1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 15 #include "xfs_inode.h" 16 #include "xfs_dir2.h" 17 #include "xfs_ialloc.h" 18 #include "xfs_alloc.h" 19 #include "xfs_rtalloc.h" 20 #include "xfs_bmap.h" 21 #include "xfs_trans.h" 22 #include "xfs_trans_priv.h" 23 #include "xfs_log.h" 24 #include "xfs_log_priv.h" 25 #include "xfs_error.h" 26 #include "xfs_quota.h" 27 #include "xfs_fsops.h" 28 #include "xfs_icache.h" 29 #include "xfs_sysfs.h" 30 #include "xfs_rmap_btree.h" 31 #include "xfs_refcount_btree.h" 32 #include "xfs_reflink.h" 33 #include "xfs_extent_busy.h" 34 #include "xfs_health.h" 35 #include "xfs_trace.h" 36 #include "xfs_ag.h" 37 38 static DEFINE_MUTEX(xfs_uuid_table_mutex); 39 static int xfs_uuid_table_size; 40 static uuid_t *xfs_uuid_table; 41 42 void 43 xfs_uuid_table_free(void) 44 { 45 if (xfs_uuid_table_size == 0) 46 return; 47 kmem_free(xfs_uuid_table); 48 xfs_uuid_table = NULL; 49 xfs_uuid_table_size = 0; 50 } 51 52 /* 53 * See if the UUID is unique among mounted XFS filesystems. 54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 55 */ 56 STATIC int 57 xfs_uuid_mount( 58 struct xfs_mount *mp) 59 { 60 uuid_t *uuid = &mp->m_sb.sb_uuid; 61 int hole, i; 62 63 /* Publish UUID in struct super_block */ 64 uuid_copy(&mp->m_super->s_uuid, uuid); 65 66 if (xfs_has_nouuid(mp)) 67 return 0; 68 69 if (uuid_is_null(uuid)) { 70 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 71 return -EINVAL; 72 } 73 74 mutex_lock(&xfs_uuid_table_mutex); 75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 76 if (uuid_is_null(&xfs_uuid_table[i])) { 77 hole = i; 78 continue; 79 } 80 if (uuid_equal(uuid, &xfs_uuid_table[i])) 81 goto out_duplicate; 82 } 83 84 if (hole < 0) { 85 xfs_uuid_table = krealloc(xfs_uuid_table, 86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 87 GFP_KERNEL | __GFP_NOFAIL); 88 hole = xfs_uuid_table_size++; 89 } 90 xfs_uuid_table[hole] = *uuid; 91 mutex_unlock(&xfs_uuid_table_mutex); 92 93 return 0; 94 95 out_duplicate: 96 mutex_unlock(&xfs_uuid_table_mutex); 97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 98 return -EINVAL; 99 } 100 101 STATIC void 102 xfs_uuid_unmount( 103 struct xfs_mount *mp) 104 { 105 uuid_t *uuid = &mp->m_sb.sb_uuid; 106 int i; 107 108 if (xfs_has_nouuid(mp)) 109 return; 110 111 mutex_lock(&xfs_uuid_table_mutex); 112 for (i = 0; i < xfs_uuid_table_size; i++) { 113 if (uuid_is_null(&xfs_uuid_table[i])) 114 continue; 115 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 116 continue; 117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 118 break; 119 } 120 ASSERT(i < xfs_uuid_table_size); 121 mutex_unlock(&xfs_uuid_table_mutex); 122 } 123 124 /* 125 * Check size of device based on the (data/realtime) block count. 126 * Note: this check is used by the growfs code as well as mount. 127 */ 128 int 129 xfs_sb_validate_fsb_count( 130 xfs_sb_t *sbp, 131 uint64_t nblocks) 132 { 133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 134 ASSERT(sbp->sb_blocklog >= BBSHIFT); 135 136 /* Limited by ULONG_MAX of page cache index */ 137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 138 return -EFBIG; 139 return 0; 140 } 141 142 /* 143 * xfs_readsb 144 * 145 * Does the initial read of the superblock. 146 */ 147 int 148 xfs_readsb( 149 struct xfs_mount *mp, 150 int flags) 151 { 152 unsigned int sector_size; 153 struct xfs_buf *bp; 154 struct xfs_sb *sbp = &mp->m_sb; 155 int error; 156 int loud = !(flags & XFS_MFSI_QUIET); 157 const struct xfs_buf_ops *buf_ops; 158 159 ASSERT(mp->m_sb_bp == NULL); 160 ASSERT(mp->m_ddev_targp != NULL); 161 162 /* 163 * For the initial read, we must guess at the sector 164 * size based on the block device. It's enough to 165 * get the sb_sectsize out of the superblock and 166 * then reread with the proper length. 167 * We don't verify it yet, because it may not be complete. 168 */ 169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 170 buf_ops = NULL; 171 172 /* 173 * Allocate a (locked) buffer to hold the superblock. This will be kept 174 * around at all times to optimize access to the superblock. Therefore, 175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 176 * elevated. 177 */ 178 reread: 179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 180 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 181 buf_ops); 182 if (error) { 183 if (loud) 184 xfs_warn(mp, "SB validate failed with error %d.", error); 185 /* bad CRC means corrupted metadata */ 186 if (error == -EFSBADCRC) 187 error = -EFSCORRUPTED; 188 return error; 189 } 190 191 /* 192 * Initialize the mount structure from the superblock. 193 */ 194 xfs_sb_from_disk(sbp, bp->b_addr); 195 196 /* 197 * If we haven't validated the superblock, do so now before we try 198 * to check the sector size and reread the superblock appropriately. 