1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_sb.h" 26 #include "xfs_ag.h" 27 #include "xfs_dir2.h" 28 #include "xfs_dmapi.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dir2_sf.h" 34 #include "xfs_attr_sf.h" 35 #include "xfs_dinode.h" 36 #include "xfs_inode.h" 37 #include "xfs_btree.h" 38 #include "xfs_ialloc.h" 39 #include "xfs_alloc.h" 40 #include "xfs_rtalloc.h" 41 #include "xfs_bmap.h" 42 #include "xfs_error.h" 43 #include "xfs_rw.h" 44 #include "xfs_quota.h" 45 #include "xfs_fsops.h" 46 #include "xfs_utils.h" 47 48 STATIC int xfs_mount_log_sb(xfs_mount_t *, __int64_t); 49 STATIC int xfs_uuid_mount(xfs_mount_t *); 50 STATIC void xfs_uuid_unmount(xfs_mount_t *mp); 51 STATIC void xfs_unmountfs_wait(xfs_mount_t *); 52 53 54 #ifdef HAVE_PERCPU_SB 55 STATIC void xfs_icsb_destroy_counters(xfs_mount_t *); 56 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 57 int); 58 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 59 int); 60 STATIC int xfs_icsb_modify_counters(xfs_mount_t *, xfs_sb_field_t, 61 int64_t, int); 62 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 63 64 #else 65 66 #define xfs_icsb_destroy_counters(mp) do { } while (0) 67 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 68 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 69 #define xfs_icsb_modify_counters(mp, a, b, c) do { } while (0) 70 71 #endif 72 73 static const struct { 74 short offset; 75 short type; /* 0 = integer 76 * 1 = binary / string (no translation) 77 */ 78 } xfs_sb_info[] = { 79 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 80 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 81 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 82 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 83 { offsetof(xfs_sb_t, sb_rextents), 0 }, 84 { offsetof(xfs_sb_t, sb_uuid), 1 }, 85 { offsetof(xfs_sb_t, sb_logstart), 0 }, 86 { offsetof(xfs_sb_t, sb_rootino), 0 }, 87 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 88 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 89 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 90 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 91 { offsetof(xfs_sb_t, sb_agcount), 0 }, 92 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 93 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 94 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 95 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 96 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 97 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 98 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 99 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 100 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 101 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 102 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 103 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 104 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 105 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 106 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 107 { offsetof(xfs_sb_t, sb_icount), 0 }, 108 { offsetof(xfs_sb_t, sb_ifree), 0 }, 109 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 110 { offsetof(xfs_sb_t, sb_frextents), 0 }, 111 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 112 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 113 { offsetof(xfs_sb_t, sb_qflags), 0 }, 114 { offsetof(xfs_sb_t, sb_flags), 0 }, 115 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 116 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 117 { offsetof(xfs_sb_t, sb_unit), 0 }, 118 { offsetof(xfs_sb_t, sb_width), 0 }, 119 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 120 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 121 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 122 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 123 { offsetof(xfs_sb_t, sb_features2), 0 }, 124 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 125 { sizeof(xfs_sb_t), 0 } 126 }; 127 128 /* 129 * Return a pointer to an initialized xfs_mount structure. 130 */ 131 xfs_mount_t * 132 xfs_mount_init(void) 133 { 134 xfs_mount_t *mp; 135 136 mp = kmem_zalloc(sizeof(xfs_mount_t), KM_SLEEP); 137 138 if (xfs_icsb_init_counters(mp)) { 139 mp->m_flags |= XFS_MOUNT_NO_PERCPU_SB; 140 } 141 142 spin_lock_init(&mp->m_sb_lock); 143 mutex_init(&mp->m_ilock); 144 mutex_init(&mp->m_growlock); 145 atomic_set(&mp->m_active_trans, 0); 146 147 return mp; 148 } 149 150 /* 151 * Free up the resources associated with a mount structure. Assume that 152 * the structure was initially zeroed, so we can tell which fields got 153 * initialized. 154 */ 155 void 156 xfs_mount_free( 157 xfs_mount_t *mp) 158 { 159 if (mp->m_perag) { 160 int agno; 161 162 for (agno = 0; agno < mp->m_maxagi; agno++) 163 if (mp->m_perag[agno].pagb_list) 164 kmem_free(mp->m_perag[agno].pagb_list, 165 sizeof(xfs_perag_busy_t) * 166 XFS_PAGB_NUM_SLOTS); 167 kmem_free(mp->m_perag, 168 sizeof(xfs_perag_t) * mp->m_sb.sb_agcount); 169 } 170 171 spinlock_destroy(&mp->m_ail_lock); 172 spinlock_destroy(&mp->m_sb_lock); 173 mutex_destroy(&mp->m_ilock); 174 mutex_destroy(&mp->m_growlock); 175 if (mp->m_quotainfo) 176 XFS_QM_DONE(mp); 177 178 if (mp->m_fsname != NULL) 179 kmem_free(mp->m_fsname, mp->m_fsname_len); 180 if (mp->m_rtname != NULL) 181 kmem_free(mp->m_rtname, strlen(mp->m_rtname) + 1); 182 if (mp->m_logname != NULL) 183 kmem_free(mp->m_logname, strlen(mp->m_logname) + 1); 184 185 xfs_icsb_destroy_counters(mp); 186 } 187 188 /* 189 * Check size of device based on the (data/realtime) block count. 190 * Note: this check is used by the growfs code as well as mount. 191 */ 192 int 193 xfs_sb_validate_fsb_count( 194 xfs_sb_t *sbp, 195 __uint64_t nblocks) 196 { 197 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 198 ASSERT(sbp->sb_blocklog >= BBSHIFT); 199 200 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 201 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 202 return E2BIG; 203 #else /* Limited by UINT_MAX of sectors */ 204 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 205 return E2BIG; 206 #endif 207 return 0; 208 } 209 210 /* 211 * Check the validity of the SB found. 212 */ 213 STATIC int 214 xfs_mount_validate_sb( 215 xfs_mount_t *mp, 216 xfs_sb_t *sbp, 217 int flags) 218 { 219 /* 220 * If the log device and data device have the 221 * same device number, the log is internal. 222 * Consequently, the sb_logstart should be non-zero. If 223 * we have a zero sb_logstart in this case, we may be trying to mount 224 * a volume filesystem in a non-volume manner. 225 */ 226 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 227 xfs_fs_mount_cmn_err(flags, "bad magic number"); 228 return XFS_ERROR(EWRONGFS); 229 } 230 231 if (!xfs_sb_good_version(sbp)) { 232 xfs_fs_mount_cmn_err(flags, "bad version"); 233 return XFS_ERROR(EWRONGFS); 234 } 235 236 if (unlikely( 237 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 238 xfs_fs_mount_cmn_err(flags, 239 "filesystem is marked as having an external log; " 240 "specify logdev on the\nmount command line."); 241 return XFS_ERROR(EINVAL); 242 } 243 244 if (unlikely( 245 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 246 xfs_fs_mount_cmn_err(flags, 247 "filesystem is marked as having an internal log; " 248 "do not specify logdev on\nthe mount command line."); 249 return XFS_ERROR(EINVAL); 250 } 251 252 /* 253 * More sanity checking. These were stolen directly from 254 * xfs_repair. 255 */ 256 if (unlikely( 257 sbp->sb_agcount <= 0 || 258 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 259 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 260 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 261 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 262 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 263 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 264 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 265 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 266 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 267 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 268 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 269 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 270 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 271 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 272 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 273 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) { 274 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed"); 275 return XFS_ERROR(EFSCORRUPTED); 276 } 277 278 /* 279 * Sanity check AG count, size fields against data size field 280 */ 281 if (unlikely( 282 sbp->sb_dblocks == 0 || 283 sbp->sb_dblocks > 284 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks || 285 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) * 286 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) { 287 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed"); 288 return XFS_ERROR(EFSCORRUPTED); 289 } 290 291 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 292 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 293 xfs_fs_mount_cmn_err(flags, 294 "file system too large to be mounted on this system."); 295 return XFS_ERROR(E2BIG); 296 } 297 298 if (unlikely(sbp->sb_inprogress)) { 299 xfs_fs_mount_cmn_err(flags, "file system busy"); 300 return XFS_ERROR(EFSCORRUPTED); 301 } 302 303 /* 304 * Version 1 directory format has never worked on Linux. 