1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 #include "xfs_trace.h" 35 36 static DEFINE_MUTEX(xfs_uuid_table_mutex); 37 static int xfs_uuid_table_size; 38 static uuid_t *xfs_uuid_table; 39 40 void 41 xfs_uuid_table_free(void) 42 { 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48 } 49 50 /* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54 STATIC int 55 xfs_uuid_mount( 56 struct xfs_mount *mp) 57 { 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = krealloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 GFP_KERNEL | __GFP_NOFAIL); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97 } 98 99 STATIC void 100 xfs_uuid_unmount( 101 struct xfs_mount *mp) 102 { 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120 } 121 122 123 STATIC void 124 __xfs_free_perag( 125 struct rcu_head *head) 126 { 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 130 ASSERT(atomic_read(&pag->pag_ref) == 0); 131 kmem_free(pag); 132 } 133 134 /* 135 * Free up the per-ag resources associated with the mount structure. 136 */ 137 STATIC void 138 xfs_free_perag( 139 xfs_mount_t *mp) 140 { 141 xfs_agnumber_t agno; 142 struct xfs_perag *pag; 143 144 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 145 spin_lock(&mp->m_perag_lock); 146 pag = radix_tree_delete(&mp->m_perag_tree, agno); 147 spin_unlock(&mp->m_perag_lock); 148 ASSERT(pag); 149 ASSERT(atomic_read(&pag->pag_ref) == 0); 150 cancel_delayed_work_sync(&pag->pag_blockgc_work); 151 xfs_iunlink_destroy(pag); 152 xfs_buf_hash_destroy(pag); 153 call_rcu(&pag->rcu_head, __xfs_free_perag); 154 } 155 } 156 157 /* 158 * Check size of device based on the (data/realtime) block count. 159 * Note: this check is used by the growfs code as well as mount. 160 */ 161 int 162 xfs_sb_validate_fsb_count( 163 xfs_sb_t *sbp, 164 uint64_t nblocks) 165 { 166 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 167 ASSERT(sbp->sb_blocklog >= BBSHIFT); 168 169 /* Limited by ULONG_MAX of page cache index */ 170 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 171 return -EFBIG; 172 return 0; 173 } 174 175 int 176 xfs_initialize_perag( 177 xfs_mount_t *mp, 178 xfs_agnumber_t agcount, 179 xfs_agnumber_t *maxagi) 180 { 181 xfs_agnumber_t index; 182 xfs_agnumber_t first_initialised = NULLAGNUMBER; 183 xfs_perag_t *pag; 184 int error = -ENOMEM; 185 186 /* 187 * Walk the current per-ag tree so we don't try to initialise AGs 188 * that already exist (growfs case). Allocate and insert all the 189 * AGs we don't find ready for initialisation. 190 */ 191 for (index = 0; index < agcount; index++) { 192 pag = xfs_perag_get(mp, index); 193 if (pag) { 194 xfs_perag_put(pag); 195 continue; 196 } 197 198 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 199 if (!pag) { 200 error = -ENOMEM; 201 goto out_unwind_new_pags; 202 } 203 pag->pag_agno = index; 204 pag->pag_mount = mp; 205 spin_lock_init(&pag->pag_ici_lock); 206 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 207 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 208 209 error = xfs_buf_hash_init(pag); 210 if (error) 211 goto out_free_pag; 212 init_waitqueue_head(&pag->pagb_wait); 213 spin_lock_init(&pag->pagb_lock); 214 pag->pagb_count = 0; 215 pag->pagb_tree = RB_ROOT; 216 217 error = radix_tree_preload(GFP_NOFS); 218 if (error) 219 goto out_hash_destroy; 220 221 spin_lock(&mp->m_perag_lock); 222 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 223 WARN_ON_ONCE(1); 224 spin_unlock(&mp->m_perag_lock); 225 radix_tree_preload_end(); 226 error = -EEXIST; 227 goto out_hash_destroy; 228 } 229 spin_unlock(&mp->m_perag_lock); 230 radix_tree_preload_end(); 231 /* first new pag is fully initialized */ 232 if (first_initialised == NULLAGNUMBER) 233 first_initialised = index; 234 error = xfs_iunlink_init(pag); 235 if (error) 236 goto out_hash_destroy; 237 spin_lock_init(&pag->pag_state_lock); 238 } 239 240 index = xfs_set_inode_alloc(mp, agcount); 241 242 if (maxagi) 243 *maxagi = index; 244 245 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 246 return 0; 247 248 out_hash_destroy: 249 xfs_buf_hash_destroy(pag); 250 out_free_pag: 251 kmem_free(pag); 252 out_unwind_new_pags: 253 /* unwind any prior newly initialized pags */ 254 for (index = first_initialised; index < agcount; index++) { 255 pag = radix_tree_delete(&mp->m_perag_tree, index); 256 if (!pag) 257 break; 258 xfs_buf_hash_destroy(pag); 259 xfs_iunlink_destroy(pag); 260 kmem_free(pag); 261 } 262 return error; 263 } 264 265 /* 266 * xfs_readsb 267 * 268 * Does the initial read of the superblock. 269 */ 270 int 271 xfs_readsb( 272 struct xfs_mount *mp, 273 int flags) 274 { 275 unsigned int sector_size; 276 struct xfs_buf *bp; 277 struct xfs_sb *sbp = &mp->m_sb; 278 int error; 279 int loud = !