1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_error.h" 25 #include "xfs_quota.h" 26 #include "xfs_fsops.h" 27 #include "xfs_icache.h" 28 #include "xfs_sysfs.h" 29 #include "xfs_rmap_btree.h" 30 #include "xfs_refcount_btree.h" 31 #include "xfs_reflink.h" 32 #include "xfs_extent_busy.h" 33 #include "xfs_health.h" 34 35 36 static DEFINE_MUTEX(xfs_uuid_table_mutex); 37 static int xfs_uuid_table_size; 38 static uuid_t *xfs_uuid_table; 39 40 void 41 xfs_uuid_table_free(void) 42 { 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48 } 49 50 /* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54 STATIC int 55 xfs_uuid_mount( 56 struct xfs_mount *mp) 57 { 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = kmem_realloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 KM_SLEEP); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97 } 98 99 STATIC void 100 xfs_uuid_unmount( 101 struct xfs_mount *mp) 102 { 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120 } 121 122 123 STATIC void 124 __xfs_free_perag( 125 struct rcu_head *head) 126 { 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 ASSERT(atomic_read(&pag->pag_ref) == 0); 130 kmem_free(pag); 131 } 132 133 /* 134 * Free up the per-ag resources associated with the mount structure. 135 */ 136 STATIC void 137 xfs_free_perag( 138 xfs_mount_t *mp) 139 { 140 xfs_agnumber_t agno; 141 struct xfs_perag *pag; 142 143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 144 spin_lock(&mp->m_perag_lock); 145 pag = radix_tree_delete(&mp->m_perag_tree, agno); 146 spin_unlock(&mp->m_perag_lock); 147 ASSERT(pag); 148 ASSERT(atomic_read(&pag->pag_ref) == 0); 149 xfs_iunlink_destroy(pag); 150 xfs_buf_hash_destroy(pag); 151 mutex_destroy(&pag->pag_ici_reclaim_lock); 152 call_rcu(&pag->rcu_head, __xfs_free_perag); 153 } 154 } 155 156 /* 157 * Check size of device based on the (data/realtime) block count. 158 * Note: this check is used by the growfs code as well as mount. 159 */ 160 int 161 xfs_sb_validate_fsb_count( 162 xfs_sb_t *sbp, 163 uint64_t nblocks) 164 { 165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 166 ASSERT(sbp->sb_blocklog >= BBSHIFT); 167 168 /* Limited by ULONG_MAX of page cache index */ 169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 170 return -EFBIG; 171 return 0; 172 } 173 174 int 175 xfs_initialize_perag( 176 xfs_mount_t *mp, 177 xfs_agnumber_t agcount, 178 xfs_agnumber_t *maxagi) 179 { 180 xfs_agnumber_t index; 181 xfs_agnumber_t first_initialised = NULLAGNUMBER; 182 xfs_perag_t *pag; 183 int error = -ENOMEM; 184 185 /* 186 * Walk the current per-ag tree so we don't try to initialise AGs 187 * that already exist (growfs case). Allocate and insert all the 188 * AGs we don't find ready for initialisation. 189 */ 190 for (index = 0; index < agcount; index++) { 191 pag = xfs_perag_get(mp, index); 192 if (pag) { 193 xfs_perag_put(pag); 194 continue; 195 } 196 197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 198 if (!pag) 199 goto out_unwind_new_pags; 200 pag->pag_agno = index; 201 pag->pag_mount = mp; 202 spin_lock_init(&pag->pag_ici_lock); 203 mutex_init(&pag->pag_ici_reclaim_lock); 204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 205 if (xfs_buf_hash_init(pag)) 206 goto out_free_pag; 207 init_waitqueue_head(&pag->pagb_wait); 208 spin_lock_init(&pag->pagb_lock); 209 pag->pagb_count = 0; 210 pag->pagb_tree = RB_ROOT; 211 212 if (radix_tree_preload(GFP_NOFS)) 213 goto out_hash_destroy; 214 215 spin_lock(&mp->m_perag_lock); 216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 217 BUG(); 218 spin_unlock(&mp->m_perag_lock); 219 radix_tree_preload_end(); 220 error = -EEXIST; 221 goto out_hash_destroy; 222 } 223 spin_unlock(&mp->m_perag_lock); 224 radix_tree_preload_end(); 225 /* first new pag is fully initialized */ 226 if (first_initialised == NULLAGNUMBER) 227 first_initialised = index; 228 error = xfs_iunlink_init(pag); 229 if (error) 230 goto out_hash_destroy; 231 spin_lock_init(&pag->pag_state_lock); 232 } 233 234 index = xfs_set_inode_alloc(mp, agcount); 235 236 if (maxagi) 237 *maxagi = index; 238 239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 240 return 0; 241 242 out_hash_destroy: 243 xfs_buf_hash_destroy(pag); 244 out_free_pag: 245 mutex_destroy(&pag->pag_ici_reclaim_lock); 246 kmem_free(pag); 247 out_unwind_new_pags: 248 /* unwind any prior newly initialized pags */ 249 for (index = first_initialised; index < agcount; index++) { 250 pag = radix_tree_delete(&mp->m_perag_tree, index); 251 if (!pag) 252 break; 253 xfs_buf_hash_destroy(pag); 254 xfs_iunlink_destroy(pag); 255 mutex_destroy(&pag->pag_ici_reclaim_lock); 256 kmem_free(pag); 257 } 258 return error; 259 } 260 261 /* 262 * xfs_readsb 263 * 264 * Does the initial read of the superblock. 