xref: /openbmc/linux/fs/xfs/xfs_mount.c (revision 2223cbec)
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_dir2.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_dinode.h"
34 #include "xfs_inode.h"
35 #include "xfs_btree.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_alloc.h"
38 #include "xfs_rtalloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_error.h"
41 #include "xfs_quota.h"
42 #include "xfs_fsops.h"
43 #include "xfs_utils.h"
44 #include "xfs_trace.h"
45 
46 
47 #ifdef HAVE_PERCPU_SB
48 STATIC void	xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
49 						int);
50 STATIC void	xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
51 						int);
52 STATIC void	xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
53 #else
54 
55 #define xfs_icsb_balance_counter(mp, a, b)		do { } while (0)
56 #define xfs_icsb_balance_counter_locked(mp, a, b)	do { } while (0)
57 #endif
58 
59 static const struct {
60 	short offset;
61 	short type;	/* 0 = integer
62 			 * 1 = binary / string (no translation)
63 			 */
64 } xfs_sb_info[] = {
65     { offsetof(xfs_sb_t, sb_magicnum),   0 },
66     { offsetof(xfs_sb_t, sb_blocksize),  0 },
67     { offsetof(xfs_sb_t, sb_dblocks),    0 },
68     { offsetof(xfs_sb_t, sb_rblocks),    0 },
69     { offsetof(xfs_sb_t, sb_rextents),   0 },
70     { offsetof(xfs_sb_t, sb_uuid),       1 },
71     { offsetof(xfs_sb_t, sb_logstart),   0 },
72     { offsetof(xfs_sb_t, sb_rootino),    0 },
73     { offsetof(xfs_sb_t, sb_rbmino),     0 },
74     { offsetof(xfs_sb_t, sb_rsumino),    0 },
75     { offsetof(xfs_sb_t, sb_rextsize),   0 },
76     { offsetof(xfs_sb_t, sb_agblocks),   0 },
77     { offsetof(xfs_sb_t, sb_agcount),    0 },
78     { offsetof(xfs_sb_t, sb_rbmblocks),  0 },
79     { offsetof(xfs_sb_t, sb_logblocks),  0 },
80     { offsetof(xfs_sb_t, sb_versionnum), 0 },
81     { offsetof(xfs_sb_t, sb_sectsize),   0 },
82     { offsetof(xfs_sb_t, sb_inodesize),  0 },
83     { offsetof(xfs_sb_t, sb_inopblock),  0 },
84     { offsetof(xfs_sb_t, sb_fname[0]),   1 },
85     { offsetof(xfs_sb_t, sb_blocklog),   0 },
86     { offsetof(xfs_sb_t, sb_sectlog),    0 },
87     { offsetof(xfs_sb_t, sb_inodelog),   0 },
88     { offsetof(xfs_sb_t, sb_inopblog),   0 },
89     { offsetof(xfs_sb_t, sb_agblklog),   0 },
90     { offsetof(xfs_sb_t, sb_rextslog),   0 },
91     { offsetof(xfs_sb_t, sb_inprogress), 0 },
92     { offsetof(xfs_sb_t, sb_imax_pct),   0 },
93     { offsetof(xfs_sb_t, sb_icount),     0 },
94     { offsetof(xfs_sb_t, sb_ifree),      0 },
95     { offsetof(xfs_sb_t, sb_fdblocks),   0 },
96     { offsetof(xfs_sb_t, sb_frextents),  0 },
97     { offsetof(xfs_sb_t, sb_uquotino),   0 },
98     { offsetof(xfs_sb_t, sb_gquotino),   0 },
99     { offsetof(xfs_sb_t, sb_qflags),     0 },
100     { offsetof(xfs_sb_t, sb_flags),      0 },
101     { offsetof(xfs_sb_t, sb_shared_vn),  0 },
102     { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
103     { offsetof(xfs_sb_t, sb_unit),	 0 },
104     { offsetof(xfs_sb_t, sb_width),	 0 },
105     { offsetof(xfs_sb_t, sb_dirblklog),	 0 },
106     { offsetof(xfs_sb_t, sb_logsectlog), 0 },
107     { offsetof(xfs_sb_t, sb_logsectsize),0 },
108     { offsetof(xfs_sb_t, sb_logsunit),	 0 },
109     { offsetof(xfs_sb_t, sb_features2),	 0 },
110     { offsetof(xfs_sb_t, sb_bad_features2), 0 },
111     { sizeof(xfs_sb_t),			 0 }
112 };
113 
114 static DEFINE_MUTEX(xfs_uuid_table_mutex);
115 static int xfs_uuid_table_size;
116 static uuid_t *xfs_uuid_table;
117 
118 /*
119  * See if the UUID is unique among mounted XFS filesystems.
120  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
121  */
122 STATIC int
123 xfs_uuid_mount(
124 	struct xfs_mount	*mp)
125 {
126 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
127 	int			hole, i;
128 
129 	if (mp->m_flags & XFS_MOUNT_NOUUID)
130 		return 0;
131 
132 	if (uuid_is_nil(uuid)) {
133 		xfs_warn(mp, "Filesystem has nil UUID - can't mount");
134 		return XFS_ERROR(EINVAL);
135 	}
136 
137 	mutex_lock(&xfs_uuid_table_mutex);
138 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
139 		if (uuid_is_nil(&xfs_uuid_table[i])) {
140 			hole = i;
141 			continue;
142 		}
143 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
144 			goto out_duplicate;
145 	}
146 
147 	if (hole < 0) {
148 		xfs_uuid_table = kmem_realloc(xfs_uuid_table,
149 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
150 			xfs_uuid_table_size  * sizeof(*xfs_uuid_table),
151 			KM_SLEEP);
152 		hole = xfs_uuid_table_size++;
153 	}
154 	xfs_uuid_table[hole] = *uuid;
155 	mutex_unlock(&xfs_uuid_table_mutex);
156 
157 	return 0;
158 
159  out_duplicate:
160 	mutex_unlock(&xfs_uuid_table_mutex);
161 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
162 	return XFS_ERROR(EINVAL);
163 }
164 
165 STATIC void
166 xfs_uuid_unmount(
167 	struct xfs_mount	*mp)
168 {
169 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
170 	int			i;
171 
172 	if (mp->m_flags & XFS_MOUNT_NOUUID)
173 		return;
174 
175 	mutex_lock(&xfs_uuid_table_mutex);
176 	for (i = 0; i < xfs_uuid_table_size; i++) {
177 		if (uuid_is_nil(&xfs_uuid_table[i]))
178 			continue;
179 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
180 			continue;
181 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
182 		break;
183 	}
184 	ASSERT(i < xfs_uuid_table_size);
185 	mutex_unlock(&xfs_uuid_table_mutex);
186 }
187 
188 
189 /*
190  * Reference counting access wrappers to the perag structures.
191  * Because we never free per-ag structures, the only thing we
192  * have to protect against changes is the tree structure itself.
193  */
194 struct xfs_perag *
195 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
196 {
197 	struct xfs_perag	*pag;
198 	int			ref = 0;
199 
200 	rcu_read_lock();
201 	pag = radix_tree_lookup(&mp->m_perag_tree, agno);
202 	if (pag) {
203 		ASSERT(atomic_read(&pag->pag_ref) >= 0);
204 		ref = atomic_inc_return(&pag->pag_ref);
205 	}
206 	rcu_read_unlock();
207 	trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
208 	return pag;
209 }
210 
211 /*
212  * search from @first to find the next perag with the given tag set.
213  */
214 struct xfs_perag *
215 xfs_perag_get_tag(
216 	struct xfs_mount	*mp,
217 	xfs_agnumber_t		first,
218 	int			tag)
219 {
220 	struct xfs_perag	*pag;
221 	int			found;
222 	int			ref;
223 
224 	rcu_read_lock();
225 	found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
226 					(void **)&pag, first, 1, tag);
227 	if (found <= 0) {
228 		rcu_read_unlock();
229 		return NULL;
230 	}
231 	ref = atomic_inc_return(&pag->pag_ref);
232 	rcu_read_unlock();
233 	trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
234 	return pag;
235 }
236 
237 void
238 xfs_perag_put(struct xfs_perag *pag)
239 {
240 	int	ref;
241 
242 	ASSERT(atomic_read(&pag->pag_ref) > 0);
243 	ref = atomic_dec_return(&pag->pag_ref);
244 	trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
245 }
246 
247 STATIC void
248 __xfs_free_perag(
249 	struct rcu_head	*head)
250 {
251 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
252 
253 	ASSERT(atomic_read(&pag->pag_ref) == 0);
254 	kmem_free(pag);
255 }
256 
257 /*
258  * Free up the per-ag resources associated with the mount structure.
259  */
260 STATIC void
261 xfs_free_perag(
262 	xfs_mount_t	*mp)
263 {
264 	xfs_agnumber_t	agno;
265 	struct xfs_perag *pag;
266 
267 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
268 		spin_lock(&mp->m_perag_lock);
269 		pag = radix_tree_delete(&mp->m_perag_tree, agno);
270 		spin_unlock(&mp->m_perag_lock);
271 		ASSERT(pag);
272 		ASSERT(atomic_read(&pag->pag_ref) == 0);
273 		call_rcu(&pag->rcu_head, __xfs_free_perag);
274 	}
275 }
276 
277 /*
278  * Check size of device based on the (data/realtime) block count.
279  * Note: this check is used by the growfs code as well as mount.
280  */
281 int
282 xfs_sb_validate_fsb_count(
283 	xfs_sb_t	*sbp,
284 	__uint64_t	nblocks)
285 {
286 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
287 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
288 
289 #if XFS_BIG_BLKNOS     /* Limited by ULONG_MAX of page cache index */
290 	if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
291 		return EFBIG;
292 #else                  /* Limited by UINT_MAX of sectors */
293 	if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
294 		return EFBIG;
295 #endif
296 	return 0;
297 }
298 
299 /*
300  * Check the validity of the SB found.
301  */
302 STATIC int
303 xfs_mount_validate_sb(
304 	xfs_mount_t	*mp,
305 	xfs_sb_t	*sbp,
306 	int		flags)
307 {
308 	int		loud = !(flags & XFS_MFSI_QUIET);
309 
310 	/*
311 	 * If the log device and data device have the
312 	 * same device number, the log is internal.
313 	 * Consequently, the sb_logstart should be non-zero.  If
314 	 * we have a zero sb_logstart in this case, we may be trying to mount
315 	 * a volume filesystem in a non-volume manner.