(flags & XFS_MFSI_QUIET); 280 const struct xfs_buf_ops *buf_ops; 281 282 ASSERT(mp->m_sb_bp == NULL); 283 ASSERT(mp->m_ddev_targp != NULL); 284 285 /* 286 * For the initial read, we must guess at the sector 287 * size based on the block device. It's enough to 288 * get the sb_sectsize out of the superblock and 289 * then reread with the proper length. 290 * We don't verify it yet, because it may not be complete. 291 */ 292 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 293 buf_ops = NULL; 294 295 /* 296 * Allocate a (locked) buffer to hold the superblock. This will be kept 297 * around at all times to optimize access to the superblock. Therefore, 298 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 299 * elevated. 300 */ 301 reread: 302 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 303 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 304 buf_ops); 305 if (error) { 306 if (loud) 307 xfs_warn(mp, "SB validate failed with error %d.", error); 308 /* bad CRC means corrupted metadata */ 309 if (error == -EFSBADCRC) 310 error = -EFSCORRUPTED; 311 return error; 312 } 313 314 /* 315 * Initialize the mount structure from the superblock. 316 */ 317 xfs_sb_from_disk(sbp, bp->b_addr); 318 319 /* 320 * If we haven't validated the superblock, do so now before we try 321 * to check the sector size and reread the superblock appropriately. 322 */ 323 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 324 if (loud) 325 xfs_warn(mp, "Invalid superblock magic number"); 326 error = -EINVAL; 327 goto release_buf; 328 } 329 330 /* 331 * We must be able to do sector-sized and sector-aligned IO. 332 */ 333 if (sector_size > sbp->sb_sectsize) { 334 if (loud) 335 xfs_warn(mp, "device supports %u byte sectors (not %u)", 336 sector_size, sbp->sb_sectsize); 337 error = -ENOSYS; 338 goto release_buf; 339 } 340 341 if (buf_ops == NULL) { 342 /* 343 * Re-read the superblock so the buffer is correctly sized, 344 * and properly verified. 345 */ 346 xfs_buf_relse(bp); 347 sector_size = sbp->sb_sectsize; 348 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 349 goto reread; 350 } 351 352 xfs_reinit_percpu_counters(mp); 353 354 /* no need to be quiet anymore, so reset the buf ops */ 355 bp->b_ops = &xfs_sb_buf_ops; 356 357 mp->m_sb_bp = bp; 358 xfs_buf_unlock(bp); 359 return 0; 360 361 release_buf: 362 xfs_buf_relse(bp); 363 return error; 364 } 365 366 /* 367 * If the sunit/swidth change would move the precomputed root inode value, we 368 * must reject the ondisk change because repair will stumble over that. 369 * However, we allow the mount to proceed because we never rejected this 370 * combination before. Returns true to update the sb, false otherwise. 371 */ 372 static inline int 373 xfs_check_new_dalign( 374 struct xfs_mount *mp, 375 int new_dalign, 376 bool *update_sb) 377 { 378 struct xfs_sb *sbp = &mp->m_sb; 379 xfs_ino_t calc_ino; 380 381 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 382 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 383 384 if (sbp->sb_rootino == calc_ino) { 385 *update_sb = true; 386 return 0; 387 } 388 389 xfs_warn(mp, 390 "Cannot change stripe alignment; would require moving root inode."); 391 392 /* 393 * XXX: Next time we add a new incompat feature, this should start 394 * returning -EINVAL to fail the mount. Until then, spit out a warning 395 * that we're ignoring the administrator's instructions. 396 */ 397 xfs_warn(mp, "Skipping superblock stripe alignment update."); 398 *update_sb = false; 399 return 0; 400 } 401 402 /* 403 * If we were provided with new sunit/swidth values as mount options, make sure 404 * that they pass basic alignment and superblock feature checks, and convert 405 * them into the same units (FSB) that everything else expects. This step 406 * /must/ be done before computing the inode geometry. 407 */ 408 STATIC int 409 xfs_validate_new_dalign( 410 struct xfs_mount *mp) 411 { 412 if (mp->m_dalign == 0) 413 return 0; 414 415 /* 416 * If stripe unit and stripe width are not multiples 417 * of the fs blocksize turn off alignment. 