265 */ 266 int 267 xfs_readsb( 268 struct xfs_mount *mp, 269 int flags) 270 { 271 unsigned int sector_size; 272 struct xfs_buf *bp; 273 struct xfs_sb *sbp = &mp->m_sb; 274 int error; 275 int loud = !(flags & XFS_MFSI_QUIET); 276 const struct xfs_buf_ops *buf_ops; 277 278 ASSERT(mp->m_sb_bp == NULL); 279 ASSERT(mp->m_ddev_targp != NULL); 280 281 /* 282 * For the initial read, we must guess at the sector 283 * size based on the block device. It's enough to 284 * get the sb_sectsize out of the superblock and 285 * then reread with the proper length. 286 * We don't verify it yet, because it may not be complete. 287 */ 288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 289 buf_ops = NULL; 290 291 /* 292 * Allocate a (locked) buffer to hold the superblock. This will be kept 293 * around at all times to optimize access to the superblock. Therefore, 294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 295 * elevated. 296 */ 297 reread: 298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 299 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 300 buf_ops); 301 if (error) { 302 if (loud) 303 xfs_warn(mp, "SB validate failed with error %d.", error); 304 /* bad CRC means corrupted metadata */ 305 if (error == -EFSBADCRC) 306 error = -EFSCORRUPTED; 307 return error; 308 } 309 310 /* 311 * Initialize the mount structure from the superblock. 312 */ 313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); 314 315 /* 316 * If we haven't validated the superblock, do so now before we try 317 * to check the sector size and reread the superblock appropriately. 318 */ 319 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 320 if (loud) 321 xfs_warn(mp, "Invalid superblock magic number"); 322 error = -EINVAL; 323 goto release_buf; 324 } 325 326 /* 327 * We must be able to do sector-sized and sector-aligned IO. 328 */ 329 if (sector_size > sbp->sb_sectsize) { 330 if (loud) 331 xfs_warn(mp, "device supports %u byte sectors (not %u)", 332 sector_size, sbp->sb_sectsize); 333 error = -ENOSYS; 334 goto release_buf; 335 } 336 337 if (buf_ops == NULL) { 338 /* 339 * Re-read the superblock so the buffer is correctly sized, 340 * and properly verified. 341 */ 342 xfs_buf_relse(bp); 343 sector_size = sbp->sb_sectsize; 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 345 goto reread; 346 } 347 348 xfs_reinit_percpu_counters(mp); 349 350 /* no need to be quiet anymore, so reset the buf ops */ 351 bp->b_ops = &xfs_sb_buf_ops; 352 353 mp->m_sb_bp = bp; 354 xfs_buf_unlock(bp); 355 return 0; 356 357 release_buf: 358 xfs_buf_relse(bp); 359 return error; 360 } 361 362 /* 363 * Update alignment values based on mount options and sb values 364 */ 365 STATIC int 366 xfs_update_alignment(xfs_mount_t *mp) 367 { 368 xfs_sb_t *sbp = &(mp->m_sb); 369 370 if (mp->m_dalign) { 371 /* 372 * If stripe unit and stripe width are not multiples 373 * of the fs blocksize turn off alignment. 374 */ 375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 377 xfs_warn(mp, 378 "alignment check failed: sunit/swidth vs. blocksize(%d)", 379 sbp->sb_blocksize); 380 return -EINVAL; 381 } else { 382 /* 383 * Convert the stripe unit and width to FSBs. 384 */ 385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { 387 xfs_warn(mp, 388 "alignment check failed: sunit/swidth vs. agsize(%d)", 389 sbp->sb_agblocks); 390 return -EINVAL; 391 } else if (mp->m_dalign) { 392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 393 } else { 394 xfs_warn(mp, 395 "alignment check failed: sunit(%d) less than bsize(%d)", 396 mp->m_dalign, sbp->sb_blocksize); 397 return -EINVAL; 398 } 399 } 400 401 /* 402 * Update superblock with new values 403 * and log changes 404 */ 405 if (xfs_sb_version_hasdalign(sbp)) { 406 if (sbp->sb_unit != mp->m_dalign) { 407 sbp->sb_unit = mp->m_dalign; 408 mp->m_update_sb = true; 409 } 410 if (sbp->sb_width != mp->m_swidth) { 411 sbp->sb_width = mp->m_swidth; 412 mp->m_update_sb = true; 413 } 414 } else { 415 xfs_warn(mp, 416 "cannot change alignment: superblock does not support data alignment"); 417 return -EINVAL; 418 } 419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 420 xfs_sb_version_hasdalign(&mp->m_sb)) { 421 mp->m_dalign = sbp->sb_unit; 422 mp->m_swidth = sbp->sb_width; 423 } 424 425 return 0; 426 } 427 428 /* 429 * Set the default minimum read and write sizes unless 430 * already specified in a mount option. 431 * We use smaller I/O sizes when the file system 432 * is being used for NFS service (wsync mount option). 