xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 3dc4b6fb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_error.h"
25 #include "xfs_quota.h"
26 #include "xfs_fsops.h"
27 #include "xfs_icache.h"
28 #include "xfs_sysfs.h"
29 #include "xfs_rmap_btree.h"
30 #include "xfs_refcount_btree.h"
31 #include "xfs_reflink.h"
32 #include "xfs_extent_busy.h"
33 #include "xfs_health.h"
34 
35 
36 static DEFINE_MUTEX(xfs_uuid_table_mutex);
37 static int xfs_uuid_table_size;
38 static uuid_t *xfs_uuid_table;
39 
40 void
41 xfs_uuid_table_free(void)
42 {
43 	if (xfs_uuid_table_size == 0)
44 		return;
45 	kmem_free(xfs_uuid_table);
46 	xfs_uuid_table = NULL;
47 	xfs_uuid_table_size = 0;
48 }
49 
50 /*
51  * See if the UUID is unique among mounted XFS filesystems.
52  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53  */
54 STATIC int
55 xfs_uuid_mount(
56 	struct xfs_mount	*mp)
57 {
58 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59 	int			hole, i;
60 
61 	/* Publish UUID in struct super_block */
62 	uuid_copy(&mp->m_super->s_uuid, uuid);
63 
64 	if (mp->m_flags & XFS_MOUNT_NOUUID)
65 		return 0;
66 
67 	if (uuid_is_null(uuid)) {
68 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 		return -EINVAL;
70 	}
71 
72 	mutex_lock(&xfs_uuid_table_mutex);
73 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 		if (uuid_is_null(&xfs_uuid_table[i])) {
75 			hole = i;
76 			continue;
77 		}
78 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 			goto out_duplicate;
80 	}
81 
82 	if (hole < 0) {
83 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 			0);
86 		hole = xfs_uuid_table_size++;
87 	}
88 	xfs_uuid_table[hole] = *uuid;
89 	mutex_unlock(&xfs_uuid_table_mutex);
90 
91 	return 0;
92 
93  out_duplicate:
94 	mutex_unlock(&xfs_uuid_table_mutex);
95 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 	return -EINVAL;
97 }
98 
99 STATIC void
100 xfs_uuid_unmount(
101 	struct xfs_mount	*mp)
102 {
103 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
104 	int			i;
105 
106 	if (mp->m_flags & XFS_MOUNT_NOUUID)
107 		return;
108 
109 	mutex_lock(&xfs_uuid_table_mutex);
110 	for (i = 0; i < xfs_uuid_table_size; i++) {
111 		if (uuid_is_null(&xfs_uuid_table[i]))
112 			continue;
113 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 			continue;
115 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 		break;
117 	}
118 	ASSERT(i < xfs_uuid_table_size);
119 	mutex_unlock(&xfs_uuid_table_mutex);
120 }
121 
122 
123 STATIC void
124 __xfs_free_perag(
125 	struct rcu_head	*head)
126 {
127 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128 
129 	ASSERT(atomic_read(&pag->pag_ref) == 0);
130 	kmem_free(pag);
131 }
132 
133 /*
134  * Free up the per-ag resources associated with the mount structure.
135  */
136 STATIC void
137 xfs_free_perag(
138 	xfs_mount_t	*mp)
139 {
140 	xfs_agnumber_t	agno;
141 	struct xfs_perag *pag;
142 
143 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 		spin_lock(&mp->m_perag_lock);
145 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 		spin_unlock(&mp->m_perag_lock);
147 		ASSERT(pag);
148 		ASSERT(atomic_read(&pag->pag_ref) == 0);
149 		xfs_iunlink_destroy(pag);
150 		xfs_buf_hash_destroy(pag);
151 		mutex_destroy(&pag->pag_ici_reclaim_lock);
152 		call_rcu(&pag->rcu_head, __xfs_free_perag);
153 	}
154 }
155 
156 /*
157  * Check size of device based on the (data/realtime) block count.
158  * Note: this check is used by the growfs code as well as mount.
159  */
160 int
161 xfs_sb_validate_fsb_count(
162 	xfs_sb_t	*sbp,
163 	uint64_t	nblocks)
164 {
165 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
167 
168 	/* Limited by ULONG_MAX of page cache index */
169 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 		return -EFBIG;
171 	return 0;
172 }
173 
174 int
175 xfs_initialize_perag(
176 	xfs_mount_t	*mp,
177 	xfs_agnumber_t	agcount,
178 	xfs_agnumber_t	*maxagi)
179 {
180 	xfs_agnumber_t	index;
181 	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
182 	xfs_perag_t	*pag;
183 	int		error = -ENOMEM;
184 
185 	/*
186 	 * Walk the current per-ag tree so we don't try to initialise AGs
187 	 * that already exist (growfs case). Allocate and insert all the
188 	 * AGs we don't find ready for initialisation.
