1 /* 2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 3 * All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it would be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write the Free Software Foundation, 16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 17 */ 18 #include "xfs.h" 19 #include "xfs_fs.h" 20 #include "xfs_types.h" 21 #include "xfs_bit.h" 22 #include "xfs_log.h" 23 #include "xfs_inum.h" 24 #include "xfs_trans.h" 25 #include "xfs_trans_priv.h" 26 #include "xfs_sb.h" 27 #include "xfs_ag.h" 28 #include "xfs_dir2.h" 29 #include "xfs_mount.h" 30 #include "xfs_bmap_btree.h" 31 #include "xfs_alloc_btree.h" 32 #include "xfs_ialloc_btree.h" 33 #include "xfs_dinode.h" 34 #include "xfs_inode.h" 35 #include "xfs_btree.h" 36 #include "xfs_ialloc.h" 37 #include "xfs_alloc.h" 38 #include "xfs_rtalloc.h" 39 #include "xfs_bmap.h" 40 #include "xfs_error.h" 41 #include "xfs_quota.h" 42 #include "xfs_fsops.h" 43 #include "xfs_utils.h" 44 #include "xfs_trace.h" 45 46 47 #ifdef HAVE_PERCPU_SB 48 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t, 49 int); 50 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t, 51 int); 52 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t); 53 #else 54 55 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0) 56 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0) 57 #endif 58 59 static const struct { 60 short offset; 61 short type; /* 0 = integer 62 * 1 = binary / string (no translation) 63 */ 64 } xfs_sb_info[] = { 65 { offsetof(xfs_sb_t, sb_magicnum), 0 }, 66 { offsetof(xfs_sb_t, sb_blocksize), 0 }, 67 { offsetof(xfs_sb_t, sb_dblocks), 0 }, 68 { offsetof(xfs_sb_t, sb_rblocks), 0 }, 69 { offsetof(xfs_sb_t, sb_rextents), 0 }, 70 { offsetof(xfs_sb_t, sb_uuid), 1 }, 71 { offsetof(xfs_sb_t, sb_logstart), 0 }, 72 { offsetof(xfs_sb_t, sb_rootino), 0 }, 73 { offsetof(xfs_sb_t, sb_rbmino), 0 }, 74 { offsetof(xfs_sb_t, sb_rsumino), 0 }, 75 { offsetof(xfs_sb_t, sb_rextsize), 0 }, 76 { offsetof(xfs_sb_t, sb_agblocks), 0 }, 77 { offsetof(xfs_sb_t, sb_agcount), 0 }, 78 { offsetof(xfs_sb_t, sb_rbmblocks), 0 }, 79 { offsetof(xfs_sb_t, sb_logblocks), 0 }, 80 { offsetof(xfs_sb_t, sb_versionnum), 0 }, 81 { offsetof(xfs_sb_t, sb_sectsize), 0 }, 82 { offsetof(xfs_sb_t, sb_inodesize), 0 }, 83 { offsetof(xfs_sb_t, sb_inopblock), 0 }, 84 { offsetof(xfs_sb_t, sb_fname[0]), 1 }, 85 { offsetof(xfs_sb_t, sb_blocklog), 0 }, 86 { offsetof(xfs_sb_t, sb_sectlog), 0 }, 87 { offsetof(xfs_sb_t, sb_inodelog), 0 }, 88 { offsetof(xfs_sb_t, sb_inopblog), 0 }, 89 { offsetof(xfs_sb_t, sb_agblklog), 0 }, 90 { offsetof(xfs_sb_t, sb_rextslog), 0 }, 91 { offsetof(xfs_sb_t, sb_inprogress), 0 }, 92 { offsetof(xfs_sb_t, sb_imax_pct), 0 }, 93 { offsetof(xfs_sb_t, sb_icount), 0 }, 94 { offsetof(xfs_sb_t, sb_ifree), 0 }, 95 { offsetof(xfs_sb_t, sb_fdblocks), 0 }, 96 { offsetof(xfs_sb_t, sb_frextents), 0 }, 97 { offsetof(xfs_sb_t, sb_uquotino), 0 }, 98 { offsetof(xfs_sb_t, sb_gquotino), 0 }, 99 { offsetof(xfs_sb_t, sb_qflags), 0 }, 100 { offsetof(xfs_sb_t, sb_flags), 0 }, 101 { offsetof(xfs_sb_t, sb_shared_vn), 0 }, 102 { offsetof(xfs_sb_t, sb_inoalignmt), 0 }, 103 { offsetof(xfs_sb_t, sb_unit), 0 }, 104 { offsetof(xfs_sb_t, sb_width), 0 }, 105 { offsetof(xfs_sb_t, sb_dirblklog), 0 }, 106 { offsetof(xfs_sb_t, sb_logsectlog), 0 }, 107 { offsetof(xfs_sb_t, sb_logsectsize),0 }, 108 { offsetof(xfs_sb_t, sb_logsunit), 0 }, 109 { offsetof(xfs_sb_t, sb_features2), 0 }, 110 { offsetof(xfs_sb_t, sb_bad_features2), 0 }, 111 { sizeof(xfs_sb_t), 0 } 112 }; 113 114 static DEFINE_MUTEX(xfs_uuid_table_mutex); 115 static int xfs_uuid_table_size; 116 static uuid_t *xfs_uuid_table; 117 118 /* 119 * See if the UUID is unique among mounted XFS filesystems. 120 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 121 */ 122 STATIC int 123 xfs_uuid_mount( 124 struct xfs_mount *mp) 125 { 126 uuid_t *uuid = &mp->m_sb.sb_uuid; 127 int hole, i; 128 129 if (mp->m_flags & XFS_MOUNT_NOUUID) 130 return 0; 131 132 if (uuid_is_nil(uuid)) { 133 xfs_warn(mp, "Filesystem has nil UUID - can't mount"); 134 return XFS_ERROR(EINVAL); 135 } 136 137 mutex_lock(&xfs_uuid_table_mutex); 138 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 139 if (uuid_is_nil(&xfs_uuid_table[i])) { 140 hole = i; 141 continue; 142 } 143 if (uuid_equal(uuid, &xfs_uuid_table[i])) 144 goto out_duplicate; 145 } 146 147 if (hole < 0) { 148 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 149 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 150 xfs_uuid_table_size * sizeof(*xfs_uuid_table), 151 KM_SLEEP); 152 hole = xfs_uuid_table_size++; 153 } 154 xfs_uuid_table[hole] = *uuid; 155 mutex_unlock(&xfs_uuid_table_mutex); 156 157 return 0; 158 159 out_duplicate: 160 mutex_unlock(&xfs_uuid_table_mutex); 161 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 162 return XFS_ERROR(EINVAL); 163 } 164 165 STATIC void 166 xfs_uuid_unmount( 167 struct xfs_mount *mp) 168 { 169 uuid_t *uuid = &mp->m_sb.sb_uuid; 170 int i; 171 172 if (mp->m_flags & XFS_MOUNT_NOUUID) 173 return; 174 175 mutex_lock(&xfs_uuid_table_mutex); 176 for (i = 0; i < xfs_uuid_table_size; i++) { 177 if (uuid_is_nil(&xfs_uuid_table[i])) 178 continue; 179 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 180 continue; 181 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 182 break; 183 } 184 ASSERT(i < xfs_uuid_table_size); 185 mutex_unlock(&xfs_uuid_table_mutex); 186 } 187 188 189 /* 190 * Reference counting access wrappers to the perag structures. 191 * Because we never free per-ag structures, the only thing we 192 * have to protect against changes is the tree structure itself. 193 */ 194 struct xfs_perag * 195 xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno) 196 { 197 struct xfs_perag *pag; 198 int ref = 0; 199 200 rcu_read_lock(); 201 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 202 if (pag) { 203 ASSERT(atomic_read(&pag->pag_ref) >= 0); 204 ref = atomic_inc_return(&pag->pag_ref); 205 } 206 rcu_read_unlock(); 207 trace_xfs_perag_get(mp, agno, ref, _RET_IP_); 208 return pag; 209 } 210 211 /* 212 * search from @first to find the next perag with the given tag set. 213 */ 214 struct xfs_perag * 215 xfs_perag_get_tag( 216 struct xfs_mount *mp, 217 xfs_agnumber_t first, 218 int tag) 219 { 220 struct xfs_perag *pag; 221 int found; 222 int ref; 223 224 rcu_read_lock(); 225 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 226 (void **)&pag, first, 1, tag); 227 if (found <= 0) { 228 rcu_read_unlock(); 229 return NULL; 230 } 231 ref = atomic_inc_return(&pag->pag_ref); 232 rcu_read_unlock(); 233 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_); 234 return pag; 235 } 236 237 void 238 xfs_perag_put(struct xfs_perag *pag) 239 { 240 int ref; 241 242 ASSERT(atomic_read(&pag->pag_ref) > 0); 243 ref = atomic_dec_return(&pag->pag_ref); 244 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_); 245 } 246 247 STATIC void 248 __xfs_free_perag( 249 struct rcu_head *head) 250 { 251 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 252 253 ASSERT(atomic_read(&pag->pag_ref) == 0); 254 kmem_free(pag); 255 } 256 257 /* 258 * Free up the per-ag resources associated with the mount structure. 259 */ 260 STATIC void 261 xfs_free_perag( 262 xfs_mount_t *mp) 263 { 264 xfs_agnumber_t agno; 265 struct xfs_perag *pag; 266 267 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 268 spin_lock(&mp->m_perag_lock); 269 pag = radix_tree_delete(&mp->m_perag_tree, agno); 270 spin_unlock(&mp->m_perag_lock); 271 ASSERT(pag); 272 ASSERT(atomic_read(&pag->pag_ref) == 0); 273 call_rcu(&pag->rcu_head, __xfs_free_perag); 274 } 275 } 276 277 /* 278 * Check size of device based on the (data/realtime) block count. 279 * Note: this check is used by the growfs code as well as mount. 280 */ 281 int 282 xfs_sb_validate_fsb_count( 283 xfs_sb_t *sbp, 284 __uint64_t nblocks) 285 { 286 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 287 ASSERT(sbp->sb_blocklog >= BBSHIFT); 288 289 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */ 290 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 291 return EFBIG; 292 #else /* Limited by UINT_MAX of sectors */ 293 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX) 294 return EFBIG; 295 #endif 296 return 0; 297 } 298 299 /* 300 * Check the validity of the SB found. 301 */ 302 STATIC int 303 xfs_mount_validate_sb( 304 xfs_mount_t *mp, 305 xfs_sb_t *sbp, 306 int flags) 307 { 308 int loud = !(flags & XFS_MFSI_QUIET); 309 310 /* 311 * If the log device and data device have the 312 * same device number, the log is internal. 313 * Consequently, the sb_logstart should be non-zero. If 314 * we have a zero sb_logstart in this case, we may be trying to mount 315 * a volume filesystem in a non-volume manner. 316 */ 317 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 318 if (loud) 319 xfs_warn(mp, "bad magic number"); 320 return XFS_ERROR(EWRONGFS); 321 } 322 323 if (!xfs_sb_good_version(sbp)) { 324 if (loud) 325 xfs_warn(mp, "bad version"); 326 return XFS_ERROR(EWRONGFS); 327 } 328 329 if (unlikely( 330 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) { 331 if (loud) 332 xfs_warn(mp, 333 "filesystem is marked as having an external log; " 334 "specify logdev on the mount command line."); 335 return XFS_ERROR(EINVAL); 336 } 337 338 if (unlikely( 339 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) { 340 if (loud) 341 xfs_warn(mp, 342 "filesystem is marked as having an internal log; " 343 "do not specify logdev on the mount command line."); 344 return XFS_ERROR(EINVAL); 345 } 346 347 /* 348 * More sanity checking. Most of these were stolen directly from 349 * xfs_repair. 