433 */ 434 STATIC void 435 xfs_set_rw_sizes(xfs_mount_t *mp) 436 { 437 xfs_sb_t *sbp = &(mp->m_sb); 438 int readio_log, writeio_log; 439 440 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { 441 if (mp->m_flags & XFS_MOUNT_WSYNC) { 442 readio_log = XFS_WSYNC_READIO_LOG; 443 writeio_log = XFS_WSYNC_WRITEIO_LOG; 444 } else { 445 readio_log = XFS_READIO_LOG_LARGE; 446 writeio_log = XFS_WRITEIO_LOG_LARGE; 447 } 448 } else { 449 readio_log = mp->m_readio_log; 450 writeio_log = mp->m_writeio_log; 451 } 452 453 if (sbp->sb_blocklog > readio_log) { 454 mp->m_readio_log = sbp->sb_blocklog; 455 } else { 456 mp->m_readio_log = readio_log; 457 } 458 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); 459 if (sbp->sb_blocklog > writeio_log) { 460 mp->m_writeio_log = sbp->sb_blocklog; 461 } else { 462 mp->m_writeio_log = writeio_log; 463 } 464 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); 465 } 466 467 /* 468 * precalculate the low space thresholds for dynamic speculative preallocation. 469 */ 470 void 471 xfs_set_low_space_thresholds( 472 struct xfs_mount *mp) 473 { 474 int i; 475 476 for (i = 0; i < XFS_LOWSP_MAX; i++) { 477 uint64_t space = mp->m_sb.sb_dblocks; 478 479 do_div(space, 100); 480 mp->m_low_space[i] = space * (i + 1); 481 } 482 } 483 484 /* 485 * Check that the data (and log if separate) is an ok size. 486 */ 487 STATIC int 488 xfs_check_sizes( 489 struct xfs_mount *mp) 490 { 491 struct xfs_buf *bp; 492 xfs_daddr_t d; 493 int error; 494 495 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 496 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 497 xfs_warn(mp, "filesystem size mismatch detected"); 498 return -EFBIG; 499 } 500 error = xfs_buf_read_uncached(mp->m_ddev_targp, 501 d - XFS_FSS_TO_BB(mp, 1), 502 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 503 if (error) { 504 xfs_warn(mp, "last sector read failed"); 505 return error; 506 } 507 xfs_buf_relse(bp); 508 509 if (mp->m_logdev_targp == mp->m_ddev_targp) 510 return 0; 511 512 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 513 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 514 xfs_warn(mp, "log size mismatch detected"); 515 return -EFBIG; 516 } 517 error = xfs_buf_read_uncached(mp->m_logdev_targp, 518 d - XFS_FSB_TO_BB(mp, 1), 519 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 520 if (error) { 521 xfs_warn(mp, "log device read failed"); 522 return error; 523 } 524 xfs_buf_relse(bp); 525 return 0; 526 } 527 528 /* 529 * Clear the quotaflags in memory and in the superblock. 530 */ 531 int 532 xfs_mount_reset_sbqflags( 533 struct xfs_mount *mp) 534 { 535 mp->m_qflags = 0; 536 537 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 538 if (mp->m_sb.sb_qflags == 0) 539 return 0; 540 spin_lock(&mp->m_sb_lock); 541 mp->m_sb.sb_qflags = 0; 542 spin_unlock(&mp->m_sb_lock); 543 544 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 545 return 0; 546 547 return xfs_sync_sb(mp, false); 548 } 549 550 uint64_t 551 xfs_default_resblks(xfs_mount_t *mp) 552 { 553 uint64_t resblks; 554 555 /* 556 * We default to 5% or 8192 fsbs of space reserved, whichever is 557 * smaller. This is intended to cover concurrent allocation 558 * transactions when we initially hit enospc. These each require a 4 559 * block reservation. Hence by default we cover roughly 2000 concurrent 560 * allocation reservations. 561 */ 562 resblks = mp->m_sb.sb_dblocks; 563 do_div(resblks, 20); 564 resblks = min_t(uint64_t, resblks, 8192); 565 return resblks; 566 } 567 568 /* Ensure the summary counts are correct. */ 569 STATIC int 570 xfs_check_summary_counts( 571 struct xfs_mount *mp) 572 { 573 /* 574 * The AG0 superblock verifier rejects in-progress filesystems, 575 * so we should never see the flag set this far into mounting. 576 */ 577 if (mp->m_sb.sb_inprogress) { 578 xfs_err(mp, "sb_inprogress set after log recovery??"); 579 WARN_ON(1); 580 return -EFSCORRUPTED; 581 } 582 583 /* 584 * Now the log is mounted, we know if it was an unclean shutdown or 585 * not. If it was, with the first phase of recovery has completed, we 586 * have consistent AG blocks on disk. We have not recovered EFIs yet, 587 * but they are recovered transactionally in the second recovery phase 588 * later. 589 * 590 * If the log was clean when we mounted, we can check the summary 591 * counters. If any of them are obviously incorrect, we can recompute 592 * them from the AGF headers in the next step. 593 */ 594 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 595 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 596 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 597 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 598 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 599 600 /* 601 * We can safely re-initialise incore superblock counters from the 602 * per-ag data. These may not be correct if the filesystem was not 603 * cleanly unmounted, so we waited for recovery to finish before doing 604 * this. 605 * 606 * If the filesystem was cleanly unmounted or the previous check did 607 * not flag anything weird, then we can trust the values in the 608 * superblock to be correct and we don't need to do anything here. 609 * Otherwise, recalculate the summary counters. 