xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 22246614)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dir2_sf.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_btree.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_alloc.h"
40 #include "xfs_rtalloc.h"
41 #include "xfs_bmap.h"
42 #include "xfs_error.h"
43 #include "xfs_rw.h"
44 #include "xfs_quota.h"
45 #include "xfs_fsops.h"
46 #include "xfs_utils.h"
47 
48 STATIC int	xfs_mount_log_sb(xfs_mount_t *, __int64_t);
49 STATIC int	xfs_uuid_mount(xfs_mount_t *);
50 STATIC void	xfs_uuid_unmount(xfs_mount_t *mp);
51 STATIC void	xfs_unmountfs_wait(xfs_mount_t *);
52 
53 
54 #ifdef HAVE_PERCPU_SB
55 STATIC void	xfs_icsb_destroy_counters(xfs_mount_t *);
56 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
57 						int);
58 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
59 						int);
60 STATIC int	xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t,
61 						int64_t, int);
62 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
63 
64 #else
65 
66 #define xfs_icsb_destroy_counters(mp)			do { } while (0)
67 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
68 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
69 #define xfs_icsb_modify_counters(mp, a, b, c)		do { } while (0)
70 
71 #endif
72 
73 static const struct {
74 	short offset;
75 	short type;	/* 0 = integer
76 			 * 1 = binary / string (no translation)
77 			 */
78 } xfs_sb_info[] = {
79     { offsetof(xfs_sb_t, sb_magicnum),   0 },
80     { offsetof(xfs_sb_t, sb_blocksize),  0 },
81     { offsetof(xfs_sb_t, sb_dblocks),    0 },
82     { offsetof(xfs_sb_t, sb_rblocks),    0 },
83     { offsetof(xfs_sb_t, sb_rextents),   0 },
84     { offsetof(xfs_sb_t, sb_uuid),       1 },
85     { offsetof(xfs_sb_t, sb_logstart),   0 },
86     { offsetof(xfs_sb_t, sb_rootino),    0 },
87     { offsetof(xfs_sb_t, sb_rbmino),     0 },
88     { offsetof(xfs_sb_t, sb_rsumino),    0 },
89     { offsetof(xfs_sb_t, sb_rextsize),   0 },
90     { offsetof(xfs_sb_t, sb_agblocks),   0 },
91     { offsetof(xfs_sb_t, sb_agcount),    0 },
92     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
93     { offsetof(xfs_sb_t, sb_logblocks),  0 },
94     { offsetof(xfs_sb_t, sb_versionnum), 0 },
95     { offsetof(xfs_sb_t, sb_sectsize),   0 },
96     { offsetof(xfs_sb_t, sb_inodesize),  0 },
97     { offsetof(xfs_sb_t, sb_inopblock),  0 },
98     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
99     { offsetof(xfs_sb_t, sb_blocklog),   0 },
100     { offsetof(xfs_sb_t, sb_sectlog),    0 },
101     { offsetof(xfs_sb_t, sb_inodelog),   0 },
102     { offsetof(xfs_sb_t, sb_inopblog),   0 },
103     { offsetof(xfs_sb_t, sb_agblklog),   0 },
104     { offsetof(xfs_sb_t, sb_rextslog),   0 },
105     { offsetof(xfs_sb_t, sb_inprogress), 0 },
106     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
107     { offsetof(xfs_sb_t, sb_icount),     0 },
108     { offsetof(xfs_sb_t, sb_ifree),      0 },
109     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
110     { offsetof(xfs_sb_t, sb_frextents),  0 },
111     { offsetof(xfs_sb_t, sb_uquotino),   0 },
112     { offsetof(xfs_sb_t, sb_gquotino),   0 },
113     { offsetof(xfs_sb_t, sb_qflags),     0 },
114     { offsetof(xfs_sb_t, sb_flags),      0 },
115     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
116     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
117     { offsetof(xfs_sb_t, sb_unit),	 0 },
118     { offsetof(xfs_sb_t, sb_width),	 0 },
119     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
120     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
121     { offsetof(xfs_sb_t, sb_logsectsize),0 },
122     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
123     { offsetof(xfs_sb_t, sb_features2),	 0 },
124     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
125     { sizeof(xfs_sb_t),			 0 }
126 };
127 
128 /*
129  * Return a pointer to an initialized xfs_mount structure.
130  */
131 xfs_mount_t *
132 xfs_mount_init(void)
133 {
134 	xfs_mount_t *mp;
135 
136 	mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP);
137 
138 	if (xfs_icsb_init_counters(mp)) {
139 		mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB;
140 	}
141 
142 	spin_lock_init(&mp->m_sb_lock);
143 	mutex_init(&mp->m_ilock);
144 	mutex_init(&mp->m_growlock);
145 	atomic_set(&mp->m_active_trans, 0);
146 
147 	return mp;
148 }
149 
150 /*
151  * Free up the resources associated with a mount structure.  Assume that
152  * the structure was initially zeroed, so we can tell which fields got
153  * initialized.
154  */
155 void
156 xfs_mount_free(
157 	xfs_mount_t	*mp)
158 {
159 	if (mp->m_perag) {
160 		int	agno;
161 
162 		for (agno = 0; agno < mp->m_maxagi; agno++)
163 			if (mp->m_perag[agno].pagb_list)
164 				kmem_free(mp->m_perag[agno].pagb_list,
165 						sizeof(xfs_perag_busy_t) *
166 							XFS_PAGB_NUM_SLOTS);
167 		kmem_free(mp->m_perag,
168 			  sizeof(xfs_perag_t) * mp->m_sb.sb_agcount);
169 	}
170 
171 	spinlock_destroy(&mp->m_ail_lock);
172 	spinlock_destroy(&mp->m_sb_lock);
173 	mutex_destroy(&mp->m_ilock);
174 	mutex_destroy(&mp->m_growlock);
175 	if (mp->m_quotainfo)
176 		XFS_QM_DONE(mp);
177 
178 	if (mp->m_fsname != NULL)
179 		kmem_free(mp->m_fsname, mp->m_fsname_len);
180 	if (mp->m_rtname != NULL)
181 		kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1);
182 	if (mp->m_logname != NULL)
183 		kmem_free(mp->m_logname, strlen(mp->m_logname) + 1);
184 
185 	xfs_icsb_destroy_counters(mp);
186 }
187 
188 /*
189  * Check size of device based on the (data/realtime) block count.
190  * Note: this check is used by the growfs code as well as mount.
191  */
192 int
193 xfs_sb_validate_fsb_count(
194 	xfs_sb_t	*sbp,
195 	__uint64_t	nblocks)
196 {
197 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
198 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
199 
200 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
201 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
202 		return E2BIG;
203 #else                  /* Limited by UINT_MAX of sectors */
204 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
205 		return E2BIG;
206 #endif
207 	return 0;
208 }
209 
210 /*
211  * Check the validity of the SB found.
212  */
213 STATIC int
214 xfs_mount_validate_sb(
215 	xfs_mount_t	*mp,
216 	xfs_sb_t	*sbp,
217 	int		flags)
218 {
219 	/*
220 	 * If the log device and data device have the
221 	 * same device number, the log is internal.
222 	 * Consequently, the sb_logstart should be non-zero.  If
223 	 * we have a zero sb_logstart in this case, we may be trying to mount
224 	 * a volume filesystem in a non-volume manner.
225 	 */
226 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
227 		xfs_fs_mount_cmn_err(flags, "bad magic number");
228 		return XFS_ERROR(EWRONGFS);
229 	}
230 
231 	if (!xfs_sb_good_version(sbp)) {
232 		xfs_fs_mount_cmn_err(flags, "bad version");
233 		return XFS_ERROR(EWRONGFS);
234 	}
235 
236 	if (unlikely(
237 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
238 		xfs_fs_mount_cmn_err(flags,
239 			"filesystem is marked as having an external log; "
240 			"specify logdev on the\nmount command line.");
241 		return XFS_ERROR(EINVAL);
242 	}
243 
244 	if (unlikely(
245 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
246 		xfs_fs_mount_cmn_err(flags,
247 			"filesystem is marked as having an internal log; "
248 			"do not specify logdev on\nthe mount command line.");
249 		return XFS_ERROR(EINVAL);
250 	}
251 
252 	/*
253 	 * More sanity checking. These were stolen directly from
254 	 * xfs_repair.
255 	 */
256 	if (unlikely(
257 	    sbp->sb_agcount <= 0					||
258 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
259 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
260 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
261 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
262 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
263 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
264 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
265 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
266 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
267 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
268 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
269 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
270 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
271 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
272 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
273 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
274 		xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
275 		return XFS_ERROR(EFSCORRUPTED);
276 	}
277 
278 	/*
279 	 * Sanity check AG count, size fields against data size field
280 	 */
281 	if (unlikely(
282 	    sbp->sb_dblocks == 0 ||
283 	    sbp->sb_dblocks >
284 	     (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
285 	    sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
286 			      sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
287 		xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
288 		return XFS_ERROR(EFSCORRUPTED);
289 	}
290 
291 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
292 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
293 		xfs_fs_mount_cmn_err(flags,
294 			"file system too large to be mounted on this system.");
295 		return XFS_ERROR(E2BIG);
296 	}
297 
298 	if (unlikely(sbp->sb_inprogress)) {
299 		xfs_fs_mount_cmn_err(flags, "file system busy");
300 		return XFS_ERROR(EFSCORRUPTED);
301 	}
302 
303 	/*
304 	 * Version 1 directory format has never worked on Linux.
305 	 */
306 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
307 		xfs_fs_mount_cmn_err(flags,
308 			"file system using version 1 directory format");
309 		return XFS_ERROR(ENOSYS);
310 	}
311 
312 	/*
313 	 * Until this is fixed only page-sized or smaller data blocks work.