199 */ 200 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 201 if (loud) 202 xfs_warn(mp, "Invalid superblock magic number"); 203 error = -EINVAL; 204 goto release_buf; 205 } 206 207 /* 208 * We must be able to do sector-sized and sector-aligned IO. 209 */ 210 if (sector_size > sbp->sb_sectsize) { 211 if (loud) 212 xfs_warn(mp, "device supports %u byte sectors (not %u)", 213 sector_size, sbp->sb_sectsize); 214 error = -ENOSYS; 215 goto release_buf; 216 } 217 218 if (buf_ops == NULL) { 219 /* 220 * Re-read the superblock so the buffer is correctly sized, 221 * and properly verified. 222 */ 223 xfs_buf_relse(bp); 224 sector_size = sbp->sb_sectsize; 225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 226 goto reread; 227 } 228 229 mp->m_features |= xfs_sb_version_to_features(sbp); 230 xfs_reinit_percpu_counters(mp); 231 232 /* no need to be quiet anymore, so reset the buf ops */ 233 bp->b_ops = &xfs_sb_buf_ops; 234 235 mp->m_sb_bp = bp; 236 xfs_buf_unlock(bp); 237 return 0; 238 239 release_buf: 240 xfs_buf_relse(bp); 241 return error; 242 } 243 244 /* 245 * If the sunit/swidth change would move the precomputed root inode value, we 246 * must reject the ondisk change because repair will stumble over that. 247 * However, we allow the mount to proceed because we never rejected this 248 * combination before. Returns true to update the sb, false otherwise. 249 */ 250 static inline int 251 xfs_check_new_dalign( 252 struct xfs_mount *mp, 253 int new_dalign, 254 bool *update_sb) 255 { 256 struct xfs_sb *sbp = &mp->m_sb; 257 xfs_ino_t calc_ino; 258 259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 261 262 if (sbp->sb_rootino == calc_ino) { 263 *update_sb = true; 264 return 0; 265 } 266 267 xfs_warn(mp, 268 "Cannot change stripe alignment; would require moving root inode."); 269 270 /* 271 * XXX: Next time we add a new incompat feature, this should start 272 * returning -EINVAL to fail the mount. Until then, spit out a warning 273 * that we're ignoring the administrator's instructions. 274 */ 275 xfs_warn(mp, "Skipping superblock stripe alignment update."); 276 *update_sb = false; 277 return 0; 278 } 279 280 /* 281 * If we were provided with new sunit/swidth values as mount options, make sure 282 * that they pass basic alignment and superblock feature checks, and convert 283 * them into the same units (FSB) that everything else expects. This step 284 * /must/ be done before computing the inode geometry. 285 */ 286 STATIC int 287 xfs_validate_new_dalign( 288 struct xfs_mount *mp) 289 { 290 if (mp->m_dalign == 0) 291 return 0; 292 293 /* 294 * If stripe unit and stripe width are not multiples 295 * of the fs blocksize turn off alignment. 296 */ 297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 299 xfs_warn(mp, 300 "alignment check failed: sunit/swidth vs. blocksize(%d)", 301 mp->m_sb.sb_blocksize); 302 return -EINVAL; 303 } else { 304 /* 305 * Convert the stripe unit and width to FSBs. 306 */ 307 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 308 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 309 xfs_warn(mp, 310 "alignment check failed: sunit/swidth vs. agsize(%d)", 311 mp->m_sb.sb_agblocks); 312 return -EINVAL; 313 } else if (mp->m_dalign) { 314 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 315 } else { 316 xfs_warn(mp, 317 "alignment check failed: sunit(%d) less than bsize(%d)", 318 mp->m_dalign, mp->m_sb.sb_blocksize); 319 return -EINVAL; 320 } 321 } 322 323 if (!xfs_has_dalign(mp)) { 324 xfs_warn(mp, 325 "cannot change alignment: superblock does not support data alignment"); 326 return -EINVAL; 327 } 328 329 return 0; 330 } 331 332 /* Update alignment values based on mount options and sb values. */ 333 STATIC int 334 xfs_update_alignment( 335 struct xfs_mount *mp) 336 { 337 struct xfs_sb *sbp = &mp->m_sb; 338 339 if (mp->m_dalign) { 340 bool update_sb; 341 int error; 342 343 if (sbp->sb_unit == mp->m_dalign && 344 sbp->sb_width == mp->m_swidth) 345 return 0; 346 347 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 348 if (error || !update_sb) 349 return error; 350 351 sbp->sb_unit = mp->m_dalign; 352 sbp->sb_width = mp->m_swidth; 353 mp->m_update_sb = true; 354 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) { 355 mp->m_dalign = sbp->sb_unit; 356 mp->m_swidth = sbp->sb_width; 357 } 358 359 return 0; 360 } 361 362 /* 363 * precalculate the low space thresholds for dynamic speculative preallocation. 364 */ 365 void 366 xfs_set_low_space_thresholds( 367 struct xfs_mount *mp) 368 { 369 uint64_t dblocks = mp->m_sb.sb_dblocks; 370 uint64_t rtexts = mp->m_sb.sb_rextents; 371 int i; 372 373 do_div(dblocks, 100); 374 do_div(rtexts, 100); 375 376 for (i = 0; i < XFS_LOWSP_MAX; i++) { 377 mp->m_low_space[i] = dblocks * (i + 1); 378 mp->m_low_rtexts[i] = rtexts * (i + 1); 379 } 380 } 381 382 /* 383 * Check that the data (and log if separate) is an ok size. 384 */ 385 STATIC int 386 xfs_check_sizes( 387 struct xfs_mount *mp) 388 { 389 struct xfs_buf *bp; 390 xfs_daddr_t d; 391 int error; 392 393 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 394 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 395 xfs_warn(mp, "filesystem size mismatch detected"); 396 return -EFBIG; 397 } 398 error = xfs_buf_read_uncached(mp->m_ddev_targp, 399 d - XFS_FSS_TO_BB(mp, 1), 400 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 401 if (error) { 402 xfs_warn(mp, "last sector read failed"); 403 return error; 404 } 405 xfs_buf_relse(bp); 406 407 if (mp->m_logdev_targp == mp->m_ddev_targp) 408 return 0; 409 410 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 411 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 412 xfs_warn(mp, "log size mismatch detected"); 413 return -EFBIG; 414 } 415 error = xfs_buf_read_uncached(mp->m_logdev_targp, 416 d - XFS_FSB_TO_BB(mp, 1), 417 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 418 if (error) { 419 xfs_warn(mp, "log device read failed"); 420 return error; 421 } 422 xfs_buf_relse(bp); 423 return 0; 424 } 425 426 /* 427 * Clear the quotaflags in memory and in the superblock. 