305 */ 306 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 307 xfs_fs_mount_cmn_err(flags, 308 "file system using version 1 directory format"); 309 return XFS_ERROR(ENOSYS); 310 } 311 312 /* 313 * Until this is fixed only page-sized or smaller data blocks work. 314 */ 315 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 316 xfs_fs_mount_cmn_err(flags, 317 "file system with blocksize %d bytes", 318 sbp->sb_blocksize); 319 xfs_fs_mount_cmn_err(flags, 320 "only pagesize (%ld) or less will currently work.", 321 PAGE_SIZE); 322 return XFS_ERROR(ENOSYS); 323 } 324 325 return 0; 326 } 327 328 STATIC void 329 xfs_initialize_perag_icache( 330 xfs_perag_t *pag) 331 { 332 if (!pag->pag_ici_init) { 333 rwlock_init(&pag->pag_ici_lock); 334 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 335 pag->pag_ici_init = 1; 336 } 337 } 338 339 xfs_agnumber_t 340 xfs_initialize_perag( 341 xfs_mount_t *mp, 342 xfs_agnumber_t agcount) 343 { 344 xfs_agnumber_t index, max_metadata; 345 xfs_perag_t *pag; 346 xfs_agino_t agino; 347 xfs_ino_t ino; 348 xfs_sb_t *sbp = &mp->m_sb; 349 xfs_ino_t max_inum = XFS_MAXINUMBER_32; 350 351 /* Check to see if the filesystem can overflow 32 bit inodes */ 352 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 353 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 354 355 /* Clear the mount flag if no inode can overflow 32 bits 356 * on this filesystem, or if specifically requested.. 357 */ 358 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > max_inum) { 359 mp->m_flags |= XFS_MOUNT_32BITINODES; 360 } else { 361 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 362 } 363 364 /* If we can overflow then setup the ag headers accordingly */ 365 if (mp->m_flags & XFS_MOUNT_32BITINODES) { 366 /* Calculate how much should be reserved for inodes to 367 * meet the max inode percentage. 368 */ 369 if (mp->m_maxicount) { 370 __uint64_t icount; 371 372 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 373 do_div(icount, 100); 374 icount += sbp->sb_agblocks - 1; 375 do_div(icount, sbp->sb_agblocks); 376 max_metadata = icount; 377 } else { 378 max_metadata = agcount; 379 } 380 for (index = 0; index < agcount; index++) { 381 ino = XFS_AGINO_TO_INO(mp, index, agino); 382 if (ino > max_inum) { 383 index++; 384 break; 385 } 386 387 /* This ag is preferred for inodes */ 388 pag = &mp->m_perag[index]; 389 pag->pagi_inodeok = 1; 390 if (index < max_metadata) 391 pag->pagf_metadata = 1; 392 xfs_initialize_perag_icache(pag); 393 } 394 } else { 395 /* Setup default behavior for smaller filesystems */ 396 for (index = 0; index < agcount; index++) { 397 pag = &mp->m_perag[index]; 398 pag->pagi_inodeok = 1; 399 xfs_initialize_perag_icache(pag); 400 } 401 } 402 return index; 403 } 404 405 void 406 xfs_sb_from_disk( 407 xfs_sb_t *to, 408 xfs_dsb_t *from) 409 { 410 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 411 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 412 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 413 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 414 to->sb_rextents = be64_to_cpu(from->sb_rextents); 415 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 416 to->sb_logstart = be64_to_cpu(from->sb_logstart); 417 to->sb_rootino = be64_to_cpu(from->sb_rootino); 418 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 419 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 420 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 421 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 422 to->sb_agcount = be32_to_cpu(from->sb_agcount); 423 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 424 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 425 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 426 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 427 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 428 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 429 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 430 to->sb_blocklog = from->sb_blocklog; 431 to->sb_sectlog = from->sb_sectlog; 432 to->sb_inodelog = from->sb_inodelog; 433 to->sb_inopblog = from->sb_inopblog; 434 to->sb_agblklog = from->sb_agblklog; 435 to->sb_rextslog = from->sb_rextslog; 436 to->sb_inprogress = from->sb_inprogress; 437 to->sb_imax_pct = from->sb_imax_pct; 438 to->sb_icount = be64_to_cpu(from->sb_icount); 439 to->sb_ifree = be64_to_cpu(from->sb_ifree); 440 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 441 to->sb_frextents = be64_to_cpu(from->sb_frextents); 442 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 443 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 444 to->sb_qflags = be16_to_cpu(from->sb_qflags); 445 to->sb_flags = from->sb_flags; 446 to->sb_shared_vn = from->sb_shared_vn; 447 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 448 to->sb_unit = be32_to_cpu(from->sb_unit); 449 to->sb_width = be32_to_cpu(from->sb_width); 450 to->sb_dirblklog = from->sb_dirblklog; 451 to->sb_logsectlog = from->sb_logsectlog; 452 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 453 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 454 to->sb_features2 = be32_to_cpu(from->sb_features2); 455 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 456 } 457 458 /* 459 * Copy in core superblock to ondisk one. 460 * 461 * The fields argument is mask of superblock fields to copy. 462 */ 463 void 464 xfs_sb_to_disk( 465 xfs_dsb_t *to, 466 xfs_sb_t *from, 467 __int64_t fields) 468 { 469 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 470 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 471 xfs_sb_field_t f; 472 int first; 473 int size; 474 475 ASSERT(fields); 476 if (!fields) 477 return; 478 479 while (fields) { 480 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 481 first = xfs_sb_info[f].offset; 482 size = xfs_sb_info[f + 1].offset - first; 483 484 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 485 486 if (size == 1 || xfs_sb_info[f].type == 1) { 487 memcpy(to_ptr + first, from_ptr + first, size); 488 } else { 489 switch (size) { 490 case 2: 491 *(__be16 *)(to_ptr + first) = 492 cpu_to_be16(*(__u16 *)(from_ptr + first)); 493 break; 494 case 4: 495 *(__be32 *)(to_ptr + first) = 496 cpu_to_be32(*(__u32 *)(from_ptr + first)); 497 break; 498 case 8: 499 *(__be64 *)(to_ptr + first) = 500 cpu_to_be64(*(__u64 *)(from_ptr + first)); 501 break; 502 default: 503 ASSERT(0); 504 } 505 } 506 507 fields &= ~(1LL << f); 508 } 509 } 510 511 /* 512 * xfs_readsb 513 * 514 * Does the initial read of the superblock. 515 */ 516 int 517 xfs_readsb(xfs_mount_t *mp, int flags) 518 { 519 unsigned int sector_size; 520 unsigned int extra_flags; 521 xfs_buf_t *bp; 522 int error; 523 524 ASSERT(mp->m_sb_bp == NULL); 525 ASSERT(mp->m_ddev_targp != NULL); 526 527 /* 528 * Allocate a (locked) buffer to hold the superblock. 529 * This will be kept around at all times to optimize 530 * access to the superblock. 531 */ 532 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 533 extra_flags = XFS_BUF_LOCK | XFS_BUF_MANAGE | XFS_BUF_MAPPED; 534 535 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 536 BTOBB(sector_size), extra_flags); 537 if (!bp || XFS_BUF_ISERROR(bp)) { 538 xfs_fs_mount_cmn_err(flags, "SB read failed"); 539 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 540 goto fail; 541 } 542 ASSERT(XFS_BUF_ISBUSY(bp)); 543 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 544 545 /* 546 * Initialize the mount structure from the superblock. 547 * But first do some basic consistency checking. 548 */ 549 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp)); 550 551 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 552 if (error) { 553 xfs_fs_mount_cmn_err(flags, "SB validate failed"); 554 goto fail; 555 } 556 557 /* 558 * We must be able to do sector-sized and sector-aligned IO. 559 */ 560 if (sector_size > mp->m_sb.sb_sectsize) { 561 xfs_fs_mount_cmn_err(flags, 562 "device supports only %u byte sectors (not %u)", 563 sector_size, mp->m_sb.sb_sectsize); 564 error = ENOSYS; 565 goto fail; 566 } 567 568 /* 569 * If device sector size is smaller than the superblock size, 570 * re-read the superblock so the buffer is correctly sized. 571 */ 572 if (sector_size < mp->m_sb.sb_sectsize) { 573 XFS_BUF_UNMANAGE(bp); 574 xfs_buf_relse(bp); 575 sector_size = mp->m_sb.sb_sectsize; 576 bp = xfs_buf_read_flags(mp->m_ddev_targp, XFS_SB_DADDR, 577 BTOBB(sector_size), extra_flags); 578 if (!bp || XFS_BUF_ISERROR(bp)) { 579 xfs_fs_mount_cmn_err(flags, "SB re-read failed"); 580 error = bp ? XFS_BUF_GETERROR(bp) : ENOMEM; 581 goto fail; 582 } 583 ASSERT(XFS_BUF_ISBUSY(bp)); 584 ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); 585 } 586 587 /* Initialize per-cpu counters */ 588 xfs_icsb_reinit_counters(mp); 589 590 mp->m_sb_bp = bp; 591 xfs_buf_relse(bp); 592 ASSERT(XFS_BUF_VALUSEMA(bp) > 0); 593 return 0; 594 595 fail: 596 if (bp) { 597 XFS_BUF_UNMANAGE(bp); 598 xfs_buf_relse(bp); 599 } 600 return error; 601 } 602 603 604 /* 605 * xfs_mount_common 606 * 607 * Mount initialization code establishing various mount 608 * fields from the superblock associated with the given 609 * mount structure 610 */ 611 STATIC void 612 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 613 { 614 int i; 615 616 mp->m_agfrotor = mp->m_agirotor = 0; 617 spin_lock_init(&mp->m_agirotor_lock); 618 mp->m_maxagi = mp->m_sb.sb_agcount; 619 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 620 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 621 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 622 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 623 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 624 mp->m_litino = sbp->sb_inodesize - 625 ((uint)sizeof(xfs_dinode_core_t) + (uint)sizeof(xfs_agino_t)); 626 mp->m_blockmask = sbp->sb_blocksize - 1; 627 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 628 mp->m_blockwmask = mp->m_blockwsize - 1; 629 INIT_LIST_HEAD(&mp->m_del_inodes); 630 631 /* 632 * Setup for attributes, in case they get created. 