316 	 */
317 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 		if (loud)
319 			xfs_warn(mp, "bad magic number");
320 		return XFS_ERROR(EWRONGFS);
321 	}
322 
323 	if (!xfs_sb_good_version(sbp)) {
324 		if (loud)
325 			xfs_warn(mp, "bad version");
326 		return XFS_ERROR(EWRONGFS);
327 	}
328 
329 	if (unlikely(
330 	    sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
331 		if (loud)
332 			xfs_warn(mp,
333 		"filesystem is marked as having an external log; "
334 		"specify logdev on the mount command line.");
335 		return XFS_ERROR(EINVAL);
336 	}
337 
338 	if (unlikely(
339 	    sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
340 		if (loud)
341 			xfs_warn(mp,
342 		"filesystem is marked as having an internal log; "
343 		"do not specify logdev on the mount command line.");
344 		return XFS_ERROR(EINVAL);
345 	}
346 
347 	/*
348 	 * More sanity checking.  Most of these were stolen directly from
349 	 * xfs_repair.
350 	 */
351 	if (unlikely(
352 	    sbp->sb_agcount <= 0					||
353 	    sbp->sb_sectsize < XFS_MIN_SECTORSIZE			||
354 	    sbp->sb_sectsize > XFS_MAX_SECTORSIZE			||
355 	    sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG			||
356 	    sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG			||
357 	    sbp->sb_sectsize != (1 << sbp->sb_sectlog)			||
358 	    sbp->sb_blocksize < XFS_MIN_BLOCKSIZE			||
359 	    sbp->sb_blocksize > XFS_MAX_BLOCKSIZE			||
360 	    sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG			||
361 	    sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG			||
362 	    sbp->sb_blocksize != (1 << sbp->sb_blocklog)		||
363 	    sbp->sb_inodesize < XFS_DINODE_MIN_SIZE			||
364 	    sbp->sb_inodesize > XFS_DINODE_MAX_SIZE			||
365 	    sbp->sb_inodelog < XFS_DINODE_MIN_LOG			||
366 	    sbp->sb_inodelog > XFS_DINODE_MAX_LOG			||
367 	    sbp->sb_inodesize != (1 << sbp->sb_inodelog)		||
368 	    (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog)	||
369 	    (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE)	||
370 	    (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE)	||
371 	    (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */)	||
372 	    sbp->sb_dblocks == 0					||
373 	    sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp)			||
374 	    sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
375 		if (loud)
376 			XFS_CORRUPTION_ERROR("SB sanity check failed",
377 				XFS_ERRLEVEL_LOW, mp, sbp);
378 		return XFS_ERROR(EFSCORRUPTED);
379 	}
380 
381 	/*
382 	 * Until this is fixed only page-sized or smaller data blocks work.
383 	 */
384 	if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
385 		if (loud) {
386 			xfs_warn(mp,
387 		"File system with blocksize %d bytes. "
388 		"Only pagesize (%ld) or less will currently work.",
389 				sbp->sb_blocksize, PAGE_SIZE);
390 		}
391 		return XFS_ERROR(ENOSYS);
392 	}
393 
394 	/*
395 	 * Currently only very few inode sizes are supported.
396 	 */
397 	switch (sbp->sb_inodesize) {
398 	case 256:
399 	case 512:
400 	case 1024:
401 	case 2048:
402 		break;
403 	default:
404 		if (loud)
405 			xfs_warn(mp, "inode size of %d bytes not supported",
406 				sbp->sb_inodesize);
407 		return XFS_ERROR(ENOSYS);
408 	}
409 
410 	if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
411 	    xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
412 		if (loud)
413 			xfs_warn(mp,
414 		"file system too large to be mounted on this system.");
415 		return XFS_ERROR(EFBIG);
416 	}
417 
418 	if (unlikely(sbp->sb_inprogress)) {
419 		if (loud)
420 			xfs_warn(mp, "file system busy");
421 		return XFS_ERROR(EFSCORRUPTED);
422 	}
423 
424 	/*
425 	 * Version 1 directory format has never worked on Linux.
426 	 */
427 	if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
428 		if (loud)
429 			xfs_warn(mp,
430 				"file system using version 1 directory format");
431 		return XFS_ERROR(ENOSYS);
432 	}
433 
434 	return 0;
435 }
436 
437 int
438 xfs_initialize_perag(
439 	xfs_mount_t	*mp,
440 	xfs_agnumber_t	agcount,
441 	xfs_agnumber_t	*maxagi)
442 {
443 	xfs_agnumber_t	index;
444 	xfs_agnumber_t	first_initialised = 0;
445 	xfs_perag_t	*pag;
446 	xfs_agino_t	agino;
447 	xfs_ino_t	ino;
448 	xfs_sb_t	*sbp = &mp->m_sb;
449 	int		error = -ENOMEM;
450 
451 	/*
452 	 * Walk the current per-ag tree so we don't try to initialise AGs
453 	 * that already exist (growfs case). Allocate and insert all the
454 	 * AGs we don't find ready for initialisation.
455 	 */
456 	for (index = 0; index < agcount; index++) {
457 		pag = xfs_perag_get(mp, index);
458 		if (pag) {
459 			xfs_perag_put(pag);
460 			continue;
461 		}
462 		if (!first_initialised)
463 			first_initialised = index;
464 
465 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
466 		if (!pag)
467 			goto out_unwind;
468 		pag->pag_agno = index;
469 		pag->pag_mount = mp;
470 		spin_lock_init(&pag->pag_ici_lock);
471 		mutex_init(&pag->pag_ici_reclaim_lock);
472 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
473 		spin_lock_init(&pag->pag_buf_lock);
474 		pag->pag_buf_tree = RB_ROOT;
475 
476 		if (radix_tree_preload(GFP_NOFS))
477 			goto out_unwind;
478 
479 		spin_lock(&mp->m_perag_lock);
480 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
481 			BUG();
482 			spin_unlock(&mp->m_perag_lock);
483 			radix_tree_preload_end();
484 			error = -EEXIST;
485 			goto out_unwind;
486 		}
487 		spin_unlock(&mp->m_perag_lock);
488 		radix_tree_preload_end();
489 	}
490 
491 	/*
492 	 * If we mount with the inode64 option, or no inode overflows
493 	 * the legacy 32-bit address space clear the inode32 option.
494 	 */
495 	agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
496 	ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
497 
498 	if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
499 		mp->m_flags |= XFS_MOUNT_32BITINODES;
500 	else
501 		mp->m_flags &= ~XFS_MOUNT_32BITINODES;
502 
503 	if (mp->m_flags & XFS_MOUNT_32BITINODES)
504 		index = xfs_set_inode32(mp);
505 	else
506 		index = xfs_set_inode64(mp);
507 
508 	if (maxagi)
509 		*maxagi = index;
510 	return 0;
511 
512 out_unwind:
513 	kmem_free(pag);
514 	for (; index > first_initialised; index--) {
515 		pag = radix_tree_delete(&mp->m_perag_tree, index);
516 		kmem_free(pag);
517 	}
518 	return error;
519 }
520 
521 void
522 xfs_sb_from_disk(
523 	struct xfs_mount	*mp,
524 	xfs_dsb_t	*from)
525 {
526 	struct xfs_sb *to = &mp->m_sb;
527 
528 	to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
529 	to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
530 	to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
531 	to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
532 	to->sb_rextents = be64_to_cpu(from->sb_rextents);
533 	memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
534 	to->sb_logstart = be64_to_cpu(from->sb_logstart);
535 	to->sb_rootino = be64_to_cpu(from->sb_rootino);
536 	to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
537 	to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
538 	to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
539 	to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
540 	to->sb_agcount = be32_to_cpu(from->sb_agcount);
541 	to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
542 	to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
543 	to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
544 	to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
545 	to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
546 	to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
547 	memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
548 	to->sb_blocklog = from->sb_blocklog;
549 	to->sb_sectlog = from->sb_sectlog;
550 	to->sb_inodelog = from->sb_inodelog;
551 	to->sb_inopblog = from->sb_inopblog;
552 	to->sb_agblklog = from->sb_agblklog;
553 	to->sb_rextslog = from->sb_rextslog;
554 	to->sb_inprogress = from->sb_inprogress;
555 	to->sb_imax_pct = from->sb_imax_pct;
556 	to->sb_icount = be64_to_cpu(from->sb_icount);
557 	to->sb_ifree = be64_to_cpu(from->sb_ifree);
558 	to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
559 	to->sb_frextents = be64_to_cpu(from->sb_frextents);
560 	to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
561 	to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
562 	to->sb_qflags = be16_to_cpu(from->sb_qflags);
563 	to->sb_flags = from->sb_flags;
564 	to->sb_shared_vn = from->sb_shared_vn;
565 	to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
566 	to->sb_unit = be32_to_cpu(from->sb_unit);
567 	to->sb_width = be32_to_cpu(from->sb_width);
568 	to->sb_dirblklog = from->sb_dirblklog;
569 	to->sb_logsectlog = from->sb_logsectlog;
570 	to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
571 	to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
572 	to->sb_features2 = be32_to_cpu(from->sb_features2);
573 	to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
574 }
575 
576 /*
577  * Copy in core superblock to ondisk one.
578  *
579  * The fields argument is mask of superblock fields to copy.
580  */
581 void
582 xfs_sb_to_disk(
583 	xfs_dsb_t	*to,
584 	xfs_sb_t	*from,
585 	__int64_t	fields)
586 {
587 	xfs_caddr_t	to_ptr = (xfs_caddr_t)to;
588 	xfs_caddr_t	from_ptr = (xfs_caddr_t)from;
589 	xfs_sb_field_t	f;
590 	int		first;
591 	int		size;
592 
593 	ASSERT(fields);
594 	if (!fields)
595 		return;
596 
597 	while (fields) {
598 		f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
599 		first = xfs_sb_info[f].offset;
600 		size = xfs_sb_info[f + 1].offset - first;
601 
602 		ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
603 
604 		if (size == 1 || xfs_sb_info[f].type == 1) {
605 			memcpy(to_ptr + first, from_ptr + first, size);
606 		} else {
607 			switch (size) {
608 			case 2:
609 				*(__be16 *)(to_ptr + first) =
610 					cpu_to_be16(*(__u16 *)(from_ptr + first));
611 				break;
612 			case 4:
613 				*(__be32 *)(to_ptr + first) =
614 					cpu_to_be32(*(__u32 *)(from_ptr + first));
615 				break;
616 			case 8:
617 				*(__be64 *)(to_ptr + first) =
618 					cpu_to_be64(*(__u64 *)(from_ptr + first));
619 				break;
620 			default:
621 				ASSERT(0);
622 			}
623 		}
624 
625 		fields &= ~(1LL << f);
626 	}
627 }
628 
629 /*
630  * xfs_readsb
631  *
632  * Does the initial read of the superblock.