350 */ 351 if (unlikely( 352 sbp->sb_agcount <= 0 || 353 sbp->sb_sectsize < XFS_MIN_SECTORSIZE || 354 sbp->sb_sectsize > XFS_MAX_SECTORSIZE || 355 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG || 356 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG || 357 sbp->sb_sectsize != (1 << sbp->sb_sectlog) || 358 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE || 359 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE || 360 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG || 361 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG || 362 sbp->sb_blocksize != (1 << sbp->sb_blocklog) || 363 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE || 364 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE || 365 sbp->sb_inodelog < XFS_DINODE_MIN_LOG || 366 sbp->sb_inodelog > XFS_DINODE_MAX_LOG || 367 sbp->sb_inodesize != (1 << sbp->sb_inodelog) || 368 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) || 369 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) || 370 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) || 371 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) || 372 sbp->sb_dblocks == 0 || 373 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) || 374 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) { 375 if (loud) 376 XFS_CORRUPTION_ERROR("SB sanity check failed", 377 XFS_ERRLEVEL_LOW, mp, sbp); 378 return XFS_ERROR(EFSCORRUPTED); 379 } 380 381 /* 382 * Until this is fixed only page-sized or smaller data blocks work. 383 */ 384 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) { 385 if (loud) { 386 xfs_warn(mp, 387 "File system with blocksize %d bytes. " 388 "Only pagesize (%ld) or less will currently work.", 389 sbp->sb_blocksize, PAGE_SIZE); 390 } 391 return XFS_ERROR(ENOSYS); 392 } 393 394 /* 395 * Currently only very few inode sizes are supported. 396 */ 397 switch (sbp->sb_inodesize) { 398 case 256: 399 case 512: 400 case 1024: 401 case 2048: 402 break; 403 default: 404 if (loud) 405 xfs_warn(mp, "inode size of %d bytes not supported", 406 sbp->sb_inodesize); 407 return XFS_ERROR(ENOSYS); 408 } 409 410 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) || 411 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) { 412 if (loud) 413 xfs_warn(mp, 414 "file system too large to be mounted on this system."); 415 return XFS_ERROR(EFBIG); 416 } 417 418 if (unlikely(sbp->sb_inprogress)) { 419 if (loud) 420 xfs_warn(mp, "file system busy"); 421 return XFS_ERROR(EFSCORRUPTED); 422 } 423 424 /* 425 * Version 1 directory format has never worked on Linux. 426 */ 427 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) { 428 if (loud) 429 xfs_warn(mp, 430 "file system using version 1 directory format"); 431 return XFS_ERROR(ENOSYS); 432 } 433 434 return 0; 435 } 436 437 int 438 xfs_initialize_perag( 439 xfs_mount_t *mp, 440 xfs_agnumber_t agcount, 441 xfs_agnumber_t *maxagi) 442 { 443 xfs_agnumber_t index; 444 xfs_agnumber_t first_initialised = 0; 445 xfs_perag_t *pag; 446 xfs_agino_t agino; 447 xfs_ino_t ino; 448 xfs_sb_t *sbp = &mp->m_sb; 449 int error = -ENOMEM; 450 451 /* 452 * Walk the current per-ag tree so we don't try to initialise AGs 453 * that already exist (growfs case). Allocate and insert all the 454 * AGs we don't find ready for initialisation. 455 */ 456 for (index = 0; index < agcount; index++) { 457 pag = xfs_perag_get(mp, index); 458 if (pag) { 459 xfs_perag_put(pag); 460 continue; 461 } 462 if (!first_initialised) 463 first_initialised = index; 464 465 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 466 if (!pag) 467 goto out_unwind; 468 pag->pag_agno = index; 469 pag->pag_mount = mp; 470 spin_lock_init(&pag->pag_ici_lock); 471 mutex_init(&pag->pag_ici_reclaim_lock); 472 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 473 spin_lock_init(&pag->pag_buf_lock); 474 pag->pag_buf_tree = RB_ROOT; 475 476 if (radix_tree_preload(GFP_NOFS)) 477 goto out_unwind; 478 479 spin_lock(&mp->m_perag_lock); 480 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 481 BUG(); 482 spin_unlock(&mp->m_perag_lock); 483 radix_tree_preload_end(); 484 error = -EEXIST; 485 goto out_unwind; 486 } 487 spin_unlock(&mp->m_perag_lock); 488 radix_tree_preload_end(); 489 } 490 491 /* 492 * If we mount with the inode64 option, or no inode overflows 493 * the legacy 32-bit address space clear the inode32 option. 494 */ 495 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); 496 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino); 497 498 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32) 499 mp->m_flags |= XFS_MOUNT_32BITINODES; 500 else 501 mp->m_flags &= ~XFS_MOUNT_32BITINODES; 502 503 if (mp->m_flags & XFS_MOUNT_32BITINODES) 504 index = xfs_set_inode32(mp); 505 else 506 index = xfs_set_inode64(mp); 507 508 if (maxagi) 509 *maxagi = index; 510 return 0; 511 512 out_unwind: 513 kmem_free(pag); 514 for (; index > first_initialised; index--) { 515 pag = radix_tree_delete(&mp->m_perag_tree, index); 516 kmem_free(pag); 517 } 518 return error; 519 } 520 521 void 522 xfs_sb_from_disk( 523 struct xfs_mount *mp, 524 xfs_dsb_t *from) 525 { 526 struct xfs_sb *to = &mp->m_sb; 527 528 to->sb_magicnum = be32_to_cpu(from->sb_magicnum); 529 to->sb_blocksize = be32_to_cpu(from->sb_blocksize); 530 to->sb_dblocks = be64_to_cpu(from->sb_dblocks); 531 to->sb_rblocks = be64_to_cpu(from->sb_rblocks); 532 to->sb_rextents = be64_to_cpu(from->sb_rextents); 533 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid)); 534 to->sb_logstart = be64_to_cpu(from->sb_logstart); 535 to->sb_rootino = be64_to_cpu(from->sb_rootino); 536 to->sb_rbmino = be64_to_cpu(from->sb_rbmino); 537 to->sb_rsumino = be64_to_cpu(from->sb_rsumino); 538 to->sb_rextsize = be32_to_cpu(from->sb_rextsize); 539 to->sb_agblocks = be32_to_cpu(from->sb_agblocks); 540 to->sb_agcount = be32_to_cpu(from->sb_agcount); 541 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks); 542 to->sb_logblocks = be32_to_cpu(from->sb_logblocks); 543 to->sb_versionnum = be16_to_cpu(from->sb_versionnum); 544 to->sb_sectsize = be16_to_cpu(from->sb_sectsize); 545 to->sb_inodesize = be16_to_cpu(from->sb_inodesize); 546 to->sb_inopblock = be16_to_cpu(from->sb_inopblock); 547 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname)); 548 to->sb_blocklog = from->sb_blocklog; 549 to->sb_sectlog = from->sb_sectlog; 550 to->sb_inodelog = from->sb_inodelog; 551 to->sb_inopblog = from->sb_inopblog; 552 to->sb_agblklog = from->sb_agblklog; 553 to->sb_rextslog = from->sb_rextslog; 554 to->sb_inprogress = from->sb_inprogress; 555 to->sb_imax_pct = from->sb_imax_pct; 556 to->sb_icount = be64_to_cpu(from->sb_icount); 557 to->sb_ifree = be64_to_cpu(from->sb_ifree); 558 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks); 559 to->sb_frextents = be64_to_cpu(from->sb_frextents); 560 to->sb_uquotino = be64_to_cpu(from->sb_uquotino); 561 to->sb_gquotino = be64_to_cpu(from->sb_gquotino); 562 to->sb_qflags = be16_to_cpu(from->sb_qflags); 563 to->sb_flags = from->sb_flags; 564 to->sb_shared_vn = from->sb_shared_vn; 565 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt); 566 to->sb_unit = be32_to_cpu(from->sb_unit); 567 to->sb_width = be32_to_cpu(from->sb_width); 568 to->sb_dirblklog = from->sb_dirblklog; 569 to->sb_logsectlog = from->sb_logsectlog; 570 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize); 571 to->sb_logsunit = be32_to_cpu(from->sb_logsunit); 572 to->sb_features2 = be32_to_cpu(from->sb_features2); 573 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2); 574 } 575 576 /* 577 * Copy in core superblock to ondisk one. 578 * 579 * The fields argument is mask of superblock fields to copy. 580 */ 581 void 582 xfs_sb_to_disk( 583 xfs_dsb_t *to, 584 xfs_sb_t *from, 585 __int64_t fields) 586 { 587 xfs_caddr_t to_ptr = (xfs_caddr_t)to; 588 xfs_caddr_t from_ptr = (xfs_caddr_t)from; 589 xfs_sb_field_t f; 590 int first; 591 int size; 592 593 ASSERT(fields); 594 if (!fields) 595 return; 596 597 while (fields) { 598 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 599 first = xfs_sb_info[f].offset; 600 size = xfs_sb_info[f + 1].offset - first; 601 602 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1); 603 604 if (size == 1 || xfs_sb_info[f].type == 1) { 605 memcpy(to_ptr + first, from_ptr + first, size); 606 } else { 607 switch (size) { 608 case 2: 609 *(__be16 *)(to_ptr + first) = 610 cpu_to_be16(*(__u16 *)(from_ptr + first)); 611 break; 612 case 4: 613 *(__be32 *)(to_ptr + first) = 614 cpu_to_be32(*(__u32 *)(from_ptr + first)); 615 break; 616 case 8: 617 *(__be64 *)(to_ptr + first) = 618 cpu_to_be64(*(__u64 *)(from_ptr + first)); 619 break; 620 default: 621 ASSERT(0); 622 } 623 } 624 625 fields &= ~(1LL << f); 626 } 627 } 628 629 /* 630 * xfs_readsb 631 * 632 * Does the initial read of the superblock. 633 */ 634 int 635 xfs_readsb(xfs_mount_t *mp, int flags) 636 { 637 unsigned int sector_size; 638 xfs_buf_t *bp; 639 int error; 640 int loud = !