418 */ 419 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 420 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 421 xfs_warn(mp, 422 "alignment check failed: sunit/swidth vs. blocksize(%d)", 423 mp->m_sb.sb_blocksize); 424 return -EINVAL; 425 } else { 426 /* 427 * Convert the stripe unit and width to FSBs. 428 */ 429 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 430 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 431 xfs_warn(mp, 432 "alignment check failed: sunit/swidth vs. agsize(%d)", 433 mp->m_sb.sb_agblocks); 434 return -EINVAL; 435 } else if (mp->m_dalign) { 436 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 437 } else { 438 xfs_warn(mp, 439 "alignment check failed: sunit(%d) less than bsize(%d)", 440 mp->m_dalign, mp->m_sb.sb_blocksize); 441 return -EINVAL; 442 } 443 } 444 445 if (!xfs_sb_version_hasdalign(&mp->m_sb)) { 446 xfs_warn(mp, 447 "cannot change alignment: superblock does not support data alignment"); 448 return -EINVAL; 449 } 450 451 return 0; 452 } 453 454 /* Update alignment values based on mount options and sb values. */ 455 STATIC int 456 xfs_update_alignment( 457 struct xfs_mount *mp) 458 { 459 struct xfs_sb *sbp = &mp->m_sb; 460 461 if (mp->m_dalign) { 462 bool update_sb; 463 int error; 464 465 if (sbp->sb_unit == mp->m_dalign && 466 sbp->sb_width == mp->m_swidth) 467 return 0; 468 469 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 470 if (error || !update_sb) 471 return error; 472 473 sbp->sb_unit = mp->m_dalign; 474 sbp->sb_width = mp->m_swidth; 475 mp->m_update_sb = true; 476 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 477 xfs_sb_version_hasdalign(&mp->m_sb)) { 478 mp->m_dalign = sbp->sb_unit; 479 mp->m_swidth = sbp->sb_width; 480 } 481 482 return 0; 483 } 484 485 /* 486 * precalculate the low space thresholds for dynamic speculative preallocation. 487 */ 488 void 489 xfs_set_low_space_thresholds( 490 struct xfs_mount *mp) 491 { 492 int i; 493 494 for (i = 0; i < XFS_LOWSP_MAX; i++) { 495 uint64_t space = mp->m_sb.sb_dblocks; 496 497 do_div(space, 100); 498 mp->m_low_space[i] = space * (i + 1); 499 } 500 } 501 502 /* 503 * Check that the data (and log if separate) is an ok size. 504 */ 505 STATIC int 506 xfs_check_sizes( 507 struct xfs_mount *mp) 508 { 509 struct xfs_buf *bp; 510 xfs_daddr_t d; 511 int error; 512 513 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 514 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 515 xfs_warn(mp, "filesystem size mismatch detected"); 516 return -EFBIG; 517 } 518 error = xfs_buf_read_uncached(mp->m_ddev_targp, 519 d - XFS_FSS_TO_BB(mp, 1), 520 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 521 if (error) { 522 xfs_warn(mp, "last sector read failed"); 523 return error; 524 } 525 xfs_buf_relse(bp); 526 527 if (mp->m_logdev_targp == mp->m_ddev_targp) 528 return 0; 529 530 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 531 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 532 xfs_warn(mp, "log size mismatch detected"); 533 return -EFBIG; 534 } 535 error = xfs_buf_read_uncached(mp->m_logdev_targp, 536 d - XFS_FSB_TO_BB(mp, 1), 537 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 538 if (error) { 539 xfs_warn(mp, "log device read failed"); 540 return error; 541 } 542 xfs_buf_relse(bp); 543 return 0; 544 } 545 546 /* 547 * Clear the quotaflags in memory and in the superblock. 548 */ 549 int 550 xfs_mount_reset_sbqflags( 551 struct xfs_mount *mp) 552 { 553 mp->m_qflags = 0; 554 555 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 556 if (mp->m_sb.sb_qflags == 0) 557 return 0; 558 spin_lock(&mp->m_sb_lock); 559 mp->m_sb.sb_qflags = 0; 560 spin_unlock(&mp->m_sb_lock); 561 562 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 563 return 0; 564 565 return xfs_sync_sb(mp, false); 566 } 567 568 uint64_t 569 xfs_default_resblks(xfs_mount_t *mp) 570 { 571 uint64_t resblks; 572 573 /* 574 * We default to 5% or 8192 fsbs of space reserved, whichever is 575 * smaller. This is intended to cover concurrent allocation 576 * transactions when we initially hit enospc. These each require a 4 577 * block reservation. Hence by default we cover roughly 2000 concurrent 578 * allocation reservations. 579 */ 580 resblks = mp->m_sb.sb_dblocks; 581 do_div(resblks, 20); 582 resblks = min_t(uint64_t, resblks, 8192); 583 return resblks; 584 } 585 586 /* Ensure the summary counts are correct. */ 587 STATIC int 588 xfs_check_summary_counts( 589 struct xfs_mount *mp) 590 { 591 /* 592 * The AG0 superblock verifier rejects in-progress filesystems, 593 * so we should never see the flag set this far into mounting. 594 */ 595 if (mp->m_sb.sb_inprogress) { 596 xfs_err(mp, "sb_inprogress set after log recovery??"); 597 WARN_ON(1); 598 return -EFSCORRUPTED; 599 } 600 601 /* 602 * Now the log is mounted, we know if it was an unclean shutdown or 603 * not. If it was, with the first phase of recovery has completed, we 604 * have consistent AG blocks on disk. We have not recovered EFIs yet, 605 * but they are recovered transactionally in the second recovery phase 606 * later. 