189 	 */
190 	for (index = 0; index < agcount; index++) {
191 		pag = xfs_perag_get(mp, index);
192 		if (pag) {
193 			xfs_perag_put(pag);
194 			continue;
195 		}
196 
197 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 		if (!pag)
199 			goto out_unwind_new_pags;
200 		pag->pag_agno = index;
201 		pag->pag_mount = mp;
202 		spin_lock_init(&pag->pag_ici_lock);
203 		mutex_init(&pag->pag_ici_reclaim_lock);
204 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 		if (xfs_buf_hash_init(pag))
206 			goto out_free_pag;
207 		init_waitqueue_head(&pag->pagb_wait);
208 		spin_lock_init(&pag->pagb_lock);
209 		pag->pagb_count = 0;
210 		pag->pagb_tree = RB_ROOT;
211 
212 		if (radix_tree_preload(GFP_NOFS))
213 			goto out_hash_destroy;
214 
215 		spin_lock(&mp->m_perag_lock);
216 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
217 			WARN_ON_ONCE(1);
218 			spin_unlock(&mp->m_perag_lock);
219 			radix_tree_preload_end();
220 			error = -EEXIST;
221 			goto out_hash_destroy;
222 		}
223 		spin_unlock(&mp->m_perag_lock);
224 		radix_tree_preload_end();
225 		/* first new pag is fully initialized */
226 		if (first_initialised == NULLAGNUMBER)
227 			first_initialised = index;
228 		error = xfs_iunlink_init(pag);
229 		if (error)
230 			goto out_hash_destroy;
231 		spin_lock_init(&pag->pag_state_lock);
232 	}
233 
234 	index = xfs_set_inode_alloc(mp, agcount);
235 
236 	if (maxagi)
237 		*maxagi = index;
238 
239 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
240 	return 0;
241 
242 out_hash_destroy:
243 	xfs_buf_hash_destroy(pag);
244 out_free_pag:
245 	mutex_destroy(&pag->pag_ici_reclaim_lock);
246 	kmem_free(pag);
247 out_unwind_new_pags:
248 	/* unwind any prior newly initialized pags */
249 	for (index = first_initialised; index < agcount; index++) {
250 		pag = radix_tree_delete(&mp->m_perag_tree, index);
251 		if (!pag)
252 			break;
253 		xfs_buf_hash_destroy(pag);
254 		xfs_iunlink_destroy(pag);
255 		mutex_destroy(&pag->pag_ici_reclaim_lock);
256 		kmem_free(pag);
257 	}
258 	return error;
259 }
260 
261 /*
262  * xfs_readsb
263  *
264  * Does the initial read of the superblock.
265  */
266 int
267 xfs_readsb(
268 	struct xfs_mount *mp,
269 	int		flags)
270 {
271 	unsigned int	sector_size;
272 	struct xfs_buf	*bp;
273 	struct xfs_sb	*sbp = &mp->m_sb;
274 	int		error;
275 	int		loud = !(flags & XFS_MFSI_QUIET);
276 	const struct xfs_buf_ops *buf_ops;
277 
278 	ASSERT(mp->m_sb_bp == NULL);
279 	ASSERT(mp->m_ddev_targp != NULL);
280 
281 	/*
282 	 * For the initial read, we must guess at the sector
283 	 * size based on the block device.  It's enough to
284 	 * get the sb_sectsize out of the superblock and
285 	 * then reread with the proper length.
286 	 * We don't verify it yet, because it may not be complete.
287 	 */
288 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 	buf_ops = NULL;
290 
291 	/*
292 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 	 * around at all times to optimize access to the superblock. Therefore,
294 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 	 * elevated.
296 	 */
297 reread:
298 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 				      buf_ops);
301 	if (error) {
302 		if (loud)
303 			xfs_warn(mp, "SB validate failed with error %d.", error);
304 		/* bad CRC means corrupted metadata */
305 		if (error == -EFSBADCRC)
306 			error = -EFSCORRUPTED;
307 		return error;
308 	}
309 
310 	/*
311 	 * Initialize the mount structure from the superblock.
312 	 */
313 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314 
315 	/*
316 	 * If we haven't validated the superblock, do so now before we try
317 	 * to check the sector size and reread the superblock appropriately.
318 	 */
319 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 		if (loud)
321 			xfs_warn(mp, "Invalid superblock magic number");
322 		error = -EINVAL;
323 		goto release_buf;
324 	}
325 
326 	/*
327 	 * We must be able to do sector-sized and sector-aligned IO.
328 	 */
329 	if (sector_size > sbp->sb_sectsize) {
330 		if (loud)
331 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 				sector_size, sbp->sb_sectsize);
333 		error = -ENOSYS;
334 		goto release_buf;
335 	}
336 
337 	if (buf_ops == NULL) {
338 		/*
339 		 * Re-read the superblock so the buffer is correctly sized,
340 		 * and properly verified.
341 		 */
342 		xfs_buf_relse(bp);
343 		sector_size = sbp->sb_sectsize;
344 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 		goto reread;
346 	}
347 
348 	xfs_reinit_percpu_counters(mp);
349 
350 	/* no need to be quiet anymore, so reset the buf ops */
351 	bp->b_ops = &xfs_sb_buf_ops;
352 
353 	mp->m_sb_bp = bp;
354 	xfs_buf_unlock(bp);
355 	return 0;
356 
357 release_buf:
358 	xfs_buf_relse(bp);
359 	return error;
360 }
361 
362 /*
363  * Update alignment values based on mount options and sb values
364  */
365 STATIC int
366 xfs_update_alignment(xfs_mount_t *mp)
367 {
368 	xfs_sb_t	*sbp = &(mp->m_sb);
369 
370 	if (mp->m_dalign) {
371 		/*
372 		 * If stripe unit and stripe width are not multiples
373 		 * of the fs blocksize turn off alignment.
374 		 */
375 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 			xfs_warn(mp,
378 		"alignment check failed: sunit/swidth vs. blocksize(%d)",
379 				sbp->sb_blocksize);
380 			return -EINVAL;
381 		} else {
382 			/*
383 			 * Convert the stripe unit and width to FSBs.