633 * This value is for inodes getting attributes for the first time, 634 * the per-inode value is for old attribute values. 635 */ 636 ASSERT(sbp->sb_inodesize >= 256 && sbp->sb_inodesize <= 2048); 637 switch (sbp->sb_inodesize) { 638 case 256: 639 mp->m_attroffset = XFS_LITINO(mp) - 640 XFS_BMDR_SPACE_CALC(MINABTPTRS); 641 break; 642 case 512: 643 case 1024: 644 case 2048: 645 mp->m_attroffset = XFS_BMDR_SPACE_CALC(6 * MINABTPTRS); 646 break; 647 default: 648 ASSERT(0); 649 } 650 ASSERT(mp->m_attroffset < XFS_LITINO(mp)); 651 652 for (i = 0; i < 2; i++) { 653 mp->m_alloc_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 654 xfs_alloc, i == 0); 655 mp->m_alloc_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 656 xfs_alloc, i == 0); 657 } 658 for (i = 0; i < 2; i++) { 659 mp->m_bmap_dmxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 660 xfs_bmbt, i == 0); 661 mp->m_bmap_dmnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 662 xfs_bmbt, i == 0); 663 } 664 for (i = 0; i < 2; i++) { 665 mp->m_inobt_mxr[i] = XFS_BTREE_BLOCK_MAXRECS(sbp->sb_blocksize, 666 xfs_inobt, i == 0); 667 mp->m_inobt_mnr[i] = XFS_BTREE_BLOCK_MINRECS(sbp->sb_blocksize, 668 xfs_inobt, i == 0); 669 } 670 671 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 672 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 673 sbp->sb_inopblock); 674 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 675 } 676 677 /* 678 * xfs_initialize_perag_data 679 * 680 * Read in each per-ag structure so we can count up the number of 681 * allocated inodes, free inodes and used filesystem blocks as this 682 * information is no longer persistent in the superblock. Once we have 683 * this information, write it into the in-core superblock structure. 684 */ 685 STATIC int 686 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 687 { 688 xfs_agnumber_t index; 689 xfs_perag_t *pag; 690 xfs_sb_t *sbp = &mp->m_sb; 691 uint64_t ifree = 0; 692 uint64_t ialloc = 0; 693 uint64_t bfree = 0; 694 uint64_t bfreelst = 0; 695 uint64_t btree = 0; 696 int error; 697 698 for (index = 0; index < agcount; index++) { 699 /* 700 * read the agf, then the agi. This gets us 701 * all the inforamtion we need and populates the 702 * per-ag structures for us. 703 */ 704 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 705 if (error) 706 return error; 707 708 error = xfs_ialloc_pagi_init(mp, NULL, index); 709 if (error) 710 return error; 711 pag = &mp->m_perag[index]; 712 ifree += pag->pagi_freecount; 713 ialloc += pag->pagi_count; 714 bfree += pag->pagf_freeblks; 715 bfreelst += pag->pagf_flcount; 716 btree += pag->pagf_btreeblks; 717 } 718 /* 719 * Overwrite incore superblock counters with just-read data 720 */ 721 spin_lock(&mp->m_sb_lock); 722 sbp->sb_ifree = ifree; 723 sbp->sb_icount = ialloc; 724 sbp->sb_fdblocks = bfree + bfreelst + btree; 725 spin_unlock(&mp->m_sb_lock); 726 727 /* Fixup the per-cpu counters as well. */ 728 xfs_icsb_reinit_counters(mp); 729 730 return 0; 731 } 732 733 /* 734 * Update alignment values based on mount options and sb values 735 */ 736 STATIC int 737 xfs_update_alignment(xfs_mount_t *mp, int mfsi_flags, __uint64_t *update_flags) 738 { 739 xfs_sb_t *sbp = &(mp->m_sb); 740 741 if (mp->m_dalign && !(mfsi_flags & XFS_MFSI_SECOND)) { 742 /* 743 * If stripe unit and stripe width are not multiples 744 * of the fs blocksize turn off alignment. 745 */ 746 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 747 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 748 if (mp->m_flags & XFS_MOUNT_RETERR) { 749 cmn_err(CE_WARN, 750 "XFS: alignment check 1 failed"); 751 return XFS_ERROR(EINVAL); 752 } 753 mp->m_dalign = mp->m_swidth = 0; 754 } else { 755 /* 756 * Convert the stripe unit and width to FSBs. 757 */ 758 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 759 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 760 if (mp->m_flags & XFS_MOUNT_RETERR) { 761 return XFS_ERROR(EINVAL); 762 } 763 xfs_fs_cmn_err(CE_WARN, mp, 764 "stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)", 765 mp->m_dalign, mp->m_swidth, 766 sbp->sb_agblocks); 767 768 mp->m_dalign = 0; 769 mp->m_swidth = 0; 770 } else if (mp->m_dalign) { 771 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 772 } else { 773 if (mp->m_flags & XFS_MOUNT_RETERR) { 774 xfs_fs_cmn_err(CE_WARN, mp, 775 "stripe alignment turned off: sunit(%d) less than bsize(%d)", 776 mp->m_dalign, 777 mp->m_blockmask +1); 778 return XFS_ERROR(EINVAL); 779 } 780 mp->m_swidth = 0; 781 } 782 } 783 784 /* 785 * Update superblock with new values 786 * and log changes 787 */ 788 if (xfs_sb_version_hasdalign(sbp)) { 789 if (sbp->sb_unit != mp->m_dalign) { 790 sbp->sb_unit = mp->m_dalign; 791 *update_flags |= XFS_SB_UNIT; 792 } 793 if (sbp->sb_width != mp->m_swidth) { 794 sbp->sb_width = mp->m_swidth; 795 *update_flags |= XFS_SB_WIDTH; 796 } 797 } 798 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 799 xfs_sb_version_hasdalign(&mp->m_sb)) { 800 mp->m_dalign = sbp->sb_unit; 801 mp->m_swidth = sbp->sb_width; 802 } 803 804 return 0; 805 } 806 807 /* 808 * Set the maximum inode count for this filesystem 809 */ 810 STATIC void 811 xfs_set_maxicount(xfs_mount_t *mp) 812 { 813 xfs_sb_t *sbp = &(mp->m_sb); 814 __uint64_t icount; 815 816 if (sbp->sb_imax_pct) { 817 /* 818 * Make sure the maximum inode count is a multiple 819 * of the units we allocate inodes in. 820 */ 821 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 822 do_div(icount, 100); 823 do_div(icount, mp->m_ialloc_blks); 824 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 825 sbp->sb_inopblog; 826 } else { 827 mp->m_maxicount = 0; 828 } 829 } 830 831 /* 832 * Set the default minimum read and write sizes unless 833 * already specified in a mount option. 834 * We use smaller I/O sizes when the file system 835 * is being used for NFS service (wsync mount option). 836 */ 837 STATIC void 838 xfs_set_rw_sizes(xfs_mount_t *mp) 839 { 840 xfs_sb_t *sbp = &(mp->m_sb); 841 int readio_log, writeio_log; 842 843 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 844 if (mp->m_flags & XFS_MOUNT_WSYNC) { 845 readio_log = XFS_WSYNC_READIO_LOG; 846 writeio_log = XFS_WSYNC_WRITEIO_LOG; 847 } else { 848 readio_log = XFS_READIO_LOG_LARGE; 849 writeio_log = XFS_WRITEIO_LOG_LARGE; 850 } 851 } else { 852 readio_log = mp->m_readio_log; 853 writeio_log = mp->m_writeio_log; 854 } 855 856 if (sbp->sb_blocklog > readio_log) { 857 mp->m_readio_log = sbp->sb_blocklog; 858 } else { 859 mp->m_readio_log = readio_log; 860 } 861 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 862 if (sbp->sb_blocklog > writeio_log) { 863 mp->m_writeio_log = sbp->sb_blocklog; 864 } else { 865 mp->m_writeio_log = writeio_log; 866 } 867 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 868 } 869 870 /* 871 * Set whether we're using inode alignment. 872 */ 873 STATIC void 874 xfs_set_inoalignment(xfs_mount_t *mp) 875 { 876 if (xfs_sb_version_hasalign(&mp->m_sb) && 877 mp->m_sb.sb_inoalignmt >= 878 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 879 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 880 else 881 mp->m_inoalign_mask = 0; 882 /* 883 * If we are using stripe alignment, check whether 884 * the stripe unit is a multiple of the inode alignment 885 */ 886 if (mp->m_dalign && mp->m_inoalign_mask && 887 !