633  */
634 int
635 xfs_readsb(xfs_mount_t *mp, int flags)
636 {
637 	unsigned int	sector_size;
638 	xfs_buf_t	*bp;
639 	int		error;
640 	int		loud = !(flags & XFS_MFSI_QUIET);
641 
642 	ASSERT(mp->m_sb_bp == NULL);
643 	ASSERT(mp->m_ddev_targp != NULL);
644 
645 	/*
646 	 * Allocate a (locked) buffer to hold the superblock.
647 	 * This will be kept around at all times to optimize
648 	 * access to the superblock.
649 	 */
650 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
651 
652 reread:
653 	bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
654 					BTOBB(sector_size), 0);
655 	if (!bp) {
656 		if (loud)
657 			xfs_warn(mp, "SB buffer read failed");
658 		return EIO;
659 	}
660 
661 	/*
662 	 * Initialize the mount structure from the superblock.
663 	 * But first do some basic consistency checking.
664 	 */
665 	xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp));
666 	error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
667 	if (error) {
668 		if (loud)
669 			xfs_warn(mp, "SB validate failed");
670 		goto release_buf;
671 	}
672 
673 	/*
674 	 * We must be able to do sector-sized and sector-aligned IO.
675 	 */
676 	if (sector_size > mp->m_sb.sb_sectsize) {
677 		if (loud)
678 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
679 				sector_size, mp->m_sb.sb_sectsize);
680 		error = ENOSYS;
681 		goto release_buf;
682 	}
683 
684 	/*
685 	 * If device sector size is smaller than the superblock size,
686 	 * re-read the superblock so the buffer is correctly sized.
687 	 */
688 	if (sector_size < mp->m_sb.sb_sectsize) {
689 		xfs_buf_relse(bp);
690 		sector_size = mp->m_sb.sb_sectsize;
691 		goto reread;
692 	}
693 
694 	/* Initialize per-cpu counters */
695 	xfs_icsb_reinit_counters(mp);
696 
697 	mp->m_sb_bp = bp;
698 	xfs_buf_unlock(bp);
699 	return 0;
700 
701 release_buf:
702 	xfs_buf_relse(bp);
703 	return error;
704 }
705 
706 
707 /*
708  * xfs_mount_common
709  *
710  * Mount initialization code establishing various mount
711  * fields from the superblock associated with the given
712  * mount structure
713  */
714 STATIC void
715 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
716 {
717 	mp->m_agfrotor = mp->m_agirotor = 0;
718 	spin_lock_init(&mp->m_agirotor_lock);
719 	mp->m_maxagi = mp->m_sb.sb_agcount;
720 	mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
721 	mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
722 	mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
723 	mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
724 	mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
725 	mp->m_blockmask = sbp->sb_blocksize - 1;
726 	mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
727 	mp->m_blockwmask = mp->m_blockwsize - 1;
728 
729 	mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
730 	mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
731 	mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
732 	mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
733 
734 	mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
735 	mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
736 	mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
737 	mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
738 
739 	mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
740 	mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
741 	mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
742 	mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
743 
744 	mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
745 	mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
746 					sbp->sb_inopblock);
747 	mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
748 }
749 
750 /*
751  * xfs_initialize_perag_data
752  *
753  * Read in each per-ag structure so we can count up the number of
754  * allocated inodes, free inodes and used filesystem blocks as this
755  * information is no longer persistent in the superblock. Once we have
756  * this information, write it into the in-core superblock structure.
757  */
758 STATIC int
759 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
760 {
761 	xfs_agnumber_t	index;
762 	xfs_perag_t	*pag;
763 	xfs_sb_t	*sbp = &mp->m_sb;
764 	uint64_t	ifree = 0;
765 	uint64_t	ialloc = 0;
766 	uint64_t	bfree = 0;
767 	uint64_t	bfreelst = 0;
768 	uint64_t	btree = 0;
769 	int		error;
770 
771 	for (index = 0; index < agcount; index++) {
772 		/*
773 		 * read the agf, then the agi. This gets us
774 		 * all the information we need and populates the
775 		 * per-ag structures for us.
776 		 */
777 		error = xfs_alloc_pagf_init(mp, NULL, index, 0);
778 		if (error)
779 			return error;
780 
781 		error = xfs_ialloc_pagi_init(mp, NULL, index);
782 		if (error)
783 			return error;
784 		pag = xfs_perag_get(mp, index);
785 		ifree += pag->pagi_freecount;
786 		ialloc += pag->pagi_count;
787 		bfree += pag->pagf_freeblks;
788 		bfreelst += pag->pagf_flcount;
789 		btree += pag->pagf_btreeblks;
790 		xfs_perag_put(pag);
791 	}
792 	/*
793 	 * Overwrite incore superblock counters with just-read data
794 	 */
795 	spin_lock(&mp->m_sb_lock);
796 	sbp->sb_ifree = ifree;
797 	sbp->sb_icount = ialloc;
798 	sbp->sb_fdblocks = bfree + bfreelst + btree;
799 	spin_unlock(&mp->m_sb_lock);
800 
801 	/* Fixup the per-cpu counters as well. */
802 	xfs_icsb_reinit_counters(mp);
803 
804 	return 0;
805 }
806 
807 /*
808  * Update alignment values based on mount options and sb values
809  */
810 STATIC int
811 xfs_update_alignment(xfs_mount_t *mp)
812 {
813 	xfs_sb_t	*sbp = &(mp->m_sb);
814 
815 	if (mp->m_dalign) {
816 		/*
817 		 * If stripe unit and stripe width are not multiples
818 		 * of the fs blocksize turn off alignment.
819 		 */
820 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
821 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
822 			if (mp->m_flags & XFS_MOUNT_RETERR) {
823 				xfs_warn(mp, "alignment check failed: "
824 					 "(sunit/swidth vs. blocksize)");
825 				return XFS_ERROR(EINVAL);
826 			}
827 			mp->m_dalign = mp->m_swidth = 0;
828 		} else {
829 			/*
830 			 * Convert the stripe unit and width to FSBs.
831 			 */
832 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
833 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
834 				if (mp->m_flags & XFS_MOUNT_RETERR) {
835 					xfs_warn(mp, "alignment check failed: "
836 						 "(sunit/swidth vs. ag size)");
837 					return XFS_ERROR(EINVAL);
838 				}
839 				xfs_warn(mp,
840 		"stripe alignment turned off: sunit(%d)/swidth(%d) "
841 		"incompatible with agsize(%d)",
842 					mp->m_dalign, mp->m_swidth,
843 					sbp->sb_agblocks);
844 
845 				mp->m_dalign = 0;
846 				mp->m_swidth = 0;
847 			} else if (mp->m_dalign) {
848 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
849 			} else {
850 				if (mp->m_flags & XFS_MOUNT_RETERR) {
851 					xfs_warn(mp, "alignment check failed: "
852 						"sunit(%d) less than bsize(%d)",
853 						mp->m_dalign,
854 						mp->m_blockmask +1);
855 					return XFS_ERROR(EINVAL);
856 				}
857 				mp->m_swidth = 0;
858 			}
859 		}
860 
861 		/*
862 		 * Update superblock with new values
863 		 * and log changes
864 		 */
865 		if (xfs_sb_version_hasdalign(sbp)) {
866 			if (sbp->sb_unit != mp->m_dalign) {
867 				sbp->sb_unit = mp->m_dalign;
868 				mp->m_update_flags |= XFS_SB_UNIT;
869 			}
870 			if (sbp->sb_width != mp->m_swidth) {
871 				sbp->sb_width = mp->m_swidth;
872 				mp->m_update_flags |= XFS_SB_WIDTH;
873 			}
874 		}
875 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
876 		    xfs_sb_version_hasdalign(&mp->m_sb)) {
877 			mp->m_dalign = sbp->sb_unit;
878 			mp->m_swidth = sbp->sb_width;
879 	}
880 
881 	return 0;
882 }
883 
884 /*
885  * Set the maximum inode count for this filesystem
886  */
887 STATIC void
888 xfs_set_maxicount(xfs_mount_t *mp)
889 {
890 	xfs_sb_t	*sbp = &(mp->m_sb);
891 	__uint64_t	icount;
892 
893 	if (sbp->sb_imax_pct) {
894 		/*
895 		 * Make sure the maximum inode count is a multiple
896 		 * of the units we allocate inodes in.
897 		 */
898 		icount = sbp->sb_dblocks * sbp->sb_imax_pct;
899 		do_div(icount, 100);
900 		do_div(icount, mp->m_ialloc_blks);
901 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
902 				   sbp->sb_inopblog;
903 	} else {
904 		mp->m_maxicount = 0;
905 	}
906 }
907 
908 /*
909  * Set the default minimum read and write sizes unless
910  * already specified in a mount option.
911  * We use smaller I/O sizes when the file system
912  * is being used for NFS service (wsync mount option).
913  */
914 STATIC void
915 xfs_set_rw_sizes(xfs_mount_t *mp)
916 {
917 	xfs_sb_t	*sbp = &(mp->m_sb);
918 	int		readio_log, writeio_log;
919 
920 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
921 		if (mp->m_flags & XFS_MOUNT_WSYNC) {
922 			readio_log = XFS_WSYNC_READIO_LOG;
923 			writeio_log = XFS_WSYNC_WRITEIO_LOG;
924 		} else {
925 			readio_log = XFS_READIO_LOG_LARGE;
926 			writeio_log = XFS_WRITEIO_LOG_LARGE;
927 		}
928 	} else {
929 		readio_log = mp->m_readio_log;
930 		writeio_log = mp->m_writeio_log;
931 	}
932 
933 	if (sbp->sb_blocklog > readio_log) {
934 		mp->m_readio_log = sbp->sb_blocklog;
935 	} else {
936 		mp->m_readio_log = readio_log;
937 	}
938 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
939 	if (sbp->sb_blocklog > writeio_log) {
940 		mp->m_writeio_log = sbp->sb_blocklog;
941 	} else {
942 		mp->m_writeio_log = writeio_log;
943 	}
944 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
945 }
946 
947 /*
948  * precalculate the low space thresholds for dynamic speculative preallocation.
949  */
950 void
951 xfs_set_low_space_thresholds(
952 	struct xfs_mount	*mp)
953 {
954 	int i;
955 
956 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
957 		__uint64_t space = mp->m_sb.sb_dblocks;
958 
959 		do_div(space, 100);
960 		mp->m_low_space[i] = space * (i + 1);
961 	}
962 }
963 
964 
965 /*
966  * Set whether we're using inode alignment.