384 			 */
385 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 				xfs_warn(mp,
388 			"alignment check failed: sunit/swidth vs. agsize(%d)",
389 					 sbp->sb_agblocks);
390 				return -EINVAL;
391 			} else if (mp->m_dalign) {
392 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 			} else {
394 				xfs_warn(mp,
395 			"alignment check failed: sunit(%d) less than bsize(%d)",
396 					 mp->m_dalign, sbp->sb_blocksize);
397 				return -EINVAL;
398 			}
399 		}
400 
401 		/*
402 		 * Update superblock with new values
403 		 * and log changes
404 		 */
405 		if (xfs_sb_version_hasdalign(sbp)) {
406 			if (sbp->sb_unit != mp->m_dalign) {
407 				sbp->sb_unit = mp->m_dalign;
408 				mp->m_update_sb = true;
409 			}
410 			if (sbp->sb_width != mp->m_swidth) {
411 				sbp->sb_width = mp->m_swidth;
412 				mp->m_update_sb = true;
413 			}
414 		} else {
415 			xfs_warn(mp,
416 	"cannot change alignment: superblock does not support data alignment");
417 			return -EINVAL;
418 		}
419 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
421 			mp->m_dalign = sbp->sb_unit;
422 			mp->m_swidth = sbp->sb_width;
423 	}
424 
425 	return 0;
426 }
427 
428 /*
429  * Set the default minimum read and write sizes unless
430  * already specified in a mount option.
431  * We use smaller I/O sizes when the file system
432  * is being used for NFS service (wsync mount option).
433  */
434 STATIC void
435 xfs_set_rw_sizes(xfs_mount_t *mp)
436 {
437 	xfs_sb_t	*sbp = &(mp->m_sb);
438 	int		readio_log, writeio_log;
439 
440 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
441 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
442 			readio_log = XFS_WSYNC_READIO_LOG;
443 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
444 		} else {
445 			readio_log = XFS_READIO_LOG_LARGE;
446 			writeio_log = XFS_WRITEIO_LOG_LARGE;
447 		}
448 	} else {
449 		readio_log = mp->m_readio_log;
450 		writeio_log = mp->m_writeio_log;
451 	}
452 
453 	if (sbp->sb_blocklog > readio_log) {
454 		mp->m_readio_log = sbp->sb_blocklog;
455 	} else {
456 		mp->m_readio_log = readio_log;
457 	}
458 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
459 	if (sbp->sb_blocklog > writeio_log) {
460 		mp->m_writeio_log = sbp->sb_blocklog;
461 	} else {
462 		mp->m_writeio_log = writeio_log;
463 	}
464 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
465 }
466 
467 /*
468  * precalculate the low space thresholds for dynamic speculative preallocation.
469  */
470 void
471 xfs_set_low_space_thresholds(
472 	struct xfs_mount	*mp)
473 {
474 	int i;
475 
476 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
477 		uint64_t space = mp->m_sb.sb_dblocks;
478 
479 		do_div(space, 100);
480 		mp->m_low_space[i] = space * (i + 1);
481 	}
482 }
483 
484 /*
485  * Check that the data (and log if separate) is an ok size.
486  */
487 STATIC int
488 xfs_check_sizes(
489 	struct xfs_mount *mp)
490 {
491 	struct xfs_buf	*bp;
492 	xfs_daddr_t	d;
493 	int		error;
494 
495 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
496 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
497 		xfs_warn(mp, "filesystem size mismatch detected");
498 		return -EFBIG;
499 	}
500 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
501 					d - XFS_FSS_TO_BB(mp, 1),
502 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
503 	if (error) {
504 		xfs_warn(mp, "last sector read failed");
505 		return error;
506 	}
507 	xfs_buf_relse(bp);
508 
509 	if (mp->m_logdev_targp == mp->m_ddev_targp)
510 		return 0;
511 
512 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
513 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
514 		xfs_warn(mp, "log size mismatch detected");
515 		return -EFBIG;
516 	}
517 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
518 					d - XFS_FSB_TO_BB(mp, 1),
519 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
520 	if (error) {
521 		xfs_warn(mp, "log device read failed");
522 		return error;
523 	}
524 	xfs_buf_relse(bp);
525 	return 0;
526 }
527 
528 /*
529  * Clear the quotaflags in memory and in the superblock.
530  */
531 int
532 xfs_mount_reset_sbqflags(
533 	struct xfs_mount	*mp)
534 {
535 	mp->m_qflags = 0;
536 
537 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
538 	if (mp->m_sb.sb_qflags == 0)
539 		return 0;
540 	spin_lock(&mp->m_sb_lock);
541 	mp->m_sb.sb_qflags = 0;
542 	spin_unlock(&mp->m_sb_lock);
543 
544 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
545 		return 0;
546 
547 	return xfs_sync_sb(mp, false);
548 }
549 
550 uint64_t
551 xfs_default_resblks(xfs_mount_t *mp)
552 {
553 	uint64_t resblks;
554 
555 	/*
556 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
557 	 * smaller.  This is intended to cover concurrent allocation
558 	 * transactions when we initially hit enospc. These each require a 4
559 	 * block reservation. Hence by default we cover roughly 2000 concurrent
560 	 * allocation reservations.