428 */ 429 int 430 xfs_mount_reset_sbqflags( 431 struct xfs_mount *mp) 432 { 433 mp->m_qflags = 0; 434 435 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 436 if (mp->m_sb.sb_qflags == 0) 437 return 0; 438 spin_lock(&mp->m_sb_lock); 439 mp->m_sb.sb_qflags = 0; 440 spin_unlock(&mp->m_sb_lock); 441 442 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 443 return 0; 444 445 return xfs_sync_sb(mp, false); 446 } 447 448 uint64_t 449 xfs_default_resblks(xfs_mount_t *mp) 450 { 451 uint64_t resblks; 452 453 /* 454 * We default to 5% or 8192 fsbs of space reserved, whichever is 455 * smaller. This is intended to cover concurrent allocation 456 * transactions when we initially hit enospc. These each require a 4 457 * block reservation. Hence by default we cover roughly 2000 concurrent 458 * allocation reservations. 459 */ 460 resblks = mp->m_sb.sb_dblocks; 461 do_div(resblks, 20); 462 resblks = min_t(uint64_t, resblks, 8192); 463 return resblks; 464 } 465 466 /* Ensure the summary counts are correct. */ 467 STATIC int 468 xfs_check_summary_counts( 469 struct xfs_mount *mp) 470 { 471 /* 472 * The AG0 superblock verifier rejects in-progress filesystems, 473 * so we should never see the flag set this far into mounting. 474 */ 475 if (mp->m_sb.sb_inprogress) { 476 xfs_err(mp, "sb_inprogress set after log recovery??"); 477 WARN_ON(1); 478 return -EFSCORRUPTED; 479 } 480 481 /* 482 * Now the log is mounted, we know if it was an unclean shutdown or 483 * not. If it was, with the first phase of recovery has completed, we 484 * have consistent AG blocks on disk. We have not recovered EFIs yet, 485 * but they are recovered transactionally in the second recovery phase 486 * later. 487 * 488 * If the log was clean when we mounted, we can check the summary 489 * counters. If any of them are obviously incorrect, we can recompute 490 * them from the AGF headers in the next step. 491 */ 492 if (xfs_is_clean(mp) && 493 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 494 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 495 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 496 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 497 498 /* 499 * We can safely re-initialise incore superblock counters from the 500 * per-ag data. These may not be correct if the filesystem was not 501 * cleanly unmounted, so we waited for recovery to finish before doing 502 * this. 503 * 504 * If the filesystem was cleanly unmounted or the previous check did 505 * not flag anything weird, then we can trust the values in the 506 * superblock to be correct and we don't need to do anything here. 507 * Otherwise, recalculate the summary counters. 508 */ 509 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) && 510 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 511 return 0; 512 513 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 514 } 515 516 /* 517 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 518 * internal inode structures can be sitting in the CIL and AIL at this point, 519 * so we need to unpin them, write them back and/or reclaim them before unmount 520 * can proceed. In other words, callers are required to have inactivated all 521 * inodes. 522 * 523 * An inode cluster that has been freed can have its buffer still pinned in 524 * memory because the transaction is still sitting in a iclog. The stale inodes 525 * on that buffer will be pinned to the buffer until the transaction hits the 526 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 527 * may never see the pinned buffer, so nothing will push out the iclog and 528 * unpin the buffer. 529 * 530 * Hence we need to force the log to unpin everything first. However, log 531 * forces don't wait for the discards they issue to complete, so we have to 532 * explicitly wait for them to complete here as well. 533 * 534 * Then we can tell the world we are unmounting so that error handling knows 535 * that the filesystem is going away and we should error out anything that we 536 * have been retrying in the background. This will prevent never-ending 537 * retries in AIL pushing from hanging the unmount. 