314 	 */
315 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
316 		xfs_fs_mount_cmn_err(flags,
317 			"file system with blocksize %d bytes",
318 			sbp->sb_blocksize);
319 		xfs_fs_mount_cmn_err(flags,
320 			"only pagesize (%ld) or less will currently work.",
321 			PAGE_SIZE);
322 		return XFS_ERROR(ENOSYS);
323 	}
324 
325 	return 0;
326 }
327 
328 STATIC void
329 xfs_initialize_perag_icache(
330 	xfs_perag_t	*pag)
331 {
332 	if (!pag->pag_ici_init) {
333 		rwlock_init(&pag->pag_ici_lock);
334 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
335 		pag->pag_ici_init = 1;
336 	}
337 }
338 
339 xfs_agnumber_t
340 xfs_initialize_perag(
341 	xfs_mount_t	*mp,
342 	xfs_agnumber_t	agcount)
343 {
344 	xfs_agnumber_t	index, max_metadata;
345 	xfs_perag_t	*pag;
346 	xfs_agino_t	agino;
347 	xfs_ino_t	ino;
348 	xfs_sb_t	*sbp = &mp->m_sb;
349 	xfs_ino_t	max_inum = XFS_MAXINUMBER_32;
350 
351 	/* Check to see if the filesystem can overflow 32 bit inodes */
352 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
353 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
354 
355 	/* Clear the mount flag if no inode can overflow 32 bits
356 	 * on this filesystem, or if specifically requested..
357 	 */
358 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) {
359 		mp->m_flags |= XFS_MOUNT_32BITINODES;
360 	} else {
361 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
362 	}
363 
364 	/* If we can overflow then setup the ag headers accordingly */
365 	if (mp->m_flags & XFS_MOUNT_32BITINODES) {
366 		/* Calculate how much should be reserved for inodes to
367 		 * meet the max inode percentage.
368 		 */
369 		if (mp->m_maxicount) {
370 			__uint64_t	icount;
371 
372 			icount = sbp->sb_dblocks * sbp->sb_imax_pct;
373 			do_div(icount, 100);
374 			icount += sbp->sb_agblocks - 1;
375 			do_div(icount, sbp->sb_agblocks);
376 			max_metadata = icount;
377 		} else {
378 			max_metadata = agcount;
379 		}
380 		for (index = 0; index < agcount; index++) {
381 			ino = XFS_AGINO_TO_INO(mp, index, agino);
382 			if (ino > max_inum) {
383 				index++;
384 				break;
385 			}
386 
387 			/* This ag is preferred for inodes */
388 			pag = &mp->m_perag[index];
389 			pag->pagi_inodeok = 1;
390 			if (index < max_metadata)
391 				pag->pagf_metadata = 1;
392 			xfs_initialize_perag_icache(pag);
393 		}
394 	} else {
395 		/* Setup default behavior for smaller filesystems */
396 		for (index = 0; index < agcount; index++) {
397 			pag = &mp->m_perag[index];
398 			pag->pagi_inodeok = 1;
399 			xfs_initialize_perag_icache(pag);
400 		}
401 	}
402 	return index;
403 }
404 
405 void
406 xfs_sb_from_disk(
407 	xfs_sb_t	*to,
408 	xfs_dsb_t	*from)
409 {
410 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
411 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
412 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
413 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
414 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
415 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
416 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
417 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
418 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
419 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
420 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
421 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
422 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
423 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
424 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
425 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
426 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
427 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
428 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
429 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
430 	to->sb_blocklog = from->sb_blocklog;
431 	to->sb_sectlog = from->sb_sectlog;
432 	to->sb_inodelog = from->sb_inodelog;
433 	to->sb_inopblog = from->sb_inopblog;
434 	to->sb_agblklog = from->sb_agblklog;
435 	to->sb_rextslog = from->sb_rextslog;
436 	to->sb_inprogress = from->sb_inprogress;
437 	to->sb_imax_pct = from->sb_imax_pct;
438 	to->sb_icount = be64_to_cpu(from->sb_icount);
439 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
440 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
441 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
442 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
443 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
444 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
445 	to->sb_flags = from->sb_flags;
446 	to->sb_shared_vn = from->sb_shared_vn;
447 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
448 	to->sb_unit = be32_to_cpu(from->sb_unit);
449 	to->sb_width = be32_to_cpu(from->sb_width);
450 	to->sb_dirblklog = from->sb_dirblklog;
451 	to->sb_logsectlog = from->sb_logsectlog;
452 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
453 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
454 	to->sb_features2 = be32_to_cpu(from->sb_features2);
455 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
456 }
457 
458 /*
459  * Copy in core superblock to ondisk one.
460  *
461  * The fields argument is mask of superblock fields to copy.
462  */
463 void
464 xfs_sb_to_disk(
465 	xfs_dsb_t	*to,
466 	xfs_sb_t	*from,
467 	__int64_t	fields)
468 {
469 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
470 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
471 	xfs_sb_field_t	f;
472 	int		first;
473 	int		size;
474 
475 	ASSERT(fields);
476 	if (!fields)
477 		return;
478 
479 	while (fields) {
480 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
481 		first = xfs_sb_info[f].offset;
482 		size = xfs_sb_info[f + 1].offset - first;
483 
484 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
485 
486 		if (size == 1 || xfs_sb_info[f].type == 1) {
487 			memcpy(to_ptr + first, from_ptr + first, size);
488 		} else {
489 			switch (size) {
490 			case 2:
491 				*(__be16 *)(to_ptr + first) =
492 					cpu_to_be16(*(__u16 *)(from_ptr + first));
493 				break;
494 			case 4:
495 				*(__be32 *)(to_ptr + first) =
496 					cpu_to_be32(*(__u32 *)(from_ptr + first));
497 				break;
498 			case 8:
499 				*(__be64 *)(to_ptr + first) =
500 					cpu_to_be64(*(__u64 *)(from_ptr + first));
501 				break;
502 			default:
503 				ASSERT(0);
504 			}
505 		}
506 
507 		fields &= ~(1LL << f);
508 	}
509 }
510 
511 /*
512  * xfs_readsb
513  *
514  * Does the initial read of the superblock.
515  */
516 int
517 xfs_readsb(xfs_mount_t *mp, int flags)
518 {
519 	unsigned int	sector_size;
520 	unsigned int	extra_flags;
521 	xfs_buf_t	*bp;
522 	int		error;
523 
524 	ASSERT(mp->m_sb_bp == NULL);
525 	ASSERT(mp->m_ddev_targp != NULL);
526 
527 	/*
528 	 * Allocate a (locked) buffer to hold the superblock.
529 	 * This will be kept around at all times to optimize
530 	 * access to the superblock.
531 	 */
532 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
533 	extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED;
534 
535 	bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
536 				BTOBB(sector_size), extra_flags);
537 	if (!bp || XFS_BUF_ISERROR(bp)) {
538 		xfs_fs_mount_cmn_err(flags, "SB read failed");
539 		error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
540 		goto fail;
541 	}
542 	ASSERT(XFS_BUF_ISBUSY(bp));
543 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
544 
545 	/*
546 	 * Initialize the mount structure from the superblock.
547 	 * But first do some basic consistency checking.
548 	 */
549 	xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
550 
551 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
552 	if (error) {
553 		xfs_fs_mount_cmn_err(flags, "SB validate failed");
554 		goto fail;
555 	}
556 
557 	/*
558 	 * We must be able to do sector-sized and sector-aligned IO.
559 	 */
560 	if (sector_size > mp->m_sb.sb_sectsize) {
561 		xfs_fs_mount_cmn_err(flags,
562 			"device supports only %u byte sectors (not %u)",
563 			sector_size, mp->m_sb.sb_sectsize);
564 		error = ENOSYS;
565 		goto fail;
566 	}
567 
568 	/*
569 	 * If device sector size is smaller than the superblock size,
570 	 * re-read the superblock so the buffer is correctly sized.
571 	 */
572 	if (sector_size < mp->m_sb.sb_sectsize) {
573 		XFS_BUF_UNMANAGE(bp);
574 		xfs_buf_relse(bp);
575 		sector_size = mp->m_sb.sb_sectsize;
576 		bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR,
577 					BTOBB(sector_size), extra_flags);
578 		if (!bp || XFS_BUF_ISERROR(bp)) {
579 			xfs_fs_mount_cmn_err(flags, "SB re-read failed");
580 			error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM;
581 			goto fail;
582 		}
583 		ASSERT(XFS_BUF_ISBUSY(bp));
584 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
585 	}
586 
587 	/* Initialize per-cpu counters */
588 	xfs_icsb_reinit_counters(mp);
589 
590 	mp->m_sb_bp = bp;
591 	xfs_buf_relse(bp);
592 	ASSERT(XFS_BUF_VALUSEMA(bp) > 0);
593 	return 0;
594 
595  fail:
596 	if (bp) {
597 		XFS_BUF_UNMANAGE(bp);
598 		xfs_buf_relse(bp);
599 	}
600 	return error;
601 }
602 
603 
604 /*
605  * xfs_mount_common
606  *
607  * Mount initialization code establishing various mount
608  * fields from the superblock associated with the given
609  * mount structure
610  */
611 STATIC void
612 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
613 {
614 	int	i;
615 
616 	mp->m_agfrotor = mp->m_agirotor = 0;
617 	spin_lock_init(&mp->m_agirotor_lock);
618 	mp->m_maxagi = mp->m_sb.sb_agcount;
619 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
620 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
621 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
622 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
623 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
624 	mp->m_litino = sbp->sb_inodesize -
625 		((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t));
626 	mp->m_blockmask = sbp->sb_blocksize - 1;
627 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
628 	mp->m_blockwmask = mp->m_blockwsize - 1;
629 	INIT_LIST_HEAD(&mp->m_del_inodes);
630 
631 	/*
632 	 * Setup for attributes, in case they get created.
633 	 * This value is for inodes getting attributes for the first time,
634 	 * the per-inode value is for old attribute values.
635 	 */
636 	ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048);
637 	switch (sbp->sb_inodesize) {
638 	case 256:
639 		mp->m_attroffset = XFS_LITINO(mp) -
640 				   XFS_BMDR_SPACE_CALC(MINABTPTRS);
641 		break;
642 	case 512:
643 	case 1024:
644 	case 2048:
645 		mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS);
646 		break;
647 	default:
648 		ASSERT(0);
649 	}
650 	ASSERT(mp->m_attroffset < XFS_LITINO(mp));
651 
652 	for (i = 0; i < 2; i++) {
653 		mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
654 			xfs_alloc, i == 0);
655 		mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
656 			xfs_alloc, i == 0);
657 	}
658 	for (i = 0; i < 2; i++) {
659 		mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
660 			xfs_bmbt, i == 0);
661 		mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
662 			xfs_bmbt, i == 0);
663 	}
664 	for (i = 0; i < 2; i++) {
665 		mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize,
666 			xfs_inobt, i == 0);
667 		mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize,
668 			xfs_inobt, i == 0);
669 	}
670 
671 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
672 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
673 					sbp->sb_inopblock);
674 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
675 }
676 
677 /*
678  * xfs_initialize_perag_data
679  *
680  * Read in each per-ag structure so we can count up the number of
681  * allocated inodes, free inodes and used filesystem blocks as this
682  * information is no longer persistent in the superblock. Once we have
683  * this information, write it into the in-core superblock structure.
