869 } 870 xfs_fs_cmn_err(CE_WARN, mp, 871 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 872 mp->m_dalign, mp->m_swidth, 873 sbp->sb_agblocks); 874 875 mp->m_dalign = 0; 876 mp->m_swidth = 0; 877 } else if (mp->m_dalign) { 878 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 879 } else { 880 if (mp->m_flags & XFS_MOUNT_RETERR) { 881 xfs_fs_cmn_err(CE_WARN, mp, 882 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 883 mp->m_dalign, 884 mp->m_blockmask +1); 885 return XFS_ERROR(EINVAL); 886 } 887 mp->m_swidth = 0; 888 } 889 } 890 891 /* 892 * Update superblock with new values 893 * and log changes 894 */ 895 if (xfs_sb_version_hasdalign(sbp)) { 896 if (sbp->sb_unit != mp->m_dalign) { 897 sbp->sb_unit = mp->m_dalign; 898 mp->m_update_flags |= XFS_SB_UNIT; 899 } 900 if (sbp->sb_width != mp->m_swidth) { 901 sbp->sb_width = mp->m_swidth; 902 mp->m_update_flags |= XFS_SB_WIDTH; 903 } 904 } 905 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 906 xfs_sb_version_hasdalign(&mp->m_sb)) { 907 mp->m_dalign = sbp->sb_unit; 908 mp->m_swidth = sbp->sb_width; 909 } 910 911 return 0; 912 } 913 914 /* 915 * Set the maximum inode count for this filesystem 916 */ 917 STATIC void 918 xfs_set_maxicount(xfs_mount_t *mp) 919 { 920 xfs_sb_t *sbp = &(mp->m_sb); 921 __uint64_t icount; 922 923 if (sbp->sb_imax_pct) { 924 /* 925 * Make sure the maximum inode count is a multiple 926 * of the units we allocate inodes in. 927 */ 928 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 929 do_div(icount, 100); 930 do_div(icount, mp->m_ialloc_blks); 931 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 932 sbp->sb_inopblog; 933 } else { 934 mp->m_maxicount = 0; 935 } 936 } 937 938 /* 939 * Set the default minimum read and write sizes unless 940 * already specified in a mount option. 941 * We use smaller I/O sizes when the file system 942 * is being used for NFS service (wsync mount option). 943 */ 944 STATIC void 945 xfs_set_rw_sizes(xfs_mount_t *mp) 946 { 947 xfs_sb_t *sbp = &(mp->m_sb); 948 int readio_log, writeio_log; 949 950 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 951 if (mp->m_flags & XFS_MOUNT_WSYNC) { 952 readio_log = XFS_WSYNC_READIO_LOG; 953 writeio_log = XFS_WSYNC_WRITEIO_LOG; 954 } else { 955 readio_log = XFS_READIO_LOG_LARGE; 956 writeio_log = XFS_WRITEIO_LOG_LARGE; 957 } 958 } else { 959 readio_log = mp->m_readio_log; 960 writeio_log = mp->m_writeio_log; 961 } 962 963 if (sbp->sb_blocklog > readio_log) { 964 mp->m_readio_log = sbp->sb_blocklog; 965 } else { 966 mp->m_readio_log = readio_log; 967 } 968 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 969 if (sbp->sb_blocklog > writeio_log) { 970 mp->m_writeio_log = sbp->sb_blocklog; 971 } else { 972 mp->m_writeio_log = writeio_log; 973 } 974 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 975 } 976 977 /* 978 * precalculate the low space thresholds for dynamic speculative preallocation. 979 */ 980 void 981 xfs_set_low_space_thresholds( 982 struct xfs_mount *mp) 983 { 984 int i; 985 986 for (i = 0; i < XFS_LOWSP_MAX; i++) { 987 __uint64_t space = mp->m_sb.sb_dblocks; 988 989 do_div(space, 100); 990 mp->m_low_space[i] = space * (i + 1); 991 } 992 } 993 994 995 /* 996 * Set whether we're using inode alignment. 997 */ 998 STATIC void 999 xfs_set_inoalignment(xfs_mount_t *mp) 1000 { 1001 if (xfs_sb_version_hasalign(&mp->m_sb) && 1002 mp->m_sb.sb_inoalignmt >= 1003 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 1004 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 1005 else 1006 mp->m_inoalign_mask = 0; 1007 /* 1008 * If we are using stripe alignment, check whether 1009 * the stripe unit is a multiple of the inode alignment 1010 */ 1011 if (mp->m_dalign && mp->m_inoalign_mask && 1012 !(mp->m_dalign & mp->m_inoalign_mask)) 1013 mp->m_sinoalign = mp->m_dalign; 1014 else 1015 mp->m_sinoalign = 0; 1016 } 1017 1018 /* 1019 * Check that the data (and log if separate) are an ok size. 1020 */ 1021 STATIC int 1022 xfs_check_sizes(xfs_mount_t *mp) 1023 { 1024 xfs_buf_t *bp; 1025 xfs_daddr_t d; 1026 1027 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 1028 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 1029 cmn_err(CE_WARN, "XFS: filesystem size mismatch detected"); 1030 return XFS_ERROR(EFBIG); 1031 } 1032 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp, 1033 d - XFS_FSS_TO_BB(mp, 1), 1034 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0); 1035 if (!bp) { 1036 cmn_err(CE_WARN, "XFS: last sector read failed"); 1037 return EIO; 1038 } 1039 xfs_buf_relse(bp); 1040 1041 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1042 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1043 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1044 cmn_err(CE_WARN, "XFS: log size mismatch detected"); 1045 return XFS_ERROR(EFBIG); 1046 } 1047 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp, 1048 d - XFS_FSB_TO_BB(mp, 1), 1049 XFS_FSB_TO_B(mp, 1), 0); 1050 if (!bp) { 1051 cmn_err(CE_WARN, "XFS: log device read failed"); 1052 return EIO; 1053 } 1054 xfs_buf_relse(bp); 1055 } 1056 return 0; 1057 } 1058 1059 /* 1060 * Clear the quotaflags in memory and in the superblock. 1061 */ 1062 int 1063 xfs_mount_reset_sbqflags( 1064 struct xfs_mount *mp) 1065 { 1066 int error; 1067 struct xfs_trans *tp; 1068 1069 mp->m_qflags = 0; 1070 1071 /* 1072 * It is OK to look at sb_qflags here in mount path, 1073 * without m_sb_lock. 1074 */ 1075 if (mp->m_sb.sb_qflags == 0) 1076 return 0; 1077 spin_lock(&mp->m_sb_lock); 1078 mp->m_sb.sb_qflags = 0; 1079 spin_unlock(&mp->m_sb_lock); 1080 1081 /* 1082 * If the fs is readonly, let the incore superblock run 1083 * with quotas off but don't flush the update out to disk 1084 */ 1085 if (mp->m_flags & XFS_MOUNT_RDONLY) 1086 return 0; 1087 1088 #ifdef QUOTADEBUG 1089 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes"); 1090 #endif 1091 1092 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1093 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1094 XFS_DEFAULT_LOG_COUNT); 1095 if (error) { 1096 xfs_trans_cancel(tp, 0); 1097 xfs_fs_cmn_err(CE_ALERT, mp, 1098 "xfs_mount_reset_sbqflags: Superblock update failed!"); 1099 return error; 1100 } 1101 1102 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1103 return xfs_trans_commit(tp, 0); 1104 } 1105 1106 __uint64_t 1107 xfs_default_resblks(xfs_mount_t *mp) 1108 { 1109 __uint64_t resblks; 1110 1111 /* 1112 * We default to 5% or 8192 fsbs of space reserved, whichever is 1113 * smaller. This is intended to cover concurrent allocation 1114 * transactions when we initially hit enospc. These each require a 4 1115 * block reservation. Hence by default we cover roughly 2000 concurrent 1116 * allocation reservations. 