(flags & XFS_MFSI_QUIET); 641 642 ASSERT(mp->m_sb_bp == NULL); 643 ASSERT(mp->m_ddev_targp != NULL); 644 645 /* 646 * Allocate a (locked) buffer to hold the superblock. 647 * This will be kept around at all times to optimize 648 * access to the superblock. 649 */ 650 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 651 652 reread: 653 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 654 BTOBB(sector_size), 0); 655 if (!bp) { 656 if (loud) 657 xfs_warn(mp, "SB buffer read failed"); 658 return EIO; 659 } 660 661 /* 662 * Initialize the mount structure from the superblock. 663 * But first do some basic consistency checking. 664 */ 665 xfs_sb_from_disk(mp, XFS_BUF_TO_SBP(bp)); 666 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags); 667 if (error) { 668 if (loud) 669 xfs_warn(mp, "SB validate failed"); 670 goto release_buf; 671 } 672 673 /* 674 * We must be able to do sector-sized and sector-aligned IO. 675 */ 676 if (sector_size > mp->m_sb.sb_sectsize) { 677 if (loud) 678 xfs_warn(mp, "device supports %u byte sectors (not %u)", 679 sector_size, mp->m_sb.sb_sectsize); 680 error = ENOSYS; 681 goto release_buf; 682 } 683 684 /* 685 * If device sector size is smaller than the superblock size, 686 * re-read the superblock so the buffer is correctly sized. 687 */ 688 if (sector_size < mp->m_sb.sb_sectsize) { 689 xfs_buf_relse(bp); 690 sector_size = mp->m_sb.sb_sectsize; 691 goto reread; 692 } 693 694 /* Initialize per-cpu counters */ 695 xfs_icsb_reinit_counters(mp); 696 697 mp->m_sb_bp = bp; 698 xfs_buf_unlock(bp); 699 return 0; 700 701 release_buf: 702 xfs_buf_relse(bp); 703 return error; 704 } 705 706 707 /* 708 * xfs_mount_common 709 * 710 * Mount initialization code establishing various mount 711 * fields from the superblock associated with the given 712 * mount structure 713 */ 714 STATIC void 715 xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp) 716 { 717 mp->m_agfrotor = mp->m_agirotor = 0; 718 spin_lock_init(&mp->m_agirotor_lock); 719 mp->m_maxagi = mp->m_sb.sb_agcount; 720 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG; 721 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT; 722 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT; 723 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1; 724 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog; 725 mp->m_blockmask = sbp->sb_blocksize - 1; 726 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG; 727 mp->m_blockwmask = mp->m_blockwsize - 1; 728 729 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1); 730 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0); 731 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2; 732 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2; 733 734 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); 735 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); 736 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2; 737 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2; 738 739 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1); 740 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0); 741 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2; 742 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2; 743 744 mp->m_bsize = XFS_FSB_TO_BB(mp, 1); 745 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK, 746 sbp->sb_inopblock); 747 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog; 748 } 749 750 /* 751 * xfs_initialize_perag_data 752 * 753 * Read in each per-ag structure so we can count up the number of 754 * allocated inodes, free inodes and used filesystem blocks as this 755 * information is no longer persistent in the superblock. Once we have 756 * this information, write it into the in-core superblock structure. 757 */ 758 STATIC int 759 xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount) 760 { 761 xfs_agnumber_t index; 762 xfs_perag_t *pag; 763 xfs_sb_t *sbp = &mp->m_sb; 764 uint64_t ifree = 0; 765 uint64_t ialloc = 0; 766 uint64_t bfree = 0; 767 uint64_t bfreelst = 0; 768 uint64_t btree = 0; 769 int error; 770 771 for (index = 0; index < agcount; index++) { 772 /* 773 * read the agf, then the agi. This gets us 774 * all the information we need and populates the 775 * per-ag structures for us. 776 */ 777 error = xfs_alloc_pagf_init(mp, NULL, index, 0); 778 if (error) 779 return error; 780 781 error = xfs_ialloc_pagi_init(mp, NULL, index); 782 if (error) 783 return error; 784 pag = xfs_perag_get(mp, index); 785 ifree += pag->pagi_freecount; 786 ialloc += pag->pagi_count; 787 bfree += pag->pagf_freeblks; 788 bfreelst += pag->pagf_flcount; 789 btree += pag->pagf_btreeblks; 790 xfs_perag_put(pag); 791 } 792 /* 793 * Overwrite incore superblock counters with just-read data 794 */ 795 spin_lock(&mp->m_sb_lock); 796 sbp->sb_ifree = ifree; 797 sbp->sb_icount = ialloc; 798 sbp->sb_fdblocks = bfree + bfreelst + btree; 799 spin_unlock(&mp->m_sb_lock); 800 801 /* Fixup the per-cpu counters as well. */ 802 xfs_icsb_reinit_counters(mp); 803 804 return 0; 805 } 806 807 /* 808 * Update alignment values based on mount options and sb values 809 */ 810 STATIC int 811 xfs_update_alignment(xfs_mount_t *mp) 812 { 813 xfs_sb_t *sbp = &(mp->m_sb); 814 815 if (mp->m_dalign) { 816 /* 817 * If stripe unit and stripe width are not multiples 818 * of the fs blocksize turn off alignment. 819 */ 820 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 821 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 822 if (mp->m_flags & XFS_MOUNT_RETERR) { 823 xfs_warn(mp, "alignment check failed: " 824 "(sunit/swidth vs. blocksize)"); 825 return XFS_ERROR(EINVAL); 826 } 827 mp->m_dalign = mp->m_swidth = 0; 828 } else { 829 /* 830 * Convert the stripe unit and width to FSBs. 831 */ 832 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 833 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 834 if (mp->m_flags & XFS_MOUNT_RETERR) { 835 xfs_warn(mp, "alignment check failed: " 836 "(sunit/swidth vs. ag size)"); 837 return XFS_ERROR(EINVAL); 838 } 839 xfs_warn(mp, 840 "stripe alignment turned off: sunit(%d)/swidth(%d) " 841 "incompatible with agsize(%d)", 842 mp->m_dalign, mp->m_swidth, 843 sbp->sb_agblocks); 844 845 mp->m_dalign = 0; 846 mp->m_swidth = 0; 847 } else if (mp->m_dalign) { 848 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 849 } else { 850 if (mp->m_flags & XFS_MOUNT_RETERR) { 851 xfs_warn(mp, "alignment check failed: " 852 "sunit(%d) less than bsize(%d)", 853 mp->m_dalign, 854 mp->m_blockmask +1); 855 return XFS_ERROR(EINVAL); 856 } 857 mp->m_swidth = 0; 858 } 859 } 860 861 /* 862 * Update superblock with new values 863 * and log changes 864 */ 865 if (xfs_sb_version_hasdalign(sbp)) { 866 if (sbp->sb_unit != mp->m_dalign) { 867 sbp->sb_unit = mp->m_dalign; 868 mp->m_update_flags |= XFS_SB_UNIT; 869 } 870 if (sbp->sb_width != mp->m_swidth) { 871 sbp->sb_width = mp->m_swidth; 872 mp->m_update_flags |= XFS_SB_WIDTH; 873 } 874 } 875 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 876 xfs_sb_version_hasdalign(&mp->m_sb)) { 877 mp->m_dalign = sbp->sb_unit; 878 mp->m_swidth = sbp->sb_width; 879 } 880 881 return 0; 882 } 883 884 /* 885 * Set the maximum inode count for this filesystem 886 */ 887 STATIC void 888 xfs_set_maxicount(xfs_mount_t *mp) 889 { 890 xfs_sb_t *sbp = &(mp->m_sb); 891 __uint64_t icount; 892 893 if (sbp->sb_imax_pct) { 894 /* 895 * Make sure the maximum inode count is a multiple 896 * of the units we allocate inodes in. 897 */ 898 icount = sbp->sb_dblocks * sbp->sb_imax_pct; 899 do_div(icount, 100); 900 do_div(icount, mp->m_ialloc_blks); 901 mp->m_maxicount = (icount * mp->m_ialloc_blks) << 902 sbp->sb_inopblog; 903 } else { 904 mp->m_maxicount = 0; 905 } 906 } 907 908 /* 909 * Set the default minimum read and write sizes unless 910 * already specified in a mount option. 911 * We use smaller I/O sizes when the file system 912 * is being used for NFS service (wsync mount option). 913 */ 914 STATIC void 915 xfs_set_rw_sizes(xfs_mount_t *mp) 916 { 917 xfs_sb_t *sbp = &(mp->m_sb); 918 int readio_log, writeio_log; 919 920 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 921 if (mp->m_flags & XFS_MOUNT_WSYNC) { 922 readio_log = XFS_WSYNC_READIO_LOG; 923 writeio_log = XFS_WSYNC_WRITEIO_LOG; 924 } else { 925 readio_log = XFS_READIO_LOG_LARGE; 926 writeio_log = XFS_WRITEIO_LOG_LARGE; 927 } 928 } else { 929 readio_log = mp->m_readio_log; 930 writeio_log = mp->m_writeio_log; 931 } 932 933 if (sbp->sb_blocklog > readio_log) { 934 mp->m_readio_log = sbp->sb_blocklog; 935 } else { 936 mp->m_readio_log = readio_log; 937 } 938 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 939 if (sbp->sb_blocklog > writeio_log) { 940 mp->m_writeio_log = sbp->sb_blocklog; 941 } else { 942 mp->m_writeio_log = writeio_log; 943 } 944 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 945 } 946 947 /* 948 * precalculate the low space thresholds for dynamic speculative preallocation. 949 */ 950 void 951 xfs_set_low_space_thresholds( 952 struct xfs_mount *mp) 953 { 954 int i; 955 956 for (i = 0; i < XFS_LOWSP_MAX; i++) { 957 __uint64_t space = mp->m_sb.sb_dblocks; 958 959 do_div(space, 100); 960 mp->m_low_space[i] = space * (i + 1); 961 } 962 } 963 964 965 /* 966 * Set whether we're using inode alignment. 