561 	 */
562 	resblks = mp->m_sb.sb_dblocks;
563 	do_div(resblks, 20);
564 	resblks = min_t(uint64_t, resblks, 8192);
565 	return resblks;
566 }
567 
568 /* Ensure the summary counts are correct. */
569 STATIC int
570 xfs_check_summary_counts(
571 	struct xfs_mount	*mp)
572 {
573 	/*
574 	 * The AG0 superblock verifier rejects in-progress filesystems,
575 	 * so we should never see the flag set this far into mounting.
576 	 */
577 	if (mp->m_sb.sb_inprogress) {
578 		xfs_err(mp, "sb_inprogress set after log recovery??");
579 		WARN_ON(1);
580 		return -EFSCORRUPTED;
581 	}
582 
583 	/*
584 	 * Now the log is mounted, we know if it was an unclean shutdown or
585 	 * not. If it was, with the first phase of recovery has completed, we
586 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
587 	 * but they are recovered transactionally in the second recovery phase
588 	 * later.
589 	 *
590 	 * If the log was clean when we mounted, we can check the summary
591 	 * counters.  If any of them are obviously incorrect, we can recompute
592 	 * them from the AGF headers in the next step.
593 	 */
594 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
595 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
596 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
597 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
598 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
599 
600 	/*
601 	 * We can safely re-initialise incore superblock counters from the
602 	 * per-ag data. These may not be correct if the filesystem was not
603 	 * cleanly unmounted, so we waited for recovery to finish before doing
604 	 * this.
605 	 *
606 	 * If the filesystem was cleanly unmounted or the previous check did
607 	 * not flag anything weird, then we can trust the values in the
608 	 * superblock to be correct and we don't need to do anything here.
609 	 * Otherwise, recalculate the summary counters.
610 	 */
611 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
612 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
613 	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
614 		return 0;
615 
616 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
617 }
618 
619 /*
620  * This function does the following on an initial mount of a file system:
621  *	- reads the superblock from disk and init the mount struct
622  *	- if we're a 32-bit kernel, do a size check on the superblock
623  *		so we don't mount terabyte filesystems
624  *	- init mount struct realtime fields
625  *	- allocate inode hash table for fs
626  *	- init directory manager
627  *	- perform recovery and init the log manager
628  */
629 int
630 xfs_mountfs(
631 	struct xfs_mount	*mp)
632 {
633 	struct xfs_sb		*sbp = &(mp->m_sb);
634 	struct xfs_inode	*rip;
635 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
636 	uint64_t		resblks;
637 	uint			quotamount = 0;
638 	uint			quotaflags = 0;
639 	int			error = 0;
640 
641 	xfs_sb_mount_common(mp, sbp);
642 
643 	/*
644 	 * Check for a mismatched features2 values.  Older kernels read & wrote
645 	 * into the wrong sb offset for sb_features2 on some platforms due to
646 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
647 	 * which made older superblock reading/writing routines swap it as a
648 	 * 64-bit value.
649 	 *
650 	 * For backwards compatibility, we make both slots equal.
651 	 *
652 	 * If we detect a mismatched field, we OR the set bits into the existing
653 	 * features2 field in case it has already been modified; we don't want
654 	 * to lose any features.  We then update the bad location with the ORed
655 	 * value so that older kernels will see any features2 flags. The
656 	 * superblock writeback code ensures the new sb_features2 is copied to
657 	 * sb_bad_features2 before it is logged or written to disk.
658 	 */
659 	if (xfs_sb_has_mismatched_features2(sbp)) {
660 		xfs_warn(mp, "correcting sb_features alignment problem");
661 		sbp->sb_features2 |= sbp->sb_bad_features2;
662 		mp->m_update_sb = true;
663 
664 		/*
665 		 * Re-check for ATTR2 in case it was found in bad_features2
666 		 * slot.
667 		 */
668 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
670 			mp->m_flags |= XFS_MOUNT_ATTR2;
671 	}
672 
673 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
675 		xfs_sb_version_removeattr2(&mp->m_sb);
676 		mp->m_update_sb = true;
677 
678 		/* update sb_versionnum for the clearing of the morebits */
679 		if (!sbp->sb_features2)
680 			mp->m_update_sb = true;
681 	}
682 
683 	/* always use v2 inodes by default now */
684 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
685 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
686 		mp->m_update_sb = true;
687 	}
688 
689 	/*
690 	 * Check if sb_agblocks is aligned at stripe boundary
691 	 * If sb_agblocks is NOT aligned turn off m_dalign since
692 	 * allocator alignment is within an ag, therefore ag has
693 	 * to be aligned at stripe boundary.
694 	 */
695 	error = xfs_update_alignment(mp);
696 	if (error)
697 		goto out;
698 
699 	xfs_alloc_compute_maxlevels(mp);
700 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
701 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
702 	xfs_ialloc_setup_geometry(mp);
703 	xfs_rmapbt_compute_maxlevels(mp);
704 	xfs_refcountbt_compute_maxlevels(mp);
705 
706 	/* enable fail_at_unmount as default */
707 	mp->m_fail_unmount = true;
708 
709 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
710 	if (error)
711 		goto out;
712 
713 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
714 			       &mp->m_kobj, "stats");
715 	if (error)
716 		goto out_remove_sysfs;
717 
718 	error = xfs_error_sysfs_init(mp);
719 	if (error)
720 		goto out_del_stats;
721 
722 	error = xfs_errortag_init(mp);
723 	if (error)
724 		goto out_remove_error_sysfs;
725 
726 	error = xfs_uuid_mount(mp);
727 	if (error)
728 		goto out_remove_errortag;
729 
730 	/*
731 	 * Set the minimum read and write sizes
732 	 */
733 	xfs_set_rw_sizes(mp);
734 
735 	/* set the low space thresholds for dynamic preallocation */
736 	xfs_set_low_space_thresholds(mp);
737 
738 	/*
739 	 * If enabled, sparse inode chunk alignment is expected to match the
740 	 * cluster size. Full inode chunk alignment must match the chunk size,
741 	 * but that is checked on sb read verification...