1117 */ 1118 resblks = mp->m_sb.sb_dblocks; 1119 do_div(resblks, 20); 1120 resblks = min_t(__uint64_t, resblks, 8192); 1121 return resblks; 1122 } 1123 1124 /* 1125 * This function does the following on an initial mount of a file system: 1126 * - reads the superblock from disk and init the mount struct 1127 * - if we're a 32-bit kernel, do a size check on the superblock 1128 * so we don't mount terabyte filesystems 1129 * - init mount struct realtime fields 1130 * - allocate inode hash table for fs 1131 * - init directory manager 1132 * - perform recovery and init the log manager 1133 */ 1134 int 1135 xfs_mountfs( 1136 xfs_mount_t *mp) 1137 { 1138 xfs_sb_t *sbp = &(mp->m_sb); 1139 xfs_inode_t *rip; 1140 __uint64_t resblks; 1141 uint quotamount = 0; 1142 uint quotaflags = 0; 1143 int error = 0; 1144 1145 xfs_mount_common(mp, sbp); 1146 1147 /* 1148 * Check for a mismatched features2 values. Older kernels 1149 * read & wrote into the wrong sb offset for sb_features2 1150 * on some platforms due to xfs_sb_t not being 64bit size aligned 1151 * when sb_features2 was added, which made older superblock 1152 * reading/writing routines swap it as a 64-bit value. 1153 * 1154 * For backwards compatibility, we make both slots equal. 1155 * 1156 * If we detect a mismatched field, we OR the set bits into the 1157 * existing features2 field in case it has already been modified; we 1158 * don't want to lose any features. We then update the bad location 1159 * with the ORed value so that older kernels will see any features2 1160 * flags, and mark the two fields as needing updates once the 1161 * transaction subsystem is online. 1162 */ 1163 if (xfs_sb_has_mismatched_features2(sbp)) { 1164 cmn_err(CE_WARN, 1165 "XFS: correcting sb_features alignment problem"); 1166 sbp->sb_features2 |= sbp->sb_bad_features2; 1167 sbp->sb_bad_features2 = sbp->sb_features2; 1168 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1169 1170 /* 1171 * Re-check for ATTR2 in case it was found in bad_features2 1172 * slot. 1173 */ 1174 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1175 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1176 mp->m_flags |= XFS_MOUNT_ATTR2; 1177 } 1178 1179 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1180 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1181 xfs_sb_version_removeattr2(&mp->m_sb); 1182 mp->m_update_flags |= XFS_SB_FEATURES2; 1183 1184 /* update sb_versionnum for the clearing of the morebits */ 1185 if (!sbp->sb_features2) 1186 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1187 } 1188 1189 /* 1190 * Check if sb_agblocks is aligned at stripe boundary 1191 * If sb_agblocks is NOT aligned turn off m_dalign since 1192 * allocator alignment is within an ag, therefore ag has 1193 * to be aligned at stripe boundary. 1194 */ 1195 error = xfs_update_alignment(mp); 1196 if (error) 1197 goto out; 1198 1199 xfs_alloc_compute_maxlevels(mp); 1200 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1201 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1202 xfs_ialloc_compute_maxlevels(mp); 1203 1204 xfs_set_maxicount(mp); 1205 1206 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1207 1208 error = xfs_uuid_mount(mp); 1209 if (error) 1210 goto out; 1211 1212 /* 1213 * Set the minimum read and write sizes 1214 */ 1215 xfs_set_rw_sizes(mp); 1216 1217 /* set the low space thresholds for dynamic preallocation */ 1218 xfs_set_low_space_thresholds(mp); 1219 1220 /* 1221 * Set the inode cluster size. 1222 * This may still be overridden by the file system 1223 * block size if it is larger than the chosen cluster size. 1224 */ 1225 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1226 1227 /* 1228 * Set inode alignment fields 1229 */ 1230 xfs_set_inoalignment(mp); 1231 1232 /* 1233 * Check that the data (and log if separate) are an ok size. 1234 */ 1235 error = xfs_check_sizes(mp); 1236 if (error) 1237 goto out_remove_uuid; 1238 1239 /* 1240 * Initialize realtime fields in the mount structure 1241 */ 1242 error = xfs_rtmount_init(mp); 1243 if (error) { 1244 cmn_err(CE_WARN, "XFS: RT mount failed"); 1245 goto out_remove_uuid; 1246 } 1247 1248 /* 1249 * Copies the low order bits of the timestamp and the randomly 1250 * set "sequence" number out of a UUID. 1251 */ 1252 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1253 1254 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1255 1256 xfs_dir_mount(mp); 1257 1258 /* 1259 * Initialize the attribute manager's entries. 1260 */ 1261 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1262 1263 /* 1264 * Initialize the precomputed transaction reservations values. 1265 */ 1266 xfs_trans_init(mp); 1267 1268 /* 1269 * Allocate and initialize the per-ag data. 1270 */ 1271 spin_lock_init(&mp->m_perag_lock); 1272 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1273 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1274 if (error) { 1275 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error); 1276 goto out_remove_uuid; 1277 } 1278 1279 if (!sbp->sb_logblocks) { 1280 cmn_err(CE_WARN, "XFS: no log defined"); 1281 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1282 error = XFS_ERROR(EFSCORRUPTED); 1283 goto out_free_perag; 1284 } 1285 1286 /* 1287 * log's mount-time initialization. Perform 1st part recovery if needed 1288 */ 1289 error = xfs_log_mount(mp, mp->m_logdev_targp, 1290 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1291 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1292 if (error) { 1293 cmn_err(CE_WARN, "XFS: log mount failed"); 1294 goto out_free_perag; 1295 } 1296 1297 /* 1298 * Now the log is mounted, we know if it was an unclean shutdown or 1299 * not. If it was, with the first phase of recovery has completed, we 1300 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1301 * but they are recovered transactionally in the second recovery phase 1302 * later. 