967 */ 968 STATIC void 969 xfs_set_inoalignment(xfs_mount_t *mp) 970 { 971 if (xfs_sb_version_hasalign(&mp->m_sb) && 972 mp->m_sb.sb_inoalignmt >= 973 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) 974 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; 975 else 976 mp->m_inoalign_mask = 0; 977 /* 978 * If we are using stripe alignment, check whether 979 * the stripe unit is a multiple of the inode alignment 980 */ 981 if (mp->m_dalign && mp->m_inoalign_mask && 982 !(mp->m_dalign & mp->m_inoalign_mask)) 983 mp->m_sinoalign = mp->m_dalign; 984 else 985 mp->m_sinoalign = 0; 986 } 987 988 /* 989 * Check that the data (and log if separate) are an ok size. 990 */ 991 STATIC int 992 xfs_check_sizes(xfs_mount_t *mp) 993 { 994 xfs_buf_t *bp; 995 xfs_daddr_t d; 996 997 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 998 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 999 xfs_warn(mp, "filesystem size mismatch detected"); 1000 return XFS_ERROR(EFBIG); 1001 } 1002 bp = xfs_buf_read_uncached(mp->m_ddev_targp, 1003 d - XFS_FSS_TO_BB(mp, 1), 1004 XFS_FSS_TO_BB(mp, 1), 0); 1005 if (!bp) { 1006 xfs_warn(mp, "last sector read failed"); 1007 return EIO; 1008 } 1009 xfs_buf_relse(bp); 1010 1011 if (mp->m_logdev_targp != mp->m_ddev_targp) { 1012 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 1013 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 1014 xfs_warn(mp, "log size mismatch detected"); 1015 return XFS_ERROR(EFBIG); 1016 } 1017 bp = xfs_buf_read_uncached(mp->m_logdev_targp, 1018 d - XFS_FSB_TO_BB(mp, 1), 1019 XFS_FSB_TO_BB(mp, 1), 0); 1020 if (!bp) { 1021 xfs_warn(mp, "log device read failed"); 1022 return EIO; 1023 } 1024 xfs_buf_relse(bp); 1025 } 1026 return 0; 1027 } 1028 1029 /* 1030 * Clear the quotaflags in memory and in the superblock. 1031 */ 1032 int 1033 xfs_mount_reset_sbqflags( 1034 struct xfs_mount *mp) 1035 { 1036 int error; 1037 struct xfs_trans *tp; 1038 1039 mp->m_qflags = 0; 1040 1041 /* 1042 * It is OK to look at sb_qflags here in mount path, 1043 * without m_sb_lock. 1044 */ 1045 if (mp->m_sb.sb_qflags == 0) 1046 return 0; 1047 spin_lock(&mp->m_sb_lock); 1048 mp->m_sb.sb_qflags = 0; 1049 spin_unlock(&mp->m_sb_lock); 1050 1051 /* 1052 * If the fs is readonly, let the incore superblock run 1053 * with quotas off but don't flush the update out to disk 1054 */ 1055 if (mp->m_flags & XFS_MOUNT_RDONLY) 1056 return 0; 1057 1058 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE); 1059 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1060 XFS_DEFAULT_LOG_COUNT); 1061 if (error) { 1062 xfs_trans_cancel(tp, 0); 1063 xfs_alert(mp, "%s: Superblock update failed!", __func__); 1064 return error; 1065 } 1066 1067 xfs_mod_sb(tp, XFS_SB_QFLAGS); 1068 return xfs_trans_commit(tp, 0); 1069 } 1070 1071 __uint64_t 1072 xfs_default_resblks(xfs_mount_t *mp) 1073 { 1074 __uint64_t resblks; 1075 1076 /* 1077 * We default to 5% or 8192 fsbs of space reserved, whichever is 1078 * smaller. This is intended to cover concurrent allocation 1079 * transactions when we initially hit enospc. These each require a 4 1080 * block reservation. Hence by default we cover roughly 2000 concurrent 1081 * allocation reservations. 1082 */ 1083 resblks = mp->m_sb.sb_dblocks; 1084 do_div(resblks, 20); 1085 resblks = min_t(__uint64_t, resblks, 8192); 1086 return resblks; 1087 } 1088 1089 /* 1090 * This function does the following on an initial mount of a file system: 1091 * - reads the superblock from disk and init the mount struct 1092 * - if we're a 32-bit kernel, do a size check on the superblock 1093 * so we don't mount terabyte filesystems 1094 * - init mount struct realtime fields 1095 * - allocate inode hash table for fs 1096 * - init directory manager 1097 * - perform recovery and init the log manager 1098 */ 1099 int 1100 xfs_mountfs( 1101 xfs_mount_t *mp) 1102 { 1103 xfs_sb_t *sbp = &(mp->m_sb); 1104 xfs_inode_t *rip; 1105 __uint64_t resblks; 1106 uint quotamount = 0; 1107 uint quotaflags = 0; 1108 int error = 0; 1109 1110 xfs_mount_common(mp, sbp); 1111 1112 /* 1113 * Check for a mismatched features2 values. Older kernels 1114 * read & wrote into the wrong sb offset for sb_features2 1115 * on some platforms due to xfs_sb_t not being 64bit size aligned 1116 * when sb_features2 was added, which made older superblock 1117 * reading/writing routines swap it as a 64-bit value. 1118 * 1119 * For backwards compatibility, we make both slots equal. 1120 * 1121 * If we detect a mismatched field, we OR the set bits into the 1122 * existing features2 field in case it has already been modified; we 1123 * don't want to lose any features. We then update the bad location 1124 * with the ORed value so that older kernels will see any features2 1125 * flags, and mark the two fields as needing updates once the 1126 * transaction subsystem is online. 1127 */ 1128 if (xfs_sb_has_mismatched_features2(sbp)) { 1129 xfs_warn(mp, "correcting sb_features alignment problem"); 1130 sbp->sb_features2 |= sbp->sb_bad_features2; 1131 sbp->sb_bad_features2 = sbp->sb_features2; 1132 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2; 1133 1134 /* 1135 * Re-check for ATTR2 in case it was found in bad_features2 1136 * slot. 1137 */ 1138 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1139 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 1140 mp->m_flags |= XFS_MOUNT_ATTR2; 1141 } 1142 1143 if (xfs_sb_version_hasattr2(&mp->m_sb) && 1144 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 1145 xfs_sb_version_removeattr2(&mp->m_sb); 1146 mp->m_update_flags |= XFS_SB_FEATURES2; 1147 1148 /* update sb_versionnum for the clearing of the morebits */ 1149 if (!sbp->sb_features2) 1150 mp->m_update_flags |= XFS_SB_VERSIONNUM; 1151 } 1152 1153 /* 1154 * Check if sb_agblocks is aligned at stripe boundary 1155 * If sb_agblocks is NOT aligned turn off m_dalign since 1156 * allocator alignment is within an ag, therefore ag has 1157 * to be aligned at stripe boundary. 1158 */ 1159 error = xfs_update_alignment(mp); 1160 if (error) 1161 goto out; 1162 1163 xfs_alloc_compute_maxlevels(mp); 1164 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 1165 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 1166 xfs_ialloc_compute_maxlevels(mp); 1167 1168 xfs_set_maxicount(mp); 1169 1170 error = xfs_uuid_mount(mp); 1171 if (error) 1172 goto out; 1173 1174 /* 1175 * Set the minimum read and write sizes 1176 */ 1177 xfs_set_rw_sizes(mp); 1178 1179 /* set the low space thresholds for dynamic preallocation */ 1180 xfs_set_low_space_thresholds(mp); 1181 1182 /* 1183 * Set the inode cluster size. 1184 * This may still be overridden by the file system 1185 * block size if it is larger than the chosen cluster size. 1186 */ 1187 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; 1188 1189 /* 1190 * Set inode alignment fields 1191 */ 1192 xfs_set_inoalignment(mp); 1193 1194 /* 1195 * Check that the data (and log if separate) are an ok size. 1196 */ 1197 error = xfs_check_sizes(mp); 1198 if (error) 1199 goto out_remove_uuid; 1200 1201 /* 1202 * Initialize realtime fields in the mount structure 1203 */ 1204 error = xfs_rtmount_init(mp); 1205 if (error) { 1206 xfs_warn(mp, "RT mount failed"); 1207 goto out_remove_uuid; 1208 } 1209 1210 /* 1211 * Copies the low order bits of the timestamp and the randomly 1212 * set "sequence" number out of a UUID. 1213 */ 1214 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid); 1215 1216 mp->m_dmevmask = 0; /* not persistent; set after each mount */ 1217 1218 xfs_dir_mount(mp); 1219 1220 /* 1221 * Initialize the attribute manager's entries. 1222 */ 1223 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100; 1224 1225 /* 1226 * Initialize the precomputed transaction reservations values. 1227 */ 1228 xfs_trans_init(mp); 1229 1230 /* 1231 * Allocate and initialize the per-ag data. 1232 */ 1233 spin_lock_init(&mp->m_perag_lock); 1234 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC); 1235 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 1236 if (error) { 1237 xfs_warn(mp, "Failed per-ag init: %d", error); 1238 goto out_remove_uuid; 1239 } 1240 1241 if (!sbp->sb_logblocks) { 1242 xfs_warn(mp, "no log defined"); 1243 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 1244 error = XFS_ERROR(EFSCORRUPTED); 1245 goto out_free_perag; 1246 } 1247 1248 /* 1249 * log's mount-time initialization. Perform 1st part recovery if needed 1250 */ 1251 error = xfs_log_mount(mp, mp->m_logdev_targp, 1252 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 1253 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 1254 if (error) { 1255 xfs_warn(mp, "log mount failed"); 1256 goto out_fail_wait; 1257 } 1258 1259 /* 1260 * Now the log is mounted, we know if it was an unclean shutdown or 1261 * not. If it was, with the first phase of recovery has completed, we 1262 * have consistent AG blocks on disk. We have not recovered EFIs yet, 1263 * but they are recovered transactionally in the second recovery phase 1264 * later. 