967  */
968 STATIC void
969 xfs_set_inoalignment(xfs_mount_t *mp)
970 {
971 	if (xfs_sb_version_hasalign(&mp->m_sb) &&
972 	    mp->m_sb.sb_inoalignmt >=
973 	    XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
974 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
975 	else
976 		mp->m_inoalign_mask = 0;
977 	/*
978 	 * If we are using stripe alignment, check whether
979 	 * the stripe unit is a multiple of the inode alignment
980 	 */
981 	if (mp->m_dalign && mp->m_inoalign_mask &&
982 	    !(mp->m_dalign & mp->m_inoalign_mask))
983 		mp->m_sinoalign = mp->m_dalign;
984 	else
985 		mp->m_sinoalign = 0;
986 }
987 
988 /*
989  * Check that the data (and log if separate) are an ok size.
990  */
991 STATIC int
992 xfs_check_sizes(xfs_mount_t *mp)
993 {
994 	xfs_buf_t	*bp;
995 	xfs_daddr_t	d;
996 
997 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
998 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
999 		xfs_warn(mp, "filesystem size mismatch detected");
1000 		return XFS_ERROR(EFBIG);
1001 	}
1002 	bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1003 					d - XFS_FSS_TO_BB(mp, 1),
1004 					XFS_FSS_TO_BB(mp, 1), 0);
1005 	if (!bp) {
1006 		xfs_warn(mp, "last sector read failed");
1007 		return EIO;
1008 	}
1009 	xfs_buf_relse(bp);
1010 
1011 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
1012 		d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1013 		if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1014 			xfs_warn(mp, "log size mismatch detected");
1015 			return XFS_ERROR(EFBIG);
1016 		}
1017 		bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1018 					d - XFS_FSB_TO_BB(mp, 1),
1019 					XFS_FSB_TO_BB(mp, 1), 0);
1020 		if (!bp) {
1021 			xfs_warn(mp, "log device read failed");
1022 			return EIO;
1023 		}
1024 		xfs_buf_relse(bp);
1025 	}
1026 	return 0;
1027 }
1028 
1029 /*
1030  * Clear the quotaflags in memory and in the superblock.
1031  */
1032 int
1033 xfs_mount_reset_sbqflags(
1034 	struct xfs_mount	*mp)
1035 {
1036 	int			error;
1037 	struct xfs_trans	*tp;
1038 
1039 	mp->m_qflags = 0;
1040 
1041 	/*
1042 	 * It is OK to look at sb_qflags here in mount path,
1043 	 * without m_sb_lock.
1044 	 */
1045 	if (mp->m_sb.sb_qflags == 0)
1046 		return 0;
1047 	spin_lock(&mp->m_sb_lock);
1048 	mp->m_sb.sb_qflags = 0;
1049 	spin_unlock(&mp->m_sb_lock);
1050 
1051 	/*
1052 	 * If the fs is readonly, let the incore superblock run
1053 	 * with quotas off but don't flush the update out to disk
1054 	 */
1055 	if (mp->m_flags & XFS_MOUNT_RDONLY)
1056 		return 0;
1057 
1058 	tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1059 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1060 				      XFS_DEFAULT_LOG_COUNT);
1061 	if (error) {
1062 		xfs_trans_cancel(tp, 0);
1063 		xfs_alert(mp, "%s: Superblock update failed!", __func__);
1064 		return error;
1065 	}
1066 
1067 	xfs_mod_sb(tp, XFS_SB_QFLAGS);
1068 	return xfs_trans_commit(tp, 0);
1069 }
1070 
1071 __uint64_t
1072 xfs_default_resblks(xfs_mount_t *mp)
1073 {
1074 	__uint64_t resblks;
1075 
1076 	/*
1077 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
1078 	 * smaller.  This is intended to cover concurrent allocation
1079 	 * transactions when we initially hit enospc. These each require a 4
1080 	 * block reservation. Hence by default we cover roughly 2000 concurrent
1081 	 * allocation reservations.
1082 	 */
1083 	resblks = mp->m_sb.sb_dblocks;
1084 	do_div(resblks, 20);
1085 	resblks = min_t(__uint64_t, resblks, 8192);
1086 	return resblks;
1087 }
1088 
1089 /*
1090  * This function does the following on an initial mount of a file system:
1091  *	- reads the superblock from disk and init the mount struct
1092  *	- if we're a 32-bit kernel, do a size check on the superblock
1093  *		so we don't mount terabyte filesystems
1094  *	- init mount struct realtime fields
1095  *	- allocate inode hash table for fs
1096  *	- init directory manager
1097  *	- perform recovery and init the log manager
1098  */
1099 int
1100 xfs_mountfs(
1101 	xfs_mount_t	*mp)
1102 {
1103 	xfs_sb_t	*sbp = &(mp->m_sb);
1104 	xfs_inode_t	*rip;
1105 	__uint64_t	resblks;
1106 	uint		quotamount = 0;
1107 	uint		quotaflags = 0;
1108 	int		error = 0;
1109 
1110 	xfs_mount_common(mp, sbp);
1111 
1112 	/*
1113 	 * Check for a mismatched features2 values.  Older kernels
1114 	 * read & wrote into the wrong sb offset for sb_features2
1115 	 * on some platforms due to xfs_sb_t not being 64bit size aligned
1116 	 * when sb_features2 was added, which made older superblock
1117 	 * reading/writing routines swap it as a 64-bit value.
1118 	 *
1119 	 * For backwards compatibility, we make both slots equal.
1120 	 *
1121 	 * If we detect a mismatched field, we OR the set bits into the
1122 	 * existing features2 field in case it has already been modified; we
1123 	 * don't want to lose any features.  We then update the bad location
1124 	 * with the ORed value so that older kernels will see any features2
1125 	 * flags, and mark the two fields as needing updates once the
1126 	 * transaction subsystem is online.
1127 	 */
1128 	if (xfs_sb_has_mismatched_features2(sbp)) {
1129 		xfs_warn(mp, "correcting sb_features alignment problem");
1130 		sbp->sb_features2 |= sbp->sb_bad_features2;
1131 		sbp->sb_bad_features2 = sbp->sb_features2;
1132 		mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
1133 
1134 		/*
1135 		 * Re-check for ATTR2 in case it was found in bad_features2
1136 		 * slot.
1137 		 */
1138 		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1139 		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
1140 			mp->m_flags |= XFS_MOUNT_ATTR2;
1141 	}
1142 
1143 	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1144 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1145 		xfs_sb_version_removeattr2(&mp->m_sb);
1146 		mp->m_update_flags |= XFS_SB_FEATURES2;
1147 
1148 		/* update sb_versionnum for the clearing of the morebits */
1149 		if (!sbp->sb_features2)
1150 			mp->m_update_flags |= XFS_SB_VERSIONNUM;
1151 	}
1152 
1153 	/*
1154 	 * Check if sb_agblocks is aligned at stripe boundary
1155 	 * If sb_agblocks is NOT aligned turn off m_dalign since
1156 	 * allocator alignment is within an ag, therefore ag has
1157 	 * to be aligned at stripe boundary.
1158 	 */
1159 	error = xfs_update_alignment(mp);
1160 	if (error)
1161 		goto out;
1162 
1163 	xfs_alloc_compute_maxlevels(mp);
1164 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1165 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1166 	xfs_ialloc_compute_maxlevels(mp);
1167 
1168 	xfs_set_maxicount(mp);
1169 
1170 	error = xfs_uuid_mount(mp);
1171 	if (error)
1172 		goto out;
1173 
1174 	/*
1175 	 * Set the minimum read and write sizes
1176 	 */
1177 	xfs_set_rw_sizes(mp);
1178 
1179 	/* set the low space thresholds for dynamic preallocation */
1180 	xfs_set_low_space_thresholds(mp);
1181 
1182 	/*
1183 	 * Set the inode cluster size.
1184 	 * This may still be overridden by the file system
1185 	 * block size if it is larger than the chosen cluster size.
1186 	 */
1187 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1188 
1189 	/*
1190 	 * Set inode alignment fields
1191 	 */
1192 	xfs_set_inoalignment(mp);
1193 
1194 	/*
1195 	 * Check that the data (and log if separate) are an ok size.
1196 	 */
1197 	error = xfs_check_sizes(mp);
1198 	if (error)
1199 		goto out_remove_uuid;
1200 
1201 	/*
1202 	 * Initialize realtime fields in the mount structure
1203 	 */
1204 	error = xfs_rtmount_init(mp);
1205 	if (error) {
1206 		xfs_warn(mp, "RT mount failed");
1207 		goto out_remove_uuid;
1208 	}
1209 
1210 	/*
1211 	 *  Copies the low order bits of the timestamp and the randomly
1212 	 *  set "sequence" number out of a UUID.
1213 	 */
1214 	uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1215 
1216 	mp->m_dmevmask = 0;	/* not persistent; set after each mount */
1217 
1218 	xfs_dir_mount(mp);
1219 
1220 	/*
1221 	 * Initialize the attribute manager's entries.
1222 	 */
1223 	mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1224 
1225 	/*
1226 	 * Initialize the precomputed transaction reservations values.
1227 	 */
1228 	xfs_trans_init(mp);
1229 
1230 	/*
1231 	 * Allocate and initialize the per-ag data.
1232 	 */
1233 	spin_lock_init(&mp->m_perag_lock);
1234 	INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1235 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1236 	if (error) {
1237 		xfs_warn(mp, "Failed per-ag init: %d", error);
1238 		goto out_remove_uuid;
1239 	}
1240 
1241 	if (!sbp->sb_logblocks) {
1242 		xfs_warn(mp, "no log defined");
1243 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1244 		error = XFS_ERROR(EFSCORRUPTED);
1245 		goto out_free_perag;
1246 	}
1247 
1248 	/*
1249 	 * log's mount-time initialization. Perform 1st part recovery if needed
1250 	 */
1251 	error = xfs_log_mount(mp, mp->m_logdev_targp,
1252 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1253 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1254 	if (error) {
1255 		xfs_warn(mp, "log mount failed");
1256 		goto out_fail_wait;
1257 	}
1258 
1259 	/*
1260 	 * Now the log is mounted, we know if it was an unclean shutdown or
1261 	 * not. If it was, with the first phase of recovery has completed, we
1262 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1263 	 * but they are recovered transactionally in the second recovery phase
1264 	 * later.
1265 	 *
1266 	 * Hence we can safely re-initialise incore superblock counters from
1267 	 * the per-ag data. These may not be correct if the filesystem was not
1268 	 * cleanly unmounted, so we need to wait for recovery to finish before
1269 	 * doing this.
1270 	 *
1271 	 * If the filesystem was cleanly unmounted, then we can trust the
1272 	 * values in the superblock to be correct and we don't need to do
1273 	 * anything here.
1274 	 *
1275 	 * If we are currently making the filesystem, the initialisation will
1276 	 * fail as the perag data is in an undefined state.