1303 * 1304 * Hence we can safely re-initialise incore superblock counters from 1305 * the per-ag data. These may not be correct if the filesystem was not 1306 * cleanly unmounted, so we need to wait for recovery to finish before 1307 * doing this. 1308 * 1309 * If the filesystem was cleanly unmounted, then we can trust the 1310 * values in the superblock to be correct and we don't need to do 1311 * anything here. 1312 * 1313 * If we are currently making the filesystem, the initialisation will 1314 * fail as the perag data is in an undefined state. 1315 */ 1316 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1317 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1318 !mp->m_sb.sb_inprogress) { 1319 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1320 if (error) 1321 goto out_free_perag; 1322 } 1323 1324 /* 1325 * Get and sanity-check the root inode. 1326 * Save the pointer to it in the mount structure. 1327 */ 1328 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1329 if (error) { 1330 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1331 goto out_log_dealloc; 1332 } 1333 1334 ASSERT(rip != NULL); 1335 1336 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1337 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1338 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1339 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1340 (unsigned long long)rip->i_ino); 1341 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1342 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1343 mp); 1344 error = XFS_ERROR(EFSCORRUPTED); 1345 goto out_rele_rip; 1346 } 1347 mp->m_rootip = rip; /* save it */ 1348 1349 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1350 1351 /* 1352 * Initialize realtime inode pointers in the mount structure 1353 */ 1354 error = xfs_rtmount_inodes(mp); 1355 if (error) { 1356 /* 1357 * Free up the root inode. 1358 */ 1359 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1360 goto out_rele_rip; 1361 } 1362 1363 /* 1364 * If this is a read-only mount defer the superblock updates until 1365 * the next remount into writeable mode. Otherwise we would never 1366 * perform the update e.g. for the root filesystem. 1367 */ 1368 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1369 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1370 if (error) { 1371 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1372 goto out_rtunmount; 1373 } 1374 } 1375 1376 /* 1377 * Initialise the XFS quota management subsystem for this mount 1378 */ 1379 if (XFS_IS_QUOTA_RUNNING(mp)) { 1380 error = xfs_qm_newmount(mp, "amount, "aflags); 1381 if (error) 1382 goto out_rtunmount; 1383 } else { 1384 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1385 1386 /* 1387 * If a file system had quotas running earlier, but decided to 1388 * mount without -o uquota/pquota/gquota options, revoke the 1389 * quotachecked license. 1390 */ 1391 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1392 cmn_err(CE_NOTE, 1393 "XFS: resetting qflags for filesystem %s", 1394 mp->m_fsname); 1395 1396 error = xfs_mount_reset_sbqflags(mp); 1397 if (error) 1398 return error; 1399 } 1400 } 1401 1402 /* 1403 * Finish recovering the file system. This part needed to be 1404 * delayed until after the root and real-time bitmap inodes 1405 * were consistently read in. 1406 */ 1407 error = xfs_log_mount_finish(mp); 1408 if (error) { 1409 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1410 goto out_rtunmount; 1411 } 1412 1413 /* 1414 * Complete the quota initialisation, post-log-replay component. 1415 */ 1416 if (quotamount) { 1417 ASSERT(mp->m_qflags == 0); 1418 mp->m_qflags = quotaflags; 1419 1420 xfs_qm_mount_quotas(mp); 1421 } 1422 1423 /* 1424 * Now we are mounted, reserve a small amount of unused space for 1425 * privileged transactions. This is needed so that transaction 1426 * space required for critical operations can dip into this pool 1427 * when at ENOSPC. This is needed for operations like create with 1428 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1429 * are not allowed to use this reserved space. 1430 * 1431 * This may drive us straight to ENOSPC on mount, but that implies 1432 * we were already there on the last unmount. Warn if this occurs. 1433 */ 1434 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1435 resblks = xfs_default_resblks(mp); 1436 error = xfs_reserve_blocks(mp, &resblks, NULL); 1437 if (error) 1438 cmn_err(CE_WARN, "XFS: Unable to allocate reserve " 1439 "blocks. Continuing without a reserve pool."); 1440 } 1441 1442 return 0; 1443 1444 out_rtunmount: 1445 xfs_rtunmount_inodes(mp); 1446 out_rele_rip: 1447 IRELE(rip); 1448 out_log_dealloc: 1449 xfs_log_unmount(mp); 1450 out_free_perag: 1451 xfs_free_perag(mp); 1452 out_remove_uuid: 1453 xfs_uuid_unmount(mp); 1454 out: 1455 return error; 1456 } 1457 1458 /* 1459 * This flushes out the inodes,dquots and the superblock, unmounts the 1460 * log and makes sure that incore structures are freed. 1461 */ 1462 void 1463 xfs_unmountfs( 1464 struct xfs_mount *mp) 1465 { 1466 __uint64_t resblks; 1467 int error; 1468 1469 xfs_qm_unmount_quotas(mp); 1470 xfs_rtunmount_inodes(mp); 1471 IRELE(mp->m_rootip); 1472 1473 /* 1474 * We can potentially deadlock here if we have an inode cluster 1475 * that has been freed has its buffer still pinned in memory because 1476 * the transaction is still sitting in a iclog. The stale inodes 1477 * on that buffer will have their flush locks held until the 1478 * transaction hits the disk and the callbacks run. the inode 1479 * flush takes the flush lock unconditionally and with nothing to 1480 * push out the iclog we will never get that unlocked. hence we 1481 * need to force the log first. 1482 */ 1483 xfs_log_force(mp, XFS_LOG_SYNC); 1484 1485 /* 1486 * Do a delwri reclaim pass first so that as many dirty inodes are 1487 * queued up for IO as possible. Then flush the buffers before making 1488 * a synchronous path to catch all the remaining inodes are reclaimed. 1489 * This makes the reclaim process as quick as possible by avoiding 1490 * synchronous writeout and blocking on inodes already in the delwri 1491 * state as much as possible. 1492 */ 1493 xfs_reclaim_inodes(mp, 0); 1494 XFS_bflush(mp->m_ddev_targp); 1495 xfs_reclaim_inodes(mp, SYNC_WAIT); 1496 1497 xfs_qm_unmount(mp); 1498 1499 /* 1500 * Flush out the log synchronously so that we know for sure 1501 * that nothing is pinned. This is important because bflush() 1502 * will skip pinned buffers. 