1265 * 1266 * Hence we can safely re-initialise incore superblock counters from 1267 * the per-ag data. These may not be correct if the filesystem was not 1268 * cleanly unmounted, so we need to wait for recovery to finish before 1269 * doing this. 1270 * 1271 * If the filesystem was cleanly unmounted, then we can trust the 1272 * values in the superblock to be correct and we don't need to do 1273 * anything here. 1274 * 1275 * If we are currently making the filesystem, the initialisation will 1276 * fail as the perag data is in an undefined state. 1277 */ 1278 if (xfs_sb_version_haslazysbcount(&mp->m_sb) && 1279 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 1280 !mp->m_sb.sb_inprogress) { 1281 error = xfs_initialize_perag_data(mp, sbp->sb_agcount); 1282 if (error) 1283 goto out_fail_wait; 1284 } 1285 1286 /* 1287 * Get and sanity-check the root inode. 1288 * Save the pointer to it in the mount structure. 1289 */ 1290 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip); 1291 if (error) { 1292 xfs_warn(mp, "failed to read root inode"); 1293 goto out_log_dealloc; 1294 } 1295 1296 ASSERT(rip != NULL); 1297 1298 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) { 1299 xfs_warn(mp, "corrupted root inode %llu: not a directory", 1300 (unsigned long long)rip->i_ino); 1301 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1302 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 1303 mp); 1304 error = XFS_ERROR(EFSCORRUPTED); 1305 goto out_rele_rip; 1306 } 1307 mp->m_rootip = rip; /* save it */ 1308 1309 xfs_iunlock(rip, XFS_ILOCK_EXCL); 1310 1311 /* 1312 * Initialize realtime inode pointers in the mount structure 1313 */ 1314 error = xfs_rtmount_inodes(mp); 1315 if (error) { 1316 /* 1317 * Free up the root inode. 1318 */ 1319 xfs_warn(mp, "failed to read RT inodes"); 1320 goto out_rele_rip; 1321 } 1322 1323 /* 1324 * If this is a read-only mount defer the superblock updates until 1325 * the next remount into writeable mode. Otherwise we would never 1326 * perform the update e.g. for the root filesystem. 1327 */ 1328 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 1329 error = xfs_mount_log_sb(mp, mp->m_update_flags); 1330 if (error) { 1331 xfs_warn(mp, "failed to write sb changes"); 1332 goto out_rtunmount; 1333 } 1334 } 1335 1336 /* 1337 * Initialise the XFS quota management subsystem for this mount 1338 */ 1339 if (XFS_IS_QUOTA_RUNNING(mp)) { 1340 error = xfs_qm_newmount(mp, "amount, "aflags); 1341 if (error) 1342 goto out_rtunmount; 1343 } else { 1344 ASSERT(!XFS_IS_QUOTA_ON(mp)); 1345 1346 /* 1347 * If a file system had quotas running earlier, but decided to 1348 * mount without -o uquota/pquota/gquota options, revoke the 1349 * quotachecked license. 1350 */ 1351 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 1352 xfs_notice(mp, "resetting quota flags"); 1353 error = xfs_mount_reset_sbqflags(mp); 1354 if (error) 1355 return error; 1356 } 1357 } 1358 1359 /* 1360 * Finish recovering the file system. This part needed to be 1361 * delayed until after the root and real-time bitmap inodes 1362 * were consistently read in. 1363 */ 1364 error = xfs_log_mount_finish(mp); 1365 if (error) { 1366 xfs_warn(mp, "log mount finish failed"); 1367 goto out_rtunmount; 1368 } 1369 1370 /* 1371 * Complete the quota initialisation, post-log-replay component. 1372 */ 1373 if (quotamount) { 1374 ASSERT(mp->m_qflags == 0); 1375 mp->m_qflags = quotaflags; 1376 1377 xfs_qm_mount_quotas(mp); 1378 } 1379 1380 /* 1381 * Now we are mounted, reserve a small amount of unused space for 1382 * privileged transactions. This is needed so that transaction 1383 * space required for critical operations can dip into this pool 1384 * when at ENOSPC. This is needed for operations like create with 1385 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1386 * are not allowed to use this reserved space. 1387 * 1388 * This may drive us straight to ENOSPC on mount, but that implies 1389 * we were already there on the last unmount. Warn if this occurs. 1390 */ 1391 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1392 resblks = xfs_default_resblks(mp); 1393 error = xfs_reserve_blocks(mp, &resblks, NULL); 1394 if (error) 1395 xfs_warn(mp, 1396 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1397 } 1398 1399 return 0; 1400 1401 out_rtunmount: 1402 xfs_rtunmount_inodes(mp); 1403 out_rele_rip: 1404 IRELE(rip); 1405 out_log_dealloc: 1406 xfs_log_unmount(mp); 1407 out_fail_wait: 1408 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1409 xfs_wait_buftarg(mp->m_logdev_targp); 1410 xfs_wait_buftarg(mp->m_ddev_targp); 1411 out_free_perag: 1412 xfs_free_perag(mp); 1413 out_remove_uuid: 1414 xfs_uuid_unmount(mp); 1415 out: 1416 return error; 1417 } 1418 1419 /* 1420 * This flushes out the inodes,dquots and the superblock, unmounts the 1421 * log and makes sure that incore structures are freed. 1422 */ 1423 void 1424 xfs_unmountfs( 1425 struct xfs_mount *mp) 1426 { 1427 __uint64_t resblks; 1428 int error; 1429 1430 xfs_qm_unmount_quotas(mp); 1431 xfs_rtunmount_inodes(mp); 1432 IRELE(mp->m_rootip); 1433 1434 /* 1435 * We can potentially deadlock here if we have an inode cluster 1436 * that has been freed has its buffer still pinned in memory because 1437 * the transaction is still sitting in a iclog. The stale inodes 1438 * on that buffer will have their flush locks held until the 1439 * transaction hits the disk and the callbacks run. the inode 1440 * flush takes the flush lock unconditionally and with nothing to 1441 * push out the iclog we will never get that unlocked. hence we 1442 * need to force the log first. 1443 */ 1444 xfs_log_force(mp, XFS_LOG_SYNC); 1445 1446 /* 1447 * Flush all pending changes from the AIL. 1448 */ 1449 xfs_ail_push_all_sync(mp->m_ail); 1450 1451 /* 1452 * And reclaim all inodes. At this point there should be no dirty 1453 * inode, and none should be pinned or locked, but use synchronous 1454 * reclaim just to be sure. 1455 */ 1456 xfs_reclaim_inodes(mp, SYNC_WAIT); 1457 1458 xfs_qm_unmount(mp); 1459 1460 /* 1461 * Flush out the log synchronously so that we know for sure 1462 * that nothing is pinned. This is important because bflush() 1463 * will skip pinned buffers. 1464 */ 1465 xfs_log_force(mp, XFS_LOG_SYNC); 1466 1467 /* 1468 * Unreserve any blocks we have so that when we unmount we don't account 1469 * the reserved free space as used. This is really only necessary for 1470 * lazy superblock counting because it trusts the incore superblock 1471 * counters to be absolutely correct on clean unmount. 1472 * 1473 * We don't bother correcting this elsewhere for lazy superblock 1474 * counting because on mount of an unclean filesystem we reconstruct the 1475 * correct counter value and this is irrelevant. 1476 * 1477 * For non-lazy counter filesystems, this doesn't matter at all because 1478 * we only every apply deltas to the superblock and hence the incore 1479 * value does not matter.... 1480 */ 1481 resblks = 0; 1482 error = xfs_reserve_blocks(mp, &resblks, NULL); 1483 if (error) 1484 xfs_warn(mp, "Unable to free reserved block pool. " 1485 "Freespace may not be correct on next mount."); 1486 1487 error = xfs_log_sbcount(mp); 1488 if (error) 1489 xfs_warn(mp, "Unable to update superblock counters. " 1490 "Freespace may not be correct on next mount."); 1491 1492 /* 1493 * At this point we might have modified the superblock again and thus 1494 * added an item to the AIL, thus flush it again. 1495 */ 1496 xfs_ail_push_all_sync(mp->m_ail); 1497 xfs_wait_buftarg(mp->m_ddev_targp); 1498 1499 /* 1500 * The superblock buffer is uncached and xfsaild_push() will lock and 1501 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait() 1502 * here but a lock on the superblock buffer will block until iodone() 1503 * has completed. 1504 */ 1505 xfs_buf_lock(mp->m_sb_bp); 1506 xfs_buf_unlock(mp->m_sb_bp); 1507 1508 xfs_log_unmount_write(mp); 1509 xfs_log_unmount(mp); 1510 xfs_uuid_unmount(mp); 1511 1512 #if defined(DEBUG) 1513 xfs_errortag_clearall(mp, 0); 1514 #endif 1515 xfs_free_perag(mp); 1516 } 1517 1518 int 1519 xfs_fs_writable(xfs_mount_t *mp) 1520 { 1521 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) || 1522 (mp->m_flags & XFS_MOUNT_RDONLY)); 1523 } 1524 1525 /* 1526 * xfs_log_sbcount 1527 * 1528 * Sync the superblock counters to disk. 1529 * 1530 * Note this code can be called during the process of freezing, so 1531 * we may need to use the transaction allocator which does not 1532 * block when the transaction subsystem is in its frozen state. 1533 */ 1534 int 1535 xfs_log_sbcount(xfs_mount_t *mp) 1536 { 1537 xfs_trans_t *tp; 1538 int error; 1539 1540 if (!xfs_fs_writable(mp)) 1541 return 0; 1542 1543 xfs_icsb_sync_counters(mp, 0); 1544 1545 /* 1546 * we don't need to do this if we are updating the superblock 1547 * counters on every modification. 1548 */ 1549 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1550 return 0; 1551 1552 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP); 1553 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1554 XFS_DEFAULT_LOG_COUNT); 1555 if (error) { 1556 xfs_trans_cancel(tp, 0); 1557 return error; 1558 } 1559 1560 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS); 1561 xfs_trans_set_sync(tp); 1562 error = xfs_trans_commit(tp, 0); 1563 return error; 1564 } 1565 1566 /* 1567 * xfs_mod_sb() can be used to copy arbitrary changes to the 1568 * in-core superblock into the superblock buffer to be logged. 