610 */ 611 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 612 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 613 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 614 return 0; 615 616 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 617 } 618 619 /* 620 * This function does the following on an initial mount of a file system: 621 * - reads the superblock from disk and init the mount struct 622 * - if we're a 32-bit kernel, do a size check on the superblock 623 * so we don't mount terabyte filesystems 624 * - init mount struct realtime fields 625 * - allocate inode hash table for fs 626 * - init directory manager 627 * - perform recovery and init the log manager 628 */ 629 int 630 xfs_mountfs( 631 struct xfs_mount *mp) 632 { 633 struct xfs_sb *sbp = &(mp->m_sb); 634 struct xfs_inode *rip; 635 struct xfs_ino_geometry *igeo = M_IGEO(mp); 636 uint64_t resblks; 637 uint quotamount = 0; 638 uint quotaflags = 0; 639 int error = 0; 640 641 xfs_sb_mount_common(mp, sbp); 642 643 /* 644 * Check for a mismatched features2 values. Older kernels read & wrote 645 * into the wrong sb offset for sb_features2 on some platforms due to 646 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 647 * which made older superblock reading/writing routines swap it as a 648 * 64-bit value. 649 * 650 * For backwards compatibility, we make both slots equal. 651 * 652 * If we detect a mismatched field, we OR the set bits into the existing 653 * features2 field in case it has already been modified; we don't want 654 * to lose any features. We then update the bad location with the ORed 655 * value so that older kernels will see any features2 flags. The 656 * superblock writeback code ensures the new sb_features2 is copied to 657 * sb_bad_features2 before it is logged or written to disk. 658 */ 659 if (xfs_sb_has_mismatched_features2(sbp)) { 660 xfs_warn(mp, "correcting sb_features alignment problem"); 661 sbp->sb_features2 |= sbp->sb_bad_features2; 662 mp->m_update_sb = true; 663 664 /* 665 * Re-check for ATTR2 in case it was found in bad_features2 666 * slot. 667 */ 668 if (xfs_sb_version_hasattr2(&mp->m_sb) && 669 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 670 mp->m_flags |= XFS_MOUNT_ATTR2; 671 } 672 673 if (xfs_sb_version_hasattr2(&mp->m_sb) && 674 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 675 xfs_sb_version_removeattr2(&mp->m_sb); 676 mp->m_update_sb = true; 677 678 /* update sb_versionnum for the clearing of the morebits */ 679 if (!sbp->sb_features2) 680 mp->m_update_sb = true; 681 } 682 683 /* always use v2 inodes by default now */ 684 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 685 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 686 mp->m_update_sb = true; 687 } 688 689 /* 690 * Check if sb_agblocks is aligned at stripe boundary 691 * If sb_agblocks is NOT aligned turn off m_dalign since 692 * allocator alignment is within an ag, therefore ag has 693 * to be aligned at stripe boundary. 694 */ 695 error = xfs_update_alignment(mp); 696 if (error) 697 goto out; 698 699 xfs_alloc_compute_maxlevels(mp); 700 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 701 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 702 xfs_ialloc_setup_geometry(mp); 703 xfs_rmapbt_compute_maxlevels(mp); 704 xfs_refcountbt_compute_maxlevels(mp); 705 706 /* enable fail_at_unmount as default */ 707 mp->m_fail_unmount = true; 708 709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); 710 if (error) 711 goto out; 712 713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 714 &mp->m_kobj, "stats"); 715 if (error) 716 goto out_remove_sysfs; 717 718 error = xfs_error_sysfs_init(mp); 719 if (error) 720 goto out_del_stats; 721 722 error = xfs_errortag_init(mp); 723 if (error) 724 goto out_remove_error_sysfs; 725 726 error = xfs_uuid_mount(mp); 727 if (error) 728 goto out_remove_errortag; 729 730 /* 731 * Set the minimum read and write sizes 732 */ 733 xfs_set_rw_sizes(mp); 734 735 /* set the low space thresholds for dynamic preallocation */ 736 xfs_set_low_space_thresholds(mp); 737 738 /* 739 * If enabled, sparse inode chunk alignment is expected to match the 740 * cluster size. Full inode chunk alignment must match the chunk size, 741 * but that is checked on sb read verification... 