684  */
685 STATIC int
686 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
687 {
688 	xfs_agnumber_t	index;
689 	xfs_perag_t	*pag;
690 	xfs_sb_t	*sbp = &mp->m_sb;
691 	uint64_t	ifree = 0;
692 	uint64_t	ialloc = 0;
693 	uint64_t	bfree = 0;
694 	uint64_t	bfreelst = 0;
695 	uint64_t	btree = 0;
696 	int		error;
697 
698 	for (index = 0; index < agcount; index++) {
699 		/*
700 		 * read the agf, then the agi. This gets us
701 		 * all the inforamtion we need and populates the
702 		 * per-ag structures for us.
703 		 */
704 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
705 		if (error)
706 			return error;
707 
708 		error = xfs_ialloc_pagi_init(mp, NULL, index);
709 		if (error)
710 			return error;
711 		pag = &mp->m_perag[index];
712 		ifree += pag->pagi_freecount;
713 		ialloc += pag->pagi_count;
714 		bfree += pag->pagf_freeblks;
715 		bfreelst += pag->pagf_flcount;
716 		btree += pag->pagf_btreeblks;
717 	}
718 	/*
719 	 * Overwrite incore superblock counters with just-read data
720 	 */
721 	spin_lock(&mp->m_sb_lock);
722 	sbp->sb_ifree = ifree;
723 	sbp->sb_icount = ialloc;
724 	sbp->sb_fdblocks = bfree + bfreelst + btree;
725 	spin_unlock(&mp->m_sb_lock);
726 
727 	/* Fixup the per-cpu counters as well. */
728 	xfs_icsb_reinit_counters(mp);
729 
730 	return 0;
731 }
732 
733 /*
734  * Update alignment values based on mount options and sb values
735  */
736 STATIC int
737 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags)
738 {
739 	xfs_sb_t	*sbp = &(mp->m_sb);
740 
741 	if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) {
742 		/*
743 		 * If stripe unit and stripe width are not multiples
744 		 * of the fs blocksize turn off alignment.
745 		 */
746 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
747 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
748 			if (mp->m_flags & XFS_MOUNT_RETERR) {
749 				cmn_err(CE_WARN,
750 					"XFS: alignment check 1 failed");
751 				return XFS_ERROR(EINVAL);
752 			}
753 			mp->m_dalign = mp->m_swidth = 0;
754 		} else {
755 			/*
756 			 * Convert the stripe unit and width to FSBs.
757 			 */
758 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
759 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
760 				if (mp->m_flags & XFS_MOUNT_RETERR) {
761 					return XFS_ERROR(EINVAL);
762 				}
763 				xfs_fs_cmn_err(CE_WARN, mp,
764 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
765 					mp->m_dalign, mp->m_swidth,
766 					sbp->sb_agblocks);
767 
768 				mp->m_dalign = 0;
769 				mp->m_swidth = 0;
770 			} else if (mp->m_dalign) {
771 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
772 			} else {
773 				if (mp->m_flags & XFS_MOUNT_RETERR) {
774 					xfs_fs_cmn_err(CE_WARN, mp,
775 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
776                                         	mp->m_dalign,
777 						mp->m_blockmask +1);
778 					return XFS_ERROR(EINVAL);
779 				}
780 				mp->m_swidth = 0;
781 			}
782 		}
783 
784 		/*
785 		 * Update superblock with new values
786 		 * and log changes
787 		 */
788 		if (xfs_sb_version_hasdalign(sbp)) {
789 			if (sbp->sb_unit != mp->m_dalign) {
790 				sbp->sb_unit = mp->m_dalign;
791 				*update_flags |= XFS_SB_UNIT;
792 			}
793 			if (sbp->sb_width != mp->m_swidth) {
794 				sbp->sb_width = mp->m_swidth;
795 				*update_flags |= XFS_SB_WIDTH;
796 			}
797 		}
798 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
799 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
800 			mp->m_dalign = sbp->sb_unit;
801 			mp->m_swidth = sbp->sb_width;
802 	}
803 
804 	return 0;
805 }
806 
807 /*
808  * Set the maximum inode count for this filesystem
809  */
810 STATIC void
811 xfs_set_maxicount(xfs_mount_t *mp)
812 {
813 	xfs_sb_t	*sbp = &(mp->m_sb);
814 	__uint64_t	icount;
815 
816 	if (sbp->sb_imax_pct) {
817 		/*
818 		 * Make sure the maximum inode count is a multiple
819 		 * of the units we allocate inodes in.
820 		 */
821 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
822 		do_div(icount, 100);
823 		do_div(icount, mp->m_ialloc_blks);
824 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
825 				   sbp->sb_inopblog;
826 	} else {
827 		mp->m_maxicount = 0;
828 	}
829 }
830 
831 /*
832  * Set the default minimum read and write sizes unless
833  * already specified in a mount option.
834  * We use smaller I/O sizes when the file system
835  * is being used for NFS service (wsync mount option).
836  */
837 STATIC void
838 xfs_set_rw_sizes(xfs_mount_t *mp)
839 {
840 	xfs_sb_t	*sbp = &(mp->m_sb);
841 	int		readio_log, writeio_log;
842 
843 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
844 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
845 			readio_log = XFS_WSYNC_READIO_LOG;
846 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
847 		} else {
848 			readio_log = XFS_READIO_LOG_LARGE;
849 			writeio_log = XFS_WRITEIO_LOG_LARGE;
850 		}
851 	} else {
852 		readio_log = mp->m_readio_log;
853 		writeio_log = mp->m_writeio_log;
854 	}
855 
856 	if (sbp->sb_blocklog > readio_log) {
857 		mp->m_readio_log = sbp->sb_blocklog;
858 	} else {
859 		mp->m_readio_log = readio_log;
860 	}
861 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
862 	if (sbp->sb_blocklog > writeio_log) {
863 		mp->m_writeio_log = sbp->sb_blocklog;
864 	} else {
865 		mp->m_writeio_log = writeio_log;
866 	}
867 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
868 }
869 
870 /*
871  * Set whether we're using inode alignment.
872  */
873 STATIC void
874 xfs_set_inoalignment(xfs_mount_t *mp)
875 {
876 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
877 	    mp->m_sb.sb_inoalignmt >=
878 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
879 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
880 	else
881 		mp->m_inoalign_mask = 0;
882 	/*
883 	 * If we are using stripe alignment, check whether
884 	 * the stripe unit is a multiple of the inode alignment
885 	 */
886 	if (mp->m_dalign && mp->m_inoalign_mask &&
887 	    !(mp->m_dalign & mp->m_inoalign_mask))
888 		mp->m_sinoalign = mp->m_dalign;
889 	else
890 		mp->m_sinoalign = 0;
891 }
892 
893 /*
894  * Check that the data (and log if separate) are an ok size.
895  */
896 STATIC int
897 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags)
898 {
899 	xfs_buf_t	*bp;
900 	xfs_daddr_t	d;
901 	int		error;
902 
903 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
904 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
905 		cmn_err(CE_WARN, "XFS: size check 1 failed");
906 		return XFS_ERROR(E2BIG);
907 	}
908 	error = xfs_read_buf(mp, mp->m_ddev_targp,
909 			     d - XFS_FSS_TO_BB(mp, 1),
910 			     XFS_FSS_TO_BB(mp, 1), 0, &bp);
911 	if (!error) {
912 		xfs_buf_relse(bp);
913 	} else {
914 		cmn_err(CE_WARN, "XFS: size check 2 failed");
915 		if (error == ENOSPC)
916 			error = XFS_ERROR(E2BIG);
917 		return error;
918 	}
919 
920 	if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) &&
921 	    mp->m_logdev_targp != mp->m_ddev_targp) {
922 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
923 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
924 			cmn_err(CE_WARN, "XFS: size check 3 failed");
925 			return XFS_ERROR(E2BIG);
926 		}
927 		error = xfs_read_buf(mp, mp->m_logdev_targp,
928 				     d - XFS_FSB_TO_BB(mp, 1),
929 				     XFS_FSB_TO_BB(mp, 1), 0, &bp);
930 		if (!error) {
931 			xfs_buf_relse(bp);
932 		} else {
933 			cmn_err(CE_WARN, "XFS: size check 3 failed");
934 			if (error == ENOSPC)
935 				error = XFS_ERROR(E2BIG);
936 			return error;
937 		}
938 	}
939 	return 0;
940 }
941 
942 /*
943  * xfs_mountfs
944  *
945  * This function does the following on an initial mount of a file system:
946  *	- reads the superblock from disk and init the mount struct
947  *	- if we're a 32-bit kernel, do a size check on the superblock
948  *		so we don't mount terabyte filesystems
949  *	- init mount struct realtime fields
950  *	- allocate inode hash table for fs
951  *	- init directory manager
952  *	- perform recovery and init the log manager
953  */
954 int
955 xfs_mountfs(
956 	xfs_mount_t	*mp,
957 	int		mfsi_flags)
958 {
959 	xfs_sb_t	*sbp = &(mp->m_sb);
960 	xfs_inode_t	*rip;
961 	__uint64_t	resblks;
962 	__int64_t	update_flags = 0LL;
963 	uint		quotamount, quotaflags;
964 	int		agno;
965 	int		uuid_mounted = 0;
966 	int		error = 0;
967 
968 	xfs_mount_common(mp, sbp);
969 
970 	/*
971 	 * Check for a mismatched features2 values.  Older kernels
972 	 * read & wrote into the wrong sb offset for sb_features2
973 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
974 	 * when sb_features2 was added, which made older superblock
975 	 * reading/writing routines swap it as a 64-bit value.
976 	 *
977 	 * For backwards compatibility, we make both slots equal.
978 	 *
979 	 * If we detect a mismatched field, we OR the set bits into the
980 	 * existing features2 field in case it has already been modified; we
981 	 * don't want to lose any features.  We then update the bad location
982 	 * with the ORed value so that older kernels will see any features2
983 	 * flags, and mark the two fields as needing updates once the
984 	 * transaction subsystem is online.