607 * 608 * If the log was clean when we mounted, we can check the summary 609 * counters. If any of them are obviously incorrect, we can recompute 610 * them from the AGF headers in the next step. 611 */ 612 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 613 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 614 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 615 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 616 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 617 618 /* 619 * We can safely re-initialise incore superblock counters from the 620 * per-ag data. These may not be correct if the filesystem was not 621 * cleanly unmounted, so we waited for recovery to finish before doing 622 * this. 623 * 624 * If the filesystem was cleanly unmounted or the previous check did 625 * not flag anything weird, then we can trust the values in the 626 * superblock to be correct and we don't need to do anything here. 627 * Otherwise, recalculate the summary counters. 628 */ 629 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 630 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 631 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 632 return 0; 633 634 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 635 } 636 637 /* 638 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 639 * internal inode structures can be sitting in the CIL and AIL at this point, 640 * so we need to unpin them, write them back and/or reclaim them before unmount 641 * can proceed. 642 * 643 * An inode cluster that has been freed can have its buffer still pinned in 644 * memory because the transaction is still sitting in a iclog. The stale inodes 645 * on that buffer will be pinned to the buffer until the transaction hits the 646 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 647 * may never see the pinned buffer, so nothing will push out the iclog and 648 * unpin the buffer. 649 * 650 * Hence we need to force the log to unpin everything first. However, log 651 * forces don't wait for the discards they issue to complete, so we have to 652 * explicitly wait for them to complete here as well. 653 * 654 * Then we can tell the world we are unmounting so that error handling knows 655 * that the filesystem is going away and we should error out anything that we 656 * have been retrying in the background. This will prevent never-ending 657 * retries in AIL pushing from hanging the unmount. 658 * 659 * Finally, we can push the AIL to clean all the remaining dirty objects, then 660 * reclaim the remaining inodes that are still in memory at this point in time. 661 */ 662 static void 663 xfs_unmount_flush_inodes( 664 struct xfs_mount *mp) 665 { 666 xfs_log_force(mp, XFS_LOG_SYNC); 667 xfs_extent_busy_wait_all(mp); 668 flush_workqueue(xfs_discard_wq); 669 670 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 671 672 xfs_ail_push_all_sync(mp->m_ail); 673 cancel_delayed_work_sync(&mp->m_reclaim_work); 674 xfs_reclaim_inodes(mp); 675 xfs_health_unmount(mp); 676 } 677 678 static void 679 xfs_mount_setup_inode_geom( 680 struct xfs_mount *mp) 681 { 682 struct xfs_ino_geometry *igeo = M_IGEO(mp); 683 684 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 685 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 686 687 xfs_ialloc_setup_geometry(mp); 688 } 689 690 /* 691 * This function does the following on an initial mount of a file system: 692 * - reads the superblock from disk and init the mount struct 693 * - if we're a 32-bit kernel, do a size check on the superblock 694 * so we don't mount terabyte filesystems 695 * - init mount struct realtime fields 696 * - allocate inode hash table for fs 697 * - init directory manager 698 * - perform recovery and init the log manager 699 */ 700 int 701 xfs_mountfs( 702 struct xfs_mount *mp) 703 { 704 struct xfs_sb *sbp = &(mp->m_sb); 705 struct xfs_inode *rip; 706 struct xfs_ino_geometry *igeo = M_IGEO(mp); 707 uint64_t resblks; 708 uint quotamount = 0; 709 uint quotaflags = 0; 710 int error = 0; 711 712 xfs_sb_mount_common(mp, sbp); 713 714 /* 715 * Check for a mismatched features2 values. Older kernels read & wrote 716 * into the wrong sb offset for sb_features2 on some platforms due to 717 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 718 * which made older superblock reading/writing routines swap it as a 719 * 64-bit value. 720 * 721 * For backwards compatibility, we make both slots equal. 