742 	 */
743 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 	    mp->m_sb.sb_spino_align !=
745 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
746 		xfs_warn(mp,
747 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
748 			 mp->m_sb.sb_spino_align,
749 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
750 		error = -EINVAL;
751 		goto out_remove_uuid;
752 	}
753 
754 	/*
755 	 * Check that the data (and log if separate) is an ok size.
756 	 */
757 	error = xfs_check_sizes(mp);
758 	if (error)
759 		goto out_remove_uuid;
760 
761 	/*
762 	 * Initialize realtime fields in the mount structure
763 	 */
764 	error = xfs_rtmount_init(mp);
765 	if (error) {
766 		xfs_warn(mp, "RT mount failed");
767 		goto out_remove_uuid;
768 	}
769 
770 	/*
771 	 *  Copies the low order bits of the timestamp and the randomly
772 	 *  set "sequence" number out of a UUID.
773 	 */
774 	mp->m_fixedfsid[0] =
775 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
776 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
777 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
778 
779 	error = xfs_da_mount(mp);
780 	if (error) {
781 		xfs_warn(mp, "Failed dir/attr init: %d", error);
782 		goto out_remove_uuid;
783 	}
784 
785 	/*
786 	 * Initialize the precomputed transaction reservations values.
787 	 */
788 	xfs_trans_init(mp);
789 
790 	/*
791 	 * Allocate and initialize the per-ag data.
792 	 */
793 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
794 	if (error) {
795 		xfs_warn(mp, "Failed per-ag init: %d", error);
796 		goto out_free_dir;
797 	}
798 
799 	if (!sbp->sb_logblocks) {
800 		xfs_warn(mp, "no log defined");
801 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
802 		error = -EFSCORRUPTED;
803 		goto out_free_perag;
804 	}
805 
806 	/*
807 	 * Log's mount-time initialization. The first part of recovery can place
808 	 * some items on the AIL, to be handled when recovery is finished or
809 	 * cancelled.
810 	 */
811 	error = xfs_log_mount(mp, mp->m_logdev_targp,
812 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
813 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
814 	if (error) {
815 		xfs_warn(mp, "log mount failed");
816 		goto out_fail_wait;
817 	}
818 
819 	/* Make sure the summary counts are ok. */
820 	error = xfs_check_summary_counts(mp);
821 	if (error)
822 		goto out_log_dealloc;
823 
824 	/*
825 	 * Get and sanity-check the root inode.
826 	 * Save the pointer to it in the mount structure.
827 	 */
828 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
829 			 XFS_ILOCK_EXCL, &rip);
830 	if (error) {
831 		xfs_warn(mp,
832 			"Failed to read root inode 0x%llx, error %d",
833 			sbp->sb_rootino, -error);
834 		goto out_log_dealloc;
835 	}
836 
837 	ASSERT(rip != NULL);
838 
839 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
840 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
841 			(unsigned long long)rip->i_ino);
842 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
843 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
844 				 mp);
845 		error = -EFSCORRUPTED;
846 		goto out_rele_rip;
847 	}
848 	mp->m_rootip = rip;	/* save it */
849 
850 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
851 
852 	/*
853 	 * Initialize realtime inode pointers in the mount structure
854 	 */
855 	error = xfs_rtmount_inodes(mp);
856 	if (error) {
857 		/*
858 		 * Free up the root inode.
859 		 */
860 		xfs_warn(mp, "failed to read RT inodes");
861 		goto out_rele_rip;
862 	}
863 
864 	/*
865 	 * If this is a read-only mount defer the superblock updates until
866 	 * the next remount into writeable mode.  Otherwise we would never
867 	 * perform the update e.g. for the root filesystem.
868 	 */
869 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
870 		error = xfs_sync_sb(mp, false);
871 		if (error) {
872 			xfs_warn(mp, "failed to write sb changes");
873 			goto out_rtunmount;
874 		}
875 	}
876 
877 	/*
878 	 * Initialise the XFS quota management subsystem for this mount
879 	 */
880 	if (XFS_IS_QUOTA_RUNNING(mp)) {
881 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
882 		if (error)
883 			goto out_rtunmount;
884 	} else {
885 		ASSERT(!XFS_IS_QUOTA_ON(mp));
886 
887 		/*
888 		 * If a file system had quotas running earlier, but decided to
889 		 * mount without -o uquota/pquota/gquota options, revoke the
890 		 * quotachecked license.
891 		 */
892 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
893 			xfs_notice(mp, "resetting quota flags");
894 			error = xfs_mount_reset_sbqflags(mp);
895 			if (error)
896 				goto out_rtunmount;
897 		}
898 	}
899 
900 	/*
901 	 * Finish recovering the file system.  This part needed to be delayed
902 	 * until after the root and real-time bitmap inodes were consistently
903 	 * read in.
904 	 */
905 	error = xfs_log_mount_finish(mp);
906 	if (error) {
907 		xfs_warn(mp, "log mount finish failed");
908 		goto out_rtunmount;
909 	}
910 
911 	/*
912 	 * Now the log is fully replayed, we can transition to full read-only
913 	 * mode for read-only mounts. This will sync all the metadata and clean
914 	 * the log so that the recovery we just performed does not have to be
915 	 * replayed again on the next mount.