742 */ 743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 744 mp->m_sb.sb_spino_align != 745 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 746 xfs_warn(mp, 747 "Sparse inode block alignment (%u) must match cluster size (%llu).", 748 mp->m_sb.sb_spino_align, 749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 750 error = -EINVAL; 751 goto out_remove_uuid; 752 } 753 754 /* 755 * Check that the data (and log if separate) is an ok size. 756 */ 757 error = xfs_check_sizes(mp); 758 if (error) 759 goto out_remove_uuid; 760 761 /* 762 * Initialize realtime fields in the mount structure 763 */ 764 error = xfs_rtmount_init(mp); 765 if (error) { 766 xfs_warn(mp, "RT mount failed"); 767 goto out_remove_uuid; 768 } 769 770 /* 771 * Copies the low order bits of the timestamp and the randomly 772 * set "sequence" number out of a UUID. 773 */ 774 mp->m_fixedfsid[0] = 775 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 776 get_unaligned_be16(&sbp->sb_uuid.b[4]); 777 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 778 779 error = xfs_da_mount(mp); 780 if (error) { 781 xfs_warn(mp, "Failed dir/attr init: %d", error); 782 goto out_remove_uuid; 783 } 784 785 /* 786 * Initialize the precomputed transaction reservations values. 787 */ 788 xfs_trans_init(mp); 789 790 /* 791 * Allocate and initialize the per-ag data. 792 */ 793 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 794 if (error) { 795 xfs_warn(mp, "Failed per-ag init: %d", error); 796 goto out_free_dir; 797 } 798 799 if (!sbp->sb_logblocks) { 800 xfs_warn(mp, "no log defined"); 801 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); 802 error = -EFSCORRUPTED; 803 goto out_free_perag; 804 } 805 806 /* 807 * Log's mount-time initialization. The first part of recovery can place 808 * some items on the AIL, to be handled when recovery is finished or 809 * cancelled. 810 */ 811 error = xfs_log_mount(mp, mp->m_logdev_targp, 812 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 813 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 814 if (error) { 815 xfs_warn(mp, "log mount failed"); 816 goto out_fail_wait; 817 } 818 819 /* Make sure the summary counts are ok. */ 820 error = xfs_check_summary_counts(mp); 821 if (error) 822 goto out_log_dealloc; 823 824 /* 825 * Get and sanity-check the root inode. 826 * Save the pointer to it in the mount structure. 827 */ 828 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 829 XFS_ILOCK_EXCL, &rip); 830 if (error) { 831 xfs_warn(mp, 832 "Failed to read root inode 0x%llx, error %d", 833 sbp->sb_rootino, -error); 834 goto out_log_dealloc; 835 } 836 837 ASSERT(rip != NULL); 838 839 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { 840 xfs_warn(mp, "corrupted root inode %llu: not a directory", 841 (unsigned long long)rip->i_ino); 842 xfs_iunlock(rip, XFS_ILOCK_EXCL); 843 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, 844 mp); 845 error = -EFSCORRUPTED; 846 goto out_rele_rip; 847 } 848 mp->m_rootip = rip; /* save it */ 849 850 xfs_iunlock(rip, XFS_ILOCK_EXCL); 851 852 /* 853 * Initialize realtime inode pointers in the mount structure 854 */ 855 error = xfs_rtmount_inodes(mp); 856 if (error) { 857 /* 858 * Free up the root inode. 859 */ 860 xfs_warn(mp, "failed to read RT inodes"); 861 goto out_rele_rip; 862 } 863 864 /* 865 * If this is a read-only mount defer the superblock updates until 866 * the next remount into writeable mode. Otherwise we would never 867 * perform the update e.g. for the root filesystem. 868 */ 869 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 870 error = xfs_sync_sb(mp, false); 871 if (error) { 872 xfs_warn(mp, "failed to write sb changes"); 873 goto out_rtunmount; 874 } 875 } 876 877 /* 878 * Initialise the XFS quota management subsystem for this mount 879 */ 880 if (XFS_IS_QUOTA_RUNNING(mp)) { 881 error = xfs_qm_newmount(mp, "amount, "aflags); 882 if (error) 883 goto out_rtunmount; 884 } else { 885 ASSERT(!XFS_IS_QUOTA_ON(mp)); 886 887 /* 888 * If a file system had quotas running earlier, but decided to 889 * mount without -o uquota/pquota/gquota options, revoke the 890 * quotachecked license. 891 */ 892 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 893 xfs_notice(mp, "resetting quota flags"); 894 error = xfs_mount_reset_sbqflags(mp); 895 if (error) 896 goto out_rtunmount; 897 } 898 } 899 900 /* 901 * Finish recovering the file system. This part needed to be delayed 902 * until after the root and real-time bitmap inodes were consistently 903 * read in. 904 */ 905 error = xfs_log_mount_finish(mp); 906 if (error) { 907 xfs_warn(mp, "log mount finish failed"); 908 goto out_rtunmount; 909 } 910 911 /* 912 * Now the log is fully replayed, we can transition to full read-only 913 * mode for read-only mounts. This will sync all the metadata and clean 914 * the log so that the recovery we just performed does not have to be 915 * replayed again on the next mount. 