538 * 539 * Finally, we can push the AIL to clean all the remaining dirty objects, then 540 * reclaim the remaining inodes that are still in memory at this point in time. 541 */ 542 static void 543 xfs_unmount_flush_inodes( 544 struct xfs_mount *mp) 545 { 546 xfs_log_force(mp, XFS_LOG_SYNC); 547 xfs_extent_busy_wait_all(mp); 548 flush_workqueue(xfs_discard_wq); 549 550 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate); 551 552 xfs_ail_push_all_sync(mp->m_ail); 553 xfs_inodegc_stop(mp); 554 cancel_delayed_work_sync(&mp->m_reclaim_work); 555 xfs_reclaim_inodes(mp); 556 xfs_health_unmount(mp); 557 } 558 559 static void 560 xfs_mount_setup_inode_geom( 561 struct xfs_mount *mp) 562 { 563 struct xfs_ino_geometry *igeo = M_IGEO(mp); 564 565 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp); 566 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp)); 567 568 xfs_ialloc_setup_geometry(mp); 569 } 570 571 /* Compute maximum possible height for per-AG btree types for this fs. */ 572 static inline void 573 xfs_agbtree_compute_maxlevels( 574 struct xfs_mount *mp) 575 { 576 unsigned int levels; 577 578 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels); 579 levels = max(levels, mp->m_rmap_maxlevels); 580 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels); 581 } 582 583 /* 584 * This function does the following on an initial mount of a file system: 585 * - reads the superblock from disk and init the mount struct 586 * - if we're a 32-bit kernel, do a size check on the superblock 587 * so we don't mount terabyte filesystems 588 * - init mount struct realtime fields 589 * - allocate inode hash table for fs 590 * - init directory manager 591 * - perform recovery and init the log manager 592 */ 593 int 594 xfs_mountfs( 595 struct xfs_mount *mp) 596 { 597 struct xfs_sb *sbp = &(mp->m_sb); 598 struct xfs_inode *rip; 599 struct xfs_ino_geometry *igeo = M_IGEO(mp); 600 uint64_t resblks; 601 uint quotamount = 0; 602 uint quotaflags = 0; 603 int error = 0; 604 605 xfs_sb_mount_common(mp, sbp); 606 607 /* 608 * Check for a mismatched features2 values. Older kernels read & wrote 609 * into the wrong sb offset for sb_features2 on some platforms due to 610 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 611 * which made older superblock reading/writing routines swap it as a 612 * 64-bit value. 613 * 614 * For backwards compatibility, we make both slots equal. 615 * 616 * If we detect a mismatched field, we OR the set bits into the existing 617 * features2 field in case it has already been modified; we don't want 618 * to lose any features. We then update the bad location with the ORed 619 * value so that older kernels will see any features2 flags. The 620 * superblock writeback code ensures the new sb_features2 is copied to 621 * sb_bad_features2 before it is logged or written to disk. 622 */ 623 if (xfs_sb_has_mismatched_features2(sbp)) { 624 xfs_warn(mp, "correcting sb_features alignment problem"); 625 sbp->sb_features2 |= sbp->sb_bad_features2; 626 mp->m_update_sb = true; 627 } 628 629 630 /* always use v2 inodes by default now */ 631 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 632 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 633 mp->m_features |= XFS_FEAT_NLINK; 634 mp->m_update_sb = true; 635 } 636 637 /* 638 * If we were given new sunit/swidth options, do some basic validation 639 * checks and convert the incore dalign and swidth values to the 640 * same units (FSB) that everything else uses. This /must/ happen 641 * before computing the inode geometry. 642 */ 643 error = xfs_validate_new_dalign(mp); 644 if (error) 645 goto out; 646 647 xfs_alloc_compute_maxlevels(mp); 648 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 649 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 650 xfs_mount_setup_inode_geom(mp); 651 xfs_rmapbt_compute_maxlevels(mp); 652 xfs_refcountbt_compute_maxlevels(mp); 653 654 xfs_agbtree_compute_maxlevels(mp); 655 656 /* 657 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 658 * is NOT aligned turn off m_dalign since allocator alignment is within 659 * an ag, therefore ag has to be aligned at stripe boundary. Note that 660 * we must compute the free space and rmap btree geometry before doing 661 * this. 662 */ 663 error = xfs_update_alignment(mp); 664 if (error) 665 goto out; 666 667 /* enable fail_at_unmount as default */ 668 mp->m_fail_unmount = true; 669 670 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 671 NULL, mp->m_super->s_id); 672 if (error) 673 goto out; 674 675 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 676 &mp->m_kobj, "stats"); 677 if (error) 678 goto out_remove_sysfs; 679 680 error = xfs_error_sysfs_init(mp); 681 if (error) 682 goto out_del_stats; 683 684 error = xfs_errortag_init(mp); 685 if (error) 686 goto out_remove_error_sysfs; 687 688 error = xfs_uuid_mount(mp); 689 if (error) 690 goto out_remove_errortag; 691 692 /* 693 * Update the preferred write size based on the information from the 694 * on-disk superblock. 695 */ 696 mp->m_allocsize_log = 697 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 698 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 699 700 /* set the low space thresholds for dynamic preallocation */ 701 xfs_set_low_space_thresholds(mp); 702 703 /* 704 * If enabled, sparse inode chunk alignment is expected to match the 705 * cluster size. Full inode chunk alignment must match the chunk size, 706 * but that is checked on sb read verification... 