722 * 723 * If we detect a mismatched field, we OR the set bits into the existing 724 * features2 field in case it has already been modified; we don't want 725 * to lose any features. We then update the bad location with the ORed 726 * value so that older kernels will see any features2 flags. The 727 * superblock writeback code ensures the new sb_features2 is copied to 728 * sb_bad_features2 before it is logged or written to disk. 729 */ 730 if (xfs_sb_has_mismatched_features2(sbp)) { 731 xfs_warn(mp, "correcting sb_features alignment problem"); 732 sbp->sb_features2 |= sbp->sb_bad_features2; 733 mp->m_update_sb = true; 734 735 /* 736 * Re-check for ATTR2 in case it was found in bad_features2 737 * slot. 738 */ 739 if (xfs_sb_version_hasattr2(&mp->m_sb) && 740 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 741 mp->m_flags |= XFS_MOUNT_ATTR2; 742 } 743 744 if (xfs_sb_version_hasattr2(&mp->m_sb) && 745 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 746 xfs_sb_version_removeattr2(&mp->m_sb); 747 mp->m_update_sb = true; 748 749 /* update sb_versionnum for the clearing of the morebits */ 750 if (!sbp->sb_features2) 751 mp->m_update_sb = true; 752 } 753 754 /* always use v2 inodes by default now */ 755 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 756 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 757 mp->m_update_sb = true; 758 } 759 760 /* 761 * If we were given new sunit/swidth options, do some basic validation 762 * checks and convert the incore dalign and swidth values to the 763 * same units (FSB) that everything else uses. This /must/ happen 764 * before computing the inode geometry. 765 */ 766 error = xfs_validate_new_dalign(mp); 767 if (error) 768 goto out; 769 770 xfs_alloc_compute_maxlevels(mp); 771 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 772 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 773 xfs_mount_setup_inode_geom(mp); 774 xfs_rmapbt_compute_maxlevels(mp); 775 xfs_refcountbt_compute_maxlevels(mp); 776 777 /* 778 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 779 * is NOT aligned turn off m_dalign since allocator alignment is within 780 * an ag, therefore ag has to be aligned at stripe boundary. Note that 781 * we must compute the free space and rmap btree geometry before doing 782 * this. 783 */ 784 error = xfs_update_alignment(mp); 785 if (error) 786 goto out; 787 788 /* enable fail_at_unmount as default */ 789 mp->m_fail_unmount = true; 790 791 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 792 NULL, mp->m_super->s_id); 793 if (error) 794 goto out; 795 796 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 797 &mp->m_kobj, "stats"); 798 if (error) 799 goto out_remove_sysfs; 800 801 error = xfs_error_sysfs_init(mp); 802 if (error) 803 goto out_del_stats; 804 805 error = xfs_errortag_init(mp); 806 if (error) 807 goto out_remove_error_sysfs; 808 809 error = xfs_uuid_mount(mp); 810 if (error) 811 goto out_remove_errortag; 812 813 /* 814 * Update the preferred write size based on the information from the 815 * on-disk superblock. 816 */ 817 mp->m_allocsize_log = 818 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 819 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 820 821 /* set the low space thresholds for dynamic preallocation */ 822 xfs_set_low_space_thresholds(mp); 823 824 /* 825 * If enabled, sparse inode chunk alignment is expected to match the 826 * cluster size. Full inode chunk alignment must match the chunk size, 827 * but that is checked on sb read verification... 828 */ 829 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 830 mp->m_sb.sb_spino_align != 831 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 832 xfs_warn(mp, 833 "Sparse inode block alignment (%u) must match cluster size (%llu).", 834 mp->m_sb.sb_spino_align, 835 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 836 error = -EINVAL; 837 goto out_remove_uuid; 838 } 839 840 /* 841 * Check that the data (and log if separate) is an ok size. 842 */ 843 error = xfs_check_sizes(mp); 844 if (error) 845 goto out_remove_uuid; 846 847 /* 848 * Initialize realtime fields in the mount structure 849 */ 850 error = xfs_rtmount_init(mp); 851 if (error) { 852 xfs_warn(mp, "RT mount failed"); 853 goto out_remove_uuid; 854 } 855 856 /* 857 * Copies the low order bits of the timestamp and the randomly 858 * set "sequence" number out of a UUID. 859 */ 860 mp->m_fixedfsid[0] = 861 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 862 get_unaligned_be16(&sbp->sb_uuid.b[4]); 863 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 864 865 error = xfs_da_mount(mp); 866 if (error) { 867 xfs_warn(mp, "Failed dir/attr init: %d", error); 868 goto out_remove_uuid; 869 } 870 871 /* 872 * Initialize the precomputed transaction reservations values. 873 */ 874 xfs_trans_init(mp); 875 876 /* 877 * Allocate and initialize the per-ag data. 878 */ 879 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 880 if (error) { 881 xfs_warn(mp, "Failed per-ag init: %d", error); 882 goto out_free_dir; 883 } 884 885 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 886 xfs_warn(mp, "no log defined"); 887 error = -EFSCORRUPTED; 888 goto out_free_perag; 889 } 890 891 /* 892 * Log's mount-time initialization. The first part of recovery can place 893 * some items on the AIL, to be handled when recovery is finished or 894 * cancelled. 