916 * 917 * We use the same quiesce mechanism as the rw->ro remount, as they are 918 * semantically identical operations. 919 */ 920 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 921 XFS_MOUNT_RDONLY) { 922 xfs_quiesce_attr(mp); 923 } 924 925 /* 926 * Complete the quota initialisation, post-log-replay component. 927 */ 928 if (quotamount) { 929 ASSERT(mp->m_qflags == 0); 930 mp->m_qflags = quotaflags; 931 932 xfs_qm_mount_quotas(mp); 933 } 934 935 /* 936 * Now we are mounted, reserve a small amount of unused space for 937 * privileged transactions. This is needed so that transaction 938 * space required for critical operations can dip into this pool 939 * when at ENOSPC. This is needed for operations like create with 940 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 941 * are not allowed to use this reserved space. 942 * 943 * This may drive us straight to ENOSPC on mount, but that implies 944 * we were already there on the last unmount. Warn if this occurs. 945 */ 946 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 947 resblks = xfs_default_resblks(mp); 948 error = xfs_reserve_blocks(mp, &resblks, NULL); 949 if (error) 950 xfs_warn(mp, 951 "Unable to allocate reserve blocks. Continuing without reserve pool."); 952 953 /* Recover any CoW blocks that never got remapped. */ 954 error = xfs_reflink_recover_cow(mp); 955 if (error) { 956 xfs_err(mp, 957 "Error %d recovering leftover CoW allocations.", error); 958 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 959 goto out_quota; 960 } 961 962 /* Reserve AG blocks for future btree expansion. */ 963 error = xfs_fs_reserve_ag_blocks(mp); 964 if (error && error != -ENOSPC) 965 goto out_agresv; 966 } 967 968 return 0; 969 970 out_agresv: 971 xfs_fs_unreserve_ag_blocks(mp); 972 out_quota: 973 xfs_qm_unmount_quotas(mp); 974 out_rtunmount: 975 xfs_rtunmount_inodes(mp); 976 out_rele_rip: 977 xfs_irele(rip); 978 /* Clean out dquots that might be in memory after quotacheck. */ 979 xfs_qm_unmount(mp); 980 /* 981 * Cancel all delayed reclaim work and reclaim the inodes directly. 982 * We have to do this /after/ rtunmount and qm_unmount because those 983 * two will have scheduled delayed reclaim for the rt/quota inodes. 984 * 985 * This is slightly different from the unmountfs call sequence 986 * because we could be tearing down a partially set up mount. In 987 * particular, if log_mount_finish fails we bail out without calling 988 * qm_unmount_quotas and therefore rely on qm_unmount to release the 989 * quota inodes. 990 */ 991 cancel_delayed_work_sync(&mp->m_reclaim_work); 992 xfs_reclaim_inodes(mp, SYNC_WAIT); 993 xfs_health_unmount(mp); 994 out_log_dealloc: 995 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 996 xfs_log_mount_cancel(mp); 997 out_fail_wait: 998 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 999 xfs_wait_buftarg(mp->m_logdev_targp); 1000 xfs_wait_buftarg(mp->m_ddev_targp); 1001 out_free_perag: 1002 xfs_free_perag(mp); 1003 out_free_dir: 1004 xfs_da_unmount(mp); 1005 out_remove_uuid: 1006 xfs_uuid_unmount(mp); 1007 out_remove_errortag: 1008 xfs_errortag_del(mp); 1009 out_remove_error_sysfs: 1010 xfs_error_sysfs_del(mp); 1011 out_del_stats: 1012 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1013 out_remove_sysfs: 1014 xfs_sysfs_del(&mp->m_kobj); 1015 out: 1016 return error; 1017 } 1018 1019 /* 1020 * This flushes out the inodes,dquots and the superblock, unmounts the 1021 * log and makes sure that incore structures are freed. 1022 */ 1023 void 1024 xfs_unmountfs( 1025 struct xfs_mount *mp) 1026 { 1027 uint64_t resblks; 1028 int error; 1029 1030 xfs_stop_block_reaping(mp); 1031 xfs_fs_unreserve_ag_blocks(mp); 1032 xfs_qm_unmount_quotas(mp); 1033 xfs_rtunmount_inodes(mp); 1034 xfs_irele(mp->m_rootip); 1035 1036 /* 1037 * We can potentially deadlock here if we have an inode cluster 1038 * that has been freed has its buffer still pinned in memory because 1039 * the transaction is still sitting in a iclog. The stale inodes 1040 * on that buffer will have their flush locks held until the 1041 * transaction hits the disk and the callbacks run. the inode 1042 * flush takes the flush lock unconditionally and with nothing to 1043 * push out the iclog we will never get that unlocked. hence we 1044 * need to force the log first. 1045 */ 1046 xfs_log_force(mp, XFS_LOG_SYNC); 1047 1048 /* 1049 * Wait for all busy extents to be freed, including completion of 1050 * any discard operation. 1051 */ 1052 xfs_extent_busy_wait_all(mp); 1053 flush_workqueue(xfs_discard_wq); 1054 1055 /* 1056 * We now need to tell the world we are unmounting. This will allow 1057 * us to detect that the filesystem is going away and we should error 1058 * out anything that we have been retrying in the background. This will 1059 * prevent neverending retries in AIL pushing from hanging the unmount. 