1503 */ 1504 xfs_log_force(mp, XFS_LOG_SYNC); 1505 1506 xfs_binval(mp->m_ddev_targp); 1507 if (mp->m_rtdev_targp) { 1508 xfs_binval(mp->m_rtdev_targp); 1509 } 1510 1511 /* 1512 * Unreserve any blocks we have so that when we unmount we don't account 1513 * the reserved free space as used. This is really only necessary for 1514 * lazy superblock counting because it trusts the incore superblock 1515 * counters to be absolutely correct on clean unmount. 1516 * 1517 * We don't bother correcting this elsewhere for lazy superblock 1518 * counting because on mount of an unclean filesystem we reconstruct the 1519 * correct counter value and this is irrelevant. 1520 * 1521 * For non-lazy counter filesystems, this doesn't matter at all because 1522 * we only every apply deltas to the superblock and hence the incore 1523 * value does not matter.... 1524 */ 1525 resblks = 0; 1526 error = xfs_reserve_blocks(mp, &resblks, NULL); 1527 if (error) 1528 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1529 "Freespace may not be correct on next mount."); 1530 1531 error = xfs_log_sbcount(mp, 1); 1532 if (error) 1533 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1534 "Freespace may not be correct on next mount."); 1535 xfs_unmountfs_writesb(mp); 1536 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1537 xfs_log_unmount_write(mp); 1538 xfs_log_unmount(mp); 1539 xfs_uuid_unmount(mp); 1540 1541 #if defined(DEBUG) 1542 xfs_errortag_clearall(mp, 0); 1543 #endif 1544 xfs_free_perag(mp); 1545 } 1546 1547 STATIC void 1548 xfs_unmountfs_wait(xfs_mount_t *mp) 1549 { 1550 if (mp->m_logdev_targp != mp->m_ddev_targp) 1551 xfs_wait_buftarg(mp->m_logdev_targp); 1552 if (mp->m_rtdev_targp) 1553 xfs_wait_buftarg(mp->m_rtdev_targp); 1554 xfs_wait_buftarg(mp->m_ddev_targp); 1555 } 1556 1557 int 1558 xfs_fs_writable(xfs_mount_t *mp) 1559 { 1560 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1561 (mp->m_flags & XFS_MOUNT_RDONLY)); 1562 } 1563 1564 /* 1565 * xfs_log_sbcount 1566 * 1567 * Called either periodically to keep the on disk superblock values 1568 * roughly up to date or from unmount to make sure the values are 1569 * correct on a clean unmount. 1570 * 1571 * Note this code can be called during the process of freezing, so 1572 * we may need to use the transaction allocator which does not not 1573 * block when the transaction subsystem is in its frozen state. 1574 */ 1575 int 1576 xfs_log_sbcount( 1577 xfs_mount_t *mp, 1578 uint sync) 1579 { 1580 xfs_trans_t *tp; 1581 int error; 1582 1583 if (!xfs_fs_writable(mp)) 1584 return 0; 1585 1586 xfs_icsb_sync_counters(mp, 0); 1587 1588 /* 1589 * we don't need to do this if we are updating the superblock 1590 * counters on every modification. 1591 */ 1592 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1593 return 0; 1594 1595 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1596 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1597 XFS_DEFAULT_LOG_COUNT); 1598 if (error) { 1599 xfs_trans_cancel(tp, 0); 1600 return error; 1601 } 1602 1603 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1604 if (sync) 1605 xfs_trans_set_sync(tp); 1606 error = xfs_trans_commit(tp, 0); 1607 return error; 1608 } 1609 1610 int 1611 xfs_unmountfs_writesb(xfs_mount_t *mp) 1612 { 1613 xfs_buf_t *sbp; 1614 int error = 0; 1615 1616 /* 1617 * skip superblock write if fs is read-only, or 1618 * if we are doing a forced umount. 1619 */ 1620 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1621 XFS_FORCED_SHUTDOWN(mp))) { 1622 1623 sbp = xfs_getsb(mp, 0); 1624 1625 XFS_BUF_UNDONE(sbp); 1626 XFS_BUF_UNREAD(sbp); 1627 XFS_BUF_UNDELAYWRITE(sbp); 1628 XFS_BUF_WRITE(sbp); 1629 XFS_BUF_UNASYNC(sbp); 1630 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1631 xfsbdstrat(mp, sbp); 1632 error = xfs_buf_iowait(sbp); 1633 if (error) 1634 xfs_ioerror_alert("xfs_unmountfs_writesb", 1635 mp, sbp, XFS_BUF_ADDR(sbp)); 1636 xfs_buf_relse(sbp); 1637 } 1638 return error; 1639 } 1640 1641 /* 1642 * xfs_mod_sb() can be used to copy arbitrary changes to the 1643 * in-core superblock into the superblock buffer to be logged. 1644 * It does not provide the higher level of locking that is 1645 * needed to protect the in-core superblock from concurrent 1646 * access. 1647 */ 1648 void 1649 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1650 { 1651 xfs_buf_t *bp; 1652 int first; 1653 int last; 1654 xfs_mount_t *mp; 1655 xfs_sb_field_t f; 1656 1657 ASSERT(fields); 1658 if (!fields) 1659 return; 1660 mp = tp->t_mountp; 1661 bp = xfs_trans_getsb(tp, mp, 0); 1662 first = sizeof(xfs_sb_t); 1663 last = 0; 1664 1665 /* translate/copy */ 1666 1667 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1668 1669 /* find modified range */ 1670 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1671 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1672 last = xfs_sb_info[f + 1].offset - 1; 1673 1674 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1675 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1676 first = xfs_sb_info[f].offset; 1677 1678 xfs_trans_log_buf(tp, bp, first, last); 1679 } 1680 1681 1682 /* 1683 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1684 * a delta to a specified field in the in-core superblock. Simply 1685 * switch on the field indicated and apply the delta to that field. 1686 * Fields are not allowed to dip below zero, so if the delta would 1687 * do this do not apply it and return EINVAL. 1688 * 1689 * The m_sb_lock must be held when this routine is called. 1690 */ 1691 STATIC int 1692 xfs_mod_incore_sb_unlocked( 1693 xfs_mount_t *mp, 1694 xfs_sb_field_t field, 1695 int64_t delta, 1696 int rsvd) 1697 { 1698 int scounter; /* short counter for 32 bit fields */ 1699 long long lcounter; /* long counter for 64 bit fields */ 1700 long long res_used, rem; 1701 1702 /* 1703 * With the in-core superblock spin lock held, switch 1704 * on the indicated field. Apply the delta to the 1705 * proper field. If the fields value would dip below 1706 * 0, then do not apply the delta and return EINVAL. 