(mp->m_dalign & mp->m_inoalign_mask)) 888 mp->m_sinoalign = mp->m_dalign; 889 else 890 mp->m_sinoalign = 0; 891 } 892 893 /* 894 * Check that the data (and log if separate) are an ok size. 895 */ 896 STATIC int 897 xfs_check_sizes(xfs_mount_t *mp, int mfsi_flags) 898 { 899 xfs_buf_t *bp; 900 xfs_daddr_t d; 901 int error; 902 903 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 904 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 905 cmn_err(CE_WARN, "XFS: size check 1 failed"); 906 return XFS_ERROR(E2BIG); 907 } 908 error = xfs_read_buf(mp, mp->m_ddev_targp, 909 d - XFS_FSS_TO_BB(mp, 1), 910 XFS_FSS_TO_BB(mp, 1), 0, &bp); 911 if (!error) { 912 xfs_buf_relse(bp); 913 } else { 914 cmn_err(CE_WARN, "XFS: size check 2 failed"); 915 if (error == ENOSPC) 916 error = XFS_ERROR(E2BIG); 917 return error; 918 } 919 920 if (((mfsi_flags & XFS_MFSI_CLIENT) == 0) && 921 mp->m_logdev_targp != mp->m_ddev_targp) { 922 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 923 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 924 cmn_err(CE_WARN, "XFS: size check 3 failed"); 925 return XFS_ERROR(E2BIG); 926 } 927 error = xfs_read_buf(mp, mp->m_logdev_targp, 928 d - XFS_FSB_TO_BB(mp, 1), 929 XFS_FSB_TO_BB(mp, 1), 0, &bp); 930 if (!error) { 931 xfs_buf_relse(bp); 932 } else { 933 cmn_err(CE_WARN, "XFS: size check 3 failed"); 934 if (error == ENOSPC) 935 error = XFS_ERROR(E2BIG); 936 return error; 937 } 938 } 939 return 0; 940 } 941 942 /* 943 * xfs_mountfs 944 * 945 * This function does the following on an initial mount of a file system: 946 * - reads the superblock from disk and init the mount struct 947 * - if we're a 32-bit kernel, do a size check on the superblock 948 * so we don't mount terabyte filesystems 949 * - init mount struct realtime fields 950 * - allocate inode hash table for fs 951 * - init directory manager 952 * - perform recovery and init the log manager 953 */ 954 int 955 xfs_mountfs( 956 xfs_mount_t *mp, 957 int mfsi_flags) 958 { 959 xfs_sb_t *sbp = &(mp->m_sb); 960 xfs_inode_t *rip; 961 __uint64_t resblks; 962 __int64_t update_flags = 0LL; 963 uint quotamount, quotaflags; 964 int agno; 965 int uuid_mounted = 0; 966 int error = 0; 967 968 xfs_mount_common(mp, sbp); 969 970 /* 971 * Check for a mismatched features2 values. Older kernels 972 * read & wrote into the wrong sb offset for sb_features2 973 * on some platforms due to xfs_sb_t not being 64bit size aligned 974 * when sb_features2 was added, which made older superblock 975 * reading/writing routines swap it as a 64-bit value. 976 * 977 * For backwards compatibility, we make both slots equal. 978 * 979 * If we detect a mismatched field, we OR the set bits into the 980 * existing features2 field in case it has already been modified; we 981 * don't want to lose any features. We then update the bad location 982 * with the ORed value so that older kernels will see any features2 983 * flags, and mark the two fields as needing updates once the 984 * transaction subsystem is online. 985 */ 986 if (xfs_sb_has_mismatched_features2(sbp)) { 987 cmn_err(CE_WARN, 988 "XFS: correcting sb_features alignment problem"); 989 sbp->sb_features2 |= sbp->sb_bad_features2; 990 sbp->sb_bad_features2 = sbp->sb_features2; 991 update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 992 993 /* 994 * Re-check for ATTR2 in case it was found in bad_features2 995 * slot. 996 */ 997 if (xfs_sb_version_hasattr2(&mp->m_sb)) 998 mp->m_flags |= XFS_MOUNT_ATTR2; 999 1000 } 1001 1002 /* 1003 * Check if sb_agblocks is aligned at stripe boundary 1004 * If sb_agblocks is NOT aligned turn off m_dalign since 1005 * allocator alignment is within an ag, therefore ag has 1006 * to be aligned at stripe boundary. 1007 */ 1008 error = xfs_update_alignment(mp, mfsi_flags, &update_flags); 1009 if (error) 1010 goto error1; 1011 1012 xfs_alloc_compute_maxlevels(mp); 1013 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1014 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1015 xfs_ialloc_compute_maxlevels(mp); 1016 1017 xfs_set_maxicount(mp); 1018 1019 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog); 1020 1021 /* 1022 * XFS uses the uuid from the superblock as the unique 1023 * identifier for fsid. We can not use the uuid from the volume 1024 * since a single partition filesystem is identical to a single 1025 * partition volume/filesystem. 1026 */ 1027 if ((mfsi_flags & XFS_MFSI_SECOND) == 0 && 1028 (mp->m_flags & XFS_MOUNT_NOUUID) == 0) { 1029 if (xfs_uuid_mount(mp)) { 1030 error = XFS_ERROR(EINVAL); 1031 goto error1; 1032 } 1033 uuid_mounted=1; 1034 } 1035 1036 /* 1037 * Set the minimum read and write sizes 1038 */ 1039 xfs_set_rw_sizes(mp); 1040 1041 /* 1042 * Set the inode cluster size. 1043 * This may still be overridden by the file system 1044 * block size if it is larger than the chosen cluster size. 1045 */ 1046 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1047 1048 /* 1049 * Set inode alignment fields 1050 */ 1051 xfs_set_inoalignment(mp); 1052 1053 /* 1054 * Check that the data (and log if separate) are an ok size. 1055 */ 1056 error = xfs_check_sizes(mp, mfsi_flags); 1057 if (error) 1058 goto error1; 1059 1060 /* 1061 * Initialize realtime fields in the mount structure 1062 */ 1063 error = xfs_rtmount_init(mp); 1064 if (error) { 1065 cmn_err(CE_WARN, "XFS: RT mount failed"); 1066 goto error1; 1067 } 1068 1069 /* 1070 * For client case we are done now 1071 */ 1072 if (mfsi_flags & XFS_MFSI_CLIENT) { 1073 return 0; 1074 } 1075 1076 /* 1077 * Copies the low order bits of the timestamp and the randomly 1078 * set "sequence" number out of a UUID. 1079 */ 1080 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1081 1082 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1083 1084 xfs_dir_mount(mp); 1085 1086 /* 1087 * Initialize the attribute manager's entries. 1088 */ 1089 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1090 1091 /* 1092 * Initialize the precomputed transaction reservations values. 1093 */ 1094 xfs_trans_init(mp); 1095 1096 /* 1097 * Allocate and initialize the per-ag data. 1098 */ 1099 init_rwsem(&mp->m_peraglock); 1100 mp->m_perag = 1101 kmem_zalloc(sbp->sb_agcount * sizeof(xfs_perag_t), KM_SLEEP); 1102 1103 mp->m_maxagi = xfs_initialize_perag(mp, sbp->sb_agcount); 1104 1105 /* 1106 * log's mount-time initialization. Perform 1st part recovery if needed 1107 */ 1108 if (likely(sbp->sb_logblocks > 0)) { /* check for volume case */ 1109 error = xfs_log_mount(mp, mp->m_logdev_targp, 1110 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1111 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1112 if (error) { 1113 cmn_err(CE_WARN, "XFS: log mount failed"); 1114 goto error2; 1115 } 1116 } else { /* No log has been defined */ 1117 cmn_err(CE_WARN, "XFS: no log defined"); 1118 XFS_ERROR_REPORT("xfs_mountfs_int(1)", XFS_ERRLEVEL_LOW, mp); 1119 error = XFS_ERROR(EFSCORRUPTED); 1120 goto error2; 1121 } 1122 1123 /* 1124 * Now the log is mounted, we know if it was an unclean shutdown or 1125 * not. If it was, with the first phase of recovery has completed, we 1126 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1127 * but they are recovered transactionally in the second recovery phase 1128 * later. 1129 * 1130 * Hence we can safely re-initialise incore superblock counters from 1131 * the per-ag data. These may not be correct if the filesystem was not 1132 * cleanly unmounted, so we need to wait for recovery to finish before 1133 * doing this. 1134 * 1135 * If the filesystem was cleanly unmounted, then we can trust the 1136 * values in the superblock to be correct and we don't need to do 1137 * anything here. 1138 * 1139 * If we are currently making the filesystem, the initialisation will 1140 * fail as the perag data is in an undefined state. 1141 */ 1142 1143 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1144 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1145 !mp->m_sb.sb_inprogress) { 1146 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1147 if (error) { 1148 goto error2; 1149 } 1150 } 1151 /* 1152 * Get and sanity-check the root inode. 1153 * Save the pointer to it in the mount structure. 1154 */ 1155 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip, 0); 1156 if (error) { 1157 cmn_err(CE_WARN, "XFS: failed to read root inode"); 1158 goto error3; 1159 } 1160 1161 ASSERT(rip != NULL); 1162 1163 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) { 1164 cmn_err(CE_WARN, "XFS: corrupted root inode"); 1165 cmn_err(CE_WARN, "Device %s - root %llu is not a directory", 1166 XFS_BUFTARG_NAME(mp->m_ddev_targp), 1167 (unsigned long long)rip->i_ino); 1168 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1169 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1170 mp); 1171 error = XFS_ERROR(EFSCORRUPTED); 1172 goto error4; 1173 } 1174 mp->m_rootip = rip; /* save it */ 1175 1176 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1177 1178 /* 1179 * Initialize realtime inode pointers in the mount structure 1180 */ 1181 error = xfs_rtmount_inodes(mp); 1182 if (error) { 1183 /* 1184 * Free up the root inode. 1185 */ 1186 cmn_err(CE_WARN, "XFS: failed to read RT inodes"); 1187 goto error4; 1188 } 1189 1190 /* 1191 * If fs is not mounted readonly, then update the superblock changes. 1192 */ 1193 if (update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1194 error = xfs_mount_log_sb(mp, update_flags); 1195 if (error) { 1196 cmn_err(CE_WARN, "XFS: failed to write sb changes"); 1197 goto error4; 1198 } 1199 } 1200 1201 /* 1202 * Initialise the XFS quota management subsystem for this mount 1203 */ 1204 error = XFS_QM_INIT(mp, "amount, "aflags); 1205 if (error) 1206 goto error4; 1207 1208 /* 1209 * Finish recovering the file system. This part needed to be 1210 * delayed until after the root and real-time bitmap inodes 1211 * were consistently read in. 1212 */ 1213 error = xfs_log_mount_finish(mp, mfsi_flags); 1214 if (error) { 1215 cmn_err(CE_WARN, "XFS: log mount finish failed"); 1216 goto error4; 1217 } 1218 1219 /* 1220 * Complete the quota initialisation, post-log-replay component. 1221 */ 1222 error = XFS_QM_MOUNT(mp, quotamount, quotaflags, mfsi_flags); 1223 if (error) 1224 goto error4; 1225 1226 /* 1227 * Now we are mounted, reserve a small amount of unused space for 1228 * privileged transactions. This is needed so that transaction 1229 * space required for critical operations can dip into this pool 1230 * when at ENOSPC. This is needed for operations like create with 1231 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1232 * are not allowed to use this reserved space. 