916 	 *
917 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
918 	 * semantically identical operations.
919 	 */
920 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
921 							XFS_MOUNT_RDONLY) {
922 		xfs_quiesce_attr(mp);
923 	}
924 
925 	/*
926 	 * Complete the quota initialisation, post-log-replay component.
927 	 */
928 	if (quotamount) {
929 		ASSERT(mp->m_qflags == 0);
930 		mp->m_qflags = quotaflags;
931 
932 		xfs_qm_mount_quotas(mp);
933 	}
934 
935 	/*
936 	 * Now we are mounted, reserve a small amount of unused space for
937 	 * privileged transactions. This is needed so that transaction
938 	 * space required for critical operations can dip into this pool
939 	 * when at ENOSPC. This is needed for operations like create with
940 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
941 	 * are not allowed to use this reserved space.
942 	 *
943 	 * This may drive us straight to ENOSPC on mount, but that implies
944 	 * we were already there on the last unmount. Warn if this occurs.
945 	 */
946 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
947 		resblks = xfs_default_resblks(mp);
948 		error = xfs_reserve_blocks(mp, &resblks, NULL);
949 		if (error)
950 			xfs_warn(mp,
951 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
952 
953 		/* Recover any CoW blocks that never got remapped. */
954 		error = xfs_reflink_recover_cow(mp);
955 		if (error) {
956 			xfs_err(mp,
957 	"Error %d recovering leftover CoW allocations.", error);
958 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
959 			goto out_quota;
960 		}
961 
962 		/* Reserve AG blocks for future btree expansion. */
963 		error = xfs_fs_reserve_ag_blocks(mp);
964 		if (error && error != -ENOSPC)
965 			goto out_agresv;
966 	}
967 
968 	return 0;
969 
970  out_agresv:
971 	xfs_fs_unreserve_ag_blocks(mp);
972  out_quota:
973 	xfs_qm_unmount_quotas(mp);
974  out_rtunmount:
975 	xfs_rtunmount_inodes(mp);
976  out_rele_rip:
977 	xfs_irele(rip);
978 	/* Clean out dquots that might be in memory after quotacheck. */
979 	xfs_qm_unmount(mp);
980 	/*
981 	 * Cancel all delayed reclaim work and reclaim the inodes directly.
982 	 * We have to do this /after/ rtunmount and qm_unmount because those
983 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
984 	 *
985 	 * This is slightly different from the unmountfs call sequence
986 	 * because we could be tearing down a partially set up mount.  In
987 	 * particular, if log_mount_finish fails we bail out without calling
988 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
989 	 * quota inodes.
990 	 */
991 	cancel_delayed_work_sync(&mp->m_reclaim_work);
992 	xfs_reclaim_inodes(mp, SYNC_WAIT);
993 	xfs_health_unmount(mp);
994  out_log_dealloc:
995 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
996 	xfs_log_mount_cancel(mp);
997  out_fail_wait:
998 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
999 		xfs_wait_buftarg(mp->m_logdev_targp);
1000 	xfs_wait_buftarg(mp->m_ddev_targp);
1001  out_free_perag:
1002 	xfs_free_perag(mp);
1003  out_free_dir:
1004 	xfs_da_unmount(mp);
1005  out_remove_uuid:
1006 	xfs_uuid_unmount(mp);
1007  out_remove_errortag:
1008 	xfs_errortag_del(mp);
1009  out_remove_error_sysfs:
1010 	xfs_error_sysfs_del(mp);
1011  out_del_stats:
1012 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1013  out_remove_sysfs:
1014 	xfs_sysfs_del(&mp->m_kobj);
1015  out:
1016 	return error;
1017 }
1018 
1019 /*
1020  * This flushes out the inodes,dquots and the superblock, unmounts the
1021  * log and makes sure that incore structures are freed.
1022  */
1023 void
1024 xfs_unmountfs(
1025 	struct xfs_mount	*mp)
1026 {
1027 	uint64_t		resblks;
1028 	int			error;
1029 
1030 	xfs_stop_block_reaping(mp);
1031 	xfs_fs_unreserve_ag_blocks(mp);
1032 	xfs_qm_unmount_quotas(mp);
1033 	xfs_rtunmount_inodes(mp);
1034 	xfs_irele(mp->m_rootip);
1035 
1036 	/*
1037 	 * We can potentially deadlock here if we have an inode cluster
1038 	 * that has been freed has its buffer still pinned in memory because
1039 	 * the transaction is still sitting in a iclog. The stale inodes
1040 	 * on that buffer will have their flush locks held until the
1041 	 * transaction hits the disk and the callbacks run. the inode
1042 	 * flush takes the flush lock unconditionally and with nothing to
1043 	 * push out the iclog we will never get that unlocked. hence we
1044 	 * need to force the log first.
1045 	 */
1046 	xfs_log_force(mp, XFS_LOG_SYNC);
1047 
1048 	/*
1049 	 * Wait for all busy extents to be freed, including completion of
1050 	 * any discard operation.
1051 	 */
1052 	xfs_extent_busy_wait_all(mp);
1053 	flush_workqueue(xfs_discard_wq);
1054 
1055 	/*
1056 	 * We now need to tell the world we are unmounting. This will allow
1057 	 * us to detect that the filesystem is going away and we should error
1058 	 * out anything that we have been retrying in the background. This will
1059 	 * prevent neverending retries in AIL pushing from hanging the unmount.