707 */ 708 if (xfs_has_sparseinodes(mp) && 709 mp->m_sb.sb_spino_align != 710 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 711 xfs_warn(mp, 712 "Sparse inode block alignment (%u) must match cluster size (%llu).", 713 mp->m_sb.sb_spino_align, 714 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 715 error = -EINVAL; 716 goto out_remove_uuid; 717 } 718 719 /* 720 * Check that the data (and log if separate) is an ok size. 721 */ 722 error = xfs_check_sizes(mp); 723 if (error) 724 goto out_remove_uuid; 725 726 /* 727 * Initialize realtime fields in the mount structure 728 */ 729 error = xfs_rtmount_init(mp); 730 if (error) { 731 xfs_warn(mp, "RT mount failed"); 732 goto out_remove_uuid; 733 } 734 735 /* 736 * Copies the low order bits of the timestamp and the randomly 737 * set "sequence" number out of a UUID. 738 */ 739 mp->m_fixedfsid[0] = 740 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 741 get_unaligned_be16(&sbp->sb_uuid.b[4]); 742 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 743 744 error = xfs_da_mount(mp); 745 if (error) { 746 xfs_warn(mp, "Failed dir/attr init: %d", error); 747 goto out_remove_uuid; 748 } 749 750 /* 751 * Initialize the precomputed transaction reservations values. 752 */ 753 xfs_trans_init(mp); 754 755 /* 756 * Allocate and initialize the per-ag data. 757 */ 758 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 759 if (error) { 760 xfs_warn(mp, "Failed per-ag init: %d", error); 761 goto out_free_dir; 762 } 763 764 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 765 xfs_warn(mp, "no log defined"); 766 error = -EFSCORRUPTED; 767 goto out_free_perag; 768 } 769 770 error = xfs_inodegc_register_shrinker(mp); 771 if (error) 772 goto out_fail_wait; 773 774 /* 775 * Log's mount-time initialization. The first part of recovery can place 776 * some items on the AIL, to be handled when recovery is finished or 777 * cancelled. 778 */ 779 error = xfs_log_mount(mp, mp->m_logdev_targp, 780 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 781 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 782 if (error) { 783 xfs_warn(mp, "log mount failed"); 784 goto out_inodegc_shrinker; 785 } 786 787 /* Make sure the summary counts are ok. */ 788 error = xfs_check_summary_counts(mp); 789 if (error) 790 goto out_log_dealloc; 791 792 /* Enable background inode inactivation workers. */ 793 xfs_inodegc_start(mp); 794 xfs_blockgc_start(mp); 795 796 /* 797 * Now that we've recovered any pending superblock feature bit 798 * additions, we can finish setting up the attr2 behaviour for the 799 * mount. The noattr2 option overrides the superblock flag, so only 800 * check the superblock feature flag if the mount option is not set. 801 */ 802 if (xfs_has_noattr2(mp)) { 803 mp->m_features &= ~XFS_FEAT_ATTR2; 804 } else if (!xfs_has_attr2(mp) && 805 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) { 806 mp->m_features |= XFS_FEAT_ATTR2; 807 } 808 809 /* 810 * Get and sanity-check the root inode. 811 * Save the pointer to it in the mount structure. 812 */ 813 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 814 XFS_ILOCK_EXCL, &rip); 815 if (error) { 816 xfs_warn(mp, 817 "Failed to read root inode 0x%llx, error %d", 818 sbp->sb_rootino, -error); 819 goto out_log_dealloc; 820 } 821 822 ASSERT(rip != NULL); 823 824 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 825 xfs_warn(mp, "corrupted root inode %llu: not a directory", 826 (unsigned long long)rip->i_ino); 827 xfs_iunlock(rip, XFS_ILOCK_EXCL); 828 error = -EFSCORRUPTED; 829 goto out_rele_rip; 830 } 831 mp->m_rootip = rip; /* save it */ 832 833 xfs_iunlock(rip, XFS_ILOCK_EXCL); 834 835 /* 836 * Initialize realtime inode pointers in the mount structure 837 */ 838 error = xfs_rtmount_inodes(mp); 839 if (error) { 840 /* 841 * Free up the root inode. 842 */ 843 xfs_warn(mp, "failed to read RT inodes"); 844 goto out_rele_rip; 845 } 846 847 /* 848 * If this is a read-only mount defer the superblock updates until 849 * the next remount into writeable mode. Otherwise we would never 850 * perform the update e.g. for the root filesystem. 851 */ 852 if (mp->m_update_sb && !xfs_is_readonly(mp)) { 853 error = xfs_sync_sb(mp, false); 854 if (error) { 855 xfs_warn(mp, "failed to write sb changes"); 856 goto out_rtunmount; 857 } 858 } 859 860 /* 861 * Initialise the XFS quota management subsystem for this mount 862 */ 863 if (XFS_IS_QUOTA_ON(mp)) { 864 error = xfs_qm_newmount(mp, "amount, "aflags); 865 if (error) 866 goto out_rtunmount; 867 } else { 868 /* 869 * If a file system had quotas running earlier, but decided to 870 * mount without -o uquota/pquota/gquota options, revoke the 871 * quotachecked license. 