1707 */ 1708 switch (field) { 1709 case XFS_SBS_ICOUNT: 1710 lcounter = (long long)mp->m_sb.sb_icount; 1711 lcounter += delta; 1712 if (lcounter < 0) { 1713 ASSERT(0); 1714 return XFS_ERROR(EINVAL); 1715 } 1716 mp->m_sb.sb_icount = lcounter; 1717 return 0; 1718 case XFS_SBS_IFREE: 1719 lcounter = (long long)mp->m_sb.sb_ifree; 1720 lcounter += delta; 1721 if (lcounter < 0) { 1722 ASSERT(0); 1723 return XFS_ERROR(EINVAL); 1724 } 1725 mp->m_sb.sb_ifree = lcounter; 1726 return 0; 1727 case XFS_SBS_FDBLOCKS: 1728 lcounter = (long long) 1729 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1730 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1731 1732 if (delta > 0) { /* Putting blocks back */ 1733 if (res_used > delta) { 1734 mp->m_resblks_avail += delta; 1735 } else { 1736 rem = delta - res_used; 1737 mp->m_resblks_avail = mp->m_resblks; 1738 lcounter += rem; 1739 } 1740 } else { /* Taking blocks away */ 1741 lcounter += delta; 1742 if (lcounter >= 0) { 1743 mp->m_sb.sb_fdblocks = lcounter + 1744 XFS_ALLOC_SET_ASIDE(mp); 1745 return 0; 1746 } 1747 1748 /* 1749 * We are out of blocks, use any available reserved 1750 * blocks if were allowed to. 1751 */ 1752 if (!rsvd) 1753 return XFS_ERROR(ENOSPC); 1754 1755 lcounter = (long long)mp->m_resblks_avail + delta; 1756 if (lcounter >= 0) { 1757 mp->m_resblks_avail = lcounter; 1758 return 0; 1759 } 1760 printk_once(KERN_WARNING 1761 "Filesystem \"%s\": reserve blocks depleted! " 1762 "Consider increasing reserve pool size.", 1763 mp->m_fsname); 1764 return XFS_ERROR(ENOSPC); 1765 } 1766 1767 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1768 return 0; 1769 case XFS_SBS_FREXTENTS: 1770 lcounter = (long long)mp->m_sb.sb_frextents; 1771 lcounter += delta; 1772 if (lcounter < 0) { 1773 return XFS_ERROR(ENOSPC); 1774 } 1775 mp->m_sb.sb_frextents = lcounter; 1776 return 0; 1777 case XFS_SBS_DBLOCKS: 1778 lcounter = (long long)mp->m_sb.sb_dblocks; 1779 lcounter += delta; 1780 if (lcounter < 0) { 1781 ASSERT(0); 1782 return XFS_ERROR(EINVAL); 1783 } 1784 mp->m_sb.sb_dblocks = lcounter; 1785 return 0; 1786 case XFS_SBS_AGCOUNT: 1787 scounter = mp->m_sb.sb_agcount; 1788 scounter += delta; 1789 if (scounter < 0) { 1790 ASSERT(0); 1791 return XFS_ERROR(EINVAL); 1792 } 1793 mp->m_sb.sb_agcount = scounter; 1794 return 0; 1795 case XFS_SBS_IMAX_PCT: 1796 scounter = mp->m_sb.sb_imax_pct; 1797 scounter += delta; 1798 if (scounter < 0) { 1799 ASSERT(0); 1800 return XFS_ERROR(EINVAL); 1801 } 1802 mp->m_sb.sb_imax_pct = scounter; 1803 return 0; 1804 case XFS_SBS_REXTSIZE: 1805 scounter = mp->m_sb.sb_rextsize; 1806 scounter += delta; 1807 if (scounter < 0) { 1808 ASSERT(0); 1809 return XFS_ERROR(EINVAL); 1810 } 1811 mp->m_sb.sb_rextsize = scounter; 1812 return 0; 1813 case XFS_SBS_RBMBLOCKS: 1814 scounter = mp->m_sb.sb_rbmblocks; 1815 scounter += delta; 1816 if (scounter < 0) { 1817 ASSERT(0); 1818 return XFS_ERROR(EINVAL); 1819 } 1820 mp->m_sb.sb_rbmblocks = scounter; 1821 return 0; 1822 case XFS_SBS_RBLOCKS: 1823 lcounter = (long long)mp->m_sb.sb_rblocks; 1824 lcounter += delta; 1825 if (lcounter < 0) { 1826 ASSERT(0); 1827 return XFS_ERROR(EINVAL); 1828 } 1829 mp->m_sb.sb_rblocks = lcounter; 1830 return 0; 1831 case XFS_SBS_REXTENTS: 1832 lcounter = (long long)mp->m_sb.sb_rextents; 1833 lcounter += delta; 1834 if (lcounter < 0) { 1835 ASSERT(0); 1836 return XFS_ERROR(EINVAL); 1837 } 1838 mp->m_sb.sb_rextents = lcounter; 1839 return 0; 1840 case XFS_SBS_REXTSLOG: 1841 scounter = mp->m_sb.sb_rextslog; 1842 scounter += delta; 1843 if (scounter < 0) { 1844 ASSERT(0); 1845 return XFS_ERROR(EINVAL); 1846 } 1847 mp->m_sb.sb_rextslog = scounter; 1848 return 0; 1849 default: 1850 ASSERT(0); 1851 return XFS_ERROR(EINVAL); 1852 } 1853 } 1854 1855 /* 1856 * xfs_mod_incore_sb() is used to change a field in the in-core 1857 * superblock structure by the specified delta. This modification 1858 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1859 * routine to do the work. 1860 */ 1861 int 1862 xfs_mod_incore_sb( 1863 struct xfs_mount *mp, 1864 xfs_sb_field_t field, 1865 int64_t delta, 1866 int rsvd) 1867 { 1868 int status; 1869 1870 #ifdef HAVE_PERCPU_SB 1871 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1872 #endif 1873 spin_lock(&mp->m_sb_lock); 1874 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1875 spin_unlock(&mp->m_sb_lock); 1876 1877 return status; 1878 } 1879 1880 /* 1881 * Change more than one field in the in-core superblock structure at a time. 1882 * 1883 * The fields and changes to those fields are specified in the array of 1884 * xfs_mod_sb structures passed in. Either all of the specified deltas 1885 * will be applied or none of them will. If any modified field dips below 0, 1886 * then all modifications will be backed out and EINVAL will be returned. 1887 * 1888 * Note that this function may not be used for the superblock values that 1889 * are tracked with the in-memory per-cpu counters - a direct call to 1890 * xfs_icsb_modify_counters is required for these. 1891 */ 1892 int 1893 xfs_mod_incore_sb_batch( 1894 struct xfs_mount *mp, 1895 xfs_mod_sb_t *msb, 1896 uint nmsb, 1897 int rsvd) 1898 { 1899 xfs_mod_sb_t *msbp = &msb[0]; 1900 int error = 0; 1901 1902 /* 1903 * Loop through the array of mod structures and apply each individually. 1904 * If any fail, then back out all those which have already been applied. 1905 * Do all of this within the scope of the m_sb_lock so that all of the 1906 * changes will be atomic. 1907 */ 1908 spin_lock(&mp->m_sb_lock); 1909 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1910 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1911 msbp->msb_field > XFS_SBS_FDBLOCKS); 1912 1913 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1914 msbp->msb_delta, rsvd); 1915 if (error) 1916 goto unwind; 1917 } 1918 spin_unlock(&mp->m_sb_lock); 1919 return 0; 1920 1921 unwind: 1922 while (--msbp >= msb) { 1923 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1924 -msbp->msb_delta, rsvd); 1925 ASSERT(error == 0); 1926 } 1927 spin_unlock(&mp->m_sb_lock); 1928 return error; 1929 } 1930 1931 /* 1932 * xfs_getsb() is called to obtain the buffer for the superblock. 1933 * The buffer is returned locked and read in from disk. 1934 * The buffer should be released with a call to xfs_brelse(). 1935 * 1936 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1937 * the superblock buffer if it can be locked without sleeping. 