1060 	 */
1061 	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1062 
1063 	/*
1064 	 * Flush all pending changes from the AIL.
1065 	 */
1066 	xfs_ail_push_all_sync(mp->m_ail);
1067 
1068 	/*
1069 	 * And reclaim all inodes.  At this point there should be no dirty
1070 	 * inodes and none should be pinned or locked, but use synchronous
1071 	 * reclaim just to be sure. We can stop background inode reclaim
1072 	 * here as well if it is still running.
1073 	 */
1074 	cancel_delayed_work_sync(&mp->m_reclaim_work);
1075 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1076 	xfs_health_unmount(mp);
1077 
1078 	xfs_qm_unmount(mp);
1079 
1080 	/*
1081 	 * Unreserve any blocks we have so that when we unmount we don't account
1082 	 * the reserved free space as used. This is really only necessary for
1083 	 * lazy superblock counting because it trusts the incore superblock
1084 	 * counters to be absolutely correct on clean unmount.
1085 	 *
1086 	 * We don't bother correcting this elsewhere for lazy superblock
1087 	 * counting because on mount of an unclean filesystem we reconstruct the
1088 	 * correct counter value and this is irrelevant.
1089 	 *
1090 	 * For non-lazy counter filesystems, this doesn't matter at all because
1091 	 * we only every apply deltas to the superblock and hence the incore
1092 	 * value does not matter....
1093 	 */
1094 	resblks = 0;
1095 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1096 	if (error)
1097 		xfs_warn(mp, "Unable to free reserved block pool. "
1098 				"Freespace may not be correct on next mount.");
1099 
1100 	error = xfs_log_sbcount(mp);
1101 	if (error)
1102 		xfs_warn(mp, "Unable to update superblock counters. "
1103 				"Freespace may not be correct on next mount.");
1104 
1105 
1106 	xfs_log_unmount(mp);
1107 	xfs_da_unmount(mp);
1108 	xfs_uuid_unmount(mp);
1109 
1110 #if defined(DEBUG)
1111 	xfs_errortag_clearall(mp);
1112 #endif
1113 	xfs_free_perag(mp);
1114 
1115 	xfs_errortag_del(mp);
1116 	xfs_error_sysfs_del(mp);
1117 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1118 	xfs_sysfs_del(&mp->m_kobj);
1119 }
1120 
1121 /*
1122  * Determine whether modifications can proceed. The caller specifies the minimum
1123  * freeze level for which modifications should not be allowed. This allows
1124  * certain operations to proceed while the freeze sequence is in progress, if
1125  * necessary.
1126  */
1127 bool
1128 xfs_fs_writable(
1129 	struct xfs_mount	*mp,
1130 	int			level)
1131 {
1132 	ASSERT(level > SB_UNFROZEN);
1133 	if ((mp->m_super->s_writers.frozen >= level) ||
1134 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1135 		return false;
1136 
1137 	return true;
1138 }
1139 
1140 /*
1141  * xfs_log_sbcount
1142  *
1143  * Sync the superblock counters to disk.
1144  *
1145  * Note this code can be called during the process of freezing, so we use the
1146  * transaction allocator that does not block when the transaction subsystem is
1147  * in its frozen state.
1148  */
1149 int
1150 xfs_log_sbcount(xfs_mount_t *mp)
1151 {
1152 	/* allow this to proceed during the freeze sequence... */
1153 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1154 		return 0;
1155 
1156 	/*
1157 	 * we don't need to do this if we are updating the superblock
1158 	 * counters on every modification.
1159 	 */
1160 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1161 		return 0;
1162 
1163 	return xfs_sync_sb(mp, true);
1164 }
1165 
1166 /*
1167  * Deltas for the inode count are +/-64, hence we use a large batch size
1168  * of 128 so we don't need to take the counter lock on every update.
1169  */
1170 #define XFS_ICOUNT_BATCH	128
1171 int
1172 xfs_mod_icount(
1173 	struct xfs_mount	*mp,
1174 	int64_t			delta)
1175 {
1176 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1177 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1178 		ASSERT(0);
1179 		percpu_counter_add(&mp->m_icount, -delta);
1180 		return -EINVAL;
1181 	}
1182 	return 0;
1183 }
1184 
1185 int
1186 xfs_mod_ifree(
1187 	struct xfs_mount	*mp,
1188 	int64_t			delta)
1189 {
1190 	percpu_counter_add(&mp->m_ifree, delta);
1191 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1192 		ASSERT(0);
1193 		percpu_counter_add(&mp->m_ifree, -delta);
1194 		return -EINVAL;
1195 	}
1196 	return 0;
1197 }
1198 
1199 /*
1200  * Deltas for the block count can vary from 1 to very large, but lock contention
1201  * only occurs on frequent small block count updates such as in the delayed
1202  * allocation path for buffered writes (page a time updates). Hence we set
1203  * a large batch count (1024) to minimise global counter updates except when
1204  * we get near to ENOSPC and we have to be very accurate with our updates.
1205  */
1206 #define XFS_FDBLOCKS_BATCH	1024
1207 int
1208 xfs_mod_fdblocks(
1209 	struct xfs_mount	*mp,
1210 	int64_t			delta,
1211 	bool			rsvd)
1212 {
1213 	int64_t			lcounter;
1214 	long long		res_used;
1215 	s32			batch;
1216 
1217 	if (delta > 0) {
1218 		/*
1219 		 * If the reserve pool is depleted, put blocks back into it
1220 		 * first. Most of the time the pool is full.