1277 	 */
1278 	if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1279 	    !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1280 	     !mp->m_sb.sb_inprogress) {
1281 		error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
1282 		if (error)
1283 			goto out_fail_wait;
1284 	}
1285 
1286 	/*
1287 	 * Get and sanity-check the root inode.
1288 	 * Save the pointer to it in the mount structure.
1289 	 */
1290 	error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1291 	if (error) {
1292 		xfs_warn(mp, "failed to read root inode");
1293 		goto out_log_dealloc;
1294 	}
1295 
1296 	ASSERT(rip != NULL);
1297 
1298 	if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
1299 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
1300 			(unsigned long long)rip->i_ino);
1301 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
1302 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1303 				 mp);
1304 		error = XFS_ERROR(EFSCORRUPTED);
1305 		goto out_rele_rip;
1306 	}
1307 	mp->m_rootip = rip;	/* save it */
1308 
1309 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
1310 
1311 	/*
1312 	 * Initialize realtime inode pointers in the mount structure
1313 	 */
1314 	error = xfs_rtmount_inodes(mp);
1315 	if (error) {
1316 		/*
1317 		 * Free up the root inode.
1318 		 */
1319 		xfs_warn(mp, "failed to read RT inodes");
1320 		goto out_rele_rip;
1321 	}
1322 
1323 	/*
1324 	 * If this is a read-only mount defer the superblock updates until
1325 	 * the next remount into writeable mode.  Otherwise we would never
1326 	 * perform the update e.g. for the root filesystem.
1327 	 */
1328 	if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1329 		error = xfs_mount_log_sb(mp, mp->m_update_flags);
1330 		if (error) {
1331 			xfs_warn(mp, "failed to write sb changes");
1332 			goto out_rtunmount;
1333 		}
1334 	}
1335 
1336 	/*
1337 	 * Initialise the XFS quota management subsystem for this mount
1338 	 */
1339 	if (XFS_IS_QUOTA_RUNNING(mp)) {
1340 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1341 		if (error)
1342 			goto out_rtunmount;
1343 	} else {
1344 		ASSERT(!XFS_IS_QUOTA_ON(mp));
1345 
1346 		/*
1347 		 * If a file system had quotas running earlier, but decided to
1348 		 * mount without -o uquota/pquota/gquota options, revoke the
1349 		 * quotachecked license.
1350 		 */
1351 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1352 			xfs_notice(mp, "resetting quota flags");
1353 			error = xfs_mount_reset_sbqflags(mp);
1354 			if (error)
1355 				return error;
1356 		}
1357 	}
1358 
1359 	/*
1360 	 * Finish recovering the file system.  This part needed to be
1361 	 * delayed until after the root and real-time bitmap inodes
1362 	 * were consistently read in.
1363 	 */
1364 	error = xfs_log_mount_finish(mp);
1365 	if (error) {
1366 		xfs_warn(mp, "log mount finish failed");
1367 		goto out_rtunmount;
1368 	}
1369 
1370 	/*
1371 	 * Complete the quota initialisation, post-log-replay component.
1372 	 */
1373 	if (quotamount) {
1374 		ASSERT(mp->m_qflags == 0);
1375 		mp->m_qflags = quotaflags;
1376 
1377 		xfs_qm_mount_quotas(mp);
1378 	}
1379 
1380 	/*
1381 	 * Now we are mounted, reserve a small amount of unused space for
1382 	 * privileged transactions. This is needed so that transaction
1383 	 * space required for critical operations can dip into this pool
1384 	 * when at ENOSPC. This is needed for operations like create with
1385 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1386 	 * are not allowed to use this reserved space.
1387 	 *
1388 	 * This may drive us straight to ENOSPC on mount, but that implies
1389 	 * we were already there on the last unmount. Warn if this occurs.
1390 	 */
1391 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1392 		resblks = xfs_default_resblks(mp);
1393 		error = xfs_reserve_blocks(mp, &resblks, NULL);
1394 		if (error)
1395 			xfs_warn(mp,
1396 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1397 	}
1398 
1399 	return 0;
1400 
1401  out_rtunmount:
1402 	xfs_rtunmount_inodes(mp);
1403  out_rele_rip:
1404 	IRELE(rip);
1405  out_log_dealloc:
1406 	xfs_log_unmount(mp);
1407  out_fail_wait:
1408 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1409 		xfs_wait_buftarg(mp->m_logdev_targp);
1410 	xfs_wait_buftarg(mp->m_ddev_targp);
1411  out_free_perag:
1412 	xfs_free_perag(mp);
1413  out_remove_uuid:
1414 	xfs_uuid_unmount(mp);
1415  out:
1416 	return error;
1417 }
1418 
1419 /*
1420  * This flushes out the inodes,dquots and the superblock, unmounts the
1421  * log and makes sure that incore structures are freed.
1422  */
1423 void
1424 xfs_unmountfs(
1425 	struct xfs_mount	*mp)
1426 {
1427 	__uint64_t		resblks;
1428 	int			error;
1429 
1430 	xfs_qm_unmount_quotas(mp);
1431 	xfs_rtunmount_inodes(mp);
1432 	IRELE(mp->m_rootip);
1433 
1434 	/*
1435 	 * We can potentially deadlock here if we have an inode cluster
1436 	 * that has been freed has its buffer still pinned in memory because
1437 	 * the transaction is still sitting in a iclog. The stale inodes
1438 	 * on that buffer will have their flush locks held until the
1439 	 * transaction hits the disk and the callbacks run. the inode
1440 	 * flush takes the flush lock unconditionally and with nothing to
1441 	 * push out the iclog we will never get that unlocked. hence we
1442 	 * need to force the log first.
1443 	 */
1444 	xfs_log_force(mp, XFS_LOG_SYNC);
1445 
1446 	/*
1447 	 * Flush all pending changes from the AIL.
1448 	 */
1449 	xfs_ail_push_all_sync(mp->m_ail);
1450 
1451 	/*
1452 	 * And reclaim all inodes.  At this point there should be no dirty
1453 	 * inode, and none should be pinned or locked, but use synchronous
1454 	 * reclaim just to be sure.
1455 	 */
1456 	xfs_reclaim_inodes(mp, SYNC_WAIT);
1457 
1458 	xfs_qm_unmount(mp);
1459 
1460 	/*
1461 	 * Flush out the log synchronously so that we know for sure
1462 	 * that nothing is pinned.  This is important because bflush()
1463 	 * will skip pinned buffers.
1464 	 */
1465 	xfs_log_force(mp, XFS_LOG_SYNC);
1466 
1467 	/*
1468 	 * Unreserve any blocks we have so that when we unmount we don't account
1469 	 * the reserved free space as used. This is really only necessary for
1470 	 * lazy superblock counting because it trusts the incore superblock
1471 	 * counters to be absolutely correct on clean unmount.
1472 	 *
1473 	 * We don't bother correcting this elsewhere for lazy superblock
1474 	 * counting because on mount of an unclean filesystem we reconstruct the
1475 	 * correct counter value and this is irrelevant.
1476 	 *
1477 	 * For non-lazy counter filesystems, this doesn't matter at all because
1478 	 * we only every apply deltas to the superblock and hence the incore
1479 	 * value does not matter....
1480 	 */
1481 	resblks = 0;
1482 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1483 	if (error)
1484 		xfs_warn(mp, "Unable to free reserved block pool. "
1485 				"Freespace may not be correct on next mount.");
1486 
1487 	error = xfs_log_sbcount(mp);
1488 	if (error)
1489 		xfs_warn(mp, "Unable to update superblock counters. "
1490 				"Freespace may not be correct on next mount.");
1491 
1492 	/*
1493 	 * At this point we might have modified the superblock again and thus
1494 	 * added an item to the AIL, thus flush it again.
1495 	 */
1496 	xfs_ail_push_all_sync(mp->m_ail);
1497 	xfs_wait_buftarg(mp->m_ddev_targp);
1498 
1499 	/*
1500 	 * The superblock buffer is uncached and xfsaild_push() will lock and
1501 	 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
1502 	 * here but a lock on the superblock buffer will block until iodone()
1503 	 * has completed.
1504 	 */
1505 	xfs_buf_lock(mp->m_sb_bp);
1506 	xfs_buf_unlock(mp->m_sb_bp);
1507 
1508 	xfs_log_unmount_write(mp);
1509 	xfs_log_unmount(mp);
1510 	xfs_uuid_unmount(mp);
1511 
1512 #if defined(DEBUG)
1513 	xfs_errortag_clearall(mp, 0);
1514 #endif
1515 	xfs_free_perag(mp);
1516 }
1517 
1518 int
1519 xfs_fs_writable(xfs_mount_t *mp)
1520 {
1521 	return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1522 		(mp->m_flags & XFS_MOUNT_RDONLY));
1523 }
1524 
1525 /*
1526  * xfs_log_sbcount
1527  *
1528  * Sync the superblock counters to disk.
1529  *
1530  * Note this code can be called during the process of freezing, so
1531  * we may need to use the transaction allocator which does not
1532  * block when the transaction subsystem is in its frozen state.
1533  */
1534 int
1535 xfs_log_sbcount(xfs_mount_t *mp)
1536 {
1537 	xfs_trans_t	*tp;
1538 	int		error;
1539 
1540 	if (!xfs_fs_writable(mp))
1541 		return 0;
1542 
1543 	xfs_icsb_sync_counters(mp, 0);
1544 
1545 	/*
1546 	 * we don't need to do this if we are updating the superblock
1547 	 * counters on every modification.
1548 	 */
1549 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1550 		return 0;
1551 
1552 	tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1553 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1554 					XFS_DEFAULT_LOG_COUNT);
1555 	if (error) {
1556 		xfs_trans_cancel(tp, 0);
1557 		return error;
1558 	}
1559 
1560 	xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1561 	xfs_trans_set_sync(tp);
1562 	error = xfs_trans_commit(tp, 0);
1563 	return error;
1564 }
1565 
1566 /*
1567  * xfs_mod_sb() can be used to copy arbitrary changes to the
1568  * in-core superblock into the superblock buffer to be logged.
1569  * It does not provide the higher level of locking that is
1570  * needed to protect the in-core superblock from concurrent
1571  * access.