1233 * 1234 * We default to 5% or 1024 fsbs of space reserved, whichever is smaller. 1235 * This may drive us straight to ENOSPC on mount, but that implies 1236 * we were already there on the last unmount. Warn if this occurs. 1237 */ 1238 resblks = mp->m_sb.sb_dblocks; 1239 do_div(resblks, 20); 1240 resblks = min_t(__uint64_t, resblks, 1024); 1241 error = xfs_reserve_blocks(mp, &resblks, NULL); 1242 if (error) 1243 cmn_err(CE_WARN, "XFS: Unable to allocate reserve blocks. " 1244 "Continuing without a reserve pool."); 1245 1246 return 0; 1247 1248 error4: 1249 /* 1250 * Free up the root inode. 1251 */ 1252 IRELE(rip); 1253 error3: 1254 xfs_log_unmount_dealloc(mp); 1255 error2: 1256 for (agno = 0; agno < sbp->sb_agcount; agno++) 1257 if (mp->m_perag[agno].pagb_list) 1258 kmem_free(mp->m_perag[agno].pagb_list, 1259 sizeof(xfs_perag_busy_t) * XFS_PAGB_NUM_SLOTS); 1260 kmem_free(mp->m_perag, sbp->sb_agcount * sizeof(xfs_perag_t)); 1261 mp->m_perag = NULL; 1262 /* FALLTHROUGH */ 1263 error1: 1264 if (uuid_mounted) 1265 xfs_uuid_unmount(mp); 1266 xfs_freesb(mp); 1267 return error; 1268 } 1269 1270 /* 1271 * xfs_unmountfs 1272 * 1273 * This flushes out the inodes,dquots and the superblock, unmounts the 1274 * log and makes sure that incore structures are freed. 1275 */ 1276 int 1277 xfs_unmountfs(xfs_mount_t *mp, struct cred *cr) 1278 { 1279 __uint64_t resblks; 1280 int error = 0; 1281 1282 /* 1283 * We can potentially deadlock here if we have an inode cluster 1284 * that has been freed has it's buffer still pinned in memory because 1285 * the transaction is still sitting in a iclog. The stale inodes 1286 * on that buffer will have their flush locks held until the 1287 * transaction hits the disk and the callbacks run. the inode 1288 * flush takes the flush lock unconditionally and with nothing to 1289 * push out the iclog we will never get that unlocked. hence we 1290 * need to force the log first. 1291 */ 1292 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1293 xfs_iflush_all(mp); 1294 1295 XFS_QM_DQPURGEALL(mp, XFS_QMOPT_QUOTALL | XFS_QMOPT_UMOUNTING); 1296 1297 /* 1298 * Flush out the log synchronously so that we know for sure 1299 * that nothing is pinned. This is important because bflush() 1300 * will skip pinned buffers. 1301 */ 1302 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE | XFS_LOG_SYNC); 1303 1304 xfs_binval(mp->m_ddev_targp); 1305 if (mp->m_rtdev_targp) { 1306 xfs_binval(mp->m_rtdev_targp); 1307 } 1308 1309 /* 1310 * Unreserve any blocks we have so that when we unmount we don't account 1311 * the reserved free space as used. This is really only necessary for 1312 * lazy superblock counting because it trusts the incore superblock 1313 * counters to be aboslutely correct on clean unmount. 1314 * 1315 * We don't bother correcting this elsewhere for lazy superblock 1316 * counting because on mount of an unclean filesystem we reconstruct the 1317 * correct counter value and this is irrelevant. 1318 * 1319 * For non-lazy counter filesystems, this doesn't matter at all because 1320 * we only every apply deltas to the superblock and hence the incore 1321 * value does not matter.... 1322 */ 1323 resblks = 0; 1324 error = xfs_reserve_blocks(mp, &resblks, NULL); 1325 if (error) 1326 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. " 1327 "Freespace may not be correct on next mount."); 1328 1329 error = xfs_log_sbcount(mp, 1); 1330 if (error) 1331 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. " 1332 "Freespace may not be correct on next mount."); 1333 xfs_unmountfs_writesb(mp); 1334 xfs_unmountfs_wait(mp); /* wait for async bufs */ 1335 xfs_log_unmount(mp); /* Done! No more fs ops. */ 1336 1337 xfs_freesb(mp); 1338 1339 /* 1340 * All inodes from this mount point should be freed. 1341 */ 1342 ASSERT(mp->m_inodes == NULL); 1343 1344 xfs_unmountfs_close(mp, cr); 1345 if ((mp->m_flags & XFS_MOUNT_NOUUID) == 0) 1346 xfs_uuid_unmount(mp); 1347 1348 #if defined(DEBUG) || defined(INDUCE_IO_ERROR) 1349 xfs_errortag_clearall(mp, 0); 1350 #endif 1351 xfs_mount_free(mp); 1352 return 0; 1353 } 1354 1355 void 1356 xfs_unmountfs_close(xfs_mount_t *mp, struct cred *cr) 1357 { 1358 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1359 xfs_free_buftarg(mp->m_logdev_targp, 1); 1360 if (mp->m_rtdev_targp) 1361 xfs_free_buftarg(mp->m_rtdev_targp, 1); 1362 xfs_free_buftarg(mp->m_ddev_targp, 0); 1363 } 1364 1365 STATIC void 1366 xfs_unmountfs_wait(xfs_mount_t *mp) 1367 { 1368 if (mp->m_logdev_targp != mp->m_ddev_targp) 1369 xfs_wait_buftarg(mp->m_logdev_targp); 1370 if (mp->m_rtdev_targp) 1371 xfs_wait_buftarg(mp->m_rtdev_targp); 1372 xfs_wait_buftarg(mp->m_ddev_targp); 1373 } 1374 1375 int 1376 xfs_fs_writable(xfs_mount_t *mp) 1377 { 1378 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) || 1379 (mp->m_flags & XFS_MOUNT_RDONLY)); 1380 } 1381 1382 /* 1383 * xfs_log_sbcount 1384 * 1385 * Called either periodically to keep the on disk superblock values 1386 * roughly up to date or from unmount to make sure the values are 1387 * correct on a clean unmount. 1388 * 1389 * Note this code can be called during the process of freezing, so 1390 * we may need to use the transaction allocator which does not not 1391 * block when the transaction subsystem is in its frozen state. 1392 */ 1393 int 1394 xfs_log_sbcount( 1395 xfs_mount_t *mp, 1396 uint sync) 1397 { 1398 xfs_trans_t *tp; 1399 int error; 1400 1401 if (!xfs_fs_writable(mp)) 1402 return 0; 1403 1404 xfs_icsb_sync_counters(mp, 0); 1405 1406 /* 1407 * we don't need to do this if we are updating the superblock 1408 * counters on every modification. 1409 */ 1410 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1411 return 0; 1412 1413 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT); 1414 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1415 XFS_DEFAULT_LOG_COUNT); 1416 if (error) { 1417 xfs_trans_cancel(tp, 0); 1418 return error; 1419 } 1420 1421 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1422 if (sync) 1423 xfs_trans_set_sync(tp); 1424 error = xfs_trans_commit(tp, 0); 1425 return error; 1426 } 1427 1428 STATIC void 1429 xfs_mark_shared_ro( 1430 xfs_mount_t *mp, 1431 xfs_buf_t *bp) 1432 { 1433 xfs_dsb_t *sb = XFS_BUF_TO_SBP(bp); 1434 __uint16_t version; 1435 1436 if (!(sb->sb_flags & XFS_SBF_READONLY)) 1437 sb->sb_flags |= XFS_SBF_READONLY; 1438 1439 version = be16_to_cpu(sb->sb_versionnum); 1440 if ((version & XFS_SB_VERSION_NUMBITS) != XFS_SB_VERSION_4 || 1441 !(version & XFS_SB_VERSION_SHAREDBIT)) 1442 version |= XFS_SB_VERSION_SHAREDBIT; 1443 sb->sb_versionnum = cpu_to_be16(version); 1444 } 1445 1446 int 1447 xfs_unmountfs_writesb(xfs_mount_t *mp) 1448 { 1449 xfs_buf_t *sbp; 1450 int error = 0; 1451 1452 /* 1453 * skip superblock write if fs is read-only, or 1454 * if we are doing a forced umount. 1455 */ 1456 if (!((mp->m_flags & XFS_MOUNT_RDONLY) || 1457 XFS_FORCED_SHUTDOWN(mp))) { 1458 1459 sbp = xfs_getsb(mp, 0); 1460 1461 /* 1462 * mark shared-readonly if desired 1463 */ 1464 if (mp->m_mk_sharedro) 1465 xfs_mark_shared_ro(mp, sbp); 1466 1467 XFS_BUF_UNDONE(sbp); 1468 XFS_BUF_UNREAD(sbp); 1469 XFS_BUF_UNDELAYWRITE(sbp); 1470 XFS_BUF_WRITE(sbp); 1471 XFS_BUF_UNASYNC(sbp); 1472 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp); 1473 xfsbdstrat(mp, sbp); 1474 error = xfs_iowait(sbp); 1475 if (error) 1476 xfs_ioerror_alert("xfs_unmountfs_writesb", 1477 mp, sbp, XFS_BUF_ADDR(sbp)); 1478 if (error && mp->m_mk_sharedro) 1479 xfs_fs_cmn_err(CE_ALERT, mp, "Superblock write error detected while unmounting. Filesystem may not be marked shared readonly"); 1480 xfs_buf_relse(sbp); 1481 } 1482 return error; 1483 } 1484 1485 /* 1486 * xfs_mod_sb() can be used to copy arbitrary changes to the 1487 * in-core superblock into the superblock buffer to be logged. 1488 * It does not provide the higher level of locking that is 1489 * needed to protect the in-core superblock from concurrent 1490 * access. 1491 */ 1492 void 1493 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1494 { 1495 xfs_buf_t *bp; 1496 int first; 1497 int last; 1498 xfs_mount_t *mp; 1499 xfs_sb_field_t f; 1500 1501 ASSERT(fields); 1502 if (!fields) 1503 return; 1504 mp = tp->t_mountp; 1505 bp = xfs_trans_getsb(tp, mp, 0); 1506 first = sizeof(xfs_sb_t); 1507 last = 0; 1508 1509 /* translate/copy */ 1510 1511 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1512 1513 /* find modified range */ 1514 1515 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1516 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1517 first = xfs_sb_info[f].offset; 1518 1519 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1520 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1521 last = xfs_sb_info[f + 1].offset - 1; 1522 1523 xfs_trans_log_buf(tp, bp, first, last); 1524 } 1525 1526 1527 /* 1528 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1529 * a delta to a specified field in the in-core superblock. Simply 1530 * switch on the field indicated and apply the delta to that field. 1531 * Fields are not allowed to dip below zero, so if the delta would 1532 * do this do not apply it and return EINVAL. 