1221 		 */
1222 		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1223 			percpu_counter_add(&mp->m_fdblocks, delta);
1224 			return 0;
1225 		}
1226 
1227 		spin_lock(&mp->m_sb_lock);
1228 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1229 
1230 		if (res_used > delta) {
1231 			mp->m_resblks_avail += delta;
1232 		} else {
1233 			delta -= res_used;
1234 			mp->m_resblks_avail = mp->m_resblks;
1235 			percpu_counter_add(&mp->m_fdblocks, delta);
1236 		}
1237 		spin_unlock(&mp->m_sb_lock);
1238 		return 0;
1239 	}
1240 
1241 	/*
1242 	 * Taking blocks away, need to be more accurate the closer we
1243 	 * are to zero.
1244 	 *
1245 	 * If the counter has a value of less than 2 * max batch size,
1246 	 * then make everything serialise as we are real close to
1247 	 * ENOSPC.
1248 	 */
1249 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1250 				     XFS_FDBLOCKS_BATCH) < 0)
1251 		batch = 1;
1252 	else
1253 		batch = XFS_FDBLOCKS_BATCH;
1254 
1255 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1256 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1257 				     XFS_FDBLOCKS_BATCH) >= 0) {
1258 		/* we had space! */
1259 		return 0;
1260 	}
1261 
1262 	/*
1263 	 * lock up the sb for dipping into reserves before releasing the space
1264 	 * that took us to ENOSPC.
1265 	 */
1266 	spin_lock(&mp->m_sb_lock);
1267 	percpu_counter_add(&mp->m_fdblocks, -delta);
1268 	if (!rsvd)
1269 		goto fdblocks_enospc;
1270 
1271 	lcounter = (long long)mp->m_resblks_avail + delta;
1272 	if (lcounter >= 0) {
1273 		mp->m_resblks_avail = lcounter;
1274 		spin_unlock(&mp->m_sb_lock);
1275 		return 0;
1276 	}
1277 	printk_once(KERN_WARNING
1278 		"Filesystem \"%s\": reserve blocks depleted! "
1279 		"Consider increasing reserve pool size.",
1280 		mp->m_fsname);
1281 fdblocks_enospc:
1282 	spin_unlock(&mp->m_sb_lock);
1283 	return -ENOSPC;
1284 }
1285 
1286 int
1287 xfs_mod_frextents(
1288 	struct xfs_mount	*mp,
1289 	int64_t			delta)
1290 {
1291 	int64_t			lcounter;
1292 	int			ret = 0;
1293 
1294 	spin_lock(&mp->m_sb_lock);
1295 	lcounter = mp->m_sb.sb_frextents + delta;
1296 	if (lcounter < 0)
1297 		ret = -ENOSPC;
1298 	else
1299 		mp->m_sb.sb_frextents = lcounter;
1300 	spin_unlock(&mp->m_sb_lock);
1301 	return ret;
1302 }
1303 
1304 /*
1305  * xfs_getsb() is called to obtain the buffer for the superblock.
1306  * The buffer is returned locked and read in from disk.
1307  * The buffer should be released with a call to xfs_brelse().
1308  */
1309 struct xfs_buf *
1310 xfs_getsb(
1311 	struct xfs_mount	*mp)
1312 {
1313 	struct xfs_buf		*bp = mp->m_sb_bp;
1314 
1315 	xfs_buf_lock(bp);
1316 	xfs_buf_hold(bp);
1317 	ASSERT(bp->b_flags & XBF_DONE);
1318 	return bp;
1319 }
1320 
1321 /*
1322  * Used to free the superblock along various error paths.
1323  */
1324 void
1325 xfs_freesb(
1326 	struct xfs_mount	*mp)
1327 {
1328 	struct xfs_buf		*bp = mp->m_sb_bp;
1329 
1330 	xfs_buf_lock(bp);
1331 	mp->m_sb_bp = NULL;
1332 	xfs_buf_relse(bp);
1333 }
1334 
1335 /*
1336  * If the underlying (data/log/rt) device is readonly, there are some
1337  * operations that cannot proceed.
1338  */
1339 int
1340 xfs_dev_is_read_only(
1341 	struct xfs_mount	*mp,
1342 	char			*message)
1343 {
1344 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1345 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1346 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1347 		xfs_notice(mp, "%s required on read-only device.", message);
1348 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1349 		return -EROFS;
1350 	}
1351 	return 0;
1352 }
1353 
1354 /* Force the summary counters to be recalculated at next mount. */
1355 void
1356 xfs_force_summary_recalc(
1357 	struct xfs_mount	*mp)
1358 {
1359 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1360 		return;
1361 
1362 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1363 }
1364 
1365 /*
1366  * Update the in-core delayed block counter.
1367  *
1368  * We prefer to update the counter without having to take a spinlock for every
1369  * counter update (i.e. batching).  Each change to delayed allocation
1370  * reservations can change can easily exceed the default percpu counter
1371  * batching, so we use a larger batch factor here.
1372  *
1373  * Note that we don't currently have any callers requiring fast summation
1374  * (e.g. percpu_counter_read) so we can use a big batch value here.
1375  */
1376 #define XFS_DELALLOC_BATCH	(4096)
1377 void
1378 xfs_mod_delalloc(
1379 	struct xfs_mount	*mp,
1380 	int64_t			delta)
1381 {
1382 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1383 			XFS_DELALLOC_BATCH);
1384 }
1385