1938 * If it can't then we'll return NULL. 1939 */ 1940 xfs_buf_t * 1941 xfs_getsb( 1942 xfs_mount_t *mp, 1943 int flags) 1944 { 1945 xfs_buf_t *bp; 1946 1947 ASSERT(mp->m_sb_bp != NULL); 1948 bp = mp->m_sb_bp; 1949 if (flags & XBF_TRYLOCK) { 1950 if (!XFS_BUF_CPSEMA(bp)) { 1951 return NULL; 1952 } 1953 } else { 1954 XFS_BUF_PSEMA(bp, PRIBIO); 1955 } 1956 XFS_BUF_HOLD(bp); 1957 ASSERT(XFS_BUF_ISDONE(bp)); 1958 return bp; 1959 } 1960 1961 /* 1962 * Used to free the superblock along various error paths. 1963 */ 1964 void 1965 xfs_freesb( 1966 struct xfs_mount *mp) 1967 { 1968 struct xfs_buf *bp = mp->m_sb_bp; 1969 1970 xfs_buf_lock(bp); 1971 mp->m_sb_bp = NULL; 1972 xfs_buf_relse(bp); 1973 } 1974 1975 /* 1976 * Used to log changes to the superblock unit and width fields which could 1977 * be altered by the mount options, as well as any potential sb_features2 1978 * fixup. Only the first superblock is updated. 1979 */ 1980 int 1981 xfs_mount_log_sb( 1982 xfs_mount_t *mp, 1983 __int64_t fields) 1984 { 1985 xfs_trans_t *tp; 1986 int error; 1987 1988 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1989 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1990 XFS_SB_VERSIONNUM)); 1991 1992 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1993 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1994 XFS_DEFAULT_LOG_COUNT); 1995 if (error) { 1996 xfs_trans_cancel(tp, 0); 1997 return error; 1998 } 1999 xfs_mod_sb(tp, fields); 2000 error = xfs_trans_commit(tp, 0); 2001 return error; 2002 } 2003 2004 /* 2005 * If the underlying (data/log/rt) device is readonly, there are some 2006 * operations that cannot proceed. 2007 */ 2008 int 2009 xfs_dev_is_read_only( 2010 struct xfs_mount *mp, 2011 char *message) 2012 { 2013 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 2014 xfs_readonly_buftarg(mp->m_logdev_targp) || 2015 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 2016 cmn_err(CE_NOTE, 2017 "XFS: %s required on read-only device.", message); 2018 cmn_err(CE_NOTE, 2019 "XFS: write access unavailable, cannot proceed."); 2020 return EROFS; 2021 } 2022 return 0; 2023 } 2024 2025 #ifdef HAVE_PERCPU_SB 2026 /* 2027 * Per-cpu incore superblock counters 2028 * 2029 * Simple concept, difficult implementation 2030 * 2031 * Basically, replace the incore superblock counters with a distributed per cpu 2032 * counter for contended fields (e.g. free block count). 2033 * 2034 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 2035 * hence needs to be accurately read when we are running low on space. Hence 2036 * there is a method to enable and disable the per-cpu counters based on how 2037 * much "stuff" is available in them. 2038 * 2039 * Basically, a counter is enabled if there is enough free resource to justify 2040 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 2041 * ENOSPC), then we disable the counters to synchronise all callers and 2042 * re-distribute the available resources. 2043 * 2044 * If, once we redistributed the available resources, we still get a failure, 2045 * we disable the per-cpu counter and go through the slow path. 2046 * 2047 * The slow path is the current xfs_mod_incore_sb() function. This means that 2048 * when we disable a per-cpu counter, we need to drain its resources back to 2049 * the global superblock. We do this after disabling the counter to prevent 2050 * more threads from queueing up on the counter. 2051 * 2052 * Essentially, this means that we still need a lock in the fast path to enable 2053 * synchronisation between the global counters and the per-cpu counters. This 2054 * is not a problem because the lock will be local to a CPU almost all the time 2055 * and have little contention except when we get to ENOSPC conditions. 2056 * 2057 * Basically, this lock becomes a barrier that enables us to lock out the fast 2058 * path while we do things like enabling and disabling counters and 2059 * synchronising the counters. 2060 * 2061 * Locking rules: 2062 * 2063 * 1. m_sb_lock before picking up per-cpu locks 2064 * 2. per-cpu locks always picked up via for_each_online_cpu() order 2065 * 3. accurate counter sync requires m_sb_lock + per cpu locks 2066 * 4. modifying per-cpu counters requires holding per-cpu lock 2067 * 5. modifying global counters requires holding m_sb_lock 2068 * 6. enabling or disabling a counter requires holding the m_sb_lock 2069 * and _none_ of the per-cpu locks. 2070 * 2071 * Disabled counters are only ever re-enabled by a balance operation 2072 * that results in more free resources per CPU than a given threshold. 2073 * To ensure counters don't remain disabled, they are rebalanced when 2074 * the global resource goes above a higher threshold (i.e. some hysteresis 2075 * is present to prevent thrashing). 2076 */ 2077 2078 #ifdef CONFIG_HOTPLUG_CPU 2079 /* 2080 * hot-plug CPU notifier support. 2081 * 2082 * We need a notifier per filesystem as we need to be able to identify 2083 * the filesystem to balance the counters out. This is achieved by 2084 * having a notifier block embedded in the xfs_mount_t and doing pointer 2085 * magic to get the mount pointer from the notifier block address. 2086 */ 2087 STATIC int 2088 xfs_icsb_cpu_notify( 2089 struct notifier_block *nfb, 2090 unsigned long action, 2091 void *hcpu) 2092 { 2093 xfs_icsb_cnts_t *cntp; 2094 xfs_mount_t *mp; 2095 2096 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2097 cntp = (xfs_icsb_cnts_t *) 2098 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2099 switch (action) { 2100 case CPU_UP_PREPARE: 2101 case CPU_UP_PREPARE_FROZEN: 2102 /* Easy Case - initialize the area and locks, and 2103 * then rebalance when online does everything else for us. */ 2104 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2105 break; 2106 case CPU_ONLINE: 2107 case CPU_ONLINE_FROZEN: 2108 xfs_icsb_lock(mp); 2109 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2110 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2111 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2112 xfs_icsb_unlock(mp); 2113 break; 2114 case CPU_DEAD: 2115 case CPU_DEAD_FROZEN: 2116 /* Disable all the counters, then fold the dead cpu's 2117 * count into the total on the global superblock and 2118 * re-enable the counters. */ 2119 xfs_icsb_lock(mp); 2120 spin_lock(&mp->m_sb_lock); 2121 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2122 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2123 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2124 2125 mp->m_sb.sb_icount += cntp->icsb_icount; 2126 