872 */ 873 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 874 xfs_notice(mp, "resetting quota flags"); 875 error = xfs_mount_reset_sbqflags(mp); 876 if (error) 877 goto out_rtunmount; 878 } 879 } 880 881 /* 882 * Finish recovering the file system. This part needed to be delayed 883 * until after the root and real-time bitmap inodes were consistently 884 * read in. Temporarily create per-AG space reservations for metadata 885 * btree shape changes because space freeing transactions (for inode 886 * inactivation) require the per-AG reservation in lieu of reserving 887 * blocks. 888 */ 889 error = xfs_fs_reserve_ag_blocks(mp); 890 if (error && error == -ENOSPC) 891 xfs_warn(mp, 892 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 893 error = xfs_log_mount_finish(mp); 894 xfs_fs_unreserve_ag_blocks(mp); 895 if (error) { 896 xfs_warn(mp, "log mount finish failed"); 897 goto out_rtunmount; 898 } 899 900 /* 901 * Now the log is fully replayed, we can transition to full read-only 902 * mode for read-only mounts. This will sync all the metadata and clean 903 * the log so that the recovery we just performed does not have to be 904 * replayed again on the next mount. 905 * 906 * We use the same quiesce mechanism as the rw->ro remount, as they are 907 * semantically identical operations. 908 */ 909 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp)) 910 xfs_log_clean(mp); 911 912 /* 913 * Complete the quota initialisation, post-log-replay component. 914 */ 915 if (quotamount) { 916 ASSERT(mp->m_qflags == 0); 917 mp->m_qflags = quotaflags; 918 919 xfs_qm_mount_quotas(mp); 920 } 921 922 /* 923 * Now we are mounted, reserve a small amount of unused space for 924 * privileged transactions. This is needed so that transaction 925 * space required for critical operations can dip into this pool 926 * when at ENOSPC. This is needed for operations like create with 927 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 928 * are not allowed to use this reserved space. 929 * 930 * This may drive us straight to ENOSPC on mount, but that implies 931 * we were already there on the last unmount. Warn if this occurs. 932 */ 933 if (!xfs_is_readonly(mp)) { 934 resblks = xfs_default_resblks(mp); 935 error = xfs_reserve_blocks(mp, &resblks, NULL); 936 if (error) 937 xfs_warn(mp, 938 "Unable to allocate reserve blocks. Continuing without reserve pool."); 939 940 /* Reserve AG blocks for future btree expansion. */ 941 error = xfs_fs_reserve_ag_blocks(mp); 942 if (error && error != -ENOSPC) 943 goto out_agresv; 944 } 945 946 return 0; 947 948 out_agresv: 949 xfs_fs_unreserve_ag_blocks(mp); 950 xfs_qm_unmount_quotas(mp); 951 out_rtunmount: 952 xfs_rtunmount_inodes(mp); 953 out_rele_rip: 954 xfs_irele(rip); 955 /* Clean out dquots that might be in memory after quotacheck. */ 956 xfs_qm_unmount(mp); 957 958 /* 959 * Inactivate all inodes that might still be in memory after a log 960 * intent recovery failure so that reclaim can free them. Metadata 961 * inodes and the root directory shouldn't need inactivation, but the 962 * mount failed for some reason, so pull down all the state and flee. 963 */ 964 xfs_inodegc_flush(mp); 965 966 /* 967 * Flush all inode reclamation work and flush the log. 968 * We have to do this /after/ rtunmount and qm_unmount because those 969 * two will have scheduled delayed reclaim for the rt/quota inodes. 970 * 971 * This is slightly different from the unmountfs call sequence 972 * because we could be tearing down a partially set up mount. In 973 * particular, if log_mount_finish fails we bail out without calling 974 * qm_unmount_quotas and therefore rely on qm_unmount to release the 975 * quota inodes. 976 */ 977 xfs_unmount_flush_inodes(mp); 978 out_log_dealloc: 979 xfs_log_mount_cancel(mp); 980 out_inodegc_shrinker: 981 unregister_shrinker(&mp->m_inodegc_shrinker); 982 out_fail_wait: 983 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 984 xfs_buftarg_drain(mp->m_logdev_targp); 985 xfs_buftarg_drain(mp->m_ddev_targp); 986 out_free_perag: 987 xfs_free_perag(mp); 988 out_free_dir: 989 xfs_da_unmount(mp); 990 out_remove_uuid: 991 xfs_uuid_unmount(mp); 992 out_remove_errortag: 993 xfs_errortag_del(mp); 994 out_remove_error_sysfs: 995 xfs_error_sysfs_del(mp); 996 out_del_stats: 997 xfs_sysfs_del(&mp->m_stats.xs_kobj); 998 out_remove_sysfs: 999 xfs_sysfs_del(&mp->m_kobj); 1000 out: 1001 return error; 1002 } 1003 1004 /* 1005 * This flushes out the inodes,dquots and the superblock, unmounts the 1006 * log and makes sure that incore structures are freed. 1007 */ 1008 void 1009 xfs_unmountfs( 1010 struct xfs_mount *mp) 1011 { 1012 uint64_t resblks; 1013 int error; 1014 1015 /* 1016 * Perform all on-disk metadata updates required to inactivate inodes 1017 * that the VFS evicted earlier in the unmount process. Freeing inodes 1018 * and discarding CoW fork preallocations can cause shape changes to 1019 * the free inode and refcount btrees, respectively, so we must finish 1020 * this before we discard the metadata space reservations. Metadata 1021 * inodes and the root directory do not require inactivation. 