895 */ 896 error = xfs_log_mount(mp, mp->m_logdev_targp, 897 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 898 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 899 if (error) { 900 xfs_warn(mp, "log mount failed"); 901 goto out_fail_wait; 902 } 903 904 /* Make sure the summary counts are ok. */ 905 error = xfs_check_summary_counts(mp); 906 if (error) 907 goto out_log_dealloc; 908 909 /* 910 * Get and sanity-check the root inode. 911 * Save the pointer to it in the mount structure. 912 */ 913 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 914 XFS_ILOCK_EXCL, &rip); 915 if (error) { 916 xfs_warn(mp, 917 "Failed to read root inode 0x%llx, error %d", 918 sbp->sb_rootino, -error); 919 goto out_log_dealloc; 920 } 921 922 ASSERT(rip != NULL); 923 924 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 925 xfs_warn(mp, "corrupted root inode %llu: not a directory", 926 (unsigned long long)rip->i_ino); 927 xfs_iunlock(rip, XFS_ILOCK_EXCL); 928 error = -EFSCORRUPTED; 929 goto out_rele_rip; 930 } 931 mp->m_rootip = rip; /* save it */ 932 933 xfs_iunlock(rip, XFS_ILOCK_EXCL); 934 935 /* 936 * Initialize realtime inode pointers in the mount structure 937 */ 938 error = xfs_rtmount_inodes(mp); 939 if (error) { 940 /* 941 * Free up the root inode. 942 */ 943 xfs_warn(mp, "failed to read RT inodes"); 944 goto out_rele_rip; 945 } 946 947 /* 948 * If this is a read-only mount defer the superblock updates until 949 * the next remount into writeable mode. Otherwise we would never 950 * perform the update e.g. for the root filesystem. 951 */ 952 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 953 error = xfs_sync_sb(mp, false); 954 if (error) { 955 xfs_warn(mp, "failed to write sb changes"); 956 goto out_rtunmount; 957 } 958 } 959 960 /* 961 * Initialise the XFS quota management subsystem for this mount 962 */ 963 if (XFS_IS_QUOTA_RUNNING(mp)) { 964 error = xfs_qm_newmount(mp, "amount, "aflags); 965 if (error) 966 goto out_rtunmount; 967 } else { 968 ASSERT(!XFS_IS_QUOTA_ON(mp)); 969 970 /* 971 * If a file system had quotas running earlier, but decided to 972 * mount without -o uquota/pquota/gquota options, revoke the 973 * quotachecked license. 974 */ 975 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 976 xfs_notice(mp, "resetting quota flags"); 977 error = xfs_mount_reset_sbqflags(mp); 978 if (error) 979 goto out_rtunmount; 980 } 981 } 982 983 /* 984 * Finish recovering the file system. This part needed to be delayed 985 * until after the root and real-time bitmap inodes were consistently 986 * read in. 987 */ 988 error = xfs_log_mount_finish(mp); 989 if (error) { 990 xfs_warn(mp, "log mount finish failed"); 991 goto out_rtunmount; 992 } 993 994 /* 995 * Now the log is fully replayed, we can transition to full read-only 996 * mode for read-only mounts. This will sync all the metadata and clean 997 * the log so that the recovery we just performed does not have to be 998 * replayed again on the next mount. 999 * 1000 * We use the same quiesce mechanism as the rw->ro remount, as they are 1001 * semantically identical operations. 1002 */ 1003 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 1004 XFS_MOUNT_RDONLY) { 1005 xfs_log_clean(mp); 1006 } 1007 1008 /* 1009 * Complete the quota initialisation, post-log-replay component. 1010 */ 1011 if (quotamount) { 1012 ASSERT(mp->m_qflags == 0); 1013 mp->m_qflags = quotaflags; 1014 1015 xfs_qm_mount_quotas(mp); 1016 } 1017 1018 /* 1019 * Now we are mounted, reserve a small amount of unused space for 1020 * privileged transactions. This is needed so that transaction 1021 * space required for critical operations can dip into this pool 1022 * when at ENOSPC. This is needed for operations like create with 1023 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1024 * are not allowed to use this reserved space. 1025 * 1026 * This may drive us straight to ENOSPC on mount, but that implies 1027 * we were already there on the last unmount. Warn if this occurs. 