1533 * 1534 * The m_sb_lock must be held when this routine is called. 1535 */ 1536 int 1537 xfs_mod_incore_sb_unlocked( 1538 xfs_mount_t *mp, 1539 xfs_sb_field_t field, 1540 int64_t delta, 1541 int rsvd) 1542 { 1543 int scounter; /* short counter for 32 bit fields */ 1544 long long lcounter; /* long counter for 64 bit fields */ 1545 long long res_used, rem; 1546 1547 /* 1548 * With the in-core superblock spin lock held, switch 1549 * on the indicated field. Apply the delta to the 1550 * proper field. If the fields value would dip below 1551 * 0, then do not apply the delta and return EINVAL. 1552 */ 1553 switch (field) { 1554 case XFS_SBS_ICOUNT: 1555 lcounter = (long long)mp->m_sb.sb_icount; 1556 lcounter += delta; 1557 if (lcounter < 0) { 1558 ASSERT(0); 1559 return XFS_ERROR(EINVAL); 1560 } 1561 mp->m_sb.sb_icount = lcounter; 1562 return 0; 1563 case XFS_SBS_IFREE: 1564 lcounter = (long long)mp->m_sb.sb_ifree; 1565 lcounter += delta; 1566 if (lcounter < 0) { 1567 ASSERT(0); 1568 return XFS_ERROR(EINVAL); 1569 } 1570 mp->m_sb.sb_ifree = lcounter; 1571 return 0; 1572 case XFS_SBS_FDBLOCKS: 1573 lcounter = (long long) 1574 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1575 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1576 1577 if (delta > 0) { /* Putting blocks back */ 1578 if (res_used > delta) { 1579 mp->m_resblks_avail += delta; 1580 } else { 1581 rem = delta - res_used; 1582 mp->m_resblks_avail = mp->m_resblks; 1583 lcounter += rem; 1584 } 1585 } else { /* Taking blocks away */ 1586 1587 lcounter += delta; 1588 1589 /* 1590 * If were out of blocks, use any available reserved blocks if 1591 * were allowed to. 1592 */ 1593 1594 if (lcounter < 0) { 1595 if (rsvd) { 1596 lcounter = (long long)mp->m_resblks_avail + delta; 1597 if (lcounter < 0) { 1598 return XFS_ERROR(ENOSPC); 1599 } 1600 mp->m_resblks_avail = lcounter; 1601 return 0; 1602 } else { /* not reserved */ 1603 return XFS_ERROR(ENOSPC); 1604 } 1605 } 1606 } 1607 1608 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1609 return 0; 1610 case XFS_SBS_FREXTENTS: 1611 lcounter = (long long)mp->m_sb.sb_frextents; 1612 lcounter += delta; 1613 if (lcounter < 0) { 1614 return XFS_ERROR(ENOSPC); 1615 } 1616 mp->m_sb.sb_frextents = lcounter; 1617 return 0; 1618 case XFS_SBS_DBLOCKS: 1619 lcounter = (long long)mp->m_sb.sb_dblocks; 1620 lcounter += delta; 1621 if (lcounter < 0) { 1622 ASSERT(0); 1623 return XFS_ERROR(EINVAL); 1624 } 1625 mp->m_sb.sb_dblocks = lcounter; 1626 return 0; 1627 case XFS_SBS_AGCOUNT: 1628 scounter = mp->m_sb.sb_agcount; 1629 scounter += delta; 1630 if (scounter < 0) { 1631 ASSERT(0); 1632 return XFS_ERROR(EINVAL); 1633 } 1634 mp->m_sb.sb_agcount = scounter; 1635 return 0; 1636 case XFS_SBS_IMAX_PCT: 1637 scounter = mp->m_sb.sb_imax_pct; 1638 scounter += delta; 1639 if (scounter < 0) { 1640 ASSERT(0); 1641 return XFS_ERROR(EINVAL); 1642 } 1643 mp->m_sb.sb_imax_pct = scounter; 1644 return 0; 1645 case XFS_SBS_REXTSIZE: 1646 scounter = mp->m_sb.sb_rextsize; 1647 scounter += delta; 1648 if (scounter < 0) { 1649 ASSERT(0); 1650 return XFS_ERROR(EINVAL); 1651 } 1652 mp->m_sb.sb_rextsize = scounter; 1653 return 0; 1654 case XFS_SBS_RBMBLOCKS: 1655 scounter = mp->m_sb.sb_rbmblocks; 1656 scounter += delta; 1657 if (scounter < 0) { 1658 ASSERT(0); 1659 return XFS_ERROR(EINVAL); 1660 } 1661 mp->m_sb.sb_rbmblocks = scounter; 1662 return 0; 1663 case XFS_SBS_RBLOCKS: 1664 lcounter = (long long)mp->m_sb.sb_rblocks; 1665 lcounter += delta; 1666 if (lcounter < 0) { 1667 ASSERT(0); 1668 return XFS_ERROR(EINVAL); 1669 } 1670 mp->m_sb.sb_rblocks = lcounter; 1671 return 0; 1672 case XFS_SBS_REXTENTS: 1673 lcounter = (long long)mp->m_sb.sb_rextents; 1674 lcounter += delta; 1675 if (lcounter < 0) { 1676 ASSERT(0); 1677 return XFS_ERROR(EINVAL); 1678 } 1679 mp->m_sb.sb_rextents = lcounter; 1680 return 0; 1681 case XFS_SBS_REXTSLOG: 1682 scounter = mp->m_sb.sb_rextslog; 1683 scounter += delta; 1684 if (scounter < 0) { 1685 ASSERT(0); 1686 return XFS_ERROR(EINVAL); 1687 } 1688 mp->m_sb.sb_rextslog = scounter; 1689 return 0; 1690 default: 1691 ASSERT(0); 1692 return XFS_ERROR(EINVAL); 1693 } 1694 } 1695 1696 /* 1697 * xfs_mod_incore_sb() is used to change a field in the in-core 1698 * superblock structure by the specified delta. This modification 1699 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1700 * routine to do the work. 1701 */ 1702 int 1703 xfs_mod_incore_sb( 1704 xfs_mount_t *mp, 1705 xfs_sb_field_t field, 1706 int64_t delta, 1707 int rsvd) 1708 { 1709 int status; 1710 1711 /* check for per-cpu counters */ 1712 switch (field) { 1713 #ifdef HAVE_PERCPU_SB 1714 case XFS_SBS_ICOUNT: 1715 case XFS_SBS_IFREE: 1716 case XFS_SBS_FDBLOCKS: 1717 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1718 status = xfs_icsb_modify_counters(mp, field, 1719 delta, rsvd); 1720 break; 1721 } 1722 /* FALLTHROUGH */ 1723 #endif 1724 default: 1725 spin_lock(&mp->m_sb_lock); 1726 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1727 spin_unlock(&mp->m_sb_lock); 1728 break; 1729 } 1730 1731 return status; 1732 } 1733 1734 /* 1735 * xfs_mod_incore_sb_batch() is used to change more than one field 1736 * in the in-core superblock structure at a time. This modification 1737 * is protected by a lock internal to this module. The fields and 1738 * changes to those fields are specified in the array of xfs_mod_sb 1739 * structures passed in. 1740 * 1741 * Either all of the specified deltas will be applied or none of 1742 * them will. If any modified field dips below 0, then all modifications 1743 * will be backed out and EINVAL will be returned. 1744 */ 1745 int 1746 xfs_mod_incore_sb_batch(xfs_mount_t *mp, xfs_mod_sb_t *msb, uint nmsb, int rsvd) 1747 { 1748 int status=0; 1749 xfs_mod_sb_t *msbp; 1750 1751 /* 1752 * Loop through the array of mod structures and apply each 1753 * individually. If any fail, then back out all those 1754 * which have already been applied. Do all of this within 1755 * the scope of the m_sb_lock so that all of the changes will 1756 * be atomic. 1757 */ 1758 spin_lock(&mp->m_sb_lock); 1759 msbp = &msb[0]; 1760 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) { 1761 /* 1762 * Apply the delta at index n. If it fails, break 1763 * from the loop so we'll fall into the undo loop 1764 * below. 1765 */ 1766 switch (msbp->msb_field) { 1767 #ifdef HAVE_PERCPU_SB 1768 case XFS_SBS_ICOUNT: 1769 case XFS_SBS_IFREE: 1770 case XFS_SBS_FDBLOCKS: 1771 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1772 spin_unlock(&mp->m_sb_lock); 1773 status = xfs_icsb_modify_counters(mp, 1774 msbp->msb_field, 1775 msbp->msb_delta, rsvd); 1776 spin_lock(&mp->m_sb_lock); 1777 break; 1778 } 1779 /* FALLTHROUGH */ 1780 #endif 1781 default: 1782 status = xfs_mod_incore_sb_unlocked(mp, 1783 msbp->msb_field, 1784 msbp->msb_delta, rsvd); 1785 break; 1786 } 1787 1788 if (status != 0) { 1789 break; 1790 } 1791 } 1792 1793 /* 1794 * If we didn't complete the loop above, then back out 1795 * any changes made to the superblock. If you add code 1796 * between the loop above and here, make sure that you 1797 * preserve the value of status. Loop back until 1798 * we step below the beginning of the array. Make sure 1799 * we don't touch anything back there. 1800 */ 1801 if (status != 0) { 1802 msbp--; 1803 while (msbp >= msb) { 1804 switch (msbp->msb_field) { 1805 #ifdef HAVE_PERCPU_SB 1806 case XFS_SBS_ICOUNT: 1807 case XFS_SBS_IFREE: 1808 case XFS_SBS_FDBLOCKS: 1809 if (!(mp->m_flags & XFS_MOUNT_NO_PERCPU_SB)) { 1810 spin_unlock(&mp->m_sb_lock); 1811 status = xfs_icsb_modify_counters(mp, 1812 msbp->msb_field, 1813 -(msbp->msb_delta), 1814 rsvd); 1815 spin_lock(&mp->m_sb_lock); 1816 break; 1817 } 1818 /* FALLTHROUGH */ 1819 #endif 1820 default: 1821 status = xfs_mod_incore_sb_unlocked(mp, 1822 msbp->msb_field, 1823 -(msbp->msb_delta), 1824 rsvd); 1825 break; 1826 } 1827 ASSERT(status == 0); 1828 msbp--; 1829 } 1830 } 1831 spin_unlock(&mp->m_sb_lock); 1832 return status; 1833 } 1834 1835 /* 1836 * xfs_getsb() is called to obtain the buffer for the superblock. 1837 * The buffer is returned locked and read in from disk. 1838 * The buffer should be released with a call to xfs_brelse(). 1839 * 1840 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1841 * the superblock buffer if it can be locked without sleeping. 1842 * If it can't then we'll return NULL. 1843 */ 1844 xfs_buf_t * 1845 xfs_getsb( 1846 xfs_mount_t *mp, 1847 int flags) 1848 { 1849 xfs_buf_t *bp; 1850 1851 ASSERT(mp->m_sb_bp != NULL); 1852 bp = mp->m_sb_bp; 1853 if (flags & XFS_BUF_TRYLOCK) { 1854 if (!XFS_BUF_CPSEMA(bp)) { 1855 return NULL; 1856 } 1857 } else { 1858 XFS_BUF_PSEMA(bp, PRIBIO); 1859 } 1860 XFS_BUF_HOLD(bp); 1861 ASSERT(XFS_BUF_ISDONE(bp)); 1862 return bp; 1863 } 1864 1865 /* 1866 * Used to free the superblock along various error paths. 1867 */ 1868 void 1869 xfs_freesb( 1870 xfs_mount_t *mp) 1871 { 1872 xfs_buf_t *bp; 1873 1874 /* 1875 * Use xfs_getsb() so that the buffer will be locked 1876 * when we call xfs_buf_relse(). 1877 */ 1878 bp = xfs_getsb(mp, 0); 1879 XFS_BUF_UNMANAGE(bp); 1880 xfs_buf_relse(bp); 1881 mp->m_sb_bp = NULL; 1882 } 1883 1884 /* 1885 * See if the UUID is unique among mounted XFS filesystems. 