985 	 */
986 	if (xfs_sb_has_mismatched_features2(sbp)) {
987 		cmn_err(CE_WARN,
988 			"XFS: correcting sb_features alignment problem");
989 		sbp->sb_features2 |= sbp->sb_bad_features2;
990 		sbp->sb_bad_features2 = sbp->sb_features2;
991 		update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
992 
993 		/*
994 		 * Re-check for ATTR2 in case it was found in bad_features2
995 		 * slot.
996 		 */
997 		if (xfs_sb_version_hasattr2(&mp->m_sb))
998 			mp->m_flags |= XFS_MOUNT_ATTR2;
999 
1000 	}
1001 
1002 	/*
1003 	 * Check if sb_agblocks is aligned at stripe boundary
1004 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1005 	 * allocator alignment is within an ag, therefore ag has
1006 	 * to be aligned at stripe boundary.
1007 	 */
1008 	error = xfs_update_alignment(mp, mfsi_flags, &update_flags);
1009 	if (error)
1010 		goto error1;
1011 
1012 	xfs_alloc_compute_maxlevels(mp);
1013 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1014 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1015 	xfs_ialloc_compute_maxlevels(mp);
1016 
1017 	xfs_set_maxicount(mp);
1018 
1019 	mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1020 
1021 	/*
1022 	 * XFS uses the uuid from the superblock as the unique
1023 	 * identifier for fsid.  We can not use the uuid from the volume
1024 	 * since a single partition filesystem is identical to a single
1025 	 * partition volume/filesystem.
1026 	 */
1027 	if ((mfsi_flags & XFS_MFSI_SECOND) == 0 &&
1028 	    (mp->m_flags & XFS_MOUNT_NOUUID) == 0) {
1029 		if (xfs_uuid_mount(mp)) {
1030 			error = XFS_ERROR(EINVAL);
1031 			goto error1;
1032 		}
1033 		uuid_mounted=1;
1034 	}
1035 
1036 	/*
1037 	 * Set the minimum read and write sizes
1038 	 */
1039 	xfs_set_rw_sizes(mp);
1040 
1041 	/*
1042 	 * Set the inode cluster size.
1043 	 * This may still be overridden by the file system
1044 	 * block size if it is larger than the chosen cluster size.
1045 	 */
1046 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1047 
1048 	/*
1049 	 * Set inode alignment fields
1050 	 */
1051 	xfs_set_inoalignment(mp);
1052 
1053 	/*
1054 	 * Check that the data (and log if separate) are an ok size.
1055 	 */
1056 	error = xfs_check_sizes(mp, mfsi_flags);
1057 	if (error)
1058 		goto error1;
1059 
1060 	/*
1061 	 * Initialize realtime fields in the mount structure
1062 	 */
1063 	error = xfs_rtmount_init(mp);
1064 	if (error) {
1065 		cmn_err(CE_WARN, "XFS: RT mount failed");
1066 		goto error1;
1067 	}
1068 
1069 	/*
1070 	 * For client case we are done now
1071 	 */
1072 	if (mfsi_flags & XFS_MFSI_CLIENT) {
1073 		return 0;
1074 	}
1075 
1076 	/*
1077 	 *  Copies the low order bits of the timestamp and the randomly
1078 	 *  set "sequence" number out of a UUID.
1079 	 */
1080 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1081 
1082 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1083 
1084 	xfs_dir_mount(mp);
1085 
1086 	/*
1087 	 * Initialize the attribute manager's entries.
1088 	 */
1089 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1090 
1091 	/*
1092 	 * Initialize the precomputed transaction reservations values.
1093 	 */
1094 	xfs_trans_init(mp);
1095 
1096 	/*
1097 	 * Allocate and initialize the per-ag data.
1098 	 */
1099 	init_rwsem(&mp->m_peraglock);
1100 	mp->m_perag =
1101 		kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP);
1102 
1103 	mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount);
1104 
1105 	/*
1106 	 * log's mount-time initialization. Perform 1st part recovery if needed
1107 	 */
1108 	if (likely(sbp->sb_logblocks > 0)) {	/* check for volume case */
1109 		error = xfs_log_mount(mp, mp->m_logdev_targp,
1110 				      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1111 				      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1112 		if (error) {
1113 			cmn_err(CE_WARN, "XFS: log mount failed");
1114 			goto error2;
1115 		}
1116 	} else {	/* No log has been defined */
1117 		cmn_err(CE_WARN, "XFS: no log defined");
1118 		XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp);
1119 		error = XFS_ERROR(EFSCORRUPTED);
1120 		goto error2;
1121 	}
1122 
1123 	/*
1124 	 * Now the log is mounted, we know if it was an unclean shutdown or
1125 	 * not. If it was, with the first phase of recovery has completed, we
1126 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1127 	 * but they are recovered transactionally in the second recovery phase
1128 	 * later.
1129 	 *
1130 	 * Hence we can safely re-initialise incore superblock counters from
1131 	 * the per-ag data. These may not be correct if the filesystem was not
1132 	 * cleanly unmounted, so we need to wait for recovery to finish before
1133 	 * doing this.
1134 	 *
1135 	 * If the filesystem was cleanly unmounted, then we can trust the
1136 	 * values in the superblock to be correct and we don't need to do
1137 	 * anything here.
1138 	 *
1139 	 * If we are currently making the filesystem, the initialisation will
1140 	 * fail as the perag data is in an undefined state.
1141 	 */
1142 
1143 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1144 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1145 	     !mp->m_sb.sb_inprogress) {
1146 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1147 		if (error) {
1148 			goto error2;
1149 		}
1150 	}
1151 	/*
1152 	 * Get and sanity-check the root inode.
1153 	 * Save the pointer to it in the mount structure.
1154 	 */
1155 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0);
1156 	if (error) {
1157 		cmn_err(CE_WARN, "XFS: failed to read root inode");
1158 		goto error3;
1159 	}
1160 
1161 	ASSERT(rip != NULL);
1162 
1163 	if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1164 		cmn_err(CE_WARN, "XFS: corrupted root inode");
1165 		cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1166 			XFS_BUFTARG_NAME(mp->m_ddev_targp),
1167 			(unsigned long long)rip->i_ino);
1168 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1169 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1170 				 mp);
1171 		error = XFS_ERROR(EFSCORRUPTED);
1172 		goto error4;
1173 	}
1174 	mp->m_rootip = rip;	/* save it */
1175 
1176 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1177 
1178 	/*
1179 	 * Initialize realtime inode pointers in the mount structure
1180 	 */
1181 	error = xfs_rtmount_inodes(mp);
1182 	if (error) {
1183 		/*
1184 		 * Free up the root inode.
1185 		 */
1186 		cmn_err(CE_WARN, "XFS: failed to read RT inodes");
1187 		goto error4;
1188 	}
1189 
1190 	/*
1191 	 * If fs is not mounted readonly, then update the superblock changes.
1192 	 */
1193 	if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1194 		error = xfs_mount_log_sb(mp, update_flags);
1195 		if (error) {
1196 			cmn_err(CE_WARN, "XFS: failed to write sb changes");
1197 			goto error4;
1198 		}
1199 	}
1200 
1201 	/*
1202 	 * Initialise the XFS quota management subsystem for this mount
1203 	 */
1204 	error = XFS_QM_INIT(mp, &quotamount, &quotaflags);
1205 	if (error)
1206 		goto error4;
1207 
1208 	/*
1209 	 * Finish recovering the file system.  This part needed to be
1210 	 * delayed until after the root and real-time bitmap inodes
1211 	 * were consistently read in.
1212 	 */
1213 	error = xfs_log_mount_finish(mp, mfsi_flags);
1214 	if (error) {
1215 		cmn_err(CE_WARN, "XFS: log mount finish failed");
1216 		goto error4;
1217 	}
1218 
1219 	/*
1220 	 * Complete the quota initialisation, post-log-replay component.
1221 	 */
1222 	error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags);
1223 	if (error)
1224 		goto error4;
1225 
1226 	/*
1227 	 * Now we are mounted, reserve a small amount of unused space for
1228 	 * privileged transactions. This is needed so that transaction
1229 	 * space required for critical operations can dip into this pool
1230 	 * when at ENOSPC. This is needed for operations like create with
1231 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1232 	 * are not allowed to use this reserved space.
1233 	 *
1234 	 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller.
1235 	 * This may drive us straight to ENOSPC on mount, but that implies
1236 	 * we were already there on the last unmount. Warn if this occurs.
1237 	 */
1238 	resblks = mp->m_sb.sb_dblocks;
1239 	do_div(resblks, 20);
1240 	resblks = min_t(__uint64_t, resblks, 1024);
1241 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1242 	if (error)
1243 		cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. "
1244 				"Continuing without a reserve pool.");
1245 
1246 	return 0;
1247 
1248  error4:
1249 	/*
1250 	 * Free up the root inode.
1251 	 */
1252 	IRELE(rip);
1253  error3:
1254 	xfs_log_unmount_dealloc(mp);
1255  error2:
1256 	for (agno = 0; agno < sbp->sb_agcount; agno++)
1257 		if (mp->m_perag[agno].pagb_list)
1258 			kmem_free(mp->m_perag[agno].pagb_list,
1259 			  sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS);
1260 	kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t));
1261 	mp->m_perag = NULL;
1262 	/* FALLTHROUGH */
1263  error1:
1264 	if (uuid_mounted)
1265 		xfs_uuid_unmount(mp);
1266 	xfs_freesb(mp);
1267 	return error;
1268 }
1269 
1270 /*
1271  * xfs_unmountfs
1272  *
1273  * This flushes out the inodes,dquots and the superblock, unmounts the
1274  * log and makes sure that incore structures are freed.
1275  */
1276 int
1277 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr)
1278 {
1279 	__uint64_t	resblks;
1280 	int		error = 0;
1281 
1282 	/*
1283 	 * We can potentially deadlock here if we have an inode cluster
1284 	 * that has been freed has it's buffer still pinned in memory because
1285 	 * the transaction is still sitting in a iclog. The stale inodes
1286 	 * on that buffer will have their flush locks held until the
1287 	 * transaction hits the disk and the callbacks run. the inode
1288 	 * flush takes the flush lock unconditionally and with nothing to
1289 	 * push out the iclog we will never get that unlocked. hence we
1290 	 * need to force the log first.