1022 */ 1023 xfs_inodegc_flush(mp); 1024 1025 xfs_blockgc_stop(mp); 1026 xfs_fs_unreserve_ag_blocks(mp); 1027 xfs_qm_unmount_quotas(mp); 1028 xfs_rtunmount_inodes(mp); 1029 xfs_irele(mp->m_rootip); 1030 1031 xfs_unmount_flush_inodes(mp); 1032 1033 xfs_qm_unmount(mp); 1034 1035 /* 1036 * Unreserve any blocks we have so that when we unmount we don't account 1037 * the reserved free space as used. This is really only necessary for 1038 * lazy superblock counting because it trusts the incore superblock 1039 * counters to be absolutely correct on clean unmount. 1040 * 1041 * We don't bother correcting this elsewhere for lazy superblock 1042 * counting because on mount of an unclean filesystem we reconstruct the 1043 * correct counter value and this is irrelevant. 1044 * 1045 * For non-lazy counter filesystems, this doesn't matter at all because 1046 * we only every apply deltas to the superblock and hence the incore 1047 * value does not matter.... 1048 */ 1049 resblks = 0; 1050 error = xfs_reserve_blocks(mp, &resblks, NULL); 1051 if (error) 1052 xfs_warn(mp, "Unable to free reserved block pool. " 1053 "Freespace may not be correct on next mount."); 1054 1055 xfs_log_unmount(mp); 1056 xfs_da_unmount(mp); 1057 xfs_uuid_unmount(mp); 1058 1059 #if defined(DEBUG) 1060 xfs_errortag_clearall(mp); 1061 #endif 1062 unregister_shrinker(&mp->m_inodegc_shrinker); 1063 xfs_free_perag(mp); 1064 1065 xfs_errortag_del(mp); 1066 xfs_error_sysfs_del(mp); 1067 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1068 xfs_sysfs_del(&mp->m_kobj); 1069 } 1070 1071 /* 1072 * Determine whether modifications can proceed. The caller specifies the minimum 1073 * freeze level for which modifications should not be allowed. This allows 1074 * certain operations to proceed while the freeze sequence is in progress, if 1075 * necessary. 1076 */ 1077 bool 1078 xfs_fs_writable( 1079 struct xfs_mount *mp, 1080 int level) 1081 { 1082 ASSERT(level > SB_UNFROZEN); 1083 if ((mp->m_super->s_writers.frozen >= level) || 1084 xfs_is_shutdown(mp) || xfs_is_readonly(mp)) 1085 return false; 1086 1087 return true; 1088 } 1089 1090 int 1091 xfs_mod_fdblocks( 1092 struct xfs_mount *mp, 1093 int64_t delta, 1094 bool rsvd) 1095 { 1096 int64_t lcounter; 1097 long long res_used; 1098 s32 batch; 1099 uint64_t set_aside; 1100 1101 if (delta > 0) { 1102 /* 1103 * If the reserve pool is depleted, put blocks back into it 1104 * first. Most of the time the pool is full. 1105 */ 1106 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1107 percpu_counter_add(&mp->m_fdblocks, delta); 1108 return 0; 1109 } 1110 1111 spin_lock(&mp->m_sb_lock); 1112 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1113 1114 if (res_used > delta) { 1115 mp->m_resblks_avail += delta; 1116 } else { 1117 delta -= res_used; 1118 mp->m_resblks_avail = mp->m_resblks; 1119 percpu_counter_add(&mp->m_fdblocks, delta); 1120 } 1121 spin_unlock(&mp->m_sb_lock); 1122 return 0; 1123 } 1124 1125 /* 1126 * Taking blocks away, need to be more accurate the closer we 1127 * are to zero. 1128 * 1129 * If the counter has a value of less than 2 * max batch size, 1130 * then make everything serialise as we are real close to 1131 * ENOSPC. 1132 */ 1133 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1134 XFS_FDBLOCKS_BATCH) < 0) 1135 batch = 1; 1136 else 1137 batch = XFS_FDBLOCKS_BATCH; 1138 1139 /* 1140 * Set aside allocbt blocks because these blocks are tracked as free 1141 * space but not available for allocation. Technically this means that a 1142 * single reservation cannot consume all remaining free space, but the 1143 * ratio of allocbt blocks to usable free blocks should be rather small. 1144 * The tradeoff without this is that filesystems that maintain high 1145 * perag block reservations can over reserve physical block availability 1146 * and fail physical allocation, which leads to much more serious 1147 * problems (i.e. transaction abort, pagecache discards, etc.) than 1148 * slightly premature -ENOSPC. 1149 */ 1150 set_aside = xfs_fdblocks_unavailable(mp); 1151 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1152 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside, 1153 XFS_FDBLOCKS_BATCH) >= 0) { 1154 /* we had space! */ 1155 return 0; 1156 } 1157 1158 /* 1159 * lock up the sb for dipping into reserves before releasing the space 1160 * that took us to ENOSPC. 1161 */ 1162 spin_lock(&mp->m_sb_lock); 1163 percpu_counter_add(&mp->m_fdblocks, -delta); 1164 if (!rsvd) 1165 goto fdblocks_enospc; 1166 1167 lcounter = (long long)mp->m_resblks_avail + delta; 1168 if (lcounter >= 0) { 1169 mp->m_resblks_avail = lcounter; 1170 spin_unlock(&mp->m_sb_lock); 1171 return 0; 1172 } 1173 xfs_warn_once(mp, 1174 "Reserve blocks depleted! Consider increasing reserve pool size."); 1175 1176 fdblocks_enospc: 1177 spin_unlock(&mp->m_sb_lock); 1178 return -ENOSPC; 1179 } 1180 1181 int 1182 xfs_mod_frextents( 1183 struct xfs_mount *mp, 1184 int64_t delta) 1185 { 1186 int64_t lcounter; 1187 int ret = 0; 1188 1189 spin_lock(&mp->m_sb_lock); 1190 lcounter = mp->m_sb.sb_frextents + delta; 1191 if (lcounter < 0) 1192 ret = -ENOSPC; 1193 else 1194 mp->m_sb.sb_frextents = lcounter; 1195 spin_unlock(&mp->m_sb_lock); 1196 return ret; 1197 } 1198 1199 /* 1200 * Used to free the superblock along various error paths. 