1886 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 1887 */ 1888 STATIC int 1889 xfs_uuid_mount( 1890 xfs_mount_t *mp) 1891 { 1892 if (uuid_is_nil(&mp->m_sb.sb_uuid)) { 1893 cmn_err(CE_WARN, 1894 "XFS: Filesystem %s has nil UUID - can't mount", 1895 mp->m_fsname); 1896 return -1; 1897 } 1898 if (!uuid_table_insert(&mp->m_sb.sb_uuid)) { 1899 cmn_err(CE_WARN, 1900 "XFS: Filesystem %s has duplicate UUID - can't mount", 1901 mp->m_fsname); 1902 return -1; 1903 } 1904 return 0; 1905 } 1906 1907 /* 1908 * Remove filesystem from the UUID table. 1909 */ 1910 STATIC void 1911 xfs_uuid_unmount( 1912 xfs_mount_t *mp) 1913 { 1914 uuid_table_remove(&mp->m_sb.sb_uuid); 1915 } 1916 1917 /* 1918 * Used to log changes to the superblock unit and width fields which could 1919 * be altered by the mount options, as well as any potential sb_features2 1920 * fixup. Only the first superblock is updated. 1921 */ 1922 STATIC int 1923 xfs_mount_log_sb( 1924 xfs_mount_t *mp, 1925 __int64_t fields) 1926 { 1927 xfs_trans_t *tp; 1928 int error; 1929 1930 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1931 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2)); 1932 1933 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1934 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1935 XFS_DEFAULT_LOG_COUNT); 1936 if (error) { 1937 xfs_trans_cancel(tp, 0); 1938 return error; 1939 } 1940 xfs_mod_sb(tp, fields); 1941 error = xfs_trans_commit(tp, 0); 1942 return error; 1943 } 1944 1945 1946 #ifdef HAVE_PERCPU_SB 1947 /* 1948 * Per-cpu incore superblock counters 1949 * 1950 * Simple concept, difficult implementation 1951 * 1952 * Basically, replace the incore superblock counters with a distributed per cpu 1953 * counter for contended fields (e.g. free block count). 1954 * 1955 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1956 * hence needs to be accurately read when we are running low on space. Hence 1957 * there is a method to enable and disable the per-cpu counters based on how 1958 * much "stuff" is available in them. 1959 * 1960 * Basically, a counter is enabled if there is enough free resource to justify 1961 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1962 * ENOSPC), then we disable the counters to synchronise all callers and 1963 * re-distribute the available resources. 1964 * 1965 * If, once we redistributed the available resources, we still get a failure, 1966 * we disable the per-cpu counter and go through the slow path. 1967 * 1968 * The slow path is the current xfs_mod_incore_sb() function. This means that 1969 * when we disable a per-cpu counter, we need to drain it's resources back to 1970 * the global superblock. We do this after disabling the counter to prevent 1971 * more threads from queueing up on the counter. 1972 * 1973 * Essentially, this means that we still need a lock in the fast path to enable 1974 * synchronisation between the global counters and the per-cpu counters. This 1975 * is not a problem because the lock will be local to a CPU almost all the time 1976 * and have little contention except when we get to ENOSPC conditions. 1977 * 1978 * Basically, this lock becomes a barrier that enables us to lock out the fast 1979 * path while we do things like enabling and disabling counters and 1980 * synchronising the counters. 1981 * 1982 * Locking rules: 1983 * 1984 * 1. m_sb_lock before picking up per-cpu locks 1985 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1986 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1987 * 4. modifying per-cpu counters requires holding per-cpu lock 1988 * 5. modifying global counters requires holding m_sb_lock 1989 * 6. enabling or disabling a counter requires holding the m_sb_lock 1990 * and _none_ of the per-cpu locks. 1991 * 1992 * Disabled counters are only ever re-enabled by a balance operation 1993 * that results in more free resources per CPU than a given threshold. 1994 * To ensure counters don't remain disabled, they are rebalanced when 1995 * the global resource goes above a higher threshold (i.e. some hysteresis 1996 * is present to prevent thrashing). 1997 */ 1998 1999 #ifdef CONFIG_HOTPLUG_CPU 2000 /* 2001 * hot-plug CPU notifier support. 2002 * 2003 * We need a notifier per filesystem as we need to be able to identify 2004 * the filesystem to balance the counters out. This is achieved by 2005 * having a notifier block embedded in the xfs_mount_t and doing pointer 2006 * magic to get the mount pointer from the notifier block address. 2007 */ 2008 STATIC int 2009 xfs_icsb_cpu_notify( 2010 struct notifier_block *nfb, 2011 unsigned long action, 2012 void *hcpu) 2013 { 2014 xfs_icsb_cnts_t *cntp; 2015 xfs_mount_t *mp; 2016 2017 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2018 cntp = (xfs_icsb_cnts_t *) 2019 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2020 switch (action) { 2021 case CPU_UP_PREPARE: 2022 case CPU_UP_PREPARE_FROZEN: 2023 /* Easy Case - initialize the area and locks, and 2024 * then rebalance when online does everything else for us. */ 2025 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2026 break; 2027 case CPU_ONLINE: 2028 case CPU_ONLINE_FROZEN: 2029 xfs_icsb_lock(mp); 2030 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2031 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2032 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2033 xfs_icsb_unlock(mp); 2034 break; 2035 case CPU_DEAD: 2036 case CPU_DEAD_FROZEN: 2037 /* Disable all the counters, then fold the dead cpu's 2038 * count into the total on the global superblock and 2039 * re-enable the counters. */ 2040 xfs_icsb_lock(mp); 2041 spin_lock(&mp->m_sb_lock); 2042 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2043 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2044 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2045 2046 mp->m_sb.sb_icount += cntp->icsb_icount; 2047 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2048 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2049 2050 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2051 2052 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2053 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2054 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2055 spin_unlock(&mp->m_sb_lock); 2056 xfs_icsb_unlock(mp); 2057 break; 2058 } 2059 2060 return NOTIFY_OK; 2061 } 2062 #endif /* CONFIG_HOTPLUG_CPU */ 2063 2064 int 2065 xfs_icsb_init_counters( 2066 xfs_mount_t *mp) 2067 { 2068 xfs_icsb_cnts_t *cntp; 2069 int i; 2070 2071 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2072 if (mp->m_sb_cnts == NULL) 2073 return -ENOMEM; 2074 2075 #ifdef CONFIG_HOTPLUG_CPU 2076 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2077 mp->m_icsb_notifier.priority = 0; 2078 register_hotcpu_notifier(&mp->m_icsb_notifier); 2079 #endif /* CONFIG_HOTPLUG_CPU */ 2080 2081 for_each_online_cpu(i) { 2082 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2083 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2084 } 2085 2086 mutex_init(&mp->m_icsb_mutex); 2087 2088 /* 2089 * start with all counters disabled so that the 2090 * initial balance kicks us off correctly 2091 */ 2092 mp->m_icsb_counters = -1; 2093 return 0; 2094 } 2095 2096 void 2097 xfs_icsb_reinit_counters( 2098 xfs_mount_t *mp) 2099 { 2100 xfs_icsb_lock(mp); 2101 /* 2102 * start with all counters disabled so that the 2103 * initial balance kicks us off correctly 2104 */ 2105 mp->m_icsb_counters = -1; 2106 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2107 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2108 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2109 xfs_icsb_unlock(mp); 2110 } 2111 2112 STATIC void 2113 xfs_icsb_destroy_counters( 2114 xfs_mount_t *mp) 2115 { 2116 if (mp->m_sb_cnts) { 2117 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2118 free_percpu(mp->m_sb_cnts); 2119 } 2120 mutex_destroy(&mp->m_icsb_mutex); 2121 } 2122 2123 STATIC_INLINE void 2124 xfs_icsb_lock_cntr( 2125 xfs_icsb_cnts_t *icsbp) 2126 { 2127 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2128 ndelay(1000); 2129 } 2130 } 2131 2132 STATIC_INLINE void 2133 xfs_icsb_unlock_cntr( 2134 xfs_icsb_cnts_t *icsbp) 2135 { 2136 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2137 } 2138 2139 2140 STATIC_INLINE void 2141 xfs_icsb_lock_all_counters( 2142 xfs_mount_t *mp) 2143 { 2144 xfs_icsb_cnts_t *cntp; 2145 int i; 2146 2147 for_each_online_cpu(i) { 2148 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2149 xfs_icsb_lock_cntr(cntp); 2150 } 2151 } 2152 2153 STATIC_INLINE void 2154 xfs_icsb_unlock_all_counters( 2155 xfs_mount_t *mp) 2156 { 2157 xfs_icsb_cnts_t *cntp; 2158 int i; 2159 2160 for_each_online_cpu(i) { 2161 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2162 xfs_icsb_unlock_cntr(cntp); 2163 } 2164 } 2165 2166 STATIC void 2167 xfs_icsb_count( 2168 xfs_mount_t *mp, 2169 xfs_icsb_cnts_t *cnt, 2170 int flags) 2171 { 2172 xfs_icsb_cnts_t *cntp; 2173 int i; 2174 2175 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2176 2177 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2178 xfs_icsb_lock_all_counters(mp); 2179 2180 for_each_online_cpu(i) { 2181 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2182 cnt->icsb_icount += cntp->icsb_icount; 2183 cnt->icsb_ifree += cntp->icsb_ifree; 2184 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2185 } 2186 2187 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2188 xfs_icsb_unlock_all_counters(mp); 2189 } 2190 2191 STATIC int 2192 xfs_icsb_counter_disabled( 2193 xfs_mount_t *mp, 2194 xfs_sb_field_t field) 2195 { 2196 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2197 return test_bit(field, &mp->m_icsb_counters); 2198 } 2199 2200 STATIC void 2201 xfs_icsb_disable_counter( 2202 xfs_mount_t *mp, 2203 xfs_sb_field_t field) 2204 { 2205 xfs_icsb_cnts_t cnt; 2206 2207 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2208 2209 /* 2210 * If we are already disabled, then there is nothing to do 2211 * here. We check before locking all the counters to avoid 2212 * the expensive lock operation when being called in the 2213 * slow path and the counter is already disabled. This is 2214 * safe because the only time we set or clear this state is under 2215 * the m_icsb_mutex. 