1291 	 */
1292 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1293 	xfs_iflush_all(mp);
1294 
1295 	XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING);
1296 
1297 	/*
1298 	 * Flush out the log synchronously so that we know for sure
1299 	 * that nothing is pinned.  This is important because bflush()
1300 	 * will skip pinned buffers.
1301 	 */
1302 	xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC);
1303 
1304 	xfs_binval(mp->m_ddev_targp);
1305 	if (mp->m_rtdev_targp) {
1306 		xfs_binval(mp->m_rtdev_targp);
1307 	}
1308 
1309 	/*
1310 	 * Unreserve any blocks we have so that when we unmount we don't account
1311 	 * the reserved free space as used. This is really only necessary for
1312 	 * lazy superblock counting because it trusts the incore superblock
1313 	 * counters to be aboslutely correct on clean unmount.
1314 	 *
1315 	 * We don't bother correcting this elsewhere for lazy superblock
1316 	 * counting because on mount of an unclean filesystem we reconstruct the
1317 	 * correct counter value and this is irrelevant.
1318 	 *
1319 	 * For non-lazy counter filesystems, this doesn't matter at all because
1320 	 * we only every apply deltas to the superblock and hence the incore
1321 	 * value does not matter....
1322 	 */
1323 	resblks = 0;
1324 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1325 	if (error)
1326 		cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1327 				"Freespace may not be correct on next mount.");
1328 
1329 	error = xfs_log_sbcount(mp, 1);
1330 	if (error)
1331 		cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1332 				"Freespace may not be correct on next mount.");
1333 	xfs_unmountfs_writesb(mp);
1334 	xfs_unmountfs_wait(mp); 		/* wait for async bufs */
1335 	xfs_log_unmount(mp);			/* Done! No more fs ops. */
1336 
1337 	xfs_freesb(mp);
1338 
1339 	/*
1340 	 * All inodes from this mount point should be freed.
1341 	 */
1342 	ASSERT(mp->m_inodes == NULL);
1343 
1344 	xfs_unmountfs_close(mp, cr);
1345 	if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0)
1346 		xfs_uuid_unmount(mp);
1347 
1348 #if defined(DEBUG) || defined(INDUCE_IO_ERROR)
1349 	xfs_errortag_clearall(mp, 0);
1350 #endif
1351 	xfs_mount_free(mp);
1352 	return 0;
1353 }
1354 
1355 void
1356 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr)
1357 {
1358 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1359 		xfs_free_buftarg(mp->m_logdev_targp, 1);
1360 	if (mp->m_rtdev_targp)
1361 		xfs_free_buftarg(mp->m_rtdev_targp, 1);
1362 	xfs_free_buftarg(mp->m_ddev_targp, 0);
1363 }
1364 
1365 STATIC void
1366 xfs_unmountfs_wait(xfs_mount_t *mp)
1367 {
1368 	if (mp->m_logdev_targp != mp->m_ddev_targp)
1369 		xfs_wait_buftarg(mp->m_logdev_targp);
1370 	if (mp->m_rtdev_targp)
1371 		xfs_wait_buftarg(mp->m_rtdev_targp);
1372 	xfs_wait_buftarg(mp->m_ddev_targp);
1373 }
1374 
1375 int
1376 xfs_fs_writable(xfs_mount_t *mp)
1377 {
1378 	return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
1379 		(mp->m_flags & XFS_MOUNT_RDONLY));
1380 }
1381 
1382 /*
1383  * xfs_log_sbcount
1384  *
1385  * Called either periodically to keep the on disk superblock values
1386  * roughly up to date or from unmount to make sure the values are
1387  * correct on a clean unmount.
1388  *
1389  * Note this code can be called during the process of freezing, so
1390  * we may need to use the transaction allocator which does not not
1391  * block when the transaction subsystem is in its frozen state.
1392  */
1393 int
1394 xfs_log_sbcount(
1395 	xfs_mount_t	*mp,
1396 	uint		sync)
1397 {
1398 	xfs_trans_t	*tp;
1399 	int		error;
1400 
1401 	if (!xfs_fs_writable(mp))
1402 		return 0;
1403 
1404 	xfs_icsb_sync_counters(mp, 0);
1405 
1406 	/*
1407 	 * we don't need to do this if we are updating the superblock
1408 	 * counters on every modification.
1409 	 */
1410 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1411 		return 0;
1412 
1413 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT);
1414 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1415 					XFS_DEFAULT_LOG_COUNT);
1416 	if (error) {
1417 		xfs_trans_cancel(tp, 0);
1418 		return error;
1419 	}
1420 
1421 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1422 	if (sync)
1423 		xfs_trans_set_sync(tp);
1424 	error = xfs_trans_commit(tp, 0);
1425 	return error;
1426 }
1427 
1428 STATIC void
1429 xfs_mark_shared_ro(
1430 	xfs_mount_t	*mp,
1431 	xfs_buf_t	*bp)
1432 {
1433 	xfs_dsb_t	*sb = XFS_BUF_TO_SBP(bp);
1434 	__uint16_t	version;
1435 
1436 	if (!(sb->sb_flags & XFS_SBF_READONLY))
1437 		sb->sb_flags |= XFS_SBF_READONLY;
1438 
1439 	version = be16_to_cpu(sb->sb_versionnum);
1440 	if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 ||
1441 	    !(version & XFS_SB_VERSION_SHAREDBIT))
1442 		version |= XFS_SB_VERSION_SHAREDBIT;
1443 	sb->sb_versionnum = cpu_to_be16(version);
1444 }
1445 
1446 int
1447 xfs_unmountfs_writesb(xfs_mount_t *mp)
1448 {
1449 	xfs_buf_t	*sbp;
1450 	int		error = 0;
1451 
1452 	/*
1453 	 * skip superblock write if fs is read-only, or
1454 	 * if we are doing a forced umount.
1455 	 */
1456 	if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1457 		XFS_FORCED_SHUTDOWN(mp))) {
1458 
1459 		sbp = xfs_getsb(mp, 0);
1460 
1461 		/*
1462 		 * mark shared-readonly if desired
1463 		 */
1464 		if (mp->m_mk_sharedro)
1465 			xfs_mark_shared_ro(mp, sbp);
1466 
1467 		XFS_BUF_UNDONE(sbp);
1468 		XFS_BUF_UNREAD(sbp);
1469 		XFS_BUF_UNDELAYWRITE(sbp);
1470 		XFS_BUF_WRITE(sbp);
1471 		XFS_BUF_UNASYNC(sbp);
1472 		ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1473 		xfsbdstrat(mp, sbp);
1474 		error = xfs_iowait(sbp);
1475 		if (error)
1476 			xfs_ioerror_alert("xfs_unmountfs_writesb",
1477 					  mp, sbp, XFS_BUF_ADDR(sbp));
1478 		if (error && mp->m_mk_sharedro)
1479 			xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting.  Filesystem may not be marked shared readonly");
1480 		xfs_buf_relse(sbp);
1481 	}
1482 	return error;
1483 }
1484 
1485 /*
1486  * xfs_mod_sb() can be used to copy arbitrary changes to the
1487  * in-core superblock into the superblock buffer to be logged.
1488  * It does not provide the higher level of locking that is
1489  * needed to protect the in-core superblock from concurrent
1490  * access.
1491  */
1492 void
1493 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1494 {
1495 	xfs_buf_t	*bp;
1496 	int		first;
1497 	int		last;
1498 	xfs_mount_t	*mp;
1499 	xfs_sb_field_t	f;
1500 
1501 	ASSERT(fields);
1502 	if (!fields)
1503 		return;
1504 	mp = tp->t_mountp;
1505 	bp = xfs_trans_getsb(tp, mp, 0);
1506 	first = sizeof(xfs_sb_t);
1507 	last = 0;
1508 
1509 	/* translate/copy */
1510 
1511 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1512 
1513 	/* find modified range */
1514 
1515 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1516 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1517 	first = xfs_sb_info[f].offset;
1518 
1519 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1520 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1521 	last = xfs_sb_info[f + 1].offset - 1;
1522 
1523 	xfs_trans_log_buf(tp, bp, first, last);
1524 }
1525 
1526 
1527 /*
1528  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1529  * a delta to a specified field in the in-core superblock.  Simply
1530  * switch on the field indicated and apply the delta to that field.
1531  * Fields are not allowed to dip below zero, so if the delta would
1532  * do this do not apply it and return EINVAL.
1533  *
1534  * The m_sb_lock must be held when this routine is called.
1535  */
1536 int
1537 xfs_mod_incore_sb_unlocked(
1538 	xfs_mount_t	*mp,
1539 	xfs_sb_field_t	field,
1540 	int64_t		delta,
1541 	int		rsvd)
1542 {
1543 	int		scounter;	/* short counter for 32 bit fields */
1544 	long long	lcounter;	/* long counter for 64 bit fields */
1545 	long long	res_used, rem;
1546 
1547 	/*
1548 	 * With the in-core superblock spin lock held, switch
1549 	 * on the indicated field.  Apply the delta to the
1550 	 * proper field.  If the fields value would dip below
1551 	 * 0, then do not apply the delta and return EINVAL.
1552 	 */
1553 	switch (field) {
1554 	case XFS_SBS_ICOUNT:
1555 		lcounter = (long long)mp->m_sb.sb_icount;
1556 		lcounter += delta;
1557 		if (lcounter < 0) {
1558 			ASSERT(0);
1559 			return XFS_ERROR(EINVAL);
1560 		}
1561 		mp->m_sb.sb_icount = lcounter;
1562 		return 0;
1563 	case XFS_SBS_IFREE:
1564 		lcounter = (long long)mp->m_sb.sb_ifree;
1565 		lcounter += delta;
1566 		if (lcounter < 0) {
1567 			ASSERT(0);
1568 			return XFS_ERROR(EINVAL);
1569 		}
1570 		mp->m_sb.sb_ifree = lcounter;
1571 		return 0;
1572 	case XFS_SBS_FDBLOCKS:
1573 		lcounter = (long long)
1574 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1575 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1576 
1577 		if (delta > 0) {		/* Putting blocks back */
1578 			if (res_used > delta) {
1579 				mp->m_resblks_avail += delta;
1580 			} else {
1581 				rem = delta - res_used;
1582 				mp->m_resblks_avail = mp->m_resblks;
1583 				lcounter += rem;
1584 			}
1585 		} else {				/* Taking blocks away */
1586 
1587 			lcounter += delta;
1588 
1589 		/*
1590 		 * If were out of blocks, use any available reserved blocks if
1591 		 * were allowed to.