1569 * It does not provide the higher level of locking that is 1570 * needed to protect the in-core superblock from concurrent 1571 * access. 1572 */ 1573 void 1574 xfs_mod_sb(xfs_trans_t *tp, __int64_t fields) 1575 { 1576 xfs_buf_t *bp; 1577 int first; 1578 int last; 1579 xfs_mount_t *mp; 1580 xfs_sb_field_t f; 1581 1582 ASSERT(fields); 1583 if (!fields) 1584 return; 1585 mp = tp->t_mountp; 1586 bp = xfs_trans_getsb(tp, mp, 0); 1587 first = sizeof(xfs_sb_t); 1588 last = 0; 1589 1590 /* translate/copy */ 1591 1592 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields); 1593 1594 /* find modified range */ 1595 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields); 1596 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1597 last = xfs_sb_info[f + 1].offset - 1; 1598 1599 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields); 1600 ASSERT((1LL << f) & XFS_SB_MOD_BITS); 1601 first = xfs_sb_info[f].offset; 1602 1603 xfs_trans_log_buf(tp, bp, first, last); 1604 } 1605 1606 1607 /* 1608 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply 1609 * a delta to a specified field in the in-core superblock. Simply 1610 * switch on the field indicated and apply the delta to that field. 1611 * Fields are not allowed to dip below zero, so if the delta would 1612 * do this do not apply it and return EINVAL. 1613 * 1614 * The m_sb_lock must be held when this routine is called. 1615 */ 1616 STATIC int 1617 xfs_mod_incore_sb_unlocked( 1618 xfs_mount_t *mp, 1619 xfs_sb_field_t field, 1620 int64_t delta, 1621 int rsvd) 1622 { 1623 int scounter; /* short counter for 32 bit fields */ 1624 long long lcounter; /* long counter for 64 bit fields */ 1625 long long res_used, rem; 1626 1627 /* 1628 * With the in-core superblock spin lock held, switch 1629 * on the indicated field. Apply the delta to the 1630 * proper field. If the fields value would dip below 1631 * 0, then do not apply the delta and return EINVAL. 1632 */ 1633 switch (field) { 1634 case XFS_SBS_ICOUNT: 1635 lcounter = (long long)mp->m_sb.sb_icount; 1636 lcounter += delta; 1637 if (lcounter < 0) { 1638 ASSERT(0); 1639 return XFS_ERROR(EINVAL); 1640 } 1641 mp->m_sb.sb_icount = lcounter; 1642 return 0; 1643 case XFS_SBS_IFREE: 1644 lcounter = (long long)mp->m_sb.sb_ifree; 1645 lcounter += delta; 1646 if (lcounter < 0) { 1647 ASSERT(0); 1648 return XFS_ERROR(EINVAL); 1649 } 1650 mp->m_sb.sb_ifree = lcounter; 1651 return 0; 1652 case XFS_SBS_FDBLOCKS: 1653 lcounter = (long long) 1654 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 1655 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1656 1657 if (delta > 0) { /* Putting blocks back */ 1658 if (res_used > delta) { 1659 mp->m_resblks_avail += delta; 1660 } else { 1661 rem = delta - res_used; 1662 mp->m_resblks_avail = mp->m_resblks; 1663 lcounter += rem; 1664 } 1665 } else { /* Taking blocks away */ 1666 lcounter += delta; 1667 if (lcounter >= 0) { 1668 mp->m_sb.sb_fdblocks = lcounter + 1669 XFS_ALLOC_SET_ASIDE(mp); 1670 return 0; 1671 } 1672 1673 /* 1674 * We are out of blocks, use any available reserved 1675 * blocks if were allowed to. 1676 */ 1677 if (!rsvd) 1678 return XFS_ERROR(ENOSPC); 1679 1680 lcounter = (long long)mp->m_resblks_avail + delta; 1681 if (lcounter >= 0) { 1682 mp->m_resblks_avail = lcounter; 1683 return 0; 1684 } 1685 printk_once(KERN_WARNING 1686 "Filesystem \"%s\": reserve blocks depleted! " 1687 "Consider increasing reserve pool size.", 1688 mp->m_fsname); 1689 return XFS_ERROR(ENOSPC); 1690 } 1691 1692 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 1693 return 0; 1694 case XFS_SBS_FREXTENTS: 1695 lcounter = (long long)mp->m_sb.sb_frextents; 1696 lcounter += delta; 1697 if (lcounter < 0) { 1698 return XFS_ERROR(ENOSPC); 1699 } 1700 mp->m_sb.sb_frextents = lcounter; 1701 return 0; 1702 case XFS_SBS_DBLOCKS: 1703 lcounter = (long long)mp->m_sb.sb_dblocks; 1704 lcounter += delta; 1705 if (lcounter < 0) { 1706 ASSERT(0); 1707 return XFS_ERROR(EINVAL); 1708 } 1709 mp->m_sb.sb_dblocks = lcounter; 1710 return 0; 1711 case XFS_SBS_AGCOUNT: 1712 scounter = mp->m_sb.sb_agcount; 1713 scounter += delta; 1714 if (scounter < 0) { 1715 ASSERT(0); 1716 return XFS_ERROR(EINVAL); 1717 } 1718 mp->m_sb.sb_agcount = scounter; 1719 return 0; 1720 case XFS_SBS_IMAX_PCT: 1721 scounter = mp->m_sb.sb_imax_pct; 1722 scounter += delta; 1723 if (scounter < 0) { 1724 ASSERT(0); 1725 return XFS_ERROR(EINVAL); 1726 } 1727 mp->m_sb.sb_imax_pct = scounter; 1728 return 0; 1729 case XFS_SBS_REXTSIZE: 1730 scounter = mp->m_sb.sb_rextsize; 1731 scounter += delta; 1732 if (scounter < 0) { 1733 ASSERT(0); 1734 return XFS_ERROR(EINVAL); 1735 } 1736 mp->m_sb.sb_rextsize = scounter; 1737 return 0; 1738 case XFS_SBS_RBMBLOCKS: 1739 scounter = mp->m_sb.sb_rbmblocks; 1740 scounter += delta; 1741 if (scounter < 0) { 1742 ASSERT(0); 1743 return XFS_ERROR(EINVAL); 1744 } 1745 mp->m_sb.sb_rbmblocks = scounter; 1746 return 0; 1747 case XFS_SBS_RBLOCKS: 1748 lcounter = (long long)mp->m_sb.sb_rblocks; 1749 lcounter += delta; 1750 if (lcounter < 0) { 1751 ASSERT(0); 1752 return XFS_ERROR(EINVAL); 1753 } 1754 mp->m_sb.sb_rblocks = lcounter; 1755 return 0; 1756 case XFS_SBS_REXTENTS: 1757 lcounter = (long long)mp->m_sb.sb_rextents; 1758 lcounter += delta; 1759 if (lcounter < 0) { 1760 ASSERT(0); 1761 return XFS_ERROR(EINVAL); 1762 } 1763 mp->m_sb.sb_rextents = lcounter; 1764 return 0; 1765 case XFS_SBS_REXTSLOG: 1766 scounter = mp->m_sb.sb_rextslog; 1767 scounter += delta; 1768 if (scounter < 0) { 1769 ASSERT(0); 1770 return XFS_ERROR(EINVAL); 1771 } 1772 mp->m_sb.sb_rextslog = scounter; 1773 return 0; 1774 default: 1775 ASSERT(0); 1776 return XFS_ERROR(EINVAL); 1777 } 1778 } 1779 1780 /* 1781 * xfs_mod_incore_sb() is used to change a field in the in-core 1782 * superblock structure by the specified delta. This modification 1783 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked() 1784 * routine to do the work. 1785 */ 1786 int 1787 xfs_mod_incore_sb( 1788 struct xfs_mount *mp, 1789 xfs_sb_field_t field, 1790 int64_t delta, 1791 int rsvd) 1792 { 1793 int status; 1794 1795 #ifdef HAVE_PERCPU_SB 1796 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS); 1797 #endif 1798 spin_lock(&mp->m_sb_lock); 1799 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 1800 spin_unlock(&mp->m_sb_lock); 1801 1802 return status; 1803 } 1804 1805 /* 1806 * Change more than one field in the in-core superblock structure at a time. 1807 * 1808 * The fields and changes to those fields are specified in the array of 1809 * xfs_mod_sb structures passed in. Either all of the specified deltas 1810 * will be applied or none of them will. If any modified field dips below 0, 1811 * then all modifications will be backed out and EINVAL will be returned. 1812 * 1813 * Note that this function may not be used for the superblock values that 1814 * are tracked with the in-memory per-cpu counters - a direct call to 1815 * xfs_icsb_modify_counters is required for these. 1816 */ 1817 int 1818 xfs_mod_incore_sb_batch( 1819 struct xfs_mount *mp, 1820 xfs_mod_sb_t *msb, 1821 uint nmsb, 1822 int rsvd) 1823 { 1824 xfs_mod_sb_t *msbp; 1825 int error = 0; 1826 1827 /* 1828 * Loop through the array of mod structures and apply each individually. 1829 * If any fail, then back out all those which have already been applied. 1830 * Do all of this within the scope of the m_sb_lock so that all of the 1831 * changes will be atomic. 1832 */ 1833 spin_lock(&mp->m_sb_lock); 1834 for (msbp = msb; msbp < (msb + nmsb); msbp++) { 1835 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT || 1836 msbp->msb_field > XFS_SBS_FDBLOCKS); 1837 1838 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1839 msbp->msb_delta, rsvd); 1840 if (error) 1841 goto unwind; 1842 } 1843 spin_unlock(&mp->m_sb_lock); 1844 return 0; 1845 1846 unwind: 1847 while (--msbp >= msb) { 1848 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field, 1849 -msbp->msb_delta, rsvd); 1850 ASSERT(error == 0); 1851 } 1852 spin_unlock(&mp->m_sb_lock); 1853 return error; 1854 } 1855 1856 /* 1857 * xfs_getsb() is called to obtain the buffer for the superblock. 1858 * The buffer is returned locked and read in from disk. 1859 * The buffer should be released with a call to xfs_brelse(). 1860 * 1861 * If the flags parameter is BUF_TRYLOCK, then we'll only return 1862 * the superblock buffer if it can be locked without sleeping. 1863 * If it can't then we'll return NULL. 1864 */ 1865 struct xfs_buf * 1866 xfs_getsb( 1867 struct xfs_mount *mp, 1868 int flags) 1869 { 1870 struct xfs_buf *bp = mp->m_sb_bp; 1871 1872 if (!xfs_buf_trylock(bp)) { 1873 if (flags & XBF_TRYLOCK) 1874 return NULL; 1875 xfs_buf_lock(bp); 1876 } 1877 1878 xfs_buf_hold(bp); 1879 ASSERT(XFS_BUF_ISDONE(bp)); 1880 return bp; 1881 } 1882 1883 /* 1884 * Used to free the superblock along various error paths. 1885 */ 1886 void 1887 xfs_freesb( 1888 struct xfs_mount *mp) 1889 { 1890 struct xfs_buf *bp = mp->m_sb_bp; 1891 1892 xfs_buf_lock(bp); 1893 mp->m_sb_bp = NULL; 1894 xfs_buf_relse(bp); 1895 } 1896 1897 /* 1898 * Used to log changes to the superblock unit and width fields which could 1899 * be altered by the mount options, as well as any potential sb_features2 1900 * fixup. Only the first superblock is updated. 