1572  */
1573 void
1574 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1575 {
1576 	xfs_buf_t	*bp;
1577 	int		first;
1578 	int		last;
1579 	xfs_mount_t	*mp;
1580 	xfs_sb_field_t	f;
1581 
1582 	ASSERT(fields);
1583 	if (!fields)
1584 		return;
1585 	mp = tp->t_mountp;
1586 	bp = xfs_trans_getsb(tp, mp, 0);
1587 	first = sizeof(xfs_sb_t);
1588 	last = 0;
1589 
1590 	/* translate/copy */
1591 
1592 	xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1593 
1594 	/* find modified range */
1595 	f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1596 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1597 	last = xfs_sb_info[f + 1].offset - 1;
1598 
1599 	f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1600 	ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1601 	first = xfs_sb_info[f].offset;
1602 
1603 	xfs_trans_log_buf(tp, bp, first, last);
1604 }
1605 
1606 
1607 /*
1608  * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1609  * a delta to a specified field in the in-core superblock.  Simply
1610  * switch on the field indicated and apply the delta to that field.
1611  * Fields are not allowed to dip below zero, so if the delta would
1612  * do this do not apply it and return EINVAL.
1613  *
1614  * The m_sb_lock must be held when this routine is called.
1615  */
1616 STATIC int
1617 xfs_mod_incore_sb_unlocked(
1618 	xfs_mount_t	*mp,
1619 	xfs_sb_field_t	field,
1620 	int64_t		delta,
1621 	int		rsvd)
1622 {
1623 	int		scounter;	/* short counter for 32 bit fields */
1624 	long long	lcounter;	/* long counter for 64 bit fields */
1625 	long long	res_used, rem;
1626 
1627 	/*
1628 	 * With the in-core superblock spin lock held, switch
1629 	 * on the indicated field.  Apply the delta to the
1630 	 * proper field.  If the fields value would dip below
1631 	 * 0, then do not apply the delta and return EINVAL.
1632 	 */
1633 	switch (field) {
1634 	case XFS_SBS_ICOUNT:
1635 		lcounter = (long long)mp->m_sb.sb_icount;
1636 		lcounter += delta;
1637 		if (lcounter < 0) {
1638 			ASSERT(0);
1639 			return XFS_ERROR(EINVAL);
1640 		}
1641 		mp->m_sb.sb_icount = lcounter;
1642 		return 0;
1643 	case XFS_SBS_IFREE:
1644 		lcounter = (long long)mp->m_sb.sb_ifree;
1645 		lcounter += delta;
1646 		if (lcounter < 0) {
1647 			ASSERT(0);
1648 			return XFS_ERROR(EINVAL);
1649 		}
1650 		mp->m_sb.sb_ifree = lcounter;
1651 		return 0;
1652 	case XFS_SBS_FDBLOCKS:
1653 		lcounter = (long long)
1654 			mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1655 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1656 
1657 		if (delta > 0) {		/* Putting blocks back */
1658 			if (res_used > delta) {
1659 				mp->m_resblks_avail += delta;
1660 			} else {
1661 				rem = delta - res_used;
1662 				mp->m_resblks_avail = mp->m_resblks;
1663 				lcounter += rem;
1664 			}
1665 		} else {				/* Taking blocks away */
1666 			lcounter += delta;
1667 			if (lcounter >= 0) {
1668 				mp->m_sb.sb_fdblocks = lcounter +
1669 							XFS_ALLOC_SET_ASIDE(mp);
1670 				return 0;
1671 			}
1672 
1673 			/*
1674 			 * We are out of blocks, use any available reserved
1675 			 * blocks if were allowed to.
1676 			 */
1677 			if (!rsvd)
1678 				return XFS_ERROR(ENOSPC);
1679 
1680 			lcounter = (long long)mp->m_resblks_avail + delta;
1681 			if (lcounter >= 0) {
1682 				mp->m_resblks_avail = lcounter;
1683 				return 0;
1684 			}
1685 			printk_once(KERN_WARNING
1686 				"Filesystem \"%s\": reserve blocks depleted! "
1687 				"Consider increasing reserve pool size.",
1688 				mp->m_fsname);
1689 			return XFS_ERROR(ENOSPC);
1690 		}
1691 
1692 		mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1693 		return 0;
1694 	case XFS_SBS_FREXTENTS:
1695 		lcounter = (long long)mp->m_sb.sb_frextents;
1696 		lcounter += delta;
1697 		if (lcounter < 0) {
1698 			return XFS_ERROR(ENOSPC);
1699 		}
1700 		mp->m_sb.sb_frextents = lcounter;
1701 		return 0;
1702 	case XFS_SBS_DBLOCKS:
1703 		lcounter = (long long)mp->m_sb.sb_dblocks;
1704 		lcounter += delta;
1705 		if (lcounter < 0) {
1706 			ASSERT(0);
1707 			return XFS_ERROR(EINVAL);
1708 		}
1709 		mp->m_sb.sb_dblocks = lcounter;
1710 		return 0;
1711 	case XFS_SBS_AGCOUNT:
1712 		scounter = mp->m_sb.sb_agcount;
1713 		scounter += delta;
1714 		if (scounter < 0) {
1715 			ASSERT(0);
1716 			return XFS_ERROR(EINVAL);
1717 		}
1718 		mp->m_sb.sb_agcount = scounter;
1719 		return 0;
1720 	case XFS_SBS_IMAX_PCT:
1721 		scounter = mp->m_sb.sb_imax_pct;
1722 		scounter += delta;
1723 		if (scounter < 0) {
1724 			ASSERT(0);
1725 			return XFS_ERROR(EINVAL);
1726 		}
1727 		mp->m_sb.sb_imax_pct = scounter;
1728 		return 0;
1729 	case XFS_SBS_REXTSIZE:
1730 		scounter = mp->m_sb.sb_rextsize;
1731 		scounter += delta;
1732 		if (scounter < 0) {
1733 			ASSERT(0);
1734 			return XFS_ERROR(EINVAL);
1735 		}
1736 		mp->m_sb.sb_rextsize = scounter;
1737 		return 0;
1738 	case XFS_SBS_RBMBLOCKS:
1739 		scounter = mp->m_sb.sb_rbmblocks;
1740 		scounter += delta;
1741 		if (scounter < 0) {
1742 			ASSERT(0);
1743 			return XFS_ERROR(EINVAL);
1744 		}
1745 		mp->m_sb.sb_rbmblocks = scounter;
1746 		return 0;
1747 	case XFS_SBS_RBLOCKS:
1748 		lcounter = (long long)mp->m_sb.sb_rblocks;
1749 		lcounter += delta;
1750 		if (lcounter < 0) {
1751 			ASSERT(0);
1752 			return XFS_ERROR(EINVAL);
1753 		}
1754 		mp->m_sb.sb_rblocks = lcounter;
1755 		return 0;
1756 	case XFS_SBS_REXTENTS:
1757 		lcounter = (long long)mp->m_sb.sb_rextents;
1758 		lcounter += delta;
1759 		if (lcounter < 0) {
1760 			ASSERT(0);
1761 			return XFS_ERROR(EINVAL);
1762 		}
1763 		mp->m_sb.sb_rextents = lcounter;
1764 		return 0;
1765 	case XFS_SBS_REXTSLOG:
1766 		scounter = mp->m_sb.sb_rextslog;
1767 		scounter += delta;
1768 		if (scounter < 0) {
1769 			ASSERT(0);
1770 			return XFS_ERROR(EINVAL);
1771 		}
1772 		mp->m_sb.sb_rextslog = scounter;
1773 		return 0;
1774 	default:
1775 		ASSERT(0);
1776 		return XFS_ERROR(EINVAL);
1777 	}
1778 }
1779 
1780 /*
1781  * xfs_mod_incore_sb() is used to change a field in the in-core
1782  * superblock structure by the specified delta.  This modification
1783  * is protected by the m_sb_lock.  Just use the xfs_mod_incore_sb_unlocked()
1784  * routine to do the work.
1785  */
1786 int
1787 xfs_mod_incore_sb(
1788 	struct xfs_mount	*mp,
1789 	xfs_sb_field_t		field,
1790 	int64_t			delta,
1791 	int			rsvd)
1792 {
1793 	int			status;
1794 
1795 #ifdef HAVE_PERCPU_SB
1796 	ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1797 #endif
1798 	spin_lock(&mp->m_sb_lock);
1799 	status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1800 	spin_unlock(&mp->m_sb_lock);
1801 
1802 	return status;
1803 }
1804 
1805 /*
1806  * Change more than one field in the in-core superblock structure at a time.
1807  *
1808  * The fields and changes to those fields are specified in the array of
1809  * xfs_mod_sb structures passed in.  Either all of the specified deltas
1810  * will be applied or none of them will.  If any modified field dips below 0,
1811  * then all modifications will be backed out and EINVAL will be returned.
1812  *
1813  * Note that this function may not be used for the superblock values that
1814  * are tracked with the in-memory per-cpu counters - a direct call to
1815  * xfs_icsb_modify_counters is required for these.
1816  */
1817 int
1818 xfs_mod_incore_sb_batch(
1819 	struct xfs_mount	*mp,
1820 	xfs_mod_sb_t		*msb,
1821 	uint			nmsb,
1822 	int			rsvd)
1823 {
1824 	xfs_mod_sb_t		*msbp;
1825 	int			error = 0;
1826 
1827 	/*
1828 	 * Loop through the array of mod structures and apply each individually.
1829 	 * If any fail, then back out all those which have already been applied.
1830 	 * Do all of this within the scope of the m_sb_lock so that all of the
1831 	 * changes will be atomic.
1832 	 */
1833 	spin_lock(&mp->m_sb_lock);
1834 	for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1835 		ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1836 		       msbp->msb_field > XFS_SBS_FDBLOCKS);
1837 
1838 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1839 						   msbp->msb_delta, rsvd);
1840 		if (error)
1841 			goto unwind;
1842 	}
1843 	spin_unlock(&mp->m_sb_lock);
1844 	return 0;
1845 
1846 unwind:
1847 	while (--msbp >= msb) {
1848 		error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1849 						   -msbp->msb_delta, rsvd);
1850 		ASSERT(error == 0);
1851 	}
1852 	spin_unlock(&mp->m_sb_lock);
1853 	return error;
1854 }
1855 
1856 /*
1857  * xfs_getsb() is called to obtain the buffer for the superblock.
1858  * The buffer is returned locked and read in from disk.
1859  * The buffer should be released with a call to xfs_brelse().
1860  *
1861  * If the flags parameter is BUF_TRYLOCK, then we'll only return
1862  * the superblock buffer if it can be locked without sleeping.
1863  * If it can't then we'll return NULL.
1864  */
1865 struct xfs_buf *
1866 xfs_getsb(
1867 	struct xfs_mount	*mp,
1868 	int			flags)
1869 {
1870 	struct xfs_buf		*bp = mp->m_sb_bp;
1871 
1872 	if (!xfs_buf_trylock(bp)) {
1873 		if (flags & XBF_TRYLOCK)
1874 			return NULL;
1875 		xfs_buf_lock(bp);
1876 	}
1877 
1878 	xfs_buf_hold(bp);
1879 	ASSERT(XFS_BUF_ISDONE(bp));
1880 	return bp;
1881 }
1882 
1883 /*
1884  * Used to free the superblock along various error paths.