1592 		 */
1593 
1594 			if (lcounter < 0) {
1595 				if (rsvd) {
1596 					lcounter = (long long)mp->m_resblks_avail + delta;
1597 					if (lcounter < 0) {
1598 						return XFS_ERROR(ENOSPC);
1599 					}
1600 					mp->m_resblks_avail = lcounter;
1601 					return 0;
1602 				} else {	/* not reserved */
1603 					return XFS_ERROR(ENOSPC);
1604 				}
1605 			}
1606 		}
1607 
1608 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1609 		return 0;
1610 	case XFS_SBS_FREXTENTS:
1611 		lcounter = (long long)mp->m_sb.sb_frextents;
1612 		lcounter += delta;
1613 		if (lcounter < 0) {
1614 			return XFS_ERROR(ENOSPC);
1615 		}
1616 		mp->m_sb.sb_frextents = lcounter;
1617 		return 0;
1618 	case XFS_SBS_DBLOCKS:
1619 		lcounter = (long long)mp->m_sb.sb_dblocks;
1620 		lcounter += delta;
1621 		if (lcounter < 0) {
1622 			ASSERT(0);
1623 			return XFS_ERROR(EINVAL);
1624 		}
1625 		mp->m_sb.sb_dblocks = lcounter;
1626 		return 0;
1627 	case XFS_SBS_AGCOUNT:
1628 		scounter = mp->m_sb.sb_agcount;
1629 		scounter += delta;
1630 		if (scounter < 0) {
1631 			ASSERT(0);
1632 			return XFS_ERROR(EINVAL);
1633 		}
1634 		mp->m_sb.sb_agcount = scounter;
1635 		return 0;
1636 	case XFS_SBS_IMAX_PCT:
1637 		scounter = mp->m_sb.sb_imax_pct;
1638 		scounter += delta;
1639 		if (scounter < 0) {
1640 			ASSERT(0);
1641 			return XFS_ERROR(EINVAL);
1642 		}
1643 		mp->m_sb.sb_imax_pct = scounter;
1644 		return 0;
1645 	case XFS_SBS_REXTSIZE:
1646 		scounter = mp->m_sb.sb_rextsize;
1647 		scounter += delta;
1648 		if (scounter < 0) {
1649 			ASSERT(0);
1650 			return XFS_ERROR(EINVAL);
1651 		}
1652 		mp->m_sb.sb_rextsize = scounter;
1653 		return 0;
1654 	case XFS_SBS_RBMBLOCKS:
1655 		scounter = mp->m_sb.sb_rbmblocks;
1656 		scounter += delta;
1657 		if (scounter < 0) {
1658 			ASSERT(0);
1659 			return XFS_ERROR(EINVAL);
1660 		}
1661 		mp->m_sb.sb_rbmblocks = scounter;
1662 		return 0;
1663 	case XFS_SBS_RBLOCKS:
1664 		lcounter = (long long)mp->m_sb.sb_rblocks;
1665 		lcounter += delta;
1666 		if (lcounter < 0) {
1667 			ASSERT(0);
1668 			return XFS_ERROR(EINVAL);
1669 		}
1670 		mp->m_sb.sb_rblocks = lcounter;
1671 		return 0;
1672 	case XFS_SBS_REXTENTS:
1673 		lcounter = (long long)mp->m_sb.sb_rextents;
1674 		lcounter += delta;
1675 		if (lcounter < 0) {
1676 			ASSERT(0);
1677 			return XFS_ERROR(EINVAL);
1678 		}
1679 		mp->m_sb.sb_rextents = lcounter;
1680 		return 0;
1681 	case XFS_SBS_REXTSLOG:
1682 		scounter = mp->m_sb.sb_rextslog;
1683 		scounter += delta;
1684 		if (scounter < 0) {
1685 			ASSERT(0);
1686 			return XFS_ERROR(EINVAL);
1687 		}
1688 		mp->m_sb.sb_rextslog = scounter;
1689 		return 0;
1690 	default:
1691 		ASSERT(0);
1692 		return XFS_ERROR(EINVAL);
1693 	}
1694 }
1695 
1696 /*
1697  * xfs_mod_incore_sb() is used to change a field in the in-core
1698  * superblock structure by the specified delta.  This modification
1699  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1700  * routine to do the work.
1701  */
1702 int
1703 xfs_mod_incore_sb(
1704 	xfs_mount_t	*mp,
1705 	xfs_sb_field_t	field,
1706 	int64_t		delta,
1707 	int		rsvd)
1708 {
1709 	int	status;
1710 
1711 	/* check for per-cpu counters */
1712 	switch (field) {
1713 #ifdef HAVE_PERCPU_SB
1714 	case XFS_SBS_ICOUNT:
1715 	case XFS_SBS_IFREE:
1716 	case XFS_SBS_FDBLOCKS:
1717 		if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1718 			status = xfs_icsb_modify_counters(mp, field,
1719 							delta, rsvd);
1720 			break;
1721 		}
1722 		/* FALLTHROUGH */
1723 #endif
1724 	default:
1725 		spin_lock(&mp->m_sb_lock);
1726 		status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1727 		spin_unlock(&mp->m_sb_lock);
1728 		break;
1729 	}
1730 
1731 	return status;
1732 }
1733 
1734 /*
1735  * xfs_mod_incore_sb_batch() is used to change more than one field
1736  * in the in-core superblock structure at a time.  This modification
1737  * is protected by a lock internal to this module.  The fields and
1738  * changes to those fields are specified in the array of xfs_mod_sb
1739  * structures passed in.
1740  *
1741  * Either all of the specified deltas will be applied or none of
1742  * them will.  If any modified field dips below 0, then all modifications
1743  * will be backed out and EINVAL will be returned.
1744  */
1745 int
1746 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd)
1747 {
1748 	int		status=0;
1749 	xfs_mod_sb_t	*msbp;
1750 
1751 	/*
1752 	 * Loop through the array of mod structures and apply each
1753 	 * individually.  If any fail, then back out all those
1754 	 * which have already been applied.  Do all of this within
1755 	 * the scope of the m_sb_lock so that all of the changes will
1756 	 * be atomic.
1757 	 */
1758 	spin_lock(&mp->m_sb_lock);
1759 	msbp = &msb[0];
1760 	for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1761 		/*
1762 		 * Apply the delta at index n.  If it fails, break
1763 		 * from the loop so we'll fall into the undo loop
1764 		 * below.
1765 		 */
1766 		switch (msbp->msb_field) {
1767 #ifdef HAVE_PERCPU_SB
1768 		case XFS_SBS_ICOUNT:
1769 		case XFS_SBS_IFREE:
1770 		case XFS_SBS_FDBLOCKS:
1771 			if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1772 				spin_unlock(&mp->m_sb_lock);
1773 				status = xfs_icsb_modify_counters(mp,
1774 							msbp->msb_field,
1775 							msbp->msb_delta, rsvd);
1776 				spin_lock(&mp->m_sb_lock);
1777 				break;
1778 			}
1779 			/* FALLTHROUGH */
1780 #endif
1781 		default:
1782 			status = xfs_mod_incore_sb_unlocked(mp,
1783 						msbp->msb_field,
1784 						msbp->msb_delta, rsvd);
1785 			break;
1786 		}
1787 
1788 		if (status != 0) {
1789 			break;
1790 		}
1791 	}
1792 
1793 	/*
1794 	 * If we didn't complete the loop above, then back out
1795 	 * any changes made to the superblock.  If you add code
1796 	 * between the loop above and here, make sure that you
1797 	 * preserve the value of status. Loop back until
1798 	 * we step below the beginning of the array.  Make sure
1799 	 * we don't touch anything back there.
1800 	 */
1801 	if (status != 0) {
1802 		msbp--;
1803 		while (msbp >= msb) {
1804 			switch (msbp->msb_field) {
1805 #ifdef HAVE_PERCPU_SB
1806 			case XFS_SBS_ICOUNT:
1807 			case XFS_SBS_IFREE:
1808 			case XFS_SBS_FDBLOCKS:
1809 				if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) {
1810 					spin_unlock(&mp->m_sb_lock);
1811 					status = xfs_icsb_modify_counters(mp,
1812 							msbp->msb_field,
1813 							-(msbp->msb_delta),
1814 							rsvd);
1815 					spin_lock(&mp->m_sb_lock);
1816 					break;
1817 				}
1818 				/* FALLTHROUGH */
1819 #endif
1820 			default:
1821 				status = xfs_mod_incore_sb_unlocked(mp,
1822 							msbp->msb_field,
1823 							-(msbp->msb_delta),
1824 							rsvd);
1825 				break;
1826 			}
1827 			ASSERT(status == 0);
1828 			msbp--;
1829 		}
1830 	}
1831 	spin_unlock(&mp->m_sb_lock);
1832 	return status;
1833 }
1834 
1835 /*
1836  * xfs_getsb() is called to obtain the buffer for the superblock.
1837  * The buffer is returned locked and read in from disk.
1838  * The buffer should be released with a call to xfs_brelse().
1839  *
1840  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1841  * the superblock buffer if it can be locked without sleeping.
1842  * If it can't then we'll return NULL.
1843  */
1844 xfs_buf_t *
1845 xfs_getsb(
1846 	xfs_mount_t	*mp,
1847 	int		flags)
1848 {
1849 	xfs_buf_t	*bp;
1850 
1851 	ASSERT(mp->m_sb_bp != NULL);
1852 	bp = mp->m_sb_bp;
1853 	if (flags & XFS_BUF_TRYLOCK) {
1854 		if (!XFS_BUF_CPSEMA(bp)) {
1855 			return NULL;
1856 		}
1857 	} else {
1858 		XFS_BUF_PSEMA(bp, PRIBIO);
1859 	}
1860 	XFS_BUF_HOLD(bp);
1861 	ASSERT(XFS_BUF_ISDONE(bp));
1862 	return bp;
1863 }
1864 
1865 /*
1866  * Used to free the superblock along various error paths.