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2127 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2128 2129 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2130 2131 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2132 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2133 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2134 spin_unlock(&mp->m_sb_lock); 2135 xfs_icsb_unlock(mp); 2136 break; 2137 } 2138 2139 return NOTIFY_OK; 2140 } 2141 #endif /* CONFIG_HOTPLUG_CPU */ 2142 2143 int 2144 xfs_icsb_init_counters( 2145 xfs_mount_t *mp) 2146 { 2147 xfs_icsb_cnts_t *cntp; 2148 int i; 2149 2150 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2151 if (mp->m_sb_cnts == NULL) 2152 return -ENOMEM; 2153 2154 #ifdef CONFIG_HOTPLUG_CPU 2155 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2156 mp->m_icsb_notifier.priority = 0; 2157 register_hotcpu_notifier(&mp->m_icsb_notifier); 2158 #endif /* CONFIG_HOTPLUG_CPU */ 2159 2160 for_each_online_cpu(i) { 2161 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2162 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2163 } 2164 2165 mutex_init(&mp->m_icsb_mutex); 2166 2167 /* 2168 * start with all counters disabled so that the 2169 * initial balance kicks us off correctly 2170 */ 2171 mp->m_icsb_counters = -1; 2172 return 0; 2173 } 2174 2175 void 2176 xfs_icsb_reinit_counters( 2177 xfs_mount_t *mp) 2178 { 2179 xfs_icsb_lock(mp); 2180 /* 2181 * start with all counters disabled so that the 2182 * initial balance kicks us off correctly 2183 */ 2184 mp->m_icsb_counters = -1; 2185 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2186 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2187 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2188 xfs_icsb_unlock(mp); 2189 } 2190 2191 void 2192 xfs_icsb_destroy_counters( 2193 xfs_mount_t *mp) 2194 { 2195 if (mp->m_sb_cnts) { 2196 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2197 free_percpu(mp->m_sb_cnts); 2198 } 2199 mutex_destroy(&mp->m_icsb_mutex); 2200 } 2201 2202 STATIC void 2203 xfs_icsb_lock_cntr( 2204 xfs_icsb_cnts_t *icsbp) 2205 { 2206 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2207 ndelay(1000); 2208 } 2209 } 2210 2211 STATIC void 2212 xfs_icsb_unlock_cntr( 2213 xfs_icsb_cnts_t *icsbp) 2214 { 2215 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2216 } 2217 2218 2219 STATIC void 2220 xfs_icsb_lock_all_counters( 2221 xfs_mount_t *mp) 2222 { 2223 xfs_icsb_cnts_t *cntp; 2224 int i; 2225 2226 for_each_online_cpu(i) { 2227 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2228 xfs_icsb_lock_cntr(cntp); 2229 } 2230 } 2231 2232 STATIC void 2233 xfs_icsb_unlock_all_counters( 2234 xfs_mount_t *mp) 2235 { 2236 xfs_icsb_cnts_t *cntp; 2237 int i; 2238 2239 for_each_online_cpu(i) { 2240 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2241 xfs_icsb_unlock_cntr(cntp); 2242 } 2243 } 2244 2245 STATIC void 2246 xfs_icsb_count( 2247 xfs_mount_t *mp, 2248 xfs_icsb_cnts_t *cnt, 2249 int flags) 2250 { 2251 xfs_icsb_cnts_t *cntp; 2252 int i; 2253 2254 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2255 2256 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2257 xfs_icsb_lock_all_counters(mp); 2258 2259 for_each_online_cpu(i) { 2260 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2261 cnt->icsb_icount += cntp->icsb_icount; 2262 cnt->icsb_ifree += cntp->icsb_ifree; 2263 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2264 } 2265 2266 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2267 xfs_icsb_unlock_all_counters(mp); 2268 } 2269 2270 STATIC int 2271 xfs_icsb_counter_disabled( 2272 xfs_mount_t *mp, 2273 xfs_sb_field_t field) 2274 { 2275 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2276 return test_bit(field, &mp->m_icsb_counters); 2277 } 2278 2279 STATIC void 2280 xfs_icsb_disable_counter( 2281 xfs_mount_t *mp, 2282 xfs_sb_field_t field) 2283 { 2284 xfs_icsb_cnts_t cnt; 2285 2286 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2287 2288 /* 2289 * If we are already disabled, then there is nothing to do 2290 * here. We check before locking all the counters to avoid 2291 * the expensive lock operation when being called in the 2292 * slow path and the counter is already disabled. This is 2293 * safe because the only time we set or clear this state is under 2294 * the m_icsb_mutex. 2295 */ 2296 if (xfs_icsb_counter_disabled(mp, field)) 2297 return; 2298 2299 xfs_icsb_lock_all_counters(mp); 2300 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2301 /* drain back to superblock */ 2302 2303 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2304 switch(field) { 2305 case XFS_SBS_ICOUNT: 2306 mp->m_sb.sb_icount = cnt.icsb_icount; 2307 break; 2308 case XFS_SBS_IFREE: 2309 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2310 break; 2311 case XFS_SBS_FDBLOCKS: 2312 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2313 break; 2314 default: 2315 BUG(); 2316 } 2317 } 2318 2319 xfs_icsb_unlock_all_counters(mp); 2320 } 2321 2322 STATIC void 2323 xfs_icsb_enable_counter( 2324 xfs_mount_t *mp, 2325 xfs_sb_field_t field, 2326 uint64_t count, 2327 uint64_t resid) 2328 { 2329 xfs_icsb_cnts_t *cntp; 2330 int i; 2331 2332 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2333 2334 xfs_icsb_lock_all_counters(mp); 2335 for_each_online_cpu(i) { 2336 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2337 switch (field) { 2338 case XFS_SBS_ICOUNT: 2339 cntp->icsb_icount = count + resid; 2340 break; 2341 case XFS_SBS_IFREE: 2342 cntp->icsb_ifree = count + resid; 2343 break; 2344 case XFS_SBS_FDBLOCKS: 2345 cntp->icsb_fdblocks = count + resid; 2346 break; 2347 default: 2348 BUG(); 2349 break; 2350 } 2351 resid = 0; 2352 } 2353 clear_bit(field, &mp->m_icsb_counters); 2354 xfs_icsb_unlock_all_counters(mp); 2355 } 2356 2357 void 2358 xfs_icsb_sync_counters_locked( 2359 xfs_mount_t *mp, 2360 int flags) 2361 { 2362 xfs_icsb_cnts_t cnt; 2363 2364 xfs_icsb_count(mp, &cnt, flags); 2365 2366 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2367 mp->m_sb.sb_icount = cnt.icsb_icount; 2368 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2369 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2370 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2371 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2372 } 2373 2374 /* 2375 * Accurate update of per-cpu counters to incore superblock 2376 */ 2377 void 2378 xfs_icsb_sync_counters( 2379 xfs_mount_t *mp, 2380 int flags) 2381 { 2382 spin_lock(&mp->m_sb_lock); 2383 xfs_icsb_sync_counters_locked(mp, flags); 2384 spin_unlock(&mp->m_sb_lock); 2385 } 2386 2387 /* 2388 * Balance and enable/disable counters as necessary. 