1885  */
1886 void
1887 xfs_freesb(
1888 	struct xfs_mount	*mp)
1889 {
1890 	struct xfs_buf		*bp = mp->m_sb_bp;
1891 
1892 	xfs_buf_lock(bp);
1893 	mp->m_sb_bp = NULL;
1894 	xfs_buf_relse(bp);
1895 }
1896 
1897 /*
1898  * Used to log changes to the superblock unit and width fields which could
1899  * be altered by the mount options, as well as any potential sb_features2
1900  * fixup. Only the first superblock is updated.
1901  */
1902 int
1903 xfs_mount_log_sb(
1904 	xfs_mount_t	*mp,
1905 	__int64_t	fields)
1906 {
1907 	xfs_trans_t	*tp;
1908 	int		error;
1909 
1910 	ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1911 			 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1912 			 XFS_SB_VERSIONNUM));
1913 
1914 	tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1915 	error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1916 				XFS_DEFAULT_LOG_COUNT);
1917 	if (error) {
1918 		xfs_trans_cancel(tp, 0);
1919 		return error;
1920 	}
1921 	xfs_mod_sb(tp, fields);
1922 	error = xfs_trans_commit(tp, 0);
1923 	return error;
1924 }
1925 
1926 /*
1927  * If the underlying (data/log/rt) device is readonly, there are some
1928  * operations that cannot proceed.
1929  */
1930 int
1931 xfs_dev_is_read_only(
1932 	struct xfs_mount	*mp,
1933 	char			*message)
1934 {
1935 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1936 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1937 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1938 		xfs_notice(mp, "%s required on read-only device.", message);
1939 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1940 		return EROFS;
1941 	}
1942 	return 0;
1943 }
1944 
1945 #ifdef HAVE_PERCPU_SB
1946 /*
1947  * Per-cpu incore superblock counters
1948  *
1949  * Simple concept, difficult implementation
1950  *
1951  * Basically, replace the incore superblock counters with a distributed per cpu
1952  * counter for contended fields (e.g.  free block count).
1953  *
1954  * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1955  * hence needs to be accurately read when we are running low on space. Hence
1956  * there is a method to enable and disable the per-cpu counters based on how
1957  * much "stuff" is available in them.
1958  *
1959  * Basically, a counter is enabled if there is enough free resource to justify
1960  * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1961  * ENOSPC), then we disable the counters to synchronise all callers and
1962  * re-distribute the available resources.
1963  *
1964  * If, once we redistributed the available resources, we still get a failure,
1965  * we disable the per-cpu counter and go through the slow path.
1966  *
1967  * The slow path is the current xfs_mod_incore_sb() function.  This means that
1968  * when we disable a per-cpu counter, we need to drain its resources back to
1969  * the global superblock. We do this after disabling the counter to prevent
1970  * more threads from queueing up on the counter.
1971  *
1972  * Essentially, this means that we still need a lock in the fast path to enable
1973  * synchronisation between the global counters and the per-cpu counters. This
1974  * is not a problem because the lock will be local to a CPU almost all the time
1975  * and have little contention except when we get to ENOSPC conditions.
1976  *
1977  * Basically, this lock becomes a barrier that enables us to lock out the fast
1978  * path while we do things like enabling and disabling counters and
1979  * synchronising the counters.
1980  *
1981  * Locking rules:
1982  *
1983  * 	1. m_sb_lock before picking up per-cpu locks
1984  * 	2. per-cpu locks always picked up via for_each_online_cpu() order
1985  * 	3. accurate counter sync requires m_sb_lock + per cpu locks
1986  * 	4. modifying per-cpu counters requires holding per-cpu lock
1987  * 	5. modifying global counters requires holding m_sb_lock
1988  *	6. enabling or disabling a counter requires holding the m_sb_lock
1989  *	   and _none_ of the per-cpu locks.
1990  *
1991  * Disabled counters are only ever re-enabled by a balance operation
1992  * that results in more free resources per CPU than a given threshold.
1993  * To ensure counters don't remain disabled, they are rebalanced when
1994  * the global resource goes above a higher threshold (i.e. some hysteresis
1995  * is present to prevent thrashing).
1996  */
1997 
1998 #ifdef CONFIG_HOTPLUG_CPU
1999 /*
2000  * hot-plug CPU notifier support.
2001  *
2002  * We need a notifier per filesystem as we need to be able to identify
2003  * the filesystem to balance the counters out. This is achieved by
2004  * having a notifier block embedded in the xfs_mount_t and doing pointer
2005  * magic to get the mount pointer from the notifier block address.
2006  */
2007 STATIC int
2008 xfs_icsb_cpu_notify(
2009 	struct notifier_block *nfb,
2010 	unsigned long action,
2011 	void *hcpu)
2012 {
2013 	xfs_icsb_cnts_t *cntp;
2014 	xfs_mount_t	*mp;
2015 
2016 	mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2017 	cntp = (xfs_icsb_cnts_t *)
2018 			per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2019 	switch (action) {
2020 	case CPU_UP_PREPARE:
2021 	case CPU_UP_PREPARE_FROZEN:
2022 		/* Easy Case - initialize the area and locks, and
2023 		 * then rebalance when online does everything else for us. */
2024 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2025 		break;
2026 	case CPU_ONLINE:
2027 	case CPU_ONLINE_FROZEN:
2028 		xfs_icsb_lock(mp);
2029 		xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2030 		xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2031 		xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2032 		xfs_icsb_unlock(mp);
2033 		break;
2034 	case CPU_DEAD:
2035 	case CPU_DEAD_FROZEN:
2036 		/* Disable all the counters, then fold the dead cpu's
2037 		 * count into the total on the global superblock and
2038 		 * re-enable the counters. */
2039 		xfs_icsb_lock(mp);
2040 		spin_lock(&mp->m_sb_lock);
2041 		xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2042 		xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2043 		xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2044 
2045 		mp->m_sb.sb_icount += cntp->icsb_icount;
2046 		mp->m_sb.sb_ifree += cntp->icsb_ifree;
2047 		mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2048 
2049 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2050 
2051 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2052 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2053 		xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
2054 		spin_unlock(&mp->m_sb_lock);
2055 		xfs_icsb_unlock(mp);
2056 		break;
2057 	}
2058 
2059 	return NOTIFY_OK;
2060 }
2061 #endif /* CONFIG_HOTPLUG_CPU */
2062 
2063 int
2064 xfs_icsb_init_counters(
2065 	xfs_mount_t	*mp)
2066 {
2067 	xfs_icsb_cnts_t *cntp;
2068 	int		i;
2069 
2070 	mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2071 	if (mp->m_sb_cnts == NULL)
2072 		return -ENOMEM;
2073 
2074 #ifdef CONFIG_HOTPLUG_CPU
2075 	mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2076 	mp->m_icsb_notifier.priority = 0;
2077 	register_hotcpu_notifier(&mp->m_icsb_notifier);
2078 #endif /* CONFIG_HOTPLUG_CPU */
2079 
2080 	for_each_online_cpu(i) {
2081 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2082 		memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
2083 	}
2084 
2085 	mutex_init(&mp->m_icsb_mutex);
2086 
2087 	/*
2088 	 * start with all counters disabled so that the
2089 	 * initial balance kicks us off correctly
2090 	 */
2091 	mp->m_icsb_counters = -1;
2092 	return 0;
2093 }
2094 
2095 void
2096 xfs_icsb_reinit_counters(
2097 	xfs_mount_t	*mp)
2098 {
2099 	xfs_icsb_lock(mp);
2100 	/*
2101 	 * start with all counters disabled so that the
2102 	 * initial balance kicks us off correctly
2103 	 */
2104 	mp->m_icsb_counters = -1;
2105 	xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2106 	xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2107 	xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
2108 	xfs_icsb_unlock(mp);
2109 }
2110 
2111 void
2112 xfs_icsb_destroy_counters(
2113 	xfs_mount_t	*mp)
2114 {
2115 	if (mp->m_sb_cnts) {
2116 		unregister_hotcpu_notifier(&mp->m_icsb_notifier);
2117 		free_percpu(mp->m_sb_cnts);
2118 	}
2119 	mutex_destroy(&mp->m_icsb_mutex);
2120 }
2121 
2122 STATIC void
2123 xfs_icsb_lock_cntr(
2124 	xfs_icsb_cnts_t	*icsbp)
2125 {
2126 	while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2127 		ndelay(1000);
2128 	}
2129 }
2130 
2131 STATIC void
2132 xfs_icsb_unlock_cntr(
2133 	xfs_icsb_cnts_t	*icsbp)
2134 {
2135 	clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2136 }
2137 
2138 
2139 STATIC void
2140 xfs_icsb_lock_all_counters(
2141 	xfs_mount_t	*mp)
2142 {
2143 	xfs_icsb_cnts_t *cntp;
2144 	int		i;
2145 
2146 	for_each_online_cpu(i) {
2147 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2148 		xfs_icsb_lock_cntr(cntp);
2149 	}
2150 }
2151 
2152 STATIC void
2153 xfs_icsb_unlock_all_counters(
2154 	xfs_mount_t	*mp)
2155 {
2156 	xfs_icsb_cnts_t *cntp;
2157 	int		i;
2158 
2159 	for_each_online_cpu(i) {
2160 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2161 		xfs_icsb_unlock_cntr(cntp);
2162 	}
2163 }
2164 
2165 STATIC void
2166 xfs_icsb_count(
2167 	xfs_mount_t	*mp,
2168 	xfs_icsb_cnts_t	*cnt,
2169 	int		flags)
2170 {
2171 	xfs_icsb_cnts_t *cntp;
2172 	int		i;
2173 
2174 	memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2175 
2176 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2177 		xfs_icsb_lock_all_counters(mp);
2178 
2179 	for_each_online_cpu(i) {
2180 		cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2181 		cnt->icsb_icount += cntp->icsb_icount;
2182 		cnt->icsb_ifree += cntp->icsb_ifree;
2183 		cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2184 	}
2185 
2186 	if (!(flags & XFS_ICSB_LAZY_COUNT))
2187 		xfs_icsb_unlock_all_counters(mp);
2188 }
2189 
2190 STATIC int
2191 xfs_icsb_counter_disabled(
2192 	xfs_mount_t	*mp,
2193 	xfs_sb_field_t	field)
2194 {
2195 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2196 	return test_bit(field, &mp->m_icsb_counters);
2197 }
2198 
2199 STATIC void
2200 xfs_icsb_disable_counter(
2201 	xfs_mount_t	*mp,
2202 	xfs_sb_field_t	field)
2203 {
2204 	xfs_icsb_cnts_t	cnt;
2205 
2206 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2207 
2208 	/*
2209 	 * If we are already disabled, then there is nothing to do
2210 	 * here. We check before locking all the counters to avoid
2211 	 * the expensive lock operation when being called in the
2212 	 * slow path and the counter is already disabled. This is
2213 	 * safe because the only time we set or clear this state is under
2214 	 * the m_icsb_mutex.