1060 */ 1061 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 1062 1063 /* 1064 * Flush all pending changes from the AIL. 1065 */ 1066 xfs_ail_push_all_sync(mp->m_ail); 1067 1068 /* 1069 * And reclaim all inodes. At this point there should be no dirty 1070 * inodes and none should be pinned or locked, but use synchronous 1071 * reclaim just to be sure. We can stop background inode reclaim 1072 * here as well if it is still running. 1073 */ 1074 cancel_delayed_work_sync(&mp->m_reclaim_work); 1075 xfs_reclaim_inodes(mp, SYNC_WAIT); 1076 xfs_health_unmount(mp); 1077 1078 xfs_qm_unmount(mp); 1079 1080 /* 1081 * Unreserve any blocks we have so that when we unmount we don't account 1082 * the reserved free space as used. This is really only necessary for 1083 * lazy superblock counting because it trusts the incore superblock 1084 * counters to be absolutely correct on clean unmount. 1085 * 1086 * We don't bother correcting this elsewhere for lazy superblock 1087 * counting because on mount of an unclean filesystem we reconstruct the 1088 * correct counter value and this is irrelevant. 1089 * 1090 * For non-lazy counter filesystems, this doesn't matter at all because 1091 * we only every apply deltas to the superblock and hence the incore 1092 * value does not matter.... 1093 */ 1094 resblks = 0; 1095 error = xfs_reserve_blocks(mp, &resblks, NULL); 1096 if (error) 1097 xfs_warn(mp, "Unable to free reserved block pool. " 1098 "Freespace may not be correct on next mount."); 1099 1100 error = xfs_log_sbcount(mp); 1101 if (error) 1102 xfs_warn(mp, "Unable to update superblock counters. " 1103 "Freespace may not be correct on next mount."); 1104 1105 1106 xfs_log_unmount(mp); 1107 xfs_da_unmount(mp); 1108 xfs_uuid_unmount(mp); 1109 1110 #if defined(DEBUG) 1111 xfs_errortag_clearall(mp); 1112 #endif 1113 xfs_free_perag(mp); 1114 1115 xfs_errortag_del(mp); 1116 xfs_error_sysfs_del(mp); 1117 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1118 xfs_sysfs_del(&mp->m_kobj); 1119 } 1120 1121 /* 1122 * Determine whether modifications can proceed. The caller specifies the minimum 1123 * freeze level for which modifications should not be allowed. This allows 1124 * certain operations to proceed while the freeze sequence is in progress, if 1125 * necessary. 1126 */ 1127 bool 1128 xfs_fs_writable( 1129 struct xfs_mount *mp, 1130 int level) 1131 { 1132 ASSERT(level > SB_UNFROZEN); 1133 if ((mp->m_super->s_writers.frozen >= level) || 1134 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1135 return false; 1136 1137 return true; 1138 } 1139 1140 /* 1141 * xfs_log_sbcount 1142 * 1143 * Sync the superblock counters to disk. 1144 * 1145 * Note this code can be called during the process of freezing, so we use the 1146 * transaction allocator that does not block when the transaction subsystem is 1147 * in its frozen state. 1148 */ 1149 int 1150 xfs_log_sbcount(xfs_mount_t *mp) 1151 { 1152 /* allow this to proceed during the freeze sequence... */ 1153 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) 1154 return 0; 1155 1156 /* 1157 * we don't need to do this if we are updating the superblock 1158 * counters on every modification. 1159 */ 1160 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1161 return 0; 1162 1163 return xfs_sync_sb(mp, true); 1164 } 1165 1166 /* 1167 * Deltas for the inode count are +/-64, hence we use a large batch size 1168 * of 128 so we don't need to take the counter lock on every update. 1169 */ 1170 #define XFS_ICOUNT_BATCH 128 1171 int 1172 xfs_mod_icount( 1173 struct xfs_mount *mp, 1174 int64_t delta) 1175 { 1176 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); 1177 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { 1178 ASSERT(0); 1179 percpu_counter_add(&mp->m_icount, -delta); 1180 return -EINVAL; 1181 } 1182 return 0; 1183 } 1184 1185 int 1186 xfs_mod_ifree( 1187 struct xfs_mount *mp, 1188 int64_t delta) 1189 { 1190 percpu_counter_add(&mp->m_ifree, delta); 1191 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { 1192 ASSERT(0); 1193 percpu_counter_add(&mp->m_ifree, -delta); 1194 return -EINVAL; 1195 } 1196 return 0; 1197 } 1198 1199 /* 1200 * Deltas for the block count can vary from 1 to very large, but lock contention 1201 * only occurs on frequent small block count updates such as in the delayed 1202 * allocation path for buffered writes (page a time updates). Hence we set 1203 * a large batch count (1024) to minimise global counter updates except when 1204 * we get near to ENOSPC and we have to be very accurate with our updates. 