1867  */
1868 void
1869 xfs_freesb(
1870 	xfs_mount_t	*mp)
1871 {
1872 	xfs_buf_t	*bp;
1873 
1874 	/*
1875 	 * Use xfs_getsb() so that the buffer will be locked
1876 	 * when we call xfs_buf_relse().
1877 	 */
1878 	bp = xfs_getsb(mp, 0);
1879 	XFS_BUF_UNMANAGE(bp);
1880 	xfs_buf_relse(bp);
1881 	mp->m_sb_bp = NULL;
1882 }
1883 
1884 /*
1885  * See if the UUID is unique among mounted XFS filesystems.
1886  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
1887  */
1888 STATIC int
1889 xfs_uuid_mount(
1890 	xfs_mount_t	*mp)
1891 {
1892 	if (uuid_is_nil(&mp->m_sb.sb_uuid)) {
1893 		cmn_err(CE_WARN,
1894 			"XFS: Filesystem %s has nil UUID - can't mount",
1895 			mp->m_fsname);
1896 		return -1;
1897 	}
1898 	if (!uuid_table_insert(&mp->m_sb.sb_uuid)) {
1899 		cmn_err(CE_WARN,
1900 			"XFS: Filesystem %s has duplicate UUID - can't mount",
1901 			mp->m_fsname);
1902 		return -1;
1903 	}
1904 	return 0;
1905 }
1906 
1907 /*
1908  * Remove filesystem from the UUID table.
1909  */
1910 STATIC void
1911 xfs_uuid_unmount(
1912 	xfs_mount_t	*mp)
1913 {
1914 	uuid_table_remove(&mp->m_sb.sb_uuid);
1915 }
1916 
1917 /*
1918  * Used to log changes to the superblock unit and width fields which could
1919  * be altered by the mount options, as well as any potential sb_features2
1920  * fixup. Only the first superblock is updated.
1921  */
1922 STATIC int
1923 xfs_mount_log_sb(
1924 	xfs_mount_t	*mp,
1925 	__int64_t	fields)
1926 {
1927 	xfs_trans_t	*tp;
1928 	int		error;
1929 
1930 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1931 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2));
1932 
1933 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1934 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1935 				XFS_DEFAULT_LOG_COUNT);
1936 	if (error) {
1937 		xfs_trans_cancel(tp, 0);
1938 		return error;
1939 	}
1940 	xfs_mod_sb(tp, fields);
1941 	error = xfs_trans_commit(tp, 0);
1942 	return error;
1943 }
1944 
1945 
1946 #ifdef HAVE_PERCPU_SB
1947 /*
1948  * Per-cpu incore superblock counters
1949  *
1950  * Simple concept, difficult implementation
1951  *
1952  * Basically, replace the incore superblock counters with a distributed per cpu
1953  * counter for contended fields (e.g.  free block count).
1954  *
1955  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1956  * hence needs to be accurately read when we are running low on space. Hence
1957  * there is a method to enable and disable the per-cpu counters based on how
1958  * much "stuff" is available in them.
1959  *
1960  * Basically, a counter is enabled if there is enough free resource to justify
1961  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1962  * ENOSPC), then we disable the counters to synchronise all callers and
1963  * re-distribute the available resources.
1964  *
1965  * If, once we redistributed the available resources, we still get a failure,
1966  * we disable the per-cpu counter and go through the slow path.
1967  *
1968  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1969  * when we disable a per-cpu counter, we need to drain it's resources back to
1970  * the global superblock. We do this after disabling the counter to prevent
1971  * more threads from queueing up on the counter.
1972  *
1973  * Essentially, this means that we still need a lock in the fast path to enable
1974  * synchronisation between the global counters and the per-cpu counters. This
1975  * is not a problem because the lock will be local to a CPU almost all the time
1976  * and have little contention except when we get to ENOSPC conditions.
1977  *
1978  * Basically, this lock becomes a barrier that enables us to lock out the fast
1979  * path while we do things like enabling and disabling counters and
1980  * synchronising the counters.
1981  *
1982  * Locking rules:
1983  *
1984  * 	1. m_sb_lock before picking up per-cpu locks
1985  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1986  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1987  * 	4. modifying per-cpu counters requires holding per-cpu lock
1988  * 	5. modifying global counters requires holding m_sb_lock
1989  *	6. enabling or disabling a counter requires holding the m_sb_lock
1990  *	   and _none_ of the per-cpu locks.
1991  *
1992  * Disabled counters are only ever re-enabled by a balance operation
1993  * that results in more free resources per CPU than a given threshold.
1994  * To ensure counters don't remain disabled, they are rebalanced when
1995  * the global resource goes above a higher threshold (i.e. some hysteresis
1996  * is present to prevent thrashing).
1997  */
1998 
1999 #ifdef CONFIG_HOTPLUG_CPU
2000 /*
2001  * hot-plug CPU notifier support.
2002  *
2003  * We need a notifier per filesystem as we need to be able to identify
2004  * the filesystem to balance the counters out. This is achieved by
2005  * having a notifier block embedded in the xfs_mount_t and doing pointer
2006  * magic to get the mount pointer from the notifier block address.
2007  */
2008 STATIC int
2009 xfs_icsb_cpu_notify(
2010 	struct notifier_block *nfb,
2011 	unsigned long action,
2012 	void *hcpu)
2013 {
2014 	xfs_icsb_cnts_t *cntp;
2015 	xfs_mount_t	*mp;
2016 
2017 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2018 	cntp = (xfs_icsb_cnts_t *)
2019 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2020 	switch (action) {
2021 	case CPU_UP_PREPARE:
2022 	case CPU_UP_PREPARE_FROZEN:
2023 		/* Easy Case - initialize the area and locks, and
2024 		 * then rebalance when online does everything else for us. */
2025 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2026 		break;
2027 	case CPU_ONLINE:
2028 	case CPU_ONLINE_FROZEN:
2029 		xfs_icsb_lock(mp);
2030 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2031 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2032 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2033 		xfs_icsb_unlock(mp);
2034 		break;
2035 	case CPU_DEAD:
2036 	case CPU_DEAD_FROZEN:
2037 		/* Disable all the counters, then fold the dead cpu's
2038 		 * count into the total on the global superblock and
2039 		 * re-enable the counters. */
2040 		xfs_icsb_lock(mp);
2041 		spin_lock(&mp->m_sb_lock);
2042 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2043 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2044 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2045 
2046 		mp->m_sb.sb_icount += cntp->icsb_icount;
2047 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2048 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2049 
2050 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2051 
2052 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2053 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2054 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2055 		spin_unlock(&mp->m_sb_lock);
2056 		xfs_icsb_unlock(mp);
2057 		break;
2058 	}
2059 
2060 	return NOTIFY_OK;
2061 }
2062 #endif /* CONFIG_HOTPLUG_CPU */
2063 
2064 int
2065 xfs_icsb_init_counters(
2066 	xfs_mount_t	*mp)
2067 {
2068 	xfs_icsb_cnts_t *cntp;
2069 	int		i;
2070 
2071 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2072 	if (mp->m_sb_cnts == NULL)
2073 		return -ENOMEM;
2074 
2075 #ifdef CONFIG_HOTPLUG_CPU
2076 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2077 	mp->m_icsb_notifier.priority = 0;
2078 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2079 #endif /* CONFIG_HOTPLUG_CPU */
2080 
2081 	for_each_online_cpu(i) {
2082 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2083 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2084 	}
2085 
2086 	mutex_init(&mp->m_icsb_mutex);
2087 
2088 	/*
2089 	 * start with all counters disabled so that the
2090 	 * initial balance kicks us off correctly
2091 	 */
2092 	mp->m_icsb_counters = -1;
2093 	return 0;
2094 }
2095 
2096 void
2097 xfs_icsb_reinit_counters(
2098 	xfs_mount_t	*mp)
2099 {
2100 	xfs_icsb_lock(mp);
2101 	/*
2102 	 * start with all counters disabled so that the
2103 	 * initial balance kicks us off correctly
2104 	 */
2105 	mp->m_icsb_counters = -1;
2106 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2107 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2108 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2109 	xfs_icsb_unlock(mp);
2110 }
2111 
2112 STATIC void
2113 xfs_icsb_destroy_counters(
2114 	xfs_mount_t	*mp)
2115 {
2116 	if (mp->m_sb_cnts) {
2117 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2118 		free_percpu(mp->m_sb_cnts);
2119 	}
2120 	mutex_destroy(&mp->m_icsb_mutex);
2121 }
2122 
2123 STATIC_INLINE void
2124 xfs_icsb_lock_cntr(
2125 	xfs_icsb_cnts_t	*icsbp)
2126 {
2127 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2128 		ndelay(1000);
2129 	}
2130 }
2131 
2132 STATIC_INLINE void
2133 xfs_icsb_unlock_cntr(
2134 	xfs_icsb_cnts_t	*icsbp)
2135 {
2136 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2137 }
2138 
2139 
2140 STATIC_INLINE void
2141 xfs_icsb_lock_all_counters(
2142 	xfs_mount_t	*mp)
2143 {
2144 	xfs_icsb_cnts_t *cntp;
2145 	int		i;
2146 
2147 	for_each_online_cpu(i) {
2148 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2149 		xfs_icsb_lock_cntr(cntp);
2150 	}
2151 }
2152 
2153 STATIC_INLINE void
2154 xfs_icsb_unlock_all_counters(
2155 	xfs_mount_t	*mp)
2156 {
2157 	xfs_icsb_cnts_t *cntp;
2158 	int		i;
2159 
2160 	for_each_online_cpu(i) {
2161 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2162 		xfs_icsb_unlock_cntr(cntp);
2163 	}
2164 }
2165 
2166 STATIC void
2167 xfs_icsb_count(
2168 	xfs_mount_t	*mp,
2169 	xfs_icsb_cnts_t	*cnt,
2170 	int		flags)
2171 {
2172 	xfs_icsb_cnts_t *cntp;
2173 	int		i;
2174 
2175 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2176 
2177 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2178 		xfs_icsb_lock_all_counters(mp);
2179 
2180 	for_each_online_cpu(i) {
2181 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2182 		cnt->icsb_icount += cntp->icsb_icount;
2183 		cnt->icsb_ifree += cntp->icsb_ifree;
2184 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2185 	}
2186 
2187 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2188 		xfs_icsb_unlock_all_counters(mp);
2189 }
2190 
2191 STATIC int
2192 xfs_icsb_counter_disabled(
2193 	xfs_mount_t	*mp,
2194 	xfs_sb_field_t	field)
2195 {
2196 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2197 	return test_bit(field, &mp->m_icsb_counters);
2198 }
2199 
2200 STATIC void
2201 xfs_icsb_disable_counter(
2202 	xfs_mount_t	*mp,
2203 	xfs_sb_field_t	field)
2204 {
2205 	xfs_icsb_cnts_t	cnt;
2206 
2207 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2208 
2209 	/*
2210 	 * If we are already disabled, then there is nothing to do
2211 	 * here. We check before locking all the counters to avoid
2212 	 * the expensive lock operation when being called in the
2213 	 * slow path and the counter is already disabled. This is
2214 	 * safe because the only time we set or clear this state is under
2215 	 * the m_icsb_mutex.