2215 	 */
2216 	if (xfs_icsb_counter_disabled(mp, field))
2217 		return;
2218 
2219 	xfs_icsb_lock_all_counters(mp);
2220 	if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2221 		/* drain back to superblock */
2222 
2223 		xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
2224 		switch(field) {
2225 		case XFS_SBS_ICOUNT:
2226 			mp->m_sb.sb_icount = cnt.icsb_icount;
2227 			break;
2228 		case XFS_SBS_IFREE:
2229 			mp->m_sb.sb_ifree = cnt.icsb_ifree;
2230 			break;
2231 		case XFS_SBS_FDBLOCKS:
2232 			mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2233 			break;
2234 		default:
2235 			BUG();
2236 		}
2237 	}
2238 
2239 	xfs_icsb_unlock_all_counters(mp);
2240 }
2241 
2242 STATIC void
2243 xfs_icsb_enable_counter(
2244 	xfs_mount_t	*mp,
2245 	xfs_sb_field_t	field,
2246 	uint64_t	count,
2247 	uint64_t	resid)
2248 {
2249 	xfs_icsb_cnts_t	*cntp;
2250 	int		i;
2251 
2252 	ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2253 
2254 	xfs_icsb_lock_all_counters(mp);
2255 	for_each_online_cpu(i) {
2256 		cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2257 		switch (field) {
2258 		case XFS_SBS_ICOUNT:
2259 			cntp->icsb_icount = count + resid;
2260 			break;
2261 		case XFS_SBS_IFREE:
2262 			cntp->icsb_ifree = count + resid;
2263 			break;
2264 		case XFS_SBS_FDBLOCKS:
2265 			cntp->icsb_fdblocks = count + resid;
2266 			break;
2267 		default:
2268 			BUG();
2269 			break;
2270 		}
2271 		resid = 0;
2272 	}
2273 	clear_bit(field, &mp->m_icsb_counters);
2274 	xfs_icsb_unlock_all_counters(mp);
2275 }
2276 
2277 void
2278 xfs_icsb_sync_counters_locked(
2279 	xfs_mount_t	*mp,
2280 	int		flags)
2281 {
2282 	xfs_icsb_cnts_t	cnt;
2283 
2284 	xfs_icsb_count(mp, &cnt, flags);
2285 
2286 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2287 		mp->m_sb.sb_icount = cnt.icsb_icount;
2288 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2289 		mp->m_sb.sb_ifree = cnt.icsb_ifree;
2290 	if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2291 		mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2292 }
2293 
2294 /*
2295  * Accurate update of per-cpu counters to incore superblock
2296  */
2297 void
2298 xfs_icsb_sync_counters(
2299 	xfs_mount_t	*mp,
2300 	int		flags)
2301 {
2302 	spin_lock(&mp->m_sb_lock);
2303 	xfs_icsb_sync_counters_locked(mp, flags);
2304 	spin_unlock(&mp->m_sb_lock);
2305 }
2306 
2307 /*
2308  * Balance and enable/disable counters as necessary.
2309  *
2310  * Thresholds for re-enabling counters are somewhat magic.  inode counts are
2311  * chosen to be the same number as single on disk allocation chunk per CPU, and
2312  * free blocks is something far enough zero that we aren't going thrash when we
2313  * get near ENOSPC. We also need to supply a minimum we require per cpu to
2314  * prevent looping endlessly when xfs_alloc_space asks for more than will
2315  * be distributed to a single CPU but each CPU has enough blocks to be
2316  * reenabled.
2317  *
2318  * Note that we can be called when counters are already disabled.
2319  * xfs_icsb_disable_counter() optimises the counter locking in this case to
2320  * prevent locking every per-cpu counter needlessly.
2321  */
2322 
2323 #define XFS_ICSB_INO_CNTR_REENABLE	(uint64_t)64
2324 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
2325 		(uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
2326 STATIC void
2327 xfs_icsb_balance_counter_locked(
2328 	xfs_mount_t	*mp,
2329 	xfs_sb_field_t  field,
2330 	int		min_per_cpu)
2331 {
2332 	uint64_t	count, resid;
2333 	int		weight = num_online_cpus();
2334 	uint64_t	min = (uint64_t)min_per_cpu;
2335 
2336 	/* disable counter and sync counter */
2337 	xfs_icsb_disable_counter(mp, field);
2338 
2339 	/* update counters  - first CPU gets residual*/
2340 	switch (field) {
2341 	case XFS_SBS_ICOUNT:
2342 		count = mp->m_sb.sb_icount;
2343 		resid = do_div(count, weight);
2344 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2345 			return;
2346 		break;
2347 	case XFS_SBS_IFREE:
2348 		count = mp->m_sb.sb_ifree;
2349 		resid = do_div(count, weight);
2350 		if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
2351 			return;
2352 		break;
2353 	case XFS_SBS_FDBLOCKS:
2354 		count = mp->m_sb.sb_fdblocks;
2355 		resid = do_div(count, weight);
2356 		if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
2357 			return;
2358 		break;
2359 	default:
2360 		BUG();
2361 		count = resid = 0;	/* quiet, gcc */
2362 		break;
2363 	}
2364 
2365 	xfs_icsb_enable_counter(mp, field, count, resid);
2366 }
2367 
2368 STATIC void
2369 xfs_icsb_balance_counter(
2370 	xfs_mount_t	*mp,
2371 	xfs_sb_field_t  fields,
2372 	int		min_per_cpu)
2373 {
2374 	spin_lock(&mp->m_sb_lock);
2375 	xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2376 	spin_unlock(&mp->m_sb_lock);
2377 }
2378 
2379 int
2380 xfs_icsb_modify_counters(
2381 	xfs_mount_t	*mp,
2382 	xfs_sb_field_t	field,
2383 	int64_t		delta,
2384 	int		rsvd)
2385 {
2386 	xfs_icsb_cnts_t	*icsbp;
2387 	long long	lcounter;	/* long counter for 64 bit fields */
2388 	int		ret = 0;
2389 
2390 	might_sleep();
2391 again:
2392 	preempt_disable();
2393 	icsbp = this_cpu_ptr(mp->m_sb_cnts);
2394 
2395 	/*
2396 	 * if the counter is disabled, go to slow path
2397 	 */
2398 	if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2399 		goto slow_path;
2400 	xfs_icsb_lock_cntr(icsbp);
2401 	if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2402 		xfs_icsb_unlock_cntr(icsbp);
2403 		goto slow_path;
2404 	}
2405 
2406 	switch (field) {
2407 	case XFS_SBS_ICOUNT:
2408 		lcounter = icsbp->icsb_icount;
2409 		lcounter += delta;
2410 		if (unlikely(lcounter < 0))
2411 			goto balance_counter;
2412 		icsbp->icsb_icount = lcounter;
2413 		break;
2414 
2415 	case XFS_SBS_IFREE:
2416 		lcounter = icsbp->icsb_ifree;
2417 		lcounter += delta;
2418 		if (unlikely(lcounter < 0))
2419 			goto balance_counter;
2420 		icsbp->icsb_ifree = lcounter;
2421 		break;
2422 
2423 	case XFS_SBS_FDBLOCKS:
2424 		BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2425 
2426 		lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
2427 		lcounter += delta;
2428 		if (unlikely(lcounter < 0))
2429 			goto balance_counter;
2430 		icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
2431 		break;
2432 	default:
2433 		BUG();
2434 		break;
2435 	}
2436 	xfs_icsb_unlock_cntr(icsbp);
2437 	preempt_enable();
2438 	return 0;
2439 
2440 slow_path:
2441 	preempt_enable();
2442 
2443 	/*
2444 	 * serialise with a mutex so we don't burn lots of cpu on
2445 	 * the superblock lock. We still need to hold the superblock
2446 	 * lock, however, when we modify the global structures.
2447 	 */
2448 	xfs_icsb_lock(mp);
2449 
2450 	/*
2451 	 * Now running atomically.
2452 	 *
2453 	 * If the counter is enabled, someone has beaten us to rebalancing.
2454 	 * Drop the lock and try again in the fast path....
2455 	 */
2456 	if (!(xfs_icsb_counter_disabled(mp, field))) {
2457 		xfs_icsb_unlock(mp);
2458 		goto again;
2459 	}
2460 
2461 	/*
2462 	 * The counter is currently disabled. Because we are
2463 	 * running atomically here, we know a rebalance cannot
2464 	 * be in progress. Hence we can go straight to operating
2465 	 * on the global superblock. We do not call xfs_mod_incore_sb()
2466 	 * here even though we need to get the m_sb_lock. Doing so
2467 	 * will cause us to re-enter this function and deadlock.
2468 	 * Hence we get the m_sb_lock ourselves and then call
2469 	 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2470 	 * directly on the global counters.
2471 	 */
2472 	spin_lock(&mp->m_sb_lock);
2473 	ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
2474 	spin_unlock(&mp->m_sb_lock);
2475 
2476 	/*
2477 	 * Now that we've modified the global superblock, we
2478 	 * may be able to re-enable the distributed counters
2479 	 * (e.g. lots of space just got freed). After that
2480 	 * we are done.
2481 	 */
2482 	if (ret != ENOSPC)
2483 		xfs_icsb_balance_counter(mp, field, 0);
2484 	xfs_icsb_unlock(mp);
2485 	return ret;
2486 
2487 balance_counter:
2488 	xfs_icsb_unlock_cntr(icsbp);
2489 	preempt_enable();
2490 
2491 	/*
2492 	 * We may have multiple threads here if multiple per-cpu
2493 	 * counters run dry at the same time. This will mean we can
2494 	 * do more balances than strictly necessary but it is not
2495 	 * the common slowpath case.
2496 	 */
2497 	xfs_icsb_lock(mp);
2498 
2499 	/*
2500 	 * running atomically.
2501 	 *
2502 	 * This will leave the counter in the correct state for future
2503 	 * accesses. After the rebalance, we simply try again and our retry
2504 	 * will either succeed through the fast path or slow path without
2505 	 * another balance operation being required.
2506 	 */
2507 	xfs_icsb_balance_counter(mp, field, delta);
2508 	xfs_icsb_unlock(mp);
2509 	goto again;
2510 }
2511 
2512 #endif
2513