1901 */ 1902 int 1903 xfs_mount_log_sb( 1904 xfs_mount_t *mp, 1905 __int64_t fields) 1906 { 1907 xfs_trans_t *tp; 1908 int error; 1909 1910 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID | 1911 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 | 1912 XFS_SB_VERSIONNUM)); 1913 1914 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT); 1915 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0, 1916 XFS_DEFAULT_LOG_COUNT); 1917 if (error) { 1918 xfs_trans_cancel(tp, 0); 1919 return error; 1920 } 1921 xfs_mod_sb(tp, fields); 1922 error = xfs_trans_commit(tp, 0); 1923 return error; 1924 } 1925 1926 /* 1927 * If the underlying (data/log/rt) device is readonly, there are some 1928 * operations that cannot proceed. 1929 */ 1930 int 1931 xfs_dev_is_read_only( 1932 struct xfs_mount *mp, 1933 char *message) 1934 { 1935 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1936 xfs_readonly_buftarg(mp->m_logdev_targp) || 1937 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1938 xfs_notice(mp, "%s required on read-only device.", message); 1939 xfs_notice(mp, "write access unavailable, cannot proceed."); 1940 return EROFS; 1941 } 1942 return 0; 1943 } 1944 1945 #ifdef HAVE_PERCPU_SB 1946 /* 1947 * Per-cpu incore superblock counters 1948 * 1949 * Simple concept, difficult implementation 1950 * 1951 * Basically, replace the incore superblock counters with a distributed per cpu 1952 * counter for contended fields (e.g. free block count). 1953 * 1954 * Difficulties arise in that the incore sb is used for ENOSPC checking, and 1955 * hence needs to be accurately read when we are running low on space. Hence 1956 * there is a method to enable and disable the per-cpu counters based on how 1957 * much "stuff" is available in them. 1958 * 1959 * Basically, a counter is enabled if there is enough free resource to justify 1960 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local 1961 * ENOSPC), then we disable the counters to synchronise all callers and 1962 * re-distribute the available resources. 1963 * 1964 * If, once we redistributed the available resources, we still get a failure, 1965 * we disable the per-cpu counter and go through the slow path. 1966 * 1967 * The slow path is the current xfs_mod_incore_sb() function. This means that 1968 * when we disable a per-cpu counter, we need to drain its resources back to 1969 * the global superblock. We do this after disabling the counter to prevent 1970 * more threads from queueing up on the counter. 1971 * 1972 * Essentially, this means that we still need a lock in the fast path to enable 1973 * synchronisation between the global counters and the per-cpu counters. This 1974 * is not a problem because the lock will be local to a CPU almost all the time 1975 * and have little contention except when we get to ENOSPC conditions. 1976 * 1977 * Basically, this lock becomes a barrier that enables us to lock out the fast 1978 * path while we do things like enabling and disabling counters and 1979 * synchronising the counters. 1980 * 1981 * Locking rules: 1982 * 1983 * 1. m_sb_lock before picking up per-cpu locks 1984 * 2. per-cpu locks always picked up via for_each_online_cpu() order 1985 * 3. accurate counter sync requires m_sb_lock + per cpu locks 1986 * 4. modifying per-cpu counters requires holding per-cpu lock 1987 * 5. modifying global counters requires holding m_sb_lock 1988 * 6. enabling or disabling a counter requires holding the m_sb_lock 1989 * and _none_ of the per-cpu locks. 1990 * 1991 * Disabled counters are only ever re-enabled by a balance operation 1992 * that results in more free resources per CPU than a given threshold. 1993 * To ensure counters don't remain disabled, they are rebalanced when 1994 * the global resource goes above a higher threshold (i.e. some hysteresis 1995 * is present to prevent thrashing). 1996 */ 1997 1998 #ifdef CONFIG_HOTPLUG_CPU 1999 /* 2000 * hot-plug CPU notifier support. 2001 * 2002 * We need a notifier per filesystem as we need to be able to identify 2003 * the filesystem to balance the counters out. This is achieved by 2004 * having a notifier block embedded in the xfs_mount_t and doing pointer 2005 * magic to get the mount pointer from the notifier block address. 2006 */ 2007 STATIC int 2008 xfs_icsb_cpu_notify( 2009 struct notifier_block *nfb, 2010 unsigned long action, 2011 void *hcpu) 2012 { 2013 xfs_icsb_cnts_t *cntp; 2014 xfs_mount_t *mp; 2015 2016 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier); 2017 cntp = (xfs_icsb_cnts_t *) 2018 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu); 2019 switch (action) { 2020 case CPU_UP_PREPARE: 2021 case CPU_UP_PREPARE_FROZEN: 2022 /* Easy Case - initialize the area and locks, and 2023 * then rebalance when online does everything else for us. */ 2024 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2025 break; 2026 case CPU_ONLINE: 2027 case CPU_ONLINE_FROZEN: 2028 xfs_icsb_lock(mp); 2029 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2030 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2031 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2032 xfs_icsb_unlock(mp); 2033 break; 2034 case CPU_DEAD: 2035 case CPU_DEAD_FROZEN: 2036 /* Disable all the counters, then fold the dead cpu's 2037 * count into the total on the global superblock and 2038 * re-enable the counters. */ 2039 xfs_icsb_lock(mp); 2040 spin_lock(&mp->m_sb_lock); 2041 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT); 2042 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE); 2043 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS); 2044 2045 mp->m_sb.sb_icount += cntp->icsb_icount; 2046 mp->m_sb.sb_ifree += cntp->icsb_ifree; 2047 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks; 2048 2049 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2050 2051 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0); 2052 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0); 2053 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0); 2054 spin_unlock(&mp->m_sb_lock); 2055 xfs_icsb_unlock(mp); 2056 break; 2057 } 2058 2059 return NOTIFY_OK; 2060 } 2061 #endif /* CONFIG_HOTPLUG_CPU */ 2062 2063 int 2064 xfs_icsb_init_counters( 2065 xfs_mount_t *mp) 2066 { 2067 xfs_icsb_cnts_t *cntp; 2068 int i; 2069 2070 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t); 2071 if (mp->m_sb_cnts == NULL) 2072 return -ENOMEM; 2073 2074 #ifdef CONFIG_HOTPLUG_CPU 2075 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify; 2076 mp->m_icsb_notifier.priority = 0; 2077 register_hotcpu_notifier(&mp->m_icsb_notifier); 2078 #endif /* CONFIG_HOTPLUG_CPU */ 2079 2080 for_each_online_cpu(i) { 2081 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2082 memset(cntp, 0, sizeof(xfs_icsb_cnts_t)); 2083 } 2084 2085 mutex_init(&mp->m_icsb_mutex); 2086 2087 /* 2088 * start with all counters disabled so that the 2089 * initial balance kicks us off correctly 2090 */ 2091 mp->m_icsb_counters = -1; 2092 return 0; 2093 } 2094 2095 void 2096 xfs_icsb_reinit_counters( 2097 xfs_mount_t *mp) 2098 { 2099 xfs_icsb_lock(mp); 2100 /* 2101 * start with all counters disabled so that the 2102 * initial balance kicks us off correctly 2103 */ 2104 mp->m_icsb_counters = -1; 2105 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0); 2106 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0); 2107 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0); 2108 xfs_icsb_unlock(mp); 2109 } 2110 2111 void 2112 xfs_icsb_destroy_counters( 2113 xfs_mount_t *mp) 2114 { 2115 if (mp->m_sb_cnts) { 2116 unregister_hotcpu_notifier(&mp->m_icsb_notifier); 2117 free_percpu(mp->m_sb_cnts); 2118 } 2119 mutex_destroy(&mp->m_icsb_mutex); 2120 } 2121 2122 STATIC void 2123 xfs_icsb_lock_cntr( 2124 xfs_icsb_cnts_t *icsbp) 2125 { 2126 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) { 2127 ndelay(1000); 2128 } 2129 } 2130 2131 STATIC void 2132 xfs_icsb_unlock_cntr( 2133 xfs_icsb_cnts_t *icsbp) 2134 { 2135 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags); 2136 } 2137 2138 2139 STATIC void 2140 xfs_icsb_lock_all_counters( 2141 xfs_mount_t *mp) 2142 { 2143 xfs_icsb_cnts_t *cntp; 2144 int i; 2145 2146 for_each_online_cpu(i) { 2147 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2148 xfs_icsb_lock_cntr(cntp); 2149 } 2150 } 2151 2152 STATIC void 2153 xfs_icsb_unlock_all_counters( 2154 xfs_mount_t *mp) 2155 { 2156 xfs_icsb_cnts_t *cntp; 2157 int i; 2158 2159 for_each_online_cpu(i) { 2160 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2161 xfs_icsb_unlock_cntr(cntp); 2162 } 2163 } 2164 2165 STATIC void 2166 xfs_icsb_count( 2167 xfs_mount_t *mp, 2168 xfs_icsb_cnts_t *cnt, 2169 int flags) 2170 { 2171 xfs_icsb_cnts_t *cntp; 2172 int i; 2173 2174 memset(cnt, 0, sizeof(xfs_icsb_cnts_t)); 2175 2176 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2177 xfs_icsb_lock_all_counters(mp); 2178 2179 for_each_online_cpu(i) { 2180 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i); 2181 cnt->icsb_icount += cntp->icsb_icount; 2182 cnt->icsb_ifree += cntp->icsb_ifree; 2183 cnt->icsb_fdblocks += cntp->icsb_fdblocks; 2184 } 2185 2186 if (!