2216 	 */
2217 	if (xfs_icsb_counter_disabled(mp, field))
2218 		return;
2219 
2220 	xfs_icsb_lock_all_counters(mp);
2221 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2222 		/* drain back to superblock */
2223 
2224 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2225 		switch(field) {
2226 		case XFS_SBS_ICOUNT:
2227 			mp->m_sb.sb_icount = cnt.icsb_icount;
2228 			break;
2229 		case XFS_SBS_IFREE:
2230 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2231 			break;
2232 		case XFS_SBS_FDBLOCKS:
2233 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2234 			break;
2235 		default:
2236 			BUG();
2237 		}
2238 	}
2239 
2240 	xfs_icsb_unlock_all_counters(mp);
2241 }
2242 
2243 STATIC void
2244 xfs_icsb_enable_counter(
2245 	xfs_mount_t	*mp,
2246 	xfs_sb_field_t	field,
2247 	uint64_t	count,
2248 	uint64_t	resid)
2249 {
2250 	xfs_icsb_cnts_t	*cntp;
2251 	int		i;
2252 
2253 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2254 
2255 	xfs_icsb_lock_all_counters(mp);
2256 	for_each_online_cpu(i) {
2257 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2258 		switch (field) {
2259 		case XFS_SBS_ICOUNT:
2260 			cntp->icsb_icount = count + resid;
2261 			break;
2262 		case XFS_SBS_IFREE:
2263 			cntp->icsb_ifree = count + resid;
2264 			break;
2265 		case XFS_SBS_FDBLOCKS:
2266 			cntp->icsb_fdblocks = count + resid;
2267 			break;
2268 		default:
2269 			BUG();
2270 			break;
2271 		}
2272 		resid = 0;
2273 	}
2274 	clear_bit(field, &mp->m_icsb_counters);
2275 	xfs_icsb_unlock_all_counters(mp);
2276 }
2277 
2278 void
2279 xfs_icsb_sync_counters_locked(
2280 	xfs_mount_t	*mp,
2281 	int		flags)
2282 {
2283 	xfs_icsb_cnts_t	cnt;
2284 
2285 	xfs_icsb_count(mp, &cnt, flags);
2286 
2287 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2288 		mp->m_sb.sb_icount = cnt.icsb_icount;
2289 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2290 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2291 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2292 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2293 }
2294 
2295 /*
2296  * Accurate update of per-cpu counters to incore superblock
2297  */
2298 void
2299 xfs_icsb_sync_counters(
2300 	xfs_mount_t	*mp,
2301 	int		flags)
2302 {
2303 	spin_lock(&mp->m_sb_lock);
2304 	xfs_icsb_sync_counters_locked(mp, flags);
2305 	spin_unlock(&mp->m_sb_lock);
2306 }
2307 
2308 /*
2309  * Balance and enable/disable counters as necessary.
2310  *
2311  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2312  * chosen to be the same number as single on disk allocation chunk per CPU, and
2313  * free blocks is something far enough zero that we aren't going thrash when we
2314  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2315  * prevent looping endlessly when xfs_alloc_space asks for more than will
2316  * be distributed to a single CPU but each CPU has enough blocks to be
2317  * reenabled.
2318  *
2319  * Note that we can be called when counters are already disabled.
2320  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2321  * prevent locking every per-cpu counter needlessly.
2322  */
2323 
2324 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2325 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2326 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2327 STATIC void
2328 xfs_icsb_balance_counter_locked(
2329 	xfs_mount_t	*mp,
2330 	xfs_sb_field_t  field,
2331 	int		min_per_cpu)
2332 {
2333 	uint64_t	count, resid;
2334 	int		weight = num_online_cpus();
2335 	uint64_t	min = (uint64_t)min_per_cpu;
2336 
2337 	/* disable counter and sync counter */
2338 	xfs_icsb_disable_counter(mp, field);
2339 
2340 	/* update counters  - first CPU gets residual*/
2341 	switch (field) {
2342 	case XFS_SBS_ICOUNT:
2343 		count = mp->m_sb.sb_icount;
2344 		resid = do_div(count, weight);
2345 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2346 			return;
2347 		break;
2348 	case XFS_SBS_IFREE:
2349 		count = mp->m_sb.sb_ifree;
2350 		resid = do_div(count, weight);
2351 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2352 			return;
2353 		break;
2354 	case XFS_SBS_FDBLOCKS:
2355 		count = mp->m_sb.sb_fdblocks;
2356 		resid = do_div(count, weight);
2357 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2358 			return;
2359 		break;
2360 	default:
2361 		BUG();
2362 		count = resid = 0;	/* quiet, gcc */
2363 		break;
2364 	}
2365 
2366 	xfs_icsb_enable_counter(mp, field, count, resid);
2367 }
2368 
2369 STATIC void
2370 xfs_icsb_balance_counter(
2371 	xfs_mount_t	*mp,
2372 	xfs_sb_field_t  fields,
2373 	int		min_per_cpu)
2374 {
2375 	spin_lock(&mp->m_sb_lock);
2376 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2377 	spin_unlock(&mp->m_sb_lock);
2378 }
2379 
2380 STATIC int
2381 xfs_icsb_modify_counters(
2382 	xfs_mount_t	*mp,
2383 	xfs_sb_field_t	field,
2384 	int64_t		delta,
2385 	int		rsvd)
2386 {
2387 	xfs_icsb_cnts_t	*icsbp;
2388 	long long	lcounter;	/* long counter for 64 bit fields */
2389 	int		cpu, ret = 0;
2390 
2391 	might_sleep();
2392 again:
2393 	cpu = get_cpu();
2394 	icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu);
2395 
2396 	/*
2397 	 * if the counter is disabled, go to slow path
2398 	 */
2399 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2400 		goto slow_path;
2401 	xfs_icsb_lock_cntr(icsbp);
2402 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2403 		xfs_icsb_unlock_cntr(icsbp);
2404 		goto slow_path;
2405 	}
2406 
2407 	switch (field) {
2408 	case XFS_SBS_ICOUNT:
2409 		lcounter = icsbp->icsb_icount;
2410 		lcounter += delta;
2411 		if (unlikely(lcounter < 0))
2412 			goto balance_counter;
2413 		icsbp->icsb_icount = lcounter;
2414 		break;
2415 
2416 	case XFS_SBS_IFREE:
2417 		lcounter = icsbp->icsb_ifree;
2418 		lcounter += delta;
2419 		if (unlikely(lcounter < 0))
2420 			goto balance_counter;
2421 		icsbp->icsb_ifree = lcounter;
2422 		break;
2423 
2424 	case XFS_SBS_FDBLOCKS:
2425 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2426 
2427 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2428 		lcounter += delta;
2429 		if (unlikely(lcounter < 0))
2430 			goto balance_counter;
2431 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2432 		break;
2433 	default:
2434 		BUG();
2435 		break;
2436 	}
2437 	xfs_icsb_unlock_cntr(icsbp);
2438 	put_cpu();
2439 	return 0;
2440 
2441 slow_path:
2442 	put_cpu();
2443 
2444 	/*
2445 	 * serialise with a mutex so we don't burn lots of cpu on
2446 	 * the superblock lock. We still need to hold the superblock
2447 	 * lock, however, when we modify the global structures.
2448 	 */
2449 	xfs_icsb_lock(mp);
2450 
2451 	/*
2452 	 * Now running atomically.
2453 	 *
2454 	 * If the counter is enabled, someone has beaten us to rebalancing.
2455 	 * Drop the lock and try again in the fast path....
2456 	 */
2457 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2458 		xfs_icsb_unlock(mp);
2459 		goto again;
2460 	}
2461 
2462 	/*
2463 	 * The counter is currently disabled. Because we are
2464 	 * running atomically here, we know a rebalance cannot
2465 	 * be in progress. Hence we can go straight to operating
2466 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2467 	 * here even though we need to get the m_sb_lock. Doing so
2468 	 * will cause us to re-enter this function and deadlock.
2469 	 * Hence we get the m_sb_lock ourselves and then call
2470 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2471 	 * directly on the global counters.
2472 	 */
2473 	spin_lock(&mp->m_sb_lock);
2474 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2475 	spin_unlock(&mp->m_sb_lock);
2476 
2477 	/*
2478 	 * Now that we've modified the global superblock, we
2479 	 * may be able to re-enable the distributed counters
2480 	 * (e.g. lots of space just got freed). After that
2481 	 * we are done.
2482 	 */
2483 	if (ret != ENOSPC)
2484 		xfs_icsb_balance_counter(mp, field, 0);
2485 	xfs_icsb_unlock(mp);
2486 	return ret;
2487 
2488 balance_counter:
2489 	xfs_icsb_unlock_cntr(icsbp);
2490 	put_cpu();
2491 
2492 	/*
2493 	 * We may have multiple threads here if multiple per-cpu
2494 	 * counters run dry at the same time. This will mean we can
2495 	 * do more balances than strictly necessary but it is not
2496 	 * the common slowpath case.
2497 	 */
2498 	xfs_icsb_lock(mp);
2499 
2500 	/*
2501 	 * running atomically.
2502 	 *
2503 	 * This will leave the counter in the correct state for future
2504 	 * accesses. After the rebalance, we simply try again and our retry
2505 	 * will either succeed through the fast path or slow path without
2506 	 * another balance operation being required.
2507 	 */
2508 	xfs_icsb_balance_counter(mp, field, delta);
2509 	xfs_icsb_unlock(mp);
2510 	goto again;
2511 }
2512 
2513 #endif
2514