1028 */ 1029 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1030 resblks = xfs_default_resblks(mp); 1031 error = xfs_reserve_blocks(mp, &resblks, NULL); 1032 if (error) 1033 xfs_warn(mp, 1034 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1035 1036 /* Recover any CoW blocks that never got remapped. */ 1037 error = xfs_reflink_recover_cow(mp); 1038 if (error) { 1039 xfs_err(mp, 1040 "Error %d recovering leftover CoW allocations.", error); 1041 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1042 goto out_quota; 1043 } 1044 1045 /* Reserve AG blocks for future btree expansion. */ 1046 error = xfs_fs_reserve_ag_blocks(mp); 1047 if (error && error != -ENOSPC) 1048 goto out_agresv; 1049 } 1050 1051 return 0; 1052 1053 out_agresv: 1054 xfs_fs_unreserve_ag_blocks(mp); 1055 out_quota: 1056 xfs_qm_unmount_quotas(mp); 1057 out_rtunmount: 1058 xfs_rtunmount_inodes(mp); 1059 out_rele_rip: 1060 xfs_irele(rip); 1061 /* Clean out dquots that might be in memory after quotacheck. */ 1062 xfs_qm_unmount(mp); 1063 /* 1064 * Flush all inode reclamation work and flush the log. 1065 * We have to do this /after/ rtunmount and qm_unmount because those 1066 * two will have scheduled delayed reclaim for the rt/quota inodes. 1067 * 1068 * This is slightly different from the unmountfs call sequence 1069 * because we could be tearing down a partially set up mount. In 1070 * particular, if log_mount_finish fails we bail out without calling 1071 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1072 * quota inodes. 1073 */ 1074 xfs_unmount_flush_inodes(mp); 1075 out_log_dealloc: 1076 xfs_log_mount_cancel(mp); 1077 out_fail_wait: 1078 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1079 xfs_buftarg_drain(mp->m_logdev_targp); 1080 xfs_buftarg_drain(mp->m_ddev_targp); 1081 out_free_perag: 1082 xfs_free_perag(mp); 1083 out_free_dir: 1084 xfs_da_unmount(mp); 1085 out_remove_uuid: 1086 xfs_uuid_unmount(mp); 1087 out_remove_errortag: 1088 xfs_errortag_del(mp); 1089 out_remove_error_sysfs: 1090 xfs_error_sysfs_del(mp); 1091 out_del_stats: 1092 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1093 out_remove_sysfs: 1094 xfs_sysfs_del(&mp->m_kobj); 1095 out: 1096 return error; 1097 } 1098 1099 /* 1100 * This flushes out the inodes,dquots and the superblock, unmounts the 1101 * log and makes sure that incore structures are freed. 1102 */ 1103 void 1104 xfs_unmountfs( 1105 struct xfs_mount *mp) 1106 { 1107 uint64_t resblks; 1108 int error; 1109 1110 xfs_blockgc_stop(mp); 1111 xfs_fs_unreserve_ag_blocks(mp); 1112 xfs_qm_unmount_quotas(mp); 1113 xfs_rtunmount_inodes(mp); 1114 xfs_irele(mp->m_rootip); 1115 1116 xfs_unmount_flush_inodes(mp); 1117 1118 xfs_qm_unmount(mp); 1119 1120 /* 1121 * Unreserve any blocks we have so that when we unmount we don't account 1122 * the reserved free space as used. This is really only necessary for 1123 * lazy superblock counting because it trusts the incore superblock 1124 * counters to be absolutely correct on clean unmount. 1125 * 1126 * We don't bother correcting this elsewhere for lazy superblock 1127 * counting because on mount of an unclean filesystem we reconstruct the 1128 * correct counter value and this is irrelevant. 1129 * 1130 * For non-lazy counter filesystems, this doesn't matter at all because 1131 * we only every apply deltas to the superblock and hence the incore 1132 * value does not matter.... 1133 */ 1134 resblks = 0; 1135 error = xfs_reserve_blocks(mp, &resblks, NULL); 1136 if (error) 1137 xfs_warn(mp, "Unable to free reserved block pool. " 1138 "Freespace may not be correct on next mount."); 1139 1140 xfs_log_unmount(mp); 1141 xfs_da_unmount(mp); 1142 xfs_uuid_unmount(mp); 1143 1144 #if defined(DEBUG) 1145 xfs_errortag_clearall(mp); 1146 #endif 1147 xfs_free_perag(mp); 1148 1149 xfs_errortag_del(mp); 1150 xfs_error_sysfs_del(mp); 1151 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1152 xfs_sysfs_del(&mp->m_kobj); 1153 } 1154 1155 /* 1156 * Determine whether modifications can proceed. The caller specifies the minimum 1157 * freeze level for which modifications should not be allowed. This allows 1158 * certain operations to proceed while the freeze sequence is in progress, if 1159 * necessary. 1160 */ 1161 bool 1162 xfs_fs_writable( 1163 struct xfs_mount *mp, 1164 int level) 1165 { 1166 ASSERT(level > SB_UNFROZEN); 1167 if ((mp->m_super->s_writers.frozen >= level) || 1168 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1169 return false; 1170 1171 return true; 1172 } 1173 1174 /* 1175 * Deltas for the block count can vary from 1 to very large, but lock contention 1176 * only occurs on frequent small block count updates such as in the delayed 1177 * allocation path for buffered writes (page a time updates). Hence we set 1178 * a large batch count (1024) to minimise global counter updates except when 1179 * we get near to ENOSPC and we have to be very accurate with our updates. 