1201 */ 1202 void 1203 xfs_freesb( 1204 struct xfs_mount *mp) 1205 { 1206 struct xfs_buf *bp = mp->m_sb_bp; 1207 1208 xfs_buf_lock(bp); 1209 mp->m_sb_bp = NULL; 1210 xfs_buf_relse(bp); 1211 } 1212 1213 /* 1214 * If the underlying (data/log/rt) device is readonly, there are some 1215 * operations that cannot proceed. 1216 */ 1217 int 1218 xfs_dev_is_read_only( 1219 struct xfs_mount *mp, 1220 char *message) 1221 { 1222 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1223 xfs_readonly_buftarg(mp->m_logdev_targp) || 1224 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1225 xfs_notice(mp, "%s required on read-only device.", message); 1226 xfs_notice(mp, "write access unavailable, cannot proceed."); 1227 return -EROFS; 1228 } 1229 return 0; 1230 } 1231 1232 /* Force the summary counters to be recalculated at next mount. */ 1233 void 1234 xfs_force_summary_recalc( 1235 struct xfs_mount *mp) 1236 { 1237 if (!xfs_has_lazysbcount(mp)) 1238 return; 1239 1240 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1241 } 1242 1243 /* 1244 * Enable a log incompat feature flag in the primary superblock. The caller 1245 * cannot have any other transactions in progress. 1246 */ 1247 int 1248 xfs_add_incompat_log_feature( 1249 struct xfs_mount *mp, 1250 uint32_t feature) 1251 { 1252 struct xfs_dsb *dsb; 1253 int error; 1254 1255 ASSERT(hweight32(feature) == 1); 1256 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 1257 1258 /* 1259 * Force the log to disk and kick the background AIL thread to reduce 1260 * the chances that the bwrite will stall waiting for the AIL to unpin 1261 * the primary superblock buffer. This isn't a data integrity 1262 * operation, so we don't need a synchronous push. 1263 */ 1264 error = xfs_log_force(mp, XFS_LOG_SYNC); 1265 if (error) 1266 return error; 1267 xfs_ail_push_all(mp->m_ail); 1268 1269 /* 1270 * Lock the primary superblock buffer to serialize all callers that 1271 * are trying to set feature bits. 1272 */ 1273 xfs_buf_lock(mp->m_sb_bp); 1274 xfs_buf_hold(mp->m_sb_bp); 1275 1276 if (xfs_is_shutdown(mp)) { 1277 error = -EIO; 1278 goto rele; 1279 } 1280 1281 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature)) 1282 goto rele; 1283 1284 /* 1285 * Write the primary superblock to disk immediately, because we need 1286 * the log_incompat bit to be set in the primary super now to protect 1287 * the log items that we're going to commit later. 1288 */ 1289 dsb = mp->m_sb_bp->b_addr; 1290 xfs_sb_to_disk(dsb, &mp->m_sb); 1291 dsb->sb_features_log_incompat |= cpu_to_be32(feature); 1292 error = xfs_bwrite(mp->m_sb_bp); 1293 if (error) 1294 goto shutdown; 1295 1296 /* 1297 * Add the feature bits to the incore superblock before we unlock the 1298 * buffer. 1299 */ 1300 xfs_sb_add_incompat_log_features(&mp->m_sb, feature); 1301 xfs_buf_relse(mp->m_sb_bp); 1302 1303 /* Log the superblock to disk. */ 1304 return xfs_sync_sb(mp, false); 1305 shutdown: 1306 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1307 rele: 1308 xfs_buf_relse(mp->m_sb_bp); 1309 return error; 1310 } 1311 1312 /* 1313 * Clear all the log incompat flags from the superblock. 1314 * 1315 * The caller cannot be in a transaction, must ensure that the log does not 1316 * contain any log items protected by any log incompat bit, and must ensure 1317 * that there are no other threads that depend on the state of the log incompat 1318 * feature flags in the primary super. 1319 * 1320 * Returns true if the superblock is dirty. 1321 */ 1322 bool 1323 xfs_clear_incompat_log_features( 1324 struct xfs_mount *mp) 1325 { 1326 bool ret = false; 1327 1328 if (!xfs_has_crc(mp) || 1329 !xfs_sb_has_incompat_log_feature(&mp->m_sb, 1330 XFS_SB_FEAT_INCOMPAT_LOG_ALL) || 1331 xfs_is_shutdown(mp)) 1332 return false; 1333 1334 /* 1335 * Update the incore superblock. We synchronize on the primary super 1336 * buffer lock to be consistent with the add function, though at least 1337 * in theory this shouldn't be necessary. 1338 */ 1339 xfs_buf_lock(mp->m_sb_bp); 1340 xfs_buf_hold(mp->m_sb_bp); 1341 1342 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, 1343 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) { 1344 xfs_info(mp, "Clearing log incompat feature flags."); 1345 xfs_sb_remove_incompat_log_features(&mp->m_sb); 1346 ret = true; 1347 } 1348 1349 xfs_buf_relse(mp->m_sb_bp); 1350 return ret; 1351 } 1352 1353 /* 1354 * Update the in-core delayed block counter. 1355 * 1356 * We prefer to update the counter without having to take a spinlock for every 1357 * counter update (i.e. batching). Each change to delayed allocation 1358 * reservations can change can easily exceed the default percpu counter 1359 * batching, so we use a larger batch factor here. 1360 * 1361 * Note that we don't currently have any callers requiring fast summation 1362 * (e.g. percpu_counter_read) so we can use a big batch value here. 1363 */ 1364 #define XFS_DELALLOC_BATCH (4096) 1365 void 1366 xfs_mod_delalloc( 1367 struct xfs_mount *mp, 1368 int64_t delta) 1369 { 1370 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1371 XFS_DELALLOC_BATCH); 1372 } 1373