2216 */ 2217 if (xfs_icsb_counter_disabled(mp, field)) 2218 return; 2219 2220 xfs_icsb_lock_all_counters(mp); 2221 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2222 /* drain back to superblock */ 2223 2224 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2225 switch(field) { 2226 case XFS_SBS_ICOUNT: 2227 mp->m_sb.sb_icount = cnt.icsb_icount; 2228 break; 2229 case XFS_SBS_IFREE: 2230 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2231 break; 2232 case XFS_SBS_FDBLOCKS: 2233 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2234 break; 2235 default: 2236 BUG(); 2237 } 2238 } 2239 2240 xfs_icsb_unlock_all_counters(mp); 2241 } 2242 2243 STATIC void 2244 xfs_icsb_enable_counter( 2245 xfs_mount_t *mp, 2246 xfs_sb_field_t field, 2247 uint64_t count, 2248 uint64_t resid) 2249 { 2250 xfs_icsb_cnts_t *cntp; 2251 int i; 2252 2253 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2254 2255 xfs_icsb_lock_all_counters(mp); 2256 for_each_online_cpu(i) { 2257 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2258 switch (field) { 2259 case XFS_SBS_ICOUNT: 2260 cntp->icsb_icount = count + resid; 2261 break; 2262 case XFS_SBS_IFREE: 2263 cntp->icsb_ifree = count + resid; 2264 break; 2265 case XFS_SBS_FDBLOCKS: 2266 cntp->icsb_fdblocks = count + resid; 2267 break; 2268 default: 2269 BUG(); 2270 break; 2271 } 2272 resid = 0; 2273 } 2274 clear_bit(field, &mp->m_icsb_counters); 2275 xfs_icsb_unlock_all_counters(mp); 2276 } 2277 2278 void 2279 xfs_icsb_sync_counters_locked( 2280 xfs_mount_t *mp, 2281 int flags) 2282 { 2283 xfs_icsb_cnts_t cnt; 2284 2285 xfs_icsb_count(mp, &cnt, flags); 2286 2287 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2288 mp->m_sb.sb_icount = cnt.icsb_icount; 2289 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2290 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2291 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2292 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2293 } 2294 2295 /* 2296 * Accurate update of per-cpu counters to incore superblock 2297 */ 2298 void 2299 xfs_icsb_sync_counters( 2300 xfs_mount_t *mp, 2301 int flags) 2302 { 2303 spin_lock(&mp->m_sb_lock); 2304 xfs_icsb_sync_counters_locked(mp, flags); 2305 spin_unlock(&mp->m_sb_lock); 2306 } 2307 2308 /* 2309 * Balance and enable/disable counters as necessary. 2310 * 2311 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2312 * chosen to be the same number as single on disk allocation chunk per CPU, and 2313 * free blocks is something far enough zero that we aren't going thrash when we 2314 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2315 * prevent looping endlessly when xfs_alloc_space asks for more than will 2316 * be distributed to a single CPU but each CPU has enough blocks to be 2317 * reenabled. 2318 * 2319 * Note that we can be called when counters are already disabled. 2320 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2321 * prevent locking every per-cpu counter needlessly. 2322 */ 2323 2324 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2325 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2326 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2327 STATIC void 2328 xfs_icsb_balance_counter_locked( 2329 xfs_mount_t *mp, 2330 xfs_sb_field_t field, 2331 int min_per_cpu) 2332 { 2333 uint64_t count, resid; 2334 int weight = num_online_cpus(); 2335 uint64_t min = (uint64_t)min_per_cpu; 2336 2337 /* disable counter and sync counter */ 2338 xfs_icsb_disable_counter(mp, field); 2339 2340 /* update counters - first CPU gets residual*/ 2341 switch (field) { 2342 case XFS_SBS_ICOUNT: 2343 count = mp->m_sb.sb_icount; 2344 resid = do_div(count, weight); 2345 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2346 return; 2347 break; 2348 case XFS_SBS_IFREE: 2349 count = mp->m_sb.sb_ifree; 2350 resid = do_div(count, weight); 2351 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2352 return; 2353 break; 2354 case XFS_SBS_FDBLOCKS: 2355 count = mp->m_sb.sb_fdblocks; 2356 resid = do_div(count, weight); 2357 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2358 return; 2359 break; 2360 default: 2361 BUG(); 2362 count = resid = 0; /* quiet, gcc */ 2363 break; 2364 } 2365 2366 xfs_icsb_enable_counter(mp, field, count, resid); 2367 } 2368 2369 STATIC void 2370 xfs_icsb_balance_counter( 2371 xfs_mount_t *mp, 2372 xfs_sb_field_t fields, 2373 int min_per_cpu) 2374 { 2375 spin_lock(&mp->m_sb_lock); 2376 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2377 spin_unlock(&mp->m_sb_lock); 2378 } 2379 2380 STATIC int 2381 xfs_icsb_modify_counters( 2382 xfs_mount_t *mp, 2383 xfs_sb_field_t field, 2384 int64_t delta, 2385 int rsvd) 2386 { 2387 xfs_icsb_cnts_t *icsbp; 2388 long long lcounter; /* long counter for 64 bit fields */ 2389 int cpu, ret = 0; 2390 2391 might_sleep(); 2392 again: 2393 cpu = get_cpu(); 2394 icsbp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, cpu); 2395 2396 /* 2397 * if the counter is disabled, go to slow path 2398 */ 2399 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2400 goto slow_path; 2401 xfs_icsb_lock_cntr(icsbp); 2402 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2403 xfs_icsb_unlock_cntr(icsbp); 2404 goto slow_path; 2405 } 2406 2407 switch (field) { 2408 case XFS_SBS_ICOUNT: 2409 lcounter = icsbp->icsb_icount; 2410 lcounter += delta; 2411 if (unlikely(lcounter < 0)) 2412 goto balance_counter; 2413 icsbp->icsb_icount = lcounter; 2414 break; 2415 2416 case XFS_SBS_IFREE: 2417 lcounter = icsbp->icsb_ifree; 2418 lcounter += delta; 2419 if (unlikely(lcounter < 0)) 2420 goto balance_counter; 2421 icsbp->icsb_ifree = lcounter; 2422 break; 2423 2424 case XFS_SBS_FDBLOCKS: 2425 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2426 2427 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2428 lcounter += delta; 2429 if (unlikely(lcounter < 0)) 2430 goto balance_counter; 2431 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2432 break; 2433 default: 2434 BUG(); 2435 break; 2436 } 2437 xfs_icsb_unlock_cntr(icsbp); 2438 put_cpu(); 2439 return 0; 2440 2441 slow_path: 2442 put_cpu(); 2443 2444 /* 2445 * serialise with a mutex so we don't burn lots of cpu on 2446 * the superblock lock. We still need to hold the superblock 2447 * lock, however, when we modify the global structures. 2448 */ 2449 xfs_icsb_lock(mp); 2450 2451 /* 2452 * Now running atomically. 2453 * 2454 * If the counter is enabled, someone has beaten us to rebalancing. 2455 * Drop the lock and try again in the fast path.... 2456 */ 2457 if (!(xfs_icsb_counter_disabled(mp, field))) { 2458 xfs_icsb_unlock(mp); 2459 goto again; 2460 } 2461 2462 /* 2463 * The counter is currently disabled. Because we are 2464 * running atomically here, we know a rebalance cannot 2465 * be in progress. Hence we can go straight to operating 2466 * on the global superblock. We do not call xfs_mod_incore_sb() 2467 * here even though we need to get the m_sb_lock. Doing so 2468 * will cause us to re-enter this function and deadlock. 2469 * Hence we get the m_sb_lock ourselves and then call 2470 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2471 * directly on the global counters. 2472 */ 2473 spin_lock(&mp->m_sb_lock); 2474 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2475 spin_unlock(&mp->m_sb_lock); 2476 2477 /* 2478 * Now that we've modified the global superblock, we 2479 * may be able to re-enable the distributed counters 2480 * (e.g. lots of space just got freed). After that 2481 * we are done. 2482 */ 2483 if (ret != ENOSPC) 2484 xfs_icsb_balance_counter(mp, field, 0); 2485 xfs_icsb_unlock(mp); 2486 return ret; 2487 2488 balance_counter: 2489 xfs_icsb_unlock_cntr(icsbp); 2490 put_cpu(); 2491 2492 /* 2493 * We may have multiple threads here if multiple per-cpu 2494 * counters run dry at the same time. This will mean we can 2495 * do more balances than strictly necessary but it is not 2496 * the common slowpath case. 2497 */ 2498 xfs_icsb_lock(mp); 2499 2500 /* 2501 * running atomically. 2502 * 2503 * This will leave the counter in the correct state for future 2504 * accesses. After the rebalance, we simply try again and our retry 2505 * will either succeed through the fast path or slow path without 2506 * another balance operation being required. 2507 */ 2508 xfs_icsb_balance_counter(mp, field, delta); 2509 xfs_icsb_unlock(mp); 2510 goto again; 2511 } 2512 2513 #endif 2514