1205 */ 1206 #define XFS_FDBLOCKS_BATCH 1024 1207 int 1208 xfs_mod_fdblocks( 1209 struct xfs_mount *mp, 1210 int64_t delta, 1211 bool rsvd) 1212 { 1213 int64_t lcounter; 1214 long long res_used; 1215 s32 batch; 1216 1217 if (delta > 0) { 1218 /* 1219 * If the reserve pool is depleted, put blocks back into it 1220 * first. Most of the time the pool is full. 1221 */ 1222 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1223 percpu_counter_add(&mp->m_fdblocks, delta); 1224 return 0; 1225 } 1226 1227 spin_lock(&mp->m_sb_lock); 1228 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1229 1230 if (res_used > delta) { 1231 mp->m_resblks_avail += delta; 1232 } else { 1233 delta -= res_used; 1234 mp->m_resblks_avail = mp->m_resblks; 1235 percpu_counter_add(&mp->m_fdblocks, delta); 1236 } 1237 spin_unlock(&mp->m_sb_lock); 1238 return 0; 1239 } 1240 1241 /* 1242 * Taking blocks away, need to be more accurate the closer we 1243 * are to zero. 1244 * 1245 * If the counter has a value of less than 2 * max batch size, 1246 * then make everything serialise as we are real close to 1247 * ENOSPC. 1248 */ 1249 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1250 XFS_FDBLOCKS_BATCH) < 0) 1251 batch = 1; 1252 else 1253 batch = XFS_FDBLOCKS_BATCH; 1254 1255 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1256 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1257 XFS_FDBLOCKS_BATCH) >= 0) { 1258 /* we had space! */ 1259 return 0; 1260 } 1261 1262 /* 1263 * lock up the sb for dipping into reserves before releasing the space 1264 * that took us to ENOSPC. 1265 */ 1266 spin_lock(&mp->m_sb_lock); 1267 percpu_counter_add(&mp->m_fdblocks, -delta); 1268 if (!rsvd) 1269 goto fdblocks_enospc; 1270 1271 lcounter = (long long)mp->m_resblks_avail + delta; 1272 if (lcounter >= 0) { 1273 mp->m_resblks_avail = lcounter; 1274 spin_unlock(&mp->m_sb_lock); 1275 return 0; 1276 } 1277 printk_once(KERN_WARNING 1278 "Filesystem \"%s\": reserve blocks depleted! " 1279 "Consider increasing reserve pool size.", 1280 mp->m_fsname); 1281 fdblocks_enospc: 1282 spin_unlock(&mp->m_sb_lock); 1283 return -ENOSPC; 1284 } 1285 1286 int 1287 xfs_mod_frextents( 1288 struct xfs_mount *mp, 1289 int64_t delta) 1290 { 1291 int64_t lcounter; 1292 int ret = 0; 1293 1294 spin_lock(&mp->m_sb_lock); 1295 lcounter = mp->m_sb.sb_frextents + delta; 1296 if (lcounter < 0) 1297 ret = -ENOSPC; 1298 else 1299 mp->m_sb.sb_frextents = lcounter; 1300 spin_unlock(&mp->m_sb_lock); 1301 return ret; 1302 } 1303 1304 /* 1305 * xfs_getsb() is called to obtain the buffer for the superblock. 1306 * The buffer is returned locked and read in from disk. 1307 * The buffer should be released with a call to xfs_brelse(). 1308 */ 1309 struct xfs_buf * 1310 xfs_getsb( 1311 struct xfs_mount *mp) 1312 { 1313 struct xfs_buf *bp = mp->m_sb_bp; 1314 1315 xfs_buf_lock(bp); 1316 xfs_buf_hold(bp); 1317 ASSERT(bp->b_flags & XBF_DONE); 1318 return bp; 1319 } 1320 1321 /* 1322 * Used to free the superblock along various error paths. 1323 */ 1324 void 1325 xfs_freesb( 1326 struct xfs_mount *mp) 1327 { 1328 struct xfs_buf *bp = mp->m_sb_bp; 1329 1330 xfs_buf_lock(bp); 1331 mp->m_sb_bp = NULL; 1332 xfs_buf_relse(bp); 1333 } 1334 1335 /* 1336 * If the underlying (data/log/rt) device is readonly, there are some 1337 * operations that cannot proceed. 1338 */ 1339 int 1340 xfs_dev_is_read_only( 1341 struct xfs_mount *mp, 1342 char *message) 1343 { 1344 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1345 xfs_readonly_buftarg(mp->m_logdev_targp) || 1346 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1347 xfs_notice(mp, "%s required on read-only device.", message); 1348 xfs_notice(mp, "write access unavailable, cannot proceed."); 1349 return -EROFS; 1350 } 1351 return 0; 1352 } 1353 1354 /* Force the summary counters to be recalculated at next mount. */ 1355 void 1356 xfs_force_summary_recalc( 1357 struct xfs_mount *mp) 1358 { 1359 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1360 return; 1361 1362 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1363 } 1364 1365 /* 1366 * Update the in-core delayed block counter. 1367 * 1368 * We prefer to update the counter without having to take a spinlock for every 1369 * counter update (i.e. batching). Each change to delayed allocation 1370 * reservations can change can easily exceed the default percpu counter 1371 * batching, so we use a larger batch factor here. 1372 * 1373 * Note that we don't currently have any callers requiring fast summation 1374 * (e.g. percpu_counter_read) so we can use a big batch value here. 1375 */ 1376 #define XFS_DELALLOC_BATCH (4096) 1377 void 1378 xfs_mod_delalloc( 1379 struct xfs_mount *mp, 1380 int64_t delta) 1381 { 1382 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1383 XFS_DELALLOC_BATCH); 1384 } 1385