1180 */ 1181 #define XFS_FDBLOCKS_BATCH 1024 1182 int 1183 xfs_mod_fdblocks( 1184 struct xfs_mount *mp, 1185 int64_t delta, 1186 bool rsvd) 1187 { 1188 int64_t lcounter; 1189 long long res_used; 1190 s32 batch; 1191 uint64_t set_aside; 1192 1193 if (delta > 0) { 1194 /* 1195 * If the reserve pool is depleted, put blocks back into it 1196 * first. Most of the time the pool is full. 1197 */ 1198 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1199 percpu_counter_add(&mp->m_fdblocks, delta); 1200 return 0; 1201 } 1202 1203 spin_lock(&mp->m_sb_lock); 1204 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1205 1206 if (res_used > delta) { 1207 mp->m_resblks_avail += delta; 1208 } else { 1209 delta -= res_used; 1210 mp->m_resblks_avail = mp->m_resblks; 1211 percpu_counter_add(&mp->m_fdblocks, delta); 1212 } 1213 spin_unlock(&mp->m_sb_lock); 1214 return 0; 1215 } 1216 1217 /* 1218 * Taking blocks away, need to be more accurate the closer we 1219 * are to zero. 1220 * 1221 * If the counter has a value of less than 2 * max batch size, 1222 * then make everything serialise as we are real close to 1223 * ENOSPC. 1224 */ 1225 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1226 XFS_FDBLOCKS_BATCH) < 0) 1227 batch = 1; 1228 else 1229 batch = XFS_FDBLOCKS_BATCH; 1230 1231 /* 1232 * Set aside allocbt blocks because these blocks are tracked as free 1233 * space but not available for allocation. Technically this means that a 1234 * single reservation cannot consume all remaining free space, but the 1235 * ratio of allocbt blocks to usable free blocks should be rather small. 1236 * The tradeoff without this is that filesystems that maintain high 1237 * perag block reservations can over reserve physical block availability 1238 * and fail physical allocation, which leads to much more serious 1239 * problems (i.e. transaction abort, pagecache discards, etc.) than 1240 * slightly premature -ENOSPC. 1241 */ 1242 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks); 1243 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1244 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside, 1245 XFS_FDBLOCKS_BATCH) >= 0) { 1246 /* we had space! */ 1247 return 0; 1248 } 1249 1250 /* 1251 * lock up the sb for dipping into reserves before releasing the space 1252 * that took us to ENOSPC. 1253 */ 1254 spin_lock(&mp->m_sb_lock); 1255 percpu_counter_add(&mp->m_fdblocks, -delta); 1256 if (!rsvd) 1257 goto fdblocks_enospc; 1258 1259 lcounter = (long long)mp->m_resblks_avail + delta; 1260 if (lcounter >= 0) { 1261 mp->m_resblks_avail = lcounter; 1262 spin_unlock(&mp->m_sb_lock); 1263 return 0; 1264 } 1265 xfs_warn_once(mp, 1266 "Reserve blocks depleted! Consider increasing reserve pool size."); 1267 1268 fdblocks_enospc: 1269 spin_unlock(&mp->m_sb_lock); 1270 return -ENOSPC; 1271 } 1272 1273 int 1274 xfs_mod_frextents( 1275 struct xfs_mount *mp, 1276 int64_t delta) 1277 { 1278 int64_t lcounter; 1279 int ret = 0; 1280 1281 spin_lock(&mp->m_sb_lock); 1282 lcounter = mp->m_sb.sb_frextents + delta; 1283 if (lcounter < 0) 1284 ret = -ENOSPC; 1285 else 1286 mp->m_sb.sb_frextents = lcounter; 1287 spin_unlock(&mp->m_sb_lock); 1288 return ret; 1289 } 1290 1291 /* 1292 * Used to free the superblock along various error paths. 1293 */ 1294 void 1295 xfs_freesb( 1296 struct xfs_mount *mp) 1297 { 1298 struct xfs_buf *bp = mp->m_sb_bp; 1299 1300 xfs_buf_lock(bp); 1301 mp->m_sb_bp = NULL; 1302 xfs_buf_relse(bp); 1303 } 1304 1305 /* 1306 * If the underlying (data/log/rt) device is readonly, there are some 1307 * operations that cannot proceed. 1308 */ 1309 int 1310 xfs_dev_is_read_only( 1311 struct xfs_mount *mp, 1312 char *message) 1313 { 1314 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1315 xfs_readonly_buftarg(mp->m_logdev_targp) || 1316 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1317 xfs_notice(mp, "%s required on read-only device.", message); 1318 xfs_notice(mp, "write access unavailable, cannot proceed."); 1319 return -EROFS; 1320 } 1321 return 0; 1322 } 1323 1324 /* Force the summary counters to be recalculated at next mount. */ 1325 void 1326 xfs_force_summary_recalc( 1327 struct xfs_mount *mp) 1328 { 1329 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1330 return; 1331 1332 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1333 } 1334 1335 /* 1336 * Update the in-core delayed block counter. 1337 * 1338 * We prefer to update the counter without having to take a spinlock for every 1339 * counter update (i.e. batching). Each change to delayed allocation 1340 * reservations can change can easily exceed the default percpu counter 1341 * batching, so we use a larger batch factor here. 1342 * 1343 * Note that we don't currently have any callers requiring fast summation 1344 * (e.g. percpu_counter_read) so we can use a big batch value here. 1345 */ 1346 #define XFS_DELALLOC_BATCH (4096) 1347 void 1348 xfs_mod_delalloc( 1349 struct xfs_mount *mp, 1350 int64_t delta) 1351 { 1352 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1353 XFS_DELALLOC_BATCH); 1354 } 1355