2389 * 2390 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2391 * chosen to be the same number as single on disk allocation chunk per CPU, and 2392 * free blocks is something far enough zero that we aren't going thrash when we 2393 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2394 * prevent looping endlessly when xfs_alloc_space asks for more than will 2395 * be distributed to a single CPU but each CPU has enough blocks to be 2396 * reenabled. 2397 * 2398 * Note that we can be called when counters are already disabled. 2399 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2400 * prevent locking every per-cpu counter needlessly. 2401 */ 2402 2403 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2404 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2405 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2406 STATIC void 2407 xfs_icsb_balance_counter_locked( 2408 xfs_mount_t *mp, 2409 xfs_sb_field_t field, 2410 int min_per_cpu) 2411 { 2412 uint64_t count, resid; 2413 int weight = num_online_cpus(); 2414 uint64_t min = (uint64_t)min_per_cpu; 2415 2416 /* disable counter and sync counter */ 2417 xfs_icsb_disable_counter(mp, field); 2418 2419 /* update counters - first CPU gets residual*/ 2420 switch (field) { 2421 case XFS_SBS_ICOUNT: 2422 count = mp->m_sb.sb_icount; 2423 resid = do_div(count, weight); 2424 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2425 return; 2426 break; 2427 case XFS_SBS_IFREE: 2428 count = mp->m_sb.sb_ifree; 2429 resid = do_div(count, weight); 2430 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2431 return; 2432 break; 2433 case XFS_SBS_FDBLOCKS: 2434 count = mp->m_sb.sb_fdblocks; 2435 resid = do_div(count, weight); 2436 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2437 return; 2438 break; 2439 default: 2440 BUG(); 2441 count = resid = 0; /* quiet, gcc */ 2442 break; 2443 } 2444 2445 xfs_icsb_enable_counter(mp, field, count, resid); 2446 } 2447 2448 STATIC void 2449 xfs_icsb_balance_counter( 2450 xfs_mount_t *mp, 2451 xfs_sb_field_t fields, 2452 int min_per_cpu) 2453 { 2454 spin_lock(&mp->m_sb_lock); 2455 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2456 spin_unlock(&mp->m_sb_lock); 2457 } 2458 2459 int 2460 xfs_icsb_modify_counters( 2461 xfs_mount_t *mp, 2462 xfs_sb_field_t field, 2463 int64_t delta, 2464 int rsvd) 2465 { 2466 xfs_icsb_cnts_t *icsbp; 2467 long long lcounter; /* long counter for 64 bit fields */ 2468 int ret = 0; 2469 2470 might_sleep(); 2471 again: 2472 preempt_disable(); 2473 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2474 2475 /* 2476 * if the counter is disabled, go to slow path 2477 */ 2478 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2479 goto slow_path; 2480 xfs_icsb_lock_cntr(icsbp); 2481 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2482 xfs_icsb_unlock_cntr(icsbp); 2483 goto slow_path; 2484 } 2485 2486 switch (field) { 2487 case XFS_SBS_ICOUNT: 2488 lcounter = icsbp->icsb_icount; 2489 lcounter += delta; 2490 if (unlikely(lcounter < 0)) 2491 goto balance_counter; 2492 icsbp->icsb_icount = lcounter; 2493 break; 2494 2495 case XFS_SBS_IFREE: 2496 lcounter = icsbp->icsb_ifree; 2497 lcounter += delta; 2498 if (unlikely(lcounter < 0)) 2499 goto balance_counter; 2500 icsbp->icsb_ifree = lcounter; 2501 break; 2502 2503 case XFS_SBS_FDBLOCKS: 2504 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2505 2506 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2507 lcounter += delta; 2508 if (unlikely(lcounter < 0)) 2509 goto balance_counter; 2510 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2511 break; 2512 default: 2513 BUG(); 2514 break; 2515 } 2516 xfs_icsb_unlock_cntr(icsbp); 2517 preempt_enable(); 2518 return 0; 2519 2520 slow_path: 2521 preempt_enable(); 2522 2523 /* 2524 * serialise with a mutex so we don't burn lots of cpu on 2525 * the superblock lock. We still need to hold the superblock 2526 * lock, however, when we modify the global structures. 2527 */ 2528 xfs_icsb_lock(mp); 2529 2530 /* 2531 * Now running atomically. 2532 * 2533 * If the counter is enabled, someone has beaten us to rebalancing. 2534 * Drop the lock and try again in the fast path.... 2535 */ 2536 if (!(xfs_icsb_counter_disabled(mp, field))) { 2537 xfs_icsb_unlock(mp); 2538 goto again; 2539 } 2540 2541 /* 2542 * The counter is currently disabled. Because we are 2543 * running atomically here, we know a rebalance cannot 2544 * be in progress. Hence we can go straight to operating 2545 * on the global superblock. We do not call xfs_mod_incore_sb() 2546 * here even though we need to get the m_sb_lock. Doing so 2547 * will cause us to re-enter this function and deadlock. 2548 * Hence we get the m_sb_lock ourselves and then call 2549 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2550 * directly on the global counters. 2551 */ 2552 spin_lock(&mp->m_sb_lock); 2553 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2554 spin_unlock(&mp->m_sb_lock); 2555 2556 /* 2557 * Now that we've modified the global superblock, we 2558 * may be able to re-enable the distributed counters 2559 * (e.g. lots of space just got freed). After that 2560 * we are done. 2561 */ 2562 if (ret != ENOSPC) 2563 xfs_icsb_balance_counter(mp, field, 0); 2564 xfs_icsb_unlock(mp); 2565 return ret; 2566 2567 balance_counter: 2568 xfs_icsb_unlock_cntr(icsbp); 2569 preempt_enable(); 2570 2571 /* 2572 * We may have multiple threads here if multiple per-cpu 2573 * counters run dry at the same time. This will mean we can 2574 * do more balances than strictly necessary but it is not 2575 * the common slowpath case. 2576 */ 2577 xfs_icsb_lock(mp); 2578 2579 /* 2580 * running atomically. 2581 * 2582 * This will leave the counter in the correct state for future 2583 * accesses. After the rebalance, we simply try again and our retry 2584 * will either succeed through the fast path or slow path without 2585 * another balance operation being required. 2586 */ 2587 xfs_icsb_balance_counter(mp, field, delta); 2588 xfs_icsb_unlock(mp); 2589 goto again; 2590 } 2591 2592 #endif 2593