(flags & XFS_ICSB_LAZY_COUNT)) 2187 xfs_icsb_unlock_all_counters(mp); 2188 } 2189 2190 STATIC int 2191 xfs_icsb_counter_disabled( 2192 xfs_mount_t *mp, 2193 xfs_sb_field_t field) 2194 { 2195 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2196 return test_bit(field, &mp->m_icsb_counters); 2197 } 2198 2199 STATIC void 2200 xfs_icsb_disable_counter( 2201 xfs_mount_t *mp, 2202 xfs_sb_field_t field) 2203 { 2204 xfs_icsb_cnts_t cnt; 2205 2206 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2207 2208 /* 2209 * If we are already disabled, then there is nothing to do 2210 * here. We check before locking all the counters to avoid 2211 * the expensive lock operation when being called in the 2212 * slow path and the counter is already disabled. This is 2213 * safe because the only time we set or clear this state is under 2214 * the m_icsb_mutex. 2215 */ 2216 if (xfs_icsb_counter_disabled(mp, field)) 2217 return; 2218 2219 xfs_icsb_lock_all_counters(mp); 2220 if (!test_and_set_bit(field, &mp->m_icsb_counters)) { 2221 /* drain back to superblock */ 2222 2223 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT); 2224 switch(field) { 2225 case XFS_SBS_ICOUNT: 2226 mp->m_sb.sb_icount = cnt.icsb_icount; 2227 break; 2228 case XFS_SBS_IFREE: 2229 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2230 break; 2231 case XFS_SBS_FDBLOCKS: 2232 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2233 break; 2234 default: 2235 BUG(); 2236 } 2237 } 2238 2239 xfs_icsb_unlock_all_counters(mp); 2240 } 2241 2242 STATIC void 2243 xfs_icsb_enable_counter( 2244 xfs_mount_t *mp, 2245 xfs_sb_field_t field, 2246 uint64_t count, 2247 uint64_t resid) 2248 { 2249 xfs_icsb_cnts_t *cntp; 2250 int i; 2251 2252 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS)); 2253 2254 xfs_icsb_lock_all_counters(mp); 2255 for_each_online_cpu(i) { 2256 cntp = per_cpu_ptr(mp->m_sb_cnts, i); 2257 switch (field) { 2258 case XFS_SBS_ICOUNT: 2259 cntp->icsb_icount = count + resid; 2260 break; 2261 case XFS_SBS_IFREE: 2262 cntp->icsb_ifree = count + resid; 2263 break; 2264 case XFS_SBS_FDBLOCKS: 2265 cntp->icsb_fdblocks = count + resid; 2266 break; 2267 default: 2268 BUG(); 2269 break; 2270 } 2271 resid = 0; 2272 } 2273 clear_bit(field, &mp->m_icsb_counters); 2274 xfs_icsb_unlock_all_counters(mp); 2275 } 2276 2277 void 2278 xfs_icsb_sync_counters_locked( 2279 xfs_mount_t *mp, 2280 int flags) 2281 { 2282 xfs_icsb_cnts_t cnt; 2283 2284 xfs_icsb_count(mp, &cnt, flags); 2285 2286 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT)) 2287 mp->m_sb.sb_icount = cnt.icsb_icount; 2288 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE)) 2289 mp->m_sb.sb_ifree = cnt.icsb_ifree; 2290 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS)) 2291 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks; 2292 } 2293 2294 /* 2295 * Accurate update of per-cpu counters to incore superblock 2296 */ 2297 void 2298 xfs_icsb_sync_counters( 2299 xfs_mount_t *mp, 2300 int flags) 2301 { 2302 spin_lock(&mp->m_sb_lock); 2303 xfs_icsb_sync_counters_locked(mp, flags); 2304 spin_unlock(&mp->m_sb_lock); 2305 } 2306 2307 /* 2308 * Balance and enable/disable counters as necessary. 2309 * 2310 * Thresholds for re-enabling counters are somewhat magic. inode counts are 2311 * chosen to be the same number as single on disk allocation chunk per CPU, and 2312 * free blocks is something far enough zero that we aren't going thrash when we 2313 * get near ENOSPC. We also need to supply a minimum we require per cpu to 2314 * prevent looping endlessly when xfs_alloc_space asks for more than will 2315 * be distributed to a single CPU but each CPU has enough blocks to be 2316 * reenabled. 2317 * 2318 * Note that we can be called when counters are already disabled. 2319 * xfs_icsb_disable_counter() optimises the counter locking in this case to 2320 * prevent locking every per-cpu counter needlessly. 2321 */ 2322 2323 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64 2324 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \ 2325 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp)) 2326 STATIC void 2327 xfs_icsb_balance_counter_locked( 2328 xfs_mount_t *mp, 2329 xfs_sb_field_t field, 2330 int min_per_cpu) 2331 { 2332 uint64_t count, resid; 2333 int weight = num_online_cpus(); 2334 uint64_t min = (uint64_t)min_per_cpu; 2335 2336 /* disable counter and sync counter */ 2337 xfs_icsb_disable_counter(mp, field); 2338 2339 /* update counters - first CPU gets residual*/ 2340 switch (field) { 2341 case XFS_SBS_ICOUNT: 2342 count = mp->m_sb.sb_icount; 2343 resid = do_div(count, weight); 2344 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2345 return; 2346 break; 2347 case XFS_SBS_IFREE: 2348 count = mp->m_sb.sb_ifree; 2349 resid = do_div(count, weight); 2350 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE)) 2351 return; 2352 break; 2353 case XFS_SBS_FDBLOCKS: 2354 count = mp->m_sb.sb_fdblocks; 2355 resid = do_div(count, weight); 2356 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp))) 2357 return; 2358 break; 2359 default: 2360 BUG(); 2361 count = resid = 0; /* quiet, gcc */ 2362 break; 2363 } 2364 2365 xfs_icsb_enable_counter(mp, field, count, resid); 2366 } 2367 2368 STATIC void 2369 xfs_icsb_balance_counter( 2370 xfs_mount_t *mp, 2371 xfs_sb_field_t fields, 2372 int min_per_cpu) 2373 { 2374 spin_lock(&mp->m_sb_lock); 2375 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu); 2376 spin_unlock(&mp->m_sb_lock); 2377 } 2378 2379 int 2380 xfs_icsb_modify_counters( 2381 xfs_mount_t *mp, 2382 xfs_sb_field_t field, 2383 int64_t delta, 2384 int rsvd) 2385 { 2386 xfs_icsb_cnts_t *icsbp; 2387 long long lcounter; /* long counter for 64 bit fields */ 2388 int ret = 0; 2389 2390 might_sleep(); 2391 again: 2392 preempt_disable(); 2393 icsbp = this_cpu_ptr(mp->m_sb_cnts); 2394 2395 /* 2396 * if the counter is disabled, go to slow path 2397 */ 2398 if (unlikely(xfs_icsb_counter_disabled(mp, field))) 2399 goto slow_path; 2400 xfs_icsb_lock_cntr(icsbp); 2401 if (unlikely(xfs_icsb_counter_disabled(mp, field))) { 2402 xfs_icsb_unlock_cntr(icsbp); 2403 goto slow_path; 2404 } 2405 2406 switch (field) { 2407 case XFS_SBS_ICOUNT: 2408 lcounter = icsbp->icsb_icount; 2409 lcounter += delta; 2410 if (unlikely(lcounter < 0)) 2411 goto balance_counter; 2412 icsbp->icsb_icount = lcounter; 2413 break; 2414 2415 case XFS_SBS_IFREE: 2416 lcounter = icsbp->icsb_ifree; 2417 lcounter += delta; 2418 if (unlikely(lcounter < 0)) 2419 goto balance_counter; 2420 icsbp->icsb_ifree = lcounter; 2421 break; 2422 2423 case XFS_SBS_FDBLOCKS: 2424 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0); 2425 2426 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp); 2427 lcounter += delta; 2428 if (unlikely(lcounter < 0)) 2429 goto balance_counter; 2430 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp); 2431 break; 2432 default: 2433 BUG(); 2434 break; 2435 } 2436 xfs_icsb_unlock_cntr(icsbp); 2437 preempt_enable(); 2438 return 0; 2439 2440 slow_path: 2441 preempt_enable(); 2442 2443 /* 2444 * serialise with a mutex so we don't burn lots of cpu on 2445 * the superblock lock. We still need to hold the superblock 2446 * lock, however, when we modify the global structures. 2447 */ 2448 xfs_icsb_lock(mp); 2449 2450 /* 2451 * Now running atomically. 2452 * 2453 * If the counter is enabled, someone has beaten us to rebalancing. 2454 * Drop the lock and try again in the fast path.... 2455 */ 2456 if (!(xfs_icsb_counter_disabled(mp, field))) { 2457 xfs_icsb_unlock(mp); 2458 goto again; 2459 } 2460 2461 /* 2462 * The counter is currently disabled. Because we are 2463 * running atomically here, we know a rebalance cannot 2464 * be in progress. Hence we can go straight to operating 2465 * on the global superblock. We do not call xfs_mod_incore_sb() 2466 * here even though we need to get the m_sb_lock. Doing so 2467 * will cause us to re-enter this function and deadlock. 2468 * Hence we get the m_sb_lock ourselves and then call 2469 * xfs_mod_incore_sb_unlocked() as the unlocked path operates 2470 * directly on the global counters. 2471 */ 2472 spin_lock(&mp->m_sb_lock); 2473 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd); 2474 spin_unlock(&mp->m_sb_lock); 2475 2476 /* 2477 * Now that we've modified the global superblock, we 2478 * may be able to re-enable the distributed counters 2479 * (e.g. lots of space just got freed). After that 2480 * we are done. 2481 */ 2482 if (ret != ENOSPC) 2483 xfs_icsb_balance_counter(mp, field, 0); 2484 xfs_icsb_unlock(mp); 2485 return ret; 2486 2487 balance_counter: 2488 xfs_icsb_unlock_cntr(icsbp); 2489 preempt_enable(); 2490 2491 /* 2492 * We may have multiple threads here if multiple per-cpu 2493 * counters run dry at the same time. This will mean we can 2494 * do more balances than strictly necessary but it is not 2495 * the common slowpath case. 2496 */ 2497 xfs_icsb_lock(mp); 2498 2499 /* 2500 * running atomically. 2501 * 2502 * This will leave the counter in the correct state for future 2503 * accesses. After the rebalance, we simply try again and our retry 2504 * will either succeed through the fast path or slow path without 2505 * another balance operation being required. 2506 */ 2507 xfs_icsb_balance_counter(mp, field, delta); 